Stan Math Library
4.9.0
Automatic Differentiation
|
#include <stan/math/rev/meta.hpp>
#include <stan/math/prim/fun/eval.hpp>
#include <stan/math/rev/functor/cvodes_integrator_adjoint.hpp>
#include <ostream>
#include <vector>
Go to the source code of this file.
Namespaces | |
namespace | stan |
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation from C or the boost::math::lgamma implementation. | |
namespace | stan::math |
Matrices and templated mathematical functions. | |
Functions | |
template<typename F , typename T_y0 , typename T_t0 , typename T_ts , typename T_abs_tol_fwd , typename T_abs_tol_bwd , typename... T_Args, require_all_eigen_col_vector_t< T_y0, T_abs_tol_fwd, T_abs_tol_bwd > * = nullptr, require_any_not_st_arithmetic< T_y0, T_t0, T_ts, T_Args... > * = nullptr> | |
auto | stan::math::ode_adjoint_impl (const char *function_name, F &&f, const T_y0 &y0, const T_t0 &t0, const std::vector< T_ts > &ts, double relative_tolerance_forward, const T_abs_tol_fwd &absolute_tolerance_forward, double relative_tolerance_backward, const T_abs_tol_bwd &absolute_tolerance_backward, double relative_tolerance_quadrature, double absolute_tolerance_quadrature, long int max_num_steps, long int num_steps_between_checkpoints, int interpolation_polynomial, int solver_forward, int solver_backward, std::ostream *msgs, const T_Args &... args) |
Solve the ODE initial value problem y' = f(t, y), y(t0) = y0 at a set of times, { t1, t2, t3, ... } using the stiff backward differentiation formula BDF solver or the non-stiff Adams solver from CVODES. | |
template<typename F , typename T_y0 , typename T_t0 , typename T_ts , typename T_abs_tol_fwd , typename T_abs_tol_bwd , typename... T_Args, require_all_eigen_col_vector_t< T_y0, T_abs_tol_fwd, T_abs_tol_bwd > * = nullptr, require_all_st_arithmetic< T_y0, T_t0, T_ts, T_Args... > * = nullptr> | |
std::vector< Eigen::VectorXd > | stan::math::ode_adjoint_impl (const char *function_name, F &&f, const T_y0 &y0, const T_t0 &t0, const std::vector< T_ts > &ts, double relative_tolerance_forward, const T_abs_tol_fwd &absolute_tolerance_forward, double relative_tolerance_backward, const T_abs_tol_bwd &absolute_tolerance_backward, double relative_tolerance_quadrature, double absolute_tolerance_quadrature, long int max_num_steps, long int num_steps_between_checkpoints, int interpolation_polynomial, int solver_forward, int solver_backward, std::ostream *msgs, const T_Args &... args) |
Solve the ODE initial value problem y' = f(t, y), y(t0) = y0 at a set of times, { t1, t2, t3, ... } using the stiff backward differentiation formula BDF solver or the non-stiff Adams solver from CVODES. | |
template<typename F , typename T_y0 , typename T_t0 , typename T_ts , typename T_abs_tol_fwd , typename T_abs_tol_bwd , typename... T_Args, require_all_eigen_col_vector_t< T_y0, T_abs_tol_fwd, T_abs_tol_bwd > * = nullptr> | |
auto | stan::math::ode_adjoint_tol_ctl (F &&f, const T_y0 &y0, const T_t0 &t0, const std::vector< T_ts > &ts, double relative_tolerance_forward, const T_abs_tol_fwd &absolute_tolerance_forward, double relative_tolerance_backward, const T_abs_tol_bwd &absolute_tolerance_backward, double relative_tolerance_quadrature, double absolute_tolerance_quadrature, long int max_num_steps, long int num_steps_between_checkpoints, int interpolation_polynomial, int solver_forward, int solver_backward, std::ostream *msgs, const T_Args &... args) |
Solve the ODE initial value problem y' = f(t, y), y(t0) = y0 at a set of times, { t1, t2, t3, ... } using the stiff backward differentiation formula BDF solver or the non-stiff Adams solver from CVODES. | |