
Stan:
Probabilistic Modeling & Bayesian Inference

Development Team

Andrew Gelman, Bob Carpenter, Daniel Lee, Ben Goodrich,

Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Allen Riddell,

Marco Inacio, Jeffrey Arnold, Mitzi Morris, Rob Trangucci,

Rob Goedman, Brian Lau, Jonah Sol Gabry, Robert L. Grant,

Krzysztof Sakrejda, Aki Vehtari, Rayleigh Lei, Sebastian Weber,

Charles Margossian, Vincent Picaud, Imad Ali, Sean Talts,

Ben Bales, Ari Hartikainen, Matthijs Vàkàr, Andrew Johnson,

Dan Simpson

Stan 2.17 (November 2017) http://mc-stan.org

1

http://mc-stan.org

Simulation

2

Repeated i.i.d. Trials
• Suppose we repeatedly generate a ran-

dom outcome from among several poten-
tial outcomes

• Suppose the outcome chances are the
same each time

– i.e., outcomes are independent and iden-
tically distributed (i.i.d.)

• For example, spin a fair spinner (with-
out cheating), such as one from Family
Cricket.

Image source: http://replaycricket.com/2010/10/29/family-cricket/

3

http://replaycricket.com/2010/10/29/family-cricket/

Repeated i.i.d. Binary Trials

• Suppose the outcome is binary and assigned to 0 or 1;
e.g.,

– 20% chance of outcome 1: ball in play

– 80% chance of outcome 0: ball not in play

• Consider different numbers of bowls delivered.

• How will proportion of successes in sample differ?

4

Simulating i.i.d. Binary Trials

• R Code: rbinom(10, N, 0.2) / N

– 10 bowls (10% to 50% success rate)

2 3 5 2 4 1 2 2 1 1

– 100 bowls (16% to 26% success rate)

26 18 23 17 21 16 21 15 21 26

– 1000 bowls (18% to 22% success rate)

181 212 175 213 216 179 223 198 188 194

– 10,000 bowls (19.3% to 20.3% success rate)

2029 1955 1981 1980 2001 2014 1931 1982 1989 2020

5

Pop Quiz! Cancer Clusters

• Why do lowest and highest cancer clusters look so similar?

Image from Gelman et al., Bayesian Data Analysis, 3rd Edition (2013)

6

Pop Quiz Answer

• Hint: mix earlier simulations of repeated i.i.d. trials with
20% success and sort:

1/10 1/10 1/10 15/100 16/100
17/100 175/1000 179/1000 18/100 181/1000

188/1000 194/1000 198/1000 2/10 2/10
2/10 2/10 21/100 21/100 21/100

212/1000 213/1000 216/1000 223/1000 23/100
26/100 26/100 3/10 4/10 5/10

• More variation in observed rates with smaller sample sizes

• Answer: High cancer and low cancer counties are small
populations

7

Maximum Likeilihood

• Estimate chance of success θ by proportion of successes:

θ∗ = successes
attempts

• Simulation shows accuracy depends on the amount of data.

• Statistics is about quantifying uncertainty.

• Bayesian statistics is about using uncertainty in inference.

Notation: θ∗ denotes the maximum likelihood estimate of θ.

8

Confidence via Simulation
• Estimator uncertainty (not Bayesian posterior)

num_sims <- 10000

N <- 100;

theta <- 0.2;

hist(rbinom(num_sims, N, theta) / N,

main=sprintf("%d simulations",N), xlab="theta*");

Confidence via Simulation

• P% confidence interval: interval in which P% of the esti-
mates are expected to fall.

• Simulation computes intervals to any accuracy.

• Simulate, sort, and inspect the central empirical interval.

10 draws

theta*

0.0 0.4 0.8

0
15
00

30
00

100 draws

theta*

0.0 0.4 0.8

0
10
00

20
00

1000 draws

theta*

0.0 0.4 0.8

0
50
0

15
00

• Estimator uncertainty, not a Bayesian posterior

8

9

Example Interval Calculation
• P% confidence interval: interval in which P% of the esti-

mates are expected to fall.

• Simulation computes intervals to any accuracy.

• Simulate, sort, and inspect the central empirical interval.

