
Stan:
Probabilistic Modeling & Bayesian Inference

Development Team

Andrew Gelman, Bob Carpenter, Daniel Lee, Ben Goodrich,

Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Allen Riddell,

Marco Inacio, Jeffrey Arnold, Mitzi Morris, Rob Trangucci,

Rob Goedman, Brian Lau, Jonah Sol Gabry, Robert L. Grant,

Krzysztof Sakrejda, Aki Vehtari, Rayleigh Lei, Sebastian Weber,

Charles Margossian, Vincent Picaud, Imad Ali, Sean Talts,

Ben Bales, Ari Hartikainen, Matthijs Vàkàr, Andrew Johnson,

Dan Simpson

Stan 2.17 (November 2017) http://mc-stan.org

1

http://mc-stan.org

Stan Language

2

Stan is a Programming Language

• Not a graphical specification language like BUGS or JAGS

• Stan is a Turing-complete imperative programming lan-
guage for specifying differentiable log densities

– reassignable local variables and scoping

– full conditionals and loops

– functions (including recursion)

• With automatic “black-box” inference on top (though even
that is tunable)

• Programs computing same thing may have different effi-
ciency

3

Basic Program Blocks

• data (once)

– content: declare data types, sizes, and constraints

– execute: read from data source, validate constraints

• parameters (every log prob eval)

– content: declare parameter types, sizes, and constraints

– execute: transform to constrained, Jacobian

• model (every log prob eval)

– content: statements defining posterior density

– execute: execute statements

4

Derived Variable Blocks
• transformed data (once after data)

– content: declare and define transformed data variables

– execute: execute definition statements, validate constraints

• transformed parameters (every log prob eval)

– content: declare and define transformed parameter vars

– execute: execute definition statements, validate constraints

• generated quantities (once per draw, double type)

– content: declare and define generated quantity variables;
includes pseudo-random number generators
(for posterior predictions, event probabilities, decision making)

– execute: execute definition statements, validate constraints

5

Model: Read and Transform Data

• Only done once for optimization or sampling (per chain)

• Read data

– read data variables from memory or file stream

– validate data

• Generate transformed data

– execute transformed data statements

– validate variable constraints when done

6

Model: Log Density

• Given parameter values on unconstrained scale

• Builds expression graph for log density (start at 0)

• Inverse transform parameters to constrained scale

– constraints involve non-linear transforms

– e.g., positive constrained x to unconstrained y = logx

• account for curvature in change of variables

– e.g., unconstrained y to positive x = log−1(y) = exp(y)

– e.g., add log Jacobian determinant, log | ddy exp(y)| = y

• Execute model block statements to increment log density

7

Model: Log Density Gradient

• Log density evaluation builds up expression graph

– templated overloads of functions and operators

– efficient arena-based memory management

• Compute gradient in backward pass on expression graph

– propagate partial derivatives via chain rule

– work backwards from final log density to parameters

– dynamic programming for shared subexpressions

• Linear multiple of time to evaluate log density

8

Model: Generated Quantities

• Given parameter values

• Once per iteration (not once per leapfrog step)

• May involve (pseudo) random-number generation

– Executed generated quantity statements

– Validate values satisfy constraints

• Typically used for

– Event probability estimation

– Predictive posterior estimation

• Efficient because evaluated with double types (no autodiff)

9

Variable Transforms

• Code HMC and optimization with Rn support

• Transform constrained parameters to unconstrained

– lower (upper) bound: offset (negated) log transform

– lower and upper bound: scaled, offset logit transform

– simplex: centered, stick-breaking logit transform

– ordered: free first element, log transform offsets

– unit length: spherical coordinates

– covariance matrix: Cholesky factor positive diagonal

– correlation matrix: rows unit length via quadratic stick-
breaking

10

Variable Transforms (cont.)

• Inverse transform from unconstrained Rn

• Evaluate log probability in model block on natural scale

• Optionally adjust log probability for change of variables

– adjustment for MCMC and variational, not MLE

– add log determinant of inverse transform Jacobian

– automatically differentiable

11

Variable and Expression Types
Variables and expressions are strongly, statically typed.

