Automatic Differentiation
 
Loading...
Searching...
No Matches
mdivide_left.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_FWD_FUN_MDIVIDE_LEFT_HPP
2#define STAN_MATH_FWD_FUN_MDIVIDE_LEFT_HPP
3
10#include <vector>
11
12namespace stan {
13namespace math {
14
15template <typename T1, typename T2,
16 require_all_eigen_vt<is_fvar, T1, T2>* = nullptr,
17 require_vt_same<T1, T2>* = nullptr>
18inline Eigen::Matrix<value_type_t<T1>, T1::RowsAtCompileTime,
19 T2::ColsAtCompileTime>
20mdivide_left(const T1& A, const T2& b) {
21 using T = typename value_type_t<T1>::Scalar;
22 constexpr int S1 = T1::RowsAtCompileTime;
23 constexpr int C2 = T2::ColsAtCompileTime;
24
25 check_square("mdivide_left", "A", A);
26 check_multiplicable("mdivide_left", "A", A, "b", b);
27 if (A.size() == 0) {
28 return {0, b.cols()};
29 }
30
31 Eigen::Matrix<T, S1, C2> inv_A_mult_b(A.rows(), b.cols());
32 Eigen::Matrix<T, S1, C2> inv_A_mult_deriv_b(A.rows(), b.cols());
33 Eigen::Matrix<T, S1, S1> inv_A_mult_deriv_A(A.rows(), A.cols());
34 Eigen::Matrix<T, S1, S1> val_A(A.rows(), A.cols());
35 Eigen::Matrix<T, S1, S1> deriv_A(A.rows(), A.cols());
36
37 const Eigen::Ref<const plain_type_t<T2>>& b_ref = b;
38 const Eigen::Ref<const plain_type_t<T1>>& A_ref = A;
39 for (int j = 0; j < A.cols(); j++) {
40 for (int i = 0; i < A.rows(); i++) {
41 val_A(i, j) = A_ref(i, j).val_;
42 deriv_A(i, j) = A_ref(i, j).d_;
43 }
44 }
45
46 inv_A_mult_b = mdivide_left(val_A, b_ref.val());
47 inv_A_mult_deriv_b = mdivide_left(val_A, b_ref.d());
48 inv_A_mult_deriv_A = mdivide_left(val_A, deriv_A);
49
50 Eigen::Matrix<T, S1, C2> deriv(A.rows(), b.cols());
51 deriv = inv_A_mult_deriv_b - multiply(inv_A_mult_deriv_A, inv_A_mult_b);
52
53 return to_fvar(inv_A_mult_b, deriv);
54}
55
56template <typename T1, typename T2,
59inline Eigen::Matrix<value_type_t<T2>, T1::RowsAtCompileTime,
60 T2::ColsAtCompileTime>
61mdivide_left(const T1& A, const T2& b) {
62 check_square("mdivide_left", "A", A);
63 check_multiplicable("mdivide_left", "A", A, "b", b);
64 if (A.size() == 0) {
65 return {0, b.cols()};
66 }
67
68 const Eigen::Ref<const plain_type_t<T2>>& b_ref = b;
69
70 return to_fvar(mdivide_left(A, b_ref.val()), mdivide_left(A, b_ref.d()));
71}
72
73template <typename T1, typename T2, require_eigen_vt<is_fvar, T1>* = nullptr,
74 require_eigen_vt<std::is_arithmetic, T2>* = nullptr>
75inline Eigen::Matrix<value_type_t<T1>, T1::RowsAtCompileTime,
76 T2::ColsAtCompileTime>
77mdivide_left(const T1& A, const T2& b) {
78 using T = typename value_type_t<T1>::Scalar;
79 constexpr int S1 = T1::RowsAtCompileTime;
80 constexpr int C2 = T2::ColsAtCompileTime;
81
82 check_square("mdivide_left", "A", A);
83 check_multiplicable("mdivide_left", "A", A, "b", b);
84 if (A.size() == 0) {
85 return {0, b.cols()};
86 }
87
88 Eigen::Matrix<T, S1, C2> inv_A_mult_b(A.rows(), b.cols());
89 Eigen::Matrix<T, S1, S1> inv_A_mult_deriv_A(A.rows(), A.cols());
90 Eigen::Matrix<T, S1, S1> val_A(A.rows(), A.cols());
91 Eigen::Matrix<T, S1, S1> deriv_A(A.rows(), A.cols());
92
93 const Eigen::Ref<const plain_type_t<T1>>& A_ref = A;
94 for (int j = 0; j < A.cols(); j++) {
95 for (int i = 0; i < A.rows(); i++) {
96 val_A(i, j) = A_ref(i, j).val_;
97 deriv_A(i, j) = A_ref(i, j).d_;
98 }
99 }
100
101 inv_A_mult_b = mdivide_left(val_A, b);
102 inv_A_mult_deriv_A = mdivide_left(val_A, deriv_A);
103
104 Eigen::Matrix<T, S1, C2> deriv(A.rows(), b.cols());
105 deriv = -multiply(inv_A_mult_deriv_A, inv_A_mult_b);
106
107 return to_fvar(inv_A_mult_b, deriv);
108}
109
110} // namespace math
111} // namespace stan
112#endif
require_t< container_type_check_base< is_eigen, value_type_t, TypeCheck, Check... > > require_eigen_vt
Require type satisfies is_eigen.
Definition is_eigen.hpp:152
typename value_type< T >::type value_type_t
Helper function for accessing underlying type.
void check_square(const char *function, const char *name, const T_y &y)
Check if the specified matrix is square.
void check_multiplicable(const char *function, const char *name1, const T1 &y1, const char *name2, const T2 &y2)
Check if the matrices can be multiplied.
auto multiply(const Mat1 &m1, const Mat2 &m2)
Return the product of the specified matrices.
Definition multiply.hpp:19
fvar< T > to_fvar(const T &x)
Definition to_fvar.hpp:15
Eigen::Matrix< value_type_t< T1 >, T1::RowsAtCompileTime, T2::ColsAtCompileTime > mdivide_left(const T1 &A, const T2 &b)
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...