Automatic Differentiation
 
Loading...
Searching...
No Matches
cauchy_lpdf.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_OPENCL_PRIM_CAUCHY_LPDF_HPP
2#define STAN_MATH_OPENCL_PRIM_CAUCHY_LPDF_HPP
3#ifdef STAN_OPENCL
4
12
13namespace stan {
14namespace math {
15
33template <
34 bool propto, typename T_y_cl, typename T_loc_cl, typename T_scale_cl,
36 T_scale_cl>* = nullptr,
37 require_any_not_stan_scalar_t<T_y_cl, T_loc_cl, T_scale_cl>* = nullptr>
39 const T_y_cl& y, const T_loc_cl& mu, const T_scale_cl& sigma) {
40 static constexpr const char* function = "cauchy_lpdf(OpenCL)";
42 using std::isfinite;
43 using std::isnan;
44
45 check_consistent_sizes(function, "Random variable", y, "Location parameter",
46 mu, "Scale parameter", sigma);
47 const size_t N = max_size(y, mu, sigma);
48 if (N == 0) {
49 return 0.0;
50 }
52 return 0.0;
53 }
54
55 const auto& y_col = as_column_vector_or_scalar(y);
56 const auto& mu_col = as_column_vector_or_scalar(mu);
57 const auto& sigma_col = as_column_vector_or_scalar(sigma);
58
59 const auto& y_val = value_of(y_col);
60 const auto& mu_val = value_of(mu_col);
61 const auto& sigma_val = value_of(sigma_col);
62
63 auto check_y_not_nan
64 = check_cl(function, "Random variable", y_val, "not NaN");
65 auto y_not_nan_expr = !isnan(y_val);
66 auto check_mu_finite
67 = check_cl(function, "Location parameter", mu_val, "finite");
68 auto mu_finite_expr = isfinite(mu_val);
69 auto check_sigma_positive_finite
70 = check_cl(function, "Scale parameter", sigma_val, "positive finite");
71 auto sigma_positive_finite_expr = 0 < sigma_val && isfinite(sigma_val);
72
73 auto inv_sigma_expr = elt_divide(1., sigma_val);
74 auto y_minus_mu_expr = y_val - mu_val;
75 auto logp1_expr
76 = -log1p(elt_multiply(elt_multiply(y_minus_mu_expr, y_minus_mu_expr),
77 elt_multiply(inv_sigma_expr, inv_sigma_expr)));
78 auto logp_expr = static_select<include_summand<propto, T_scale_cl>::value>(
79 logp1_expr - log(sigma_val), logp1_expr);
80
81 auto sigma_squared_expr = elt_multiply(sigma_val, sigma_val);
82 auto y_minus_mu_squared_expr = elt_multiply(y_minus_mu_expr, y_minus_mu_expr);
83 auto mu_deriv_expr = elt_divide(
84 2 * y_minus_mu_expr, (sigma_squared_expr + y_minus_mu_squared_expr));
85 auto sigma_deriv_expr
86 = elt_divide(elt_multiply((y_minus_mu_squared_expr - sigma_squared_expr),
87 inv_sigma_expr),
88 (sigma_squared_expr + y_minus_mu_squared_expr));
89
90 matrix_cl<double> logp_cl;
91 matrix_cl<double> mu_deriv_cl;
92 matrix_cl<double> y_deriv_cl;
93 matrix_cl<double> sigma_deriv_cl;
94
95 results(check_y_not_nan, check_mu_finite, check_sigma_positive_finite,
96 logp_cl, mu_deriv_cl, y_deriv_cl, sigma_deriv_cl)
97 = expressions(y_not_nan_expr, mu_finite_expr, sigma_positive_finite_expr,
98 logp_expr,
100 calc_if<!is_constant<T_y_cl>::value>(-mu_deriv_expr),
101 calc_if<!is_constant<T_scale_cl>::value>(sigma_deriv_expr));
102
103 T_partials_return logp = sum(from_matrix_cl(logp_cl));
105 logp -= N * LOG_PI;
106 }
107 auto ops_partials = make_partials_propagator(y_col, mu_col, sigma_col);
108
110 partials<0>(ops_partials) = std::move(y_deriv_cl);
111 }
113 partials<1>(ops_partials) = std::move(mu_deriv_cl);
114 }
116 partials<2>(ops_partials) = std::move(sigma_deriv_cl);
117 }
118 return ops_partials.build(logp);
119}
120
121} // namespace math
122} // namespace stan
123#endif
124#endif
Represents an arithmetic matrix on the OpenCL device.
Definition matrix_cl.hpp:47
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
Definition check_cl.hpp:219
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
Definition calc_if.hpp:121
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_y_cl, T_loc_cl, T_scale_cl > cauchy_lpdf(const T_y_cl &y, const T_loc_cl &mu, const T_scale_cl &sigma)
The log of the Cauchy density for the specified scalar(s) given the specified location parameter(s) a...
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
Definition copy.hpp:61
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition value_of.hpp:18
fvar< T > log(const fvar< T > &x)
Definition log.hpp:18
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
static constexpr double LOG_PI
The natural logarithm of , .
Definition constants.hpp:86
fvar< T > log1p(const fvar< T > &x)
Definition log1p.hpp:12
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
Definition sum.hpp:23
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
Definition max_size.hpp:20
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
bool isnan(const stan::math::var &a)
Checks if the given number is NaN.
Definition std_isnan.hpp:18
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...