• Primitive: int, real

• Matrix: matrix[M,N], vector[M], row_vector[N]

• Bounded: primitive or matrix, with
<lower=L>, <upper=U>, <lower=L,upper=U>

• Constrained Vectors: simplex[K], ordered[N],
positive_ordered[N], unit_length[N]

• Constrained Matrices: cov_matrix[K], corr_matrix[K],
cholesky_factor_cov[M,N], cholesky_factor_corr[K]

• Arrays: of any type (and dimensionality)

12

Integers vs. Reals

• Different types (conflated in BUGS, JAGS, and R)

• Distributions and assignments care

• Integers may be assigned to reals but not vice-versa

• Reals have not-a-number, and positive and negative infin-
ity

• Integers single-precision up to +/- 2 billion

• Integer division rounds (Stan provides warning)

• Real arithmetic is inexact and reals should not be (usually)
compared with ==

13

Arrays vs. Vectors & Matrices

• Stan separates arrays, matrices, vectors, row vectors

• Which to use?

• Arrays allow most efficient access (no copying)

• Arrays stored first-index major (i.e., 2D are row major)

• Vectors and matrices required for matrix and linear alge-
bra functions

• Matrices stored column-major (memory locality matters)

• Are not assignable to each other, but there are conversion
functions

14

Logical Operators

Op. Prec. Assoc. Placement Description

|| 9 left binary infix logical or

&& 8 left binary infix logical and

== 7 left binary infix equality
!= 7 left binary infix inequality

< 6 left binary infix less than
<= 6 left binary infix less than or equal
> 6 left binary infix greater than
>= 6 left binary infix greater than or equal

15

Arithmetic and Matrix Operators

Op. Prec. Assoc. Placement Description

+ 5 left binary infix addition
- 5 left binary infix subtraction

* 4 left binary infix multiplication
/ 4 left binary infix (right) division

\ 3 left binary infix left division

.* 2 left binary infix elementwise multiplication

./ 2 left binary infix elementwise division

! 1 n/a unary prefix logical negation
- 1 n/a unary prefix negation
+ 1 n/a unary prefix promotion (no-op in Stan)

^ 2 right binary infix exponentiation

’ 0 n/a unary postfix transposition

() 0 n/a prefix, wrap function application
[] 0 left prefix, wrap array, matrix indexing

16

Assignment Operators

Op. Description

= assignment
+= compound add and assign
-= compound subtract and assign

*= compound multiply and assign
/= compound divide and assign
.*= compound elementwise multiply and assign
./= compound elementwise divide and assign

• these work with all relevant matrix types

– e.g., matrix *= matrix;

17

Built-in Math Functions

• All built-in C++ functions and operators
C math, TR1, C++11, including all trig, pow, and special log1m, erf, erfc,

fma, atan2, etc.

• Extensive library of statistical functions
e.g., softmax, log gamma and digamma functions, beta functions, Bessel

functions of first and second kind, etc.

• Efficient, arithmetically stable compound functions
e.g., multiply log, log sum of exponentials, log inverse logit

18

Built-in Matrix Functions
• Basic arithmetic: all arithmetic operators

• Elementwise arithmetic: vectorized operations

• Solvers: matrix division, (log) determinant, inverse

• Decompositions: QR, Eigenvalues and Eigenvectors,
Cholesky factorization, singular value decomposition

• Compound Operations: quadratic forms, variance scaling, etc.

• Ordering, Slicing, Broadcasting: sort, rank, block, rep

• Reductions: sum, product, norms

• Specializations: triangular, positive-definite,

19

Atomic Statements

• Sampling: y ~ normal(mu,sigma) (increments log probability)

• Increment log density: target += lp;

• Assignment: y_hat = x * beta;

20

Block of Statements

• Block: { ...; ...; ...; } (allows initial local variables)

21

Control Statements

• For loop: for (n in 1:N) ...

• While loop: while (cond) ...