> sims <- rbinom(10000, 1000, 0.2) / 1000

> sorted_sims <- sort(sims)

> sorted_sims[c(250, 9750)]

[1] 0.176 0.225

• The 95% confidence interval is thus (0.176,0.225)

• i.e., if true θ = 0.2, then 95% of the samples of size 1000
used will produce estimates in (0.176,0.225)

10

Estimator Bias

• Bias: expected difference of estimate from true value

• Continuing previous example

> sims <- rbinom(10000, 1000, 0.2) / 1000

> mean(sims)

[1] 0.2002536

• Value of 0.2 is estimate of expectation

• Shows this estimator is unbiased

11

Central Limit Theorem (picture)

• proportion heads for 100 sequences of 100,000 flips

• converges gradually to expected value of 0.5

12

Central Limit Theorem (words)

• The theorem of statistics

– Cardano (1501–1576) conjectured convergence; (Jacob) Bernoulli
(1713) proved convergence for binomials (law of large numbers);
de Moivre (1733) conjectured the CLT; Laplace (1812) proved i.i.d.
version; Lyapunov (1901) removed i.i.d. constraint

• Sample mean of N i.i.d. variables with finite expectation

– converges to their expectation as N →∞

– rate of convergence isO
(
1√
N

)
– constant factor determined by standard deviation

• Each decimal place of accuracy requires 100× more draws

13

Central Limit Theorem (math)

• Simple i.i.d. version—can be established more generally

• Given N i.i.d. variables θ1, . . . , θN with

– E[θn] = µ

– sd[θn] = σ

the central limit theorem states

lim
N→∞

θ1 + · · · + θN
N

∼ Normal
(
µ,
σ√
N

)

14

Numerical Analysis

15

Floating-Point Standard: IEEE 754

• Finite numbers (s: sign; c: mantissa; q: exponent)

x = (−1)s × c × 2q

size s, c bits q bits range precision

32-bit 24 8 ±3.4× 1038 7.2 digits

64-bit 53 11 ±1.8× 10308 16 digits

• Quiet and signaling not-a-number (NaN)

• Positive and negative infinity (+∞,−∞)

• Stan uses 64-bit floating point

16

Catastrophic Cancellation
• Subtraction risks catastrophic cancellation

• Consider 0.99802− 0.99801 = 0.00001
– input has five digits of precision

– output has single digit of precision

• E.g., problem for sample variance of sequence x

var(x) = 1
N − 1

N∑
n=1
(xn − x)2

if elements xn close to sample mean

x = 1
N

N∑
n=1
xn

17

Welford’s Algorithm
• Streaming computation uses fixed memory

N = 0; mean = 0; sum_sq_err = 0

handle(y):
N += 1
diff = y - mean
mean = mean + diff / N
diff2 = y - mean
sum_sq_err += diff * diff2

mean(): return mean

var(): return sum_sq_err / (N - 1)

• Two stage difference is less prone to cancellation

18

Gaps Between Numbers

• Smallest number greater than zero

– single precision: 1.4× 10−45

– double precision: 4.9× 10−324

• Largest number less than one

– single precision: 1− 10−7.2

– double precision: 1− 10−16

• Gap size depends on scale

19

Lack of Transitivity

• For real numbers x, y, z ∈ R,

x+ (y + z) = (x+ y)+ z

• This can fail for floating point due to rounding

– (1 + 6e-17) + 6e-17 == 1

– 1 + (6e-17 + 6e-17) != 1

• For square matrices LL> is symmetric

• This won’t hold for efficient matrix multiplications

– (L * L’)[1, 2] != (L * L’)[2, 1]

20

Rounding and Equality

• Dangerous to compare floating point numbers

– they may have lost precision during calculation

• Rounding

– default: round toward nearest

– round toward zero, round to plus or minus infinity

21

Overflow and Rounding

• Because there is a max size, operations can overflow

– e.g., exp(1000), 1e200 * 1e200, ...

• Because there are gaps, operations can round to zero

– e.g., exp(-1000), 1e-200 * 1e-200, ...

– e.g., evaluating
∏N
n=1 p(yn|θ) underflows for N = 2000 if

p(yn|θ) < 0.1.

