Automatic Differentiation
 
Loading...
Searching...
No Matches
log_falling_factorial.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_FWD_FUN_LOG_FALLING_FACTORIAL_HPP
2#define STAN_MATH_FWD_FUN_LOG_FALLING_FACTORIAL_HPP
3
8
9namespace stan {
10namespace math {
11
12template <typename T>
13inline fvar<T> log_falling_factorial(const fvar<T>& x, const fvar<T>& n) {
15 (digamma(x.val_ + 1) - digamma(x.val_ - n.val_ + 1)) * x.d_
16 + digamma(x.val_ - n.val_ + 1) * n.d_);
17}
18
19template <typename T>
20inline fvar<T> log_falling_factorial(double x, const fvar<T>& n) {
22 digamma(x - n.val_ + 1) * n.d_);
23}
24
25template <typename T>
26inline fvar<T> log_falling_factorial(const fvar<T>& x, double n) {
28 (digamma(x.val_ + 1) - digamma(x.val_ - n + 1)) * x.d_);
29}
30} // namespace math
31} // namespace stan
32#endif
fvar< T > log_falling_factorial(const fvar< T > &x, const fvar< T > &n)
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
Definition digamma.hpp:23
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...
Scalar val_
The value of this variable.
Definition fvar.hpp:49
Scalar d_
The tangent (derivative) of this variable.
Definition fvar.hpp:61
This template class represents scalars used in forward-mode automatic differentiation,...
Definition fvar.hpp:40