• Conditional: if (cond) ...; else if (cond) ...; else ...;

• Break: break

• Continue: continue

22

Side-Effect Statements

• Print: print("theta=", theta);

• Reject: reject("arg to foo must be positive, found y=", y);

23

“Sampling” Increments Log Prob
• A Stan program defines a log posterior

– typically through log joint and Bayes’s rule

• Sampling statements are just “syntactic sugar”

• A shorthand for incrementing the log posterior

• The following define the same∗ posterior

– y ~ poisson(lambda);

– increment_log_prob(poisson_log(y, lambda));

• ∗ up to a constant

• Sampling statement drops constant terms

24

Local Variable Scope Blocks
• y ~ bernoulli(theta);

is more efficient with sufficient statistics

{

real sum_y; // local variable

sum_y = 0;

for (n in 1:N)

sum_y = sum_y + y[n]; // reassignment

sum_y ~ binomial(N, theta);

}

• Simpler, but roughly same efficiency:

sum(y) ~ binomial(N, theta);

25

User-Defined Functions
• functions (compiled with model)

– content: declare and define general (recursive) functions
(use them elsewhere in program)

– execute: compile with model

• Example

functions {

real relative_difference(real u, real v) {
return 2 * fabs(u - v) / (fabs(u) + fabs(v));

}

}

26

Special User-Defined Functions

• When declared with appropriate naming, user-defined func-
tions may

– be used in sampling statements: real return and suffix
_lpdf or _lpmf

– use RNGs: suffix _rng

– use target accumulator: suffix _lp

27

User-Defined PDFs and CDFs

• May be used with sampling and PDF/PMF notation

– density: suffix _lpdf if variate (first arg) is real

– mass: Suffix _lpmf if variate (first arg) is integer

functions {
real centered_normal_lpdf(real y, real sigma) {
return -0.5 * (y / sigma)^2;

}

model {
y ~ centered_normal(2.5); // sampling

target += centered_normal_lpdf(y | 2.5); // pdf notation

28

Target Incrementing Functions

• May access target or use sampling statements

• Only usable in model block

– must end in _lp

functions {
vector non_center_lp(vector beta_std, real mu, real sigma) {
beta_std ~ normal(0, 1);
return mu + sigma * beta_raw;

}
parameters {

vector[K] beta_std;
model {

vector[K] beta = non_center_lp(beta_std);
y ~ normal(x * beta, sigma);

29

RNG Functions

• Only usable in generated quantities block

– must end in _rng

functions {
real centered_normal_rng(real sigma) {
return normal_rng(0, sigma);

}

generated quantities {
real alpha = centered_normal_rng(2.7);

30

Differential Equation Solver

• System expressed as function

– given state (y) time (t), parameters (θ), and data (x)

– return derivatives (∂y/∂t) of state w.r.t. time

• Simple harmonic oscillator diff eq

real[] sho(data real t, // time
real[] y, // system state
real[] theta, // params
data real[] x_r, // real data
data int[] x_i) { // int data

return { y[2],
-y[1] - theta[1] * y[2] };

}

31

Differential Equation Solver (cont.)

• Solution via functional, given initial state (y0), initial time
(t0), desired solution times (ts)

mu_y = integrate_ode(sho, y0, t0, ts, theta, x_r, x_i);

• Use noisy measurements of y to estimate θ

y ~ normal(mu_y, sigma);

– Pharmacokinetics/pharmacodynamics (PK/PD),

– soil carbon respiration with biomass input and breakdown

32

Built-in Diff Eq Solvers

• Non-stiff solver: Runge-Kutta 4th/5th order (RK45)

• Stiff solver: backward-differentiation formula (BDF)

– slower

– more robust for derivatives of different scales or high cur-
vature

• specified by suffix _bdf or _rk45

33

Diff Eq Derivatives

• User defines system ∂
∂t y

• Need derivatives of solution y w.r.t. parameters θ

• Couple derivatives of system w.r.t. parameters(
∂
∂t
y,

∂
∂t

∂
∂θ
y
)

• Calculate coupled system via nested autodiff of second
term

∂
∂t

∂
∂θ
y = ∂

∂θ
∂
∂t
y.

34

Distribution Library

• Each distribution has

– log density or mass function

– cumulative distribution functions, plus complementary ver-
sions, plus log scale

– Pseudo-random number generators

• Alternative parameterizations
(e.g., Cholesky-based multi-normal, log-scale Poisson, logit-scale Bernoulli)

• New multivariate correlation matrix density: LKJ
degrees of freedom controls shrinkage to (expansion from) unit matrix

35

Print and Reject

• Print statements are for debugging

– printed every log prob evaluation

– print values in the middle of programs

– check when log density becomes undefined

– can embed in conditionals

• Reject statements are for error checking

– typically function argument checks

– cause a rejection of current state (0 density)

36

Prob Function Vectorization
• Stan’s probability functions are vectorized for speed