22

Example: log1p and CCDFs

• log1p(x) is for evaluating log near one

– when x is near zero, 1 + x catastrophically rounds to 1

– this forces log(1 + x) to round to 0

– log1p(x) avoids 1 + x operation

– log1p(x) uses Taylor series expansion of log(1+ x)

• Complementary CDFs evaluate CDFs with values near one

– X is some random variable, e.g., X ∼ Normal(0,1)

– CDF: FX(x) = Pr[X ≤ x]
– CCDF: F�X(x) = 1− Pr[X ≤ x]
– converts range around one to range around zero

23

Example: log and log_sum_exp
• Multiplication on the log scale: log

– log(a× b) = loga+ logb

– log converts multiplication to addition

– log
∏
n xn =

∑
n logxn

– avoids underflow and overflow even if xn � 1 or xn � 1

– useful absolutely everywhere (e.g., log likelihoods)

• Addition on the log scale: log_sum_exp

– log(a+ b) = log(exp(loga)+ exp(logb))

– log converts addition to log sum of exponentials

– avoids underflow and overflow, preserves precision

– useful for mixtures (e.g., HMMs, zero-inflated Poisson)

24

Example: log_sum_exp
• Without loss of generality, assume a > b (otherwise swap)

log_sum_exp(a, b) = log(exp(a)+ exp(b))

= a+ log(exp(a− a)+ exp(b − a))

= a+ log(1+ exp(b − a))

= a+ log1p(exp(b− a))

– increase precision: pull a out of log() and exp()

– increase precision: use log1p

– prevents overflow: can’t overflow because b − a ≤ 0

• Generalize to more than two inputs: subtract max

25

Monte Carlo
Integration

26

Monte Carlo Calculation of π
• Computing π = 3.14 . . . via simula-

tion is the textbook application of
Monte Carlo methods.

• Generate points uniformly at ran-
dom within the square

• Calculate proportion within circle
(x2 + y2 ≤ 1) and multiply by
square’s area (4) to produce the
area of the circle.

• This area is π (radius is 1, so area
is πr2 = π)

plot by Mysid Yoderj,

courtesy of Wikipedia.

27

Monte Carlo Calculation of π (cont.)

• R code to calculate π with Monte Carlo simulation:

> x <- runif(1e6,-1,1)

> y <- runif(1e6,-1,1)

> prop_in_circle <- sum(x^2 + y^2 <= 1) / 1e6

> 4 * prop_in_circle

[1] 3.144032

28

π as an Expectation
• If probability is uniform over the sample space,

then an event’s probability is its area (volume in general)

• Suppose X,Y ∼ Uniform(−1,1)

• Then Pr[X2 + Y 2 ≤ 1] = π/4.

• To calculate using Monte Carlo draws (x(m), y(m)),

Pr[X2 + Y 2 ≤ 1] = E
[

I
[
X2 + Y 2 < 1

]]
=

∫ 1
−1

∫ 1
−1

I
[
x2 + y2 < 1

]
pX(x) pY (y) dxdy

≈ 1
M

I
[(
x(m)

)2
+
(
y(m)

)2
< 1

]

29

Calculating π with Stan

• Complete Stan program to compute Pr[X2 + Y 2 ≤ 1]:

generated quantities {
real x = uniform_rng(-1, 1);
real y = uniform_rng(-1, 1);
real pi_div_4 = hypot(x, y) <= 1;

}

• Simulates X and Y

• Codes indicator function implicitly with comparison

– uses Stan’s built-in hypotenuse function

– hypot(a, b) = sqrt(a^2 + b^2)

30

Fitting Stan model for π in R

• Fixed_param algorithm for no parameters

> fit <- stan("pi.stan", algorithm="Fixed_param",
iter=100000)

• Print only what’s needed (print output elided manually)

> print(fit, digits=3, probs=c(), pars=c("pi_div_4"))

mean se_mean
pi_div_4 0.786 0.001

• Estimate accurate to within estimated tolerances

– 4× 0.786 = 3.144
– predicted accuracy is 0.004 (four times standard error)

31

Accuracy of Monte Carlo
• Monte Carlo Integration computes the exact posterior to

within any ε (not like variational Bayes which yields an ap-
proximation of the posterior)

• Monte Carlo draws are i.i.d. by definition

• Central limit theorem: expected error decreases at rate of

1√
N

• 3 decimal places of accuracy with sample size 1e6

• Need 100× larger sample for each digit of accuracy

32

General Monte Carlo Integration
• MC can calculate arbitrary definite inte-

grals, ∫ b
a
f (x) dx

• Let d upper bound f (x) in (a, b); tightness
determines computational efficiency

• Then generate random points uniformly in
the rectangle bounded by (a, b) and (0, d)

• Multiply proportion of draws (x, y) where
y < f(x) by area of rectangle, d × (b − a).

