1#ifndef STAN_MATH_OPENCL_PRIM_BETA_PROPORTION_LPDF_HPP
2#define STAN_MATH_OPENCL_PRIM_BETA_PROPORTION_LPDF_HPP
38template <
bool propto,
typename T_y_cl,
typename T_loc_cl,
typename T_prec_cl,
40 T_prec_cl>* =
nullptr,
41 require_any_not_stan_scalar_t<T_y_cl, T_loc_cl, T_prec_cl>* =
nullptr>
43 const T_y_cl& y,
const T_loc_cl& mu,
const T_prec_cl& kappa) {
44 static constexpr const char* function =
"beta_proportion_lpdf(OpenCL)";
49 mu,
"Precision parameter", kappa);
50 const size_t N =
max_size(y, mu, kappa);
63 const auto& mu_val =
value_of(mu_col);
64 const auto& kappa_val =
value_of(kappa_col);
67 =
check_cl(function,
"Random variable", y_val,
"in the interval [0, 1]");
68 auto y_bounded_expr = 0 <= y_val && y_val <= 1;
69 auto check_mu_bounded =
check_cl(function,
"Location parameter", mu_val,
70 "in the interval (0, 1)");
71 auto mu_bounded_expr = 0 < mu_val && mu_val < 1;
72 auto check_kappa_positive_finite =
check_cl(
73 function,
"Precision parameter", kappa_val,
"in the interval [0, 1]");
74 auto kappa_positive_finite = 0 < kappa_val &&
isfinite(kappa_val);
76 auto log_y_expr =
log(y_val);
77 auto log1m_y_expr =
log1p(-y_val);
81 +
elt_multiply(kappa_val - mukappa_expr - 1, log1m_y_expr)
85 lgamma(mukappa_expr) +
lgamma(kappa_val - mukappa_expr), 0));
86 auto y_deriv_expr =
elt_divide(mukappa_expr - 1, y_val)
87 +
elt_divide(kappa_val - mukappa_expr - 1, y_val - 1);
88 auto digamma_mukappa_expr =
digamma(mukappa_expr);
89 auto digamma_kappa_mukappa_expr =
digamma(kappa_val - mukappa_expr);
90 auto mu_deriv_expr =
elt_multiply(kappa_val, digamma_kappa_mukappa_expr
91 - digamma_mukappa_expr
92 + log_y_expr - log1m_y_expr);
95 +
elt_multiply(mu_val, log_y_expr - digamma_mukappa_expr)
96 +
elt_multiply(1 - mu_val, log1m_y_expr - digamma_kappa_mukappa_expr);
103 results(check_y_bounded, check_mu_bounded, check_kappa_positive_finite,
104 logp_cl, y_deriv_cl, mu_deriv_cl, kappa_deriv_cl)
105 =
expressions(y_bounded_expr, mu_bounded_expr, kappa_positive_finite,
115 partials<0>(ops_partials) = std::move(y_deriv_cl);
118 partials<1>(ops_partials) = std::move(mu_deriv_cl);
121 partials<2>(ops_partials) = std::move(kappa_deriv_cl);
124 return ops_partials.build(logp);
Represents an arithmetic matrix on the OpenCL device.
elt_multiply_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_multiply(T_a &&a, T_b &&b)
isfinite_< as_operation_cl_t< T > > isfinite(T &&a)
auto check_cl(const char *function, const char *var_name, T &&y, const char *must_be)
Constructs a check on opencl matrix or expression.
results_cl< T_results... > results(T_results &&... results)
Deduces types for constructing results_cl object.
auto as_column_vector_or_scalar(T &&a)
as_column_vector_or_scalar of a kernel generator expression.
elt_divide_< as_operation_cl_t< T_a >, as_operation_cl_t< T_b > > elt_divide(T_a &&a, T_b &&b)
calc_if_< true, as_operation_cl_t< T > > calc_if(T &&a)
auto colwise_sum(T &&a)
Column wise sum - reduction of a kernel generator expression.
expressions_cl< T_expressions... > expressions(T_expressions &&... expressions)
Deduces types for constructing expressions_cl object.
return_type_t< T_y_cl, T_loc_cl, T_prec_cl > beta_proportion_lpdf(const T_y_cl &y, const T_loc_cl &mu, const T_prec_cl &kappa)
The log of the beta density for specified y, location, and precision: beta_proportion_lpdf(y | mu,...
auto from_matrix_cl(const T &src)
Copies the source matrix that is stored on the OpenCL device to the destination Eigen matrix.
require_all_t< is_prim_or_rev_kernel_expression< std::decay_t< Types > >... > require_all_prim_or_rev_kernel_expression_t
Require type satisfies is_prim_or_rev_kernel_expression.
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
fvar< T > log(const fvar< T > &x)
T1 static_select(T1 &&a, T2 &&b)
Returns one of the arguments that can be of different type, depending on the compile time condition.
void check_consistent_sizes(const char *)
Trivial no input case, this function is a no-op.
fvar< T > log1p(const fvar< T > &x)
fvar< T > lgamma(const fvar< T > &x)
Return the natural logarithm of the gamma function applied to the specified argument.
auto sum(const std::vector< T > &m)
Return the sum of the entries of the specified standard vector.
int64_t max_size(const T1 &x1, const Ts &... xs)
Calculate the size of the largest input.
auto make_partials_propagator(Ops &&... ops)
Construct an partials_propagator.
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
typename partials_return_type< Args... >::type partials_return_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Metaprogramming struct to detect whether a given type is constant in the mathematical sense (not the ...
Template metaprogram to calculate whether a summand needs to be included in a proportional (log) prob...