– removes repeated computations (e.g., − logσ in normal)

– reduces size of expression graph for differentiation

• Consider: y ~ normal(mu, sigma);

• Each of y, mu, and sigma may be any of

– scalars (integer or real)

– vectors (row or column)

– 1D arrays

• All dimensions must be scalars or having matching sizes

• Scalars are broadcast (repeated)

37

Parsing and Compilation

• Stan code parsed to abstract syntax tree (AST)
(Boost Spirit Qi, recursive descent, lazy semantic actions)

• C++ model class code generation from AST
(Boost Variant)

• C++ code compilation

• Dynamic linking for RStan, PyStan

38

What Stan Does

39

Full Bayes: No-U-Turn Sampler

• Adaptive Hamiltonian Monte Carlo (HMC)

– Potential Energy: negative log posterior

– Kinetic Energy: random standard normal per iteration

• Adaptation during warmup

– step size adapted to target total acceptance rate

– mass matrix (scale/rotation) estimated with regularization

• Adaptation during sampling

– simulate forward and backward in time until U-turn

– slice sample along path

(Hoffman and Gelman 2011, 2014)

40

Posterior Inference

• Generated quantities block for inference:
predictions, decisions, and event probabilities

• Extractors for samples in RStan and PyStan

• Coda-like posterior summary

– posterior mean w. MCMC std. error, std. dev., quantiles

– split-R̂ multi-chain convergence diagnostic (Gelman/Rubin)

– multi-chain effective sample size estimation (FFT algorithm)

• Model comparison with WAIC

– in-sample approximation to cross-validation

41

MAP / Penalized MLE

• Posterior mode finding via L-BFGS optimization
(uses model gradient, efficiently approximates Hessian)

• Disables Jacobians for parameter inverse transforms

• Models, data, initialization as in MCMC

• Standard errors on unconstrained scale
(estimated using curvature of penalized log likelihood function

• Very Near Future

– Standard errors on constrained scale)
(sample unconstrained approximation and inverse transform)

42

“Black Box” Variational Inference

• Black box so can fit any Stan model

• Multivariate normal approx to unconstrained posterior

– covariance: diagonal mean-field or full rank

– not Laplace approx — around posterior mean, not mode

– transformed back to constrained space (built-in Jacobians)

• Stochastic gradient-descent optimization

– ELBO gradient estimated via Monte Carlo + autodiff

• Returns approximate posterior mean / covariance

• Returns sample transformed to constrained space

43

Stan as a Research Tool

• Stan can be used to explore algorithms

• Models transformed to unconstrained support on Rn

• Once a model is compiled, have

– log probability, gradient, and Hessian

– data I/O and parameter initialization

– model provides variable names and dimensionalities

– transforms to and from constrained representation
(with or without Jacobian)

44

Under Stan’s Hood

45

Euclidean Hamiltonian Monte Carlo
• Phase space: q position (parameters); p momentum

• Posterior density: π(q)

• Mass matrix: M

• Potential energy: V(q) = − logπ(q)

• Kinetic energy: T(p) = 1
2p
>M−1p

• Hamiltonian: H(p, q) = V(q)+ T(p)
• Diff eqs:

dq
dt

= +∂H
∂p

dp
dt

= −∂H
∂q

46

Leapfrog Integrator Steps
• Solves Hamilton’s equations by simulating dynamics

(symplectic [volume preserving]; ε3 error per step, ε2 total error)

• Given: step size ε, mass matrix M, parameters q

• Initialize kinetic energy, p ∼ Normal(0, I)

• Repeat for L leapfrog steps:

p ← p − ε
2
∂V(q)
∂q

[half step in momentum]

q ← q + εM−1 p [full step in position]

p ← p − ε
2
∂V(q)
∂q

[half step in momentum]

47

Reverse-Mode Auto Diff

• Eval gradient in (usually small) multiple of function eval
time

– independent of dimensionality

– time proportional to number of expressions evaluated

• Result accurate to machine precision (cf. finite diffs)