• Can be generalized to multiple dimensions
in obvious way

Image courtesy of Jeff Cruzan, http://www.drcruzan.com/NumericalIntegration.html

33

http://www.drcruzan.com/NumericalIntegration.html

Expectations of Function of R.V.

• Suppose f (θ) is a function of random variable vector θ

• Suppose the density of θ is p(θ)

– Warning: θ overloaded as random and bound variable

• Then f (θ) is also random variable, with expectation

E[f (θ)] =
∫
Θ
f (θ) p(θ) dθ.

– where Θ is support of p(θ) (i.e., Θ = {θ |p(θ) > 0}

34

QoI as Expectations

• Most Bayesian quantities of interest (QoI) are expectations
over the posterior p(θ |y) of functions f (θ)

• Bayesian parameter estimation: θ̂

– f (θ) = θ

– θ̂ = E[θ|y] minimizes expected square error

• Bayesian parameter (co)variance estimation: var[θ |y]
– f (θ) = (θ − θ̂)2

• Bayesian event probability: Pr[A |y]
– f (θ) = I(θ ∈ A)

35

Expectations via Monte Carlo

• Generate draws θ(1), θ(2), . . . , θ(M) drawn from p(θ)

• Monte Carlo Estimator plugs in average for expectation:

E[f (θ)|y] ≈ 1
M

M∑
m=1

f (θ(m))

• Can be made as accurate as desired, because

E[f (θ)] = lim
M→∞

1
M

M∑
m=1

f (θ(m))

• Reminder: By CLT, error goes down as 1 /
√
M

36

The Curse of
Dimensionality

37

The Curse

• Intuitions formed in low dimensions break down do not
generalize

• In high dimensions, everything is far away

– random draws are far away from each other

– random draws are far away from the mode or meaan

• Sampling algorithms that work in low dimensions often
fail in high dimensions

38

Volume of Ball in Cube
• Assume x, y, z ∼ Uniform(−1,1),

• Pr[(x, y, z) ∈ unit ball]
is unit ball’s fraction of volume.

• Analytic solution:∫ 1
−1
∫ 1
−1
∫ 1
−1 I[x2 + y2 + z2 ≤ 1]dxdy dz

• Monte Carlo solution:

– simulate multiple (x, y, z) uni-
formly in cube

– count proportion in ball, i.e.,

x2 + y2 + z2 ≤ 1

−1.0 −0.5 0.0 0.5 1.0−
1.

0
−

0.
5

 0
.0

 0
.5

 1
.0

−1.0

−0.5

 0.0

 0.5

 1.0

X

Y

Z

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4000 simulations;

blue inside unit ball.

39

Ball in Cube in Stan
generated quantities {

int<lower = 0, upper = 1> in_ball;
{
real x = uniform_rng(-1, 1);
real y = uniform_rng(-1, 1);
real z = uniform_rng(-1, 1);
in_ball = (x^2 + y^2 + z^2 <= 1);

}
}

• in_ball is value of indicator (implicit in <=).

• Posterior mean of in_ball is fraction draws in ball.

• Posterior mean estimates Pr[x2 + y2 + z2 ≤ 1].

40

Ball in Cube in Stan from RStan

• Use the Fixed_param algorithm:

> fit <- stan("ball-in-cube.stan",
algorithm="Fixed_param",

iter=10000)

> print(fit, probs=c(), digits=3)

mean se_mean sd n_eff Rhat
in_ball 0.528 0.004 0.499 19400 1

• Thus Pr[X2 + Y 2 + Z2 ≤ 1] ≈ 0.53

• with standard error of 0.004, yielding a 95% interval of
±0.008, i.e., roughly (0.52, 0.54)

41

Hyperballs in Hypercubes

• sample uniformly from container (square, cube, ...)

