Automatic Differentiation
 
Loading...
Searching...
No Matches
ode_ckrk.hpp File Reference
#include <stan/math/prim/meta.hpp>
#include <stan/math/prim/functor/apply.hpp>
#include <stan/math/prim/functor/coupled_ode_system.hpp>
#include <stan/math/prim/functor/ode_store_sensitivities.hpp>
#include <stan/math/prim/fun/Eigen.hpp>
#include <boost/numeric/odeint.hpp>
#include <ostream>
#include <tuple>
#include <vector>

Go to the source code of this file.

Namespaces

namespace  stan
 The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation from C or the boost::math::lgamma implementation.
 
namespace  stan::math
 Matrices and templated mathematical functions.
 

Functions

template<typename F , typename T_y0 , typename T_t0 , typename T_ts , typename... Args, require_eigen_vector_t< T_y0 > * = nullptr>
std::vector< Eigen::Matrix< stan::return_type_t< T_y0, T_t0, T_ts, Args... >, Eigen::Dynamic, 1 > > stan::math::ode_ckrk_tol_impl (const char *function_name, const F &f, const T_y0 &y0_arg, T_t0 t0, const std::vector< T_ts > &ts, double relative_tolerance, double absolute_tolerance, long int max_num_steps, std::ostream *msgs, const Args &... args)
 Solve the ODE initial value problem y' = f(t, y), y(t0) = y0 at a set of times, { t1, t2, t3, ... } using Boost's Cash-Karp54 solver.
 
template<typename F , typename T_y0 , typename T_t0 , typename T_ts , typename... Args, require_eigen_vector_t< T_y0 > * = nullptr>
std::vector< Eigen::Matrix< stan::return_type_t< T_y0, T_t0, T_ts, Args... >, Eigen::Dynamic, 1 > > stan::math::ode_ckrk_tol (const F &f, const T_y0 &y0_arg, T_t0 t0, const std::vector< T_ts > &ts, double relative_tolerance, double absolute_tolerance, long int max_num_steps, std::ostream *msgs, const Args &... args)
 Solve the ODE initial value problem y' = f(t, y), y(t0) = y0 at a set of times, { t1, t2, t3, ... } using Boost's Cash-Karp solver.
 
template<typename F , typename T_y0 , typename T_t0 , typename T_ts , typename... Args, require_eigen_vector_t< T_y0 > * = nullptr>
std::vector< Eigen::Matrix< stan::return_type_t< T_y0, T_t0, T_ts, Args... >, Eigen::Dynamic, 1 > > stan::math::ode_ckrk (const F &f, const T_y0 &y0, T_t0 t0, const std::vector< T_ts > &ts, std::ostream *msgs, const Args &... args)
 Solve the ODE initial value problem y' = f(t, y), y(t0) = y0 at a set of times, { t1, t2, t3, ... } using Boost's Cash-Karp Runge-Kutta solver with defaults for relative_tolerance, absolute_tolerance, and max_num_steps.