• Function evaluation builds up expression tree

• Dynamic program propagates chain rule in reverse pass

• Reverse mode computes ∇g in one pass for a function
f : RN → R

48

Autodiff Expression Graph
~✓⌘◆⇣
� v10

✓⌘◆⇣
� v9 0.5 log2⇡

✓⌘◆⇣
⇤ v7

�.5 ✓⌘◆⇣
pow v6

2 ✓⌘◆⇣
log v8✓⌘◆⇣

/ v5

✓⌘◆⇣
� v4

~✓⌘◆⇣
y v1 ~✓⌘◆⇣

µ v2 ~✓⌘◆⇣
� v3

�
�

@
@R

�
�

@
@
@
@
@
@
@
@R

�
�

@
@R

�
�

@
@R

�
�

@
@
@
@
@R

�
�

�
�
�

�
�

@
@R

Figure 1: Expression graph for the normal log density function given in (1). Each circle cor-

responds to an automatic differentiation variable, with the variable name given to the right in

blue. The independent variables are highlighted in yellow on the bottom row, with the depen-

dent varaible highlighted in red on the top of the graph. The function producing each node is

displayed inside the circle, with operands denoted by arrows. Constants are shown in gray with

gray arrows leading to them because derivatives need not be propagated to constant operands.

In this example, the gradient with respect to all of y , µ, and � are calculated. It is
common in statistical models for some variables to be observed outcomes or fixed
prior parameters and thus constant. Constants need not enter into derivative calcu-
lations as nodes, allowing substantial reduction in both memory and time used for
gradient calculations. See Section 2 for an example of how the treatment of constants
differs from that of autodiff variables.

This mathematical formula corresponds to the expression graph in Figure 1. Each
subexpression corresponds to a node in the graph, and each edge connects the node
representing a function evaluation to its operands.

Figure 2 illustrates the forward pass used by reverse-mode automatic differentia-
tion to construct the expression graph for a program. The expression graph is con-
structed in the ordinary evaluation order, with each subexpression being numbered
and placed on a stack. The stack is initialized here with the dependent variables, but
this is not required. Each operand to an expression is evaluated before the expression
node is created and placed on the stack. As a result, the stack provides a topolog-
ical sort of the nodes in the graph (i.e., a sort in which each node representing an

6

f (y, µ,σ)

= log (Normal(y|µ,σ))

= − 12
(
y−µ
σ

)2 − logσ − 1
2 log(2π)

∂
∂y f (y, µ,σ)

= −(y − µ)σ−2

∂
∂µ f (y, µ,σ)

= (y − µ)σ−2

∂
∂σ f (y, µ,σ)

= (y − µ)2σ−3 − σ−1

49

Autodiff Partials
var value partials

v1 y
v2 µ
v3 σ
v4 v1 − v2 ∂v4/∂v1 = 1 ∂v4/∂v2 = −1
v5 v4/v3 ∂v5/∂v4 = 1/v3 ∂v5/∂v3 = −v4v−23
v6 (v5)2 ∂v6/∂v5 = 2v5
v7 (−0.5)v6 ∂v7/∂v6 = −0.5
v8 logv3 ∂v8/∂v3 = 1/v3
v9 v7 − v8 ∂v9/∂v7 = 1 ∂v9/∂v8 = −1
v10 v9 − (0.5 log2π) ∂v10/∂v9 = 1

50

Autodiff: Reverse Pass
var operation adjoint result

a1:9 = 0 a1:9 = 0
a10 = 1 a10 = 1
a9 += a10 × (1) a9 = 1
a7 += a9 × (1) a7 = 1
a8 += a9 × (−1) a8 = −1
a3 += a8 × (1/v3) a3 = −1/v3
a6 += a7 × (−0.5) a6 = −0.5
a5 += a6 × (2v5) a5 = −v5
a4 += a5 × (1/v3) a4 = −v5/v3
a3 += a5 × (−v4v−23) a3 = −1/v3 + v5v4v−23
a1 += a4 × (1) a1 = −v5/v3
a2 += a4 × (−1) a2 = v5/v3

51

Stan’s Reverse-Mode

• Easily extensible object-oriented design

• Code nodes in expression graph for primitive functions

– requires partial derivatives

– built-in flexible abstract base classes

– lazy evaluation of chain rule saves memory

• Autodiff through templated C++ functions

– templating on each argument avoids excess promotion

52

Stan’s Reverse-Mode (cont.)