• 2 dimensions (x, y): compute Pr[X2 + Y 2 ≤ 1]
– unit disc inscribed in square

– calculate π given known area of circle (2π)

• 3 dimensions (x, y, z): compute Pr[X2 + Y 2 + Z2 ≤ 1]
– unit ball inscribed in cube

• N-dimensions (x1, . . . , xN): compute Pr[X21 + · · ·X2N ≤ 1]
– unit hyperball inscribed in hypercube

• Code event probability as expectation of indicator

42

Hyperballs in Hypercubes in Stan

generated quantities {
int<lower=0, upper=1> in_ball[10];
{
real len = 0;
for (n in 1:10) {

len = len + uniform_rng(-1, 1)^2;
in_ball[n] = (len <= 1);

}
}

}

• draw x1, . . . , xN is implicit in uniform_rng

• in_ball[n] is 1 iff x21+· · ·+x2n ≤ 1; coded as indicator (len <= 1)

• sum of squares accumulation reduces quadratic time to linear

43

Hyperballs in Hypercubes in RStan
> fit <- stan("hyperballs.stan", algorithm="Fixed_param",

iter=1e4)

> print(fit, probs=c())

mean se_mean sd n_eff Rhat
in_ball[1] 1.00 0 0.00 20000 NaN
in_ball[2] 0.78 0 0.41 20000 1
in_ball[3] 0.52 0 0.50 20000 1
in_ball[4] 0.31 0 0.46 20000 1
in_ball[5] 0.17 0 0.38 20000 1
in_ball[6] 0.08 0 0.27 20000 1
in_ball[7] 0.04 0 0.19 18460 1
in_ball[8] 0.02 0 0.12 19370 1
in_ball[9] 0.01 0 0.08 20000 1
in_ball[10] 0.00 0 0.05 20000 1

44

Proportion Volume in Hyperball

45

Typical Sets

46

Typical Set Example (1)

• Consider a game of chance with an 80% chance of winning

• Play the game 100 times independently

• What is most likely outcome?

47

Typical Set Example (2)

• For each trial, there is a 80% chance of success

• For each trial, most likely outcome is success

• Overall, the single most likely outcome is all successes

• What’s the most likely number of successes?

48

Typical Set Example (3)
• Let yn ∼ Bernoulli(0.9) for n ∈ 1 : 100 be the trials

• Expected number of successes

E
[∑100

n=1 yn
]
=

∑100
n=1 E[yn]

=
∑100
n=1 0.8

= 0.8× 100

= 80

• most likely outcome (all successes) is an outlier!

Pr[100 successes] = 0.8100 < 10−10

49

Typical Set Example (4)
• Maximum likelihood (most likely) outcome is atypical

• Expectations involve count times probability

• 100 success sequences:
(
100
100

)
= 100!

100! × 1! = 1

• 80 success sequences:
(
100
80

)
= 100!

80! × 20! > 1020

• Thus chance of 80 success is much higher than 100

Binomial(80 | 100,0.8) =
(
100
20

)
× 0.880 × 0.220

�
(
100
1

)
× 0.8100

= Binomial(100 | 100,0.8)

50

Typical Set
• Goal is to evaluate posterior expectations using draws

E [f (θ) | y] =
∫
Θ
f (θ)p(θ|y)dθ

≈ 1
M

M∑
m=1

f (θ(m))

• A typical set Aε (at some level) is the set

– of values with typical log density (near distribution entropy)

– containing 1− ε of the probability mass

• A typical set Aε suffices for integration∫
Θ
f (θ)p(θ|y)dθ =

∫
Aε
f (θ)p(θ|y)dθ

51

Typical Draws from Multi-Normal

• Y ∼ MultiNormal(0, IN) is standard multivariate normal

• Yn ∼ Normal(0,1) is thus independently standard normal

• Joint density: pY (y) =
∏N
n=1 Normal(yn | 0,1)

• Mean, median, and mode (max) of pY (y) at y = 0

• How far do we expect Y to be from the mode?

• What is the log density of a typical draw of Y ?

