Automatic Differentiation
 
Loading...
Searching...
No Matches
finite_diff_grad_hessian.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_MIX_FUNCTOR_FINITE_DIFF_GRAD_HESSIAN_HPP
2#define STAN_MATH_MIX_FUNCTOR_FINITE_DIFF_GRAD_HESSIAN_HPP
3
7#include <vector>
8
9namespace stan {
10namespace math {
11
40template <typename F>
41void finite_diff_grad_hessian(const F& f, const Eigen::VectorXd& x, double& fx,
42 Eigen::MatrixXd& hess,
43 std::vector<Eigen::MatrixXd>& grad_hess_fx,
44 double epsilon = 1e-04) {
45 int d = x.size();
46 grad_hess_fx.clear();
47
48 Eigen::VectorXd x_temp(x);
49 Eigen::VectorXd grad_auto(d);
50 Eigen::MatrixXd hess_auto(d, d);
51 Eigen::MatrixXd hess_diff(d, d);
52
53 hessian(f, x, fx, grad_auto, hess);
54 for (int i = 0; i < d; ++i) {
55 double dummy_fx_eval;
56 hess_diff.setZero();
57
58 x_temp(i) = x(i) + 2.0 * epsilon;
59 hessian(f, x_temp, dummy_fx_eval, grad_auto, hess_auto);
60 hess_diff = -hess_auto;
61
62 x_temp(i) = x(i) + -2.0 * epsilon;
63 hessian(f, x_temp, dummy_fx_eval, grad_auto, hess_auto);
64 hess_diff += hess_auto;
65
66 x_temp(i) = x(i) + epsilon;
67 hessian(f, x_temp, dummy_fx_eval, grad_auto, hess_auto);
68 hess_diff += 8.0 * hess_auto;
69
70 x_temp(i) = x(i) + -epsilon;
71 hessian(f, x_temp, dummy_fx_eval, grad_auto, hess_auto);
72 hess_diff -= 8.0 * hess_auto;
73
74 x_temp(i) = x(i);
75 hess_diff /= 12.0 * epsilon;
76
77 grad_hess_fx.push_back(hess_diff);
78 }
79 fx = f(x);
80}
81
82} // namespace math
83} // namespace stan
84#endif
static constexpr double e()
Return the base of the natural logarithm.
Definition constants.hpp:20
void finite_diff_grad_hessian(const F &f, const Eigen::VectorXd &x, double &fx, Eigen::MatrixXd &hess, std::vector< Eigen::MatrixXd > &grad_hess_fx, double epsilon=1e-04)
Calculate the value and the gradient of the hessian of the specified function at the specified argume...
void hessian(const F &f, const Eigen::Matrix< T, Eigen::Dynamic, 1 > &x, T &fx, Eigen::Matrix< T, Eigen::Dynamic, 1 > &grad, Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > &H)
Calculate the value, the gradient, and the Hessian, of the specified function at the specified argume...
Definition hessian.hpp:41
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...