• Arena-based memory management

– specialized C++ operator new for reverse-mode variables

– custom functions inherit memory management through base

• Nested application to support ODE solver

53

Stan’s Autodiff vs. Alternatives
• Stan is fastest (and uses least memory)

– among open-source C++ alternatives

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1/16

1/4

1

4

16

64

22 24 26 28 210 212

dimensions

tim
e

/ S
ta

n'
s

tim
e

system
●

●

●

●

●

●

adept

adolc

cppad

double

sacado

stan

matrix_product_eigen

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

1/16

1/4

1

4

16

20 22 24 26 28 210 212 214

dimensions

tim
e

/ S
ta

n'
s

tim
e

system
●

●

●

●

●

●

adept

adolc

cppad

double

sacado

stan

normal_log_density_stan

54

Forward-Mode Auto Diff

• Evaluates expression graph forward from one independent
variable to any number of dependent variables

• Function evaluation propagates chain rule forward

• In one pass, computes ∂
∂x f (x) for a function f : R→ RN

– derivative of N outputs with respect to a single input

55

Stan’s Forward Mode

• Templated scalar type for value and tangent

– allows higher-order derivatives

• Primitive functions propagate derivatives

• No need to build expression graph in memory

– much less memory intensive than reverse mode

• Autodiff through templated functions (as reverse mode)

56

Second-Order Derivatives

• Compute Hessian (matrix of second-order partials)

Hi,j = ∂2

∂xi∂xj
f (x)

• Required for Laplace covariance approximation (MLE)

• Required for curvature (Riemannian HMC)

• Nest reverse-mode in forward for second order

• N forward passes: takes gradient of derivative

57

Third-Order Derivatives

• Required for Riemannian HMC

• Gradients of Hessians (tensor of third-order partials)

∂3

∂xi∂xj∂xk
f (x)

– N2 forward passes: gradient of derivative of derivative

58

Third-order Derivatives (cont.)

• Gradient of trace of Hessian times matrix

– ∇tr(H M), or

– needed for Riemannian Hamiltonian Monte Carlo

– computable in quadratic time for fixed M

59

Jacobians

• Assume function f : RN → RM

• Partials for multivariate function (matrix of first-order par-
tials)

Ji,j = ∂
∂xi
fj(x)

• Required for stiff ordinary differential equations

– differentiate is coupled sensitivity autodiff for ODE system

• Two execution strategies

1. Multiple reverse passes for rows

2. Forward pass per column (required for stiff ODE)

60

Autodiff Functionals

• Functionals map templated functors to derivatives

– fully encapsulates and hides all autodiff types

• Autodiff functionals supported

– gradients: O(1)
– Jacobians: O(N)
– gradient-vector product (i.e., directional derivative): O(1)
– Hessian-vector product: O(N)
– Hessian: O(N)
– gradient of trace of matrix-Hessian product: O(N2)

(for SoftAbs RHMC)

61

Variable Transforms

• Code HMC and optimization with Rn support

• Transform constrained parameters to unconstrained

– lower (upper) bound: offset (negated) log transform

– lower and upper bound: scaled, offset logit transform

– simplex: centered, stick-breaking logit transform

– ordered: free first element, log transform offsets

– unit length: spherical coordinates

– covariance matrix: Cholesky factor positive diagonal

– correlation matrix: rows unit length via quadratic stick-
breaking

62

Variable Transforms (cont.)

• Inverse transform from unconstrained Rn

• Evaluate log probability in model block on natural scale

• Optionally adjust log probability for change of variables

– adjustment for MCMC and variational, not MLE

– add log determinant of inverse transform Jacobian

– automatically differentiable

63

Parsing and Compilation

• Stan code parsed to abstract syntax tree (AST)
(Boost Spirit Qi, recursive descent, lazy semantic actions)

• C++ model class code generation from AST
(Boost Variant)

• C++ code compilation

• Dynamic linking for RStan, PyStan

64

Coding Probability Functions
• Vectorized to allow scalar or container arguments

(containers all same shape; scalars broadcast as necessary)

• Avoid repeated computations, e.g. logσ in

log Normal(y|µ,σ) = ∑N
n=1 log Normal(yn|µ,σ)

= ∑N
n=1− log

√
2π − logσ − yn − µ2σ 2

• recursive expression templates to broadcast and cache
scalars, generalize containers (arrays, matrices, vectors)

• traits metaprogram to drop constants (e.g., − log
√
2π

or logσ if constant) and calculate intermediate and return
types

65