52

Multi-Normal Draws in Stan
generated quantities {

real dist_to_origin[256];
real log_lik[256];
real log_lik_mean[256];
{
real sq_dist = 0; real ll = 0; real llm = 0;
for (n in 1:256) {

real y = normal_rng(0, 1);
ll = ll + normal_lpdf(y | 0, 1);
llm = llm + normal_lpdf(0 | 0, 1);
sq_dist = sq_dist + y^2;
dist_to_origin[n] = sqrt(sq_dist);
log_lik[n] = ll;
log_lik_mean[n] = llm;

}
}

}

53

Normal Variate Distance to Mode

54

Normal Variate Log Density

55

Normal Mode not in Typical Set

• Plots show that in a standard normal of more than 5 di-
mensions, that the mode is not in the typical set

• An Asimov data set uses an average member of a set
represent the whole set

– based on Isaac Asimov’s short story “Franchise” in which a
single average voter represented everyone

– the average member of a multivariate normal is the mean

– thus no members of the typical set are average in this sense

– popular in physics

– very poor solution for most inferential purposes

56

Concentration
of Measure

57

Concentration of Measure

• We care about probability mass, not density

• Events with non-zero probability have probability mass,
e.g., Pr[θ0 > θ1 | y]

• Mass arises from integrating over density

• As data size increases, posterior concentrates around true
value

58

E.g., Binomial Concentration

• y ∼ Binomial(N,θ)

Binomial(y | N,θ) =
(
N
y

)
θy (1− θ)N−y

• As N →∞, posterior average y/N concentrates around θ

• Concentration governed by central limit theorem

59

Binomial Concentration, N = 25

60

Binomial Concentration, N = 100

61

Binomial Concentration, N = 400

62

Continuous Hypervolumes

• Generalize discrete to continuous

– discrete: combinations times probability mass

– continuous: volume times probabilty density

• Volume of ball at given radius (r) grows exponentially with

dimension (d):

volume∝ rd
– line has length ∝ r
– disc has area ∝ r2

– ball has volume ∝ r3

– 4-dimensional hyperball has volume ∝ r4

63

Markov Chain
Monte Carlo

64

Markov Chain Monte Carlo

• Standard Monte Carlo draws i.i.d. samples

θ(1), . . . , θ(M)

according to a probability function p(θ)

• Drawing i.i.d. samples typically impossible for complex
densities like Bayesian posteriors p(θ|y)

• Instead, use Markov chain Monte Carlo (MCMC) to draw
θ(1), . . . , θ(M) from a Markov chain with appropriate sta-
tionary distribution p(θ|y).

65

Markov Chains

• A Markov Chain is a sequence of random variables

θ(1), θ(2), . . . , θ(M)

such that θ(m) only depends on θ(m−1), i.e.,

p(θ(m)|y, θ(1), . . . , θ(m−1)) = p(θ(m)|y, θ(m−1))

66

Markov Chain Monte Carlo

• Simulating independent draws from the posterior p(θ|y)
usually intractable

• Simulating a Markov chain θ(1), . . . , θ(M) with marginals
equal to posterior, i.e.,

p(θ(m)|y) = p(θ|y)

often is tractable

• Replace indepedent draws with Markov chain of draws

– Plug in just like ordinary (non-Markov chain) Monte Carlo

– Adjust standard errors for correlation in Markov chain

67

MCMC for Posterior Mean
• Standard Bayesian estimator is posterior mean

θ̂ =
∫
Θ
θ p(θ|y)dθ

– Posterior mean minimizes expected square error

• Estimate is a conditional expectation

θ̂ = E[θ|y]

• Compute by averaging

θ̂ ≈ 1
M

M∑
m=1

θ

68

MCMC for Posterior Variance

• Posterior variance works the same way, given previous re-
sult

E[(θ − E[θ])2] ≈ 1
M

M∑
m=1
(θ(m) − θ̂)2

69

MCMC for Posterior Median

• Alternative Bayesian estimator is posterior median

– Posterior median minimizes expected absolute error

• Calculate as middle draw of θ(1), . . . , θ(M)

– just sort and take halfway value

– e.g., Stan shows 50% point (or other quantiles)

70

MCMC for Event Probability

• Event probabilities are also expectations, e.g.,

Pr[θ1 > θ2] = E[I[θ1 > θ2]] =
∫
Θ

I[θ1 > θ2]p(θ|y)dθ.

• Estimation via MCMC just another plug-in:

Pr[θ1 > θ2] ≈
1
M

M∑
m=1

I[θ(m)1 > θ(m)2]

• Again, can be made as accurate as necessary

71

MCMC for Quantiles (incl. median)

• These are not expectations, but still plug in

• Alternative Bayesian estimator is posterior median

– Posterior median minimizes expected absolute error

• Estimate as median draw of θ(1), . . . , θ(M)

– just sort and take halfway value

– e.g., Stan shows 50% point (or other quantiles)

• Other quantiles including interval bounds similar

– estimate with quantile of draws

– estimation error goes up in tail (based on fewer draws)

72

MCMC Algorithms

73

Random-Walk Metropolis

• Draw random initial parameter vector θ(1) (in support)

• For m ∈ 2:M
– Sample proposal from a (symmetric) jumping distribution,

e.g.,
θ∗ ∼ MultiNormal(θ(m−1), σ I)

where I is the identity matrix

– Draw u(m) ∼ Uniform(0,1) and set

θ(m) =


θ∗ if u(m) <

p(θ∗|y)
p(θ(m)|y)

θ(m−1) otherwise

74

Metropolis and Normalization

• Metropolis only uses posterior in a ratio

p(θ∗ |y)
p(θ(m) |y) = p(y, θ∗) / p(y)

p(y, θ(m)) / p(y)

= p(y, θ∗)
p(y, θ(m))

= p(y | θ∗)p(θ∗)
p(y | θ(m))p(θ(m))

• Drops p(y) term with nasty integral

• Baye’s rule reduces to likelihood and prior

75

Metropolis-Hastings

• Generalizes Metropolis to asymmetric proposals

• Acceptance ratio is

J(θ(m)|θ∗) × p(θ∗|y)
J(θ∗|θ(m−1)) × p(θ(m)|y)

where J is the (potentially asymmetric) proposal density

• i.e.,
density at θ∗ and jump to θ(m−1)

density at θ(m−1) and jump to θ∗

• Like Metropolis, only requires ratios

76

Detailed Balance & Reversibility

• Sufficient for a stationary distribution on Markov chain

p(θ(m)) = p(θ) for all m� 1

• Suppose π(θ(m+1)|θ(m)) is Markov transition density

• Detailed balance is a reversibility equilibrium condition of

– density at θ(m) and jump density to θ(m+1)

– density at θ(m+1) and jump density back to θ(m)

p(θ(m))×π(θ(m+1)|θ(m)) = p(θ(m+1))×π(θ(m)|θ(m+1))

77

Optimal Proposal Scale?
• Proposal scale σ is a free; too low or high is inefficient

• Traceplots show parameter value on y axis, iterations on x

• Empirical tuning problem; theoretical optima exist for some cases

Roberts and Rosenthal (2001) Optimal Scaling for Various Metropolis-Hastings Algorithms. Statistical Science.

78

Convergence and Stationarity

• May take many iterations for chain to reach equilibrium

• Different initializations should converge in distribution

• Four chains with different starting points. Left) 50 itera-
tions; Center) 1000 iterations; Right) Draws from second
half of each chain

79

Potential Scale Reduction (R̂)
• Gelman & Rubin recommend M chains of N draws with diffuse

initializations

• Measure that each chain has same posterior mean and variance

• If not, may be stuck in multiple modes or just not converged yet

• Define statistic R̂ of chains such that at convergence, R̂ → 1

– R̂ >> 1 implies non-convergence

– R̂ ≈ 1 does not guarantee convergence

– Only measures marginals

80

Split R̂
• Vanilla R̂ may not diagnose non-stationarity

– e.g., a sequence of chains with an increasing parameter

• Split R̂: Stan splits each chain into first and second half

– start with M Markov chains of N draws each

– split each in half to creates 2M chains of N/2 draws

– then apply R̂ to the 2M chains

81

Calculating R̂ Statistic
• Between-sample variance estimate

B = N
M−1

∑M
m=1(θ̄(•)m − θ̄(•)•)2,

where

θ̄(•)m = 1
N

∑N
n=1 θ(n)m and θ̄(•)• = 1

M

∑M
m=1 θ̄(•)m .

• Within-sample variance estimate:

W = 1
M

∑M
m=1 s2m,

where
s2m = 1

N−1
∑N
n=1(θ(n)m − θ̄(•)m)2.

82

Calculating R̂ Statistic (cont.)

• Variance estimate:

v̂ar
+(θ|y) = N−1

N W + 1
N B.

• Potential scale reduction statistic (“R hat”)

R̂ =
√Åvar+(θ|y)

W .

83

Correlations in Posterior Draws
• Markov chains typically display autocorrelation in the series of

draws θ(1), . . . , θ(m)

• Without i.i.d. draws, central limit theorem does not apply

• Effective sample size Neff divides out autocorrelation

• Neff must be estimated from sample

– Fast Fourier transform efficiently computes correlations at all lags

• Estimation accuracy proportional to

1√
Neff

• Compare previous plots; good choice of σ leads to high Neff

84

Effective Sample Size (ESS)
• Autocorrelation at lag t is correlation between subsequences

– (θ(1), . . . , θ(N−t)) and (θ(1+t), . . . , θ(N))

• Suppose chain has density p(θ) with

– E[θ] = µ and Var[θ] = σ 2

• Autocorrelation ρt at lag t ≥ 0:

ρt =
1
σ 2

∫
Θ
(θ(n) − µ)(θ(n+t) − µ)p(θ)dθ

• Because p(θ(n)) = p(θ(n+t)) = p(θ) at convergence,

ρt =
1
σ 2

∫
Θ
θ(n) θ(n+t) p(θ)dθ

85

Estimating Autocorrelations
• Effective sample size is defined by

Neff = N∑∞
t=−∞ ρt

= N
1+2

∑∞
t=1 ρt

• Estimate in terms of variograms at lag t,

Vt = 1
M

∑M
m=1

(
1

Nm−t
∑Nm
n=t+1

(
θ(n)m − θ(n−t)m

)2)
• Estimate autocorrelation at lag t using cross-chain variance as

ρ̂t = 1−
Vt

2 v̂ar
+

• If not converged, v̂ar
+

overestimates variance

• Efficiently calculate using fast Fourier transform (w. padding)

86

Estimating Nef f
• Let T ′ be first lag s.t. ρT ′+1 < 0,

• Estimate autocorrelation by

N̂eff =
MN

1+
∑T ′
t=1 ρ̂t

.

• NUTS avoids negative autocorrelations, so first negative
autocorrelation estimate is reasonable

• See: Charles Geyer (2013) Introduction to MCMC. In Handbook of MCMC.

(free online at http://www.mcmchandbook.net/index.html)

87

http://www.mcmchandbook.net/index.html

Gibbs Sampling

• Draw random initial parameter vector θ(1) (in support)

• For m ∈ 2:M

– For n ∈ 1:N:

* draw θ(m)n according to conditional

p(θn|θ(m)1 , . . . , θ(m)n−1, θ
(m−1)
n+1 , . . . , θ(m−1)N , y).

• e.g, with θ = (θ1, θ2, θ3):
– draw θ(m)1 according to p(θ1|θ(m−1)2 , θ(m−1)3 , y)

– draw θ(m)2 according to p(θ2|θ(m)1 , θ(m−1)3 , y)

– draw θ(m)3 according to p(θ3|θ(m)1 , θ(m)2 , y)

88

Generalized Gibbs

• “Proper” Gibbs requires the conditional Monte Carlo draws

– typically works only for conjugate priors

• In general case, may need to use less efficient conditional
draws

– Slice sampling is a popular general technique that works
for discrete or continuous θn

– Adaptive rejection sampling is another alternative

– Very difficult in more than one or two dimensions

89

Sampling Efficiency
• We care only about Neff per second

• Decompose into

1. Iterations per second

2. Effective samples per iteration

• Gibbs and Metropolis have high iterations per second (es-
pecially Metropolis)

• But they have low effective samples per iteration (espe-
cially Metropolis)

• Both are particular weak when there is high correlation
among the parameters in the posterior

90

Hamiltonian Monte Carlo & NUTS

• Slower iterations per second than Gibbs or Metropolis

• Much higher number of effective samples per iteration for
complex posteriors (i.e., high curvature and correlation)

• Overall, much higher N1ff per second

• Details in the next talk . . .

• Along with details of how Stan implements HMC and NUTS

91

