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Simulation
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Repeated i.i.d. Trials
• Suppose we repeatedly generate a ran-

dom outcome from among several poten-
tial outcomes

• Suppose the outcome chances are the
same each time

– i.e., outcomes are independent and iden-
tically distributed (i.i.d.)

• For example, spin a fair spinner (with-
out cheating), such as one from Family
Cricket.

Image source: http://replaycricket.com/2010/10/29/family-cricket/

3

http://replaycricket.com/2010/10/29/family-cricket/


Repeated i.i.d. Binary Trials

• Suppose the outcome is binary and assigned to 0 or 1;
e.g.,

– 20% chance of outcome 1: ball in play

– 80% chance of outcome 0: ball not in play

• Consider different numbers of bowls delivered.

• How will proportion of successes in sample differ?
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Simulating i.i.d. Binary Trials

• R Code: rbinom(10, N, 0.2) / N

– 10 bowls (10% to 50% success rate)

2 3 5 2 4 1 2 2 1 1

– 100 bowls (16% to 26% success rate)

26 18 23 17 21 16 21 15 21 26

– 1000 bowls (18% to 22% success rate)

181 212 175 213 216 179 223 198 188 194

– 10,000 bowls (19.3% to 20.3% success rate)

2029 1955 1981 1980 2001 2014 1931 1982 1989 2020
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Pop Quiz! Cancer Clusters

• Why do lowest and highest cancer clusters look so similar?

Image from Gelman et al., Bayesian Data Analysis, 3rd Edition (2013)
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Pop Quiz Answer

• Hint: mix earlier simulations of repeated i.i.d. trials with
20% success and sort:

1/10 1/10 1/10 15/100 16/100
17/100 175/1000 179/1000 18/100 181/1000

188/1000 194/1000 198/1000 2/10 2/10
2/10 2/10 21/100 21/100 21/100

212/1000 213/1000 216/1000 223/1000 23/100
26/100 26/100 3/10 4/10 5/10

• More variation in observed rates with smaller sample sizes

• Answer: High cancer and low cancer counties are small
populations
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Maximum Likeilihood

• Estimate chance of success θ by proportion of successes:

θ∗ = successes
attempts

• Simulation shows accuracy depends on the amount of data.

• Statistics is about quantifying uncertainty.

• Bayesian statistics is about using uncertainty in inference.

Notation: θ∗ denotes the maximum likelihood estimate of θ.
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Confidence via Simulation
• Estimator uncertainty (not Bayesian posterior)

num_sims <- 10000

N <- 100;

theta <- 0.2;

hist(rbinom(num_sims, N, theta) / N,

main=sprintf("%d simulations",N), xlab="theta*");

Confidence via Simulation

• P% confidence interval: interval in which P% of the esti-
mates are expected to fall.

• Simulation computes intervals to any accuracy.

• Simulate, sort, and inspect the central empirical interval.

10 draws

theta*
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0
15
00

30
00

100 draws

theta*
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00

20
00

1000 draws

theta*

0.0 0.4 0.8

0
50
0

15
00

• Estimator uncertainty, not a Bayesian posterior

8
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Example Interval Calculation
• P% confidence interval: interval in which P% of the esti-

mates are expected to fall.

• Simulation computes intervals to any accuracy.

• Simulate, sort, and inspect the central empirical interval.

> sims <- rbinom(10000, 1000, 0.2) / 1000

> sorted_sims <- sort(sims)

> sorted_sims[c(250, 9750)]

[1] 0.176 0.225

• The 95% confidence interval is thus (0.176,0.225)

• i.e., if true θ = 0.2, then 95% of the samples of size 1000
used will produce estimates in (0.176,0.225)
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Estimator Bias

• Bias: expected difference of estimate from true value

• Continuing previous example

> sims <- rbinom(10000, 1000, 0.2) / 1000

> mean(sims)

[1] 0.2002536

• Value of 0.2 is estimate of expectation

• Shows this estimator is unbiased
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Central Limit Theorem (picture)

• proportion heads for 100 sequences of 100,000 flips

• converges gradually to expected value of 0.5
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Central Limit Theorem (words)

• The theorem of statistics

– Cardano (1501–1576) conjectured convergence; (Jacob) Bernoulli
(1713) proved convergence for binomials (law of large numbers);
de Moivre (1733) conjectured the CLT; Laplace (1812) proved i.i.d.
version; Lyapunov (1901) removed i.i.d. constraint

• Sample mean of N i.i.d. variables with finite expectation

– converges to their expectation as N →∞

– rate of convergence isO
(
1√
N

)
– constant factor determined by standard deviation

• Each decimal place of accuracy requires 100× more draws
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Central Limit Theorem (math)

• Simple i.i.d. version—can be established more generally

• Given N i.i.d. variables θ1, . . . , θN with

– E[θn] = µ

– sd[θn] = σ

the central limit theorem states

lim
N→∞

θ1 + · · · + θN
N

∼ Normal
(
µ,
σ√
N

)
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Numerical Analysis
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Floating-Point Standard: IEEE 754

• Finite numbers (s: sign; c: mantissa; q: exponent)

x = (−1)s × c × 2q

size s, c bits q bits range precision

32-bit 24 8 ±3.4× 1038 7.2 digits

64-bit 53 11 ±1.8× 10308 16 digits

• Quiet and signaling not-a-number (NaN)

• Positive and negative infinity (+∞,−∞)

• Stan uses 64-bit floating point
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Catastrophic Cancellation
• Subtraction risks catastrophic cancellation

• Consider 0.99802− 0.99801 = 0.00001
– input has five digits of precision

– output has single digit of precision

• E.g., problem for sample variance of sequence x

var(x) = 1
N − 1

N∑
n=1
(xn − x)2

if elements xn close to sample mean

x = 1
N

N∑
n=1
xn
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Welford’s Algorithm
• Streaming computation uses fixed memory

N = 0; mean = 0; sum_sq_err = 0

handle(y):
N += 1
diff = y - mean
mean = mean + diff / N
diff2 = y - mean
sum_sq_err += diff * diff2

mean(): return mean

var(): return sum_sq_err / (N - 1)

• Two stage difference is less prone to cancellation
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Gaps Between Numbers

• Smallest number greater than zero

– single precision: 1.4× 10−45

– double precision: 4.9× 10−324

• Largest number less than one

– single precision: 1− 10−7.2

– double precision: 1− 10−16

• Gap size depends on scale
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Lack of Transitivity

• For real numbers x, y, z ∈ R,

x+ (y + z) = (x+ y)+ z

• This can fail for floating point due to rounding

– (1 + 6e-17) + 6e-17 == 1

– 1 + (6e-17 + 6e-17) != 1

• For square matrices LL> is symmetric

• This won’t hold for efficient matrix multiplications

– (L * L’)[1, 2] != (L * L’)[2, 1]
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Rounding and Equality

• Dangerous to compare floating point numbers

– they may have lost precision during calculation

• Rounding

– default: round toward nearest

– round toward zero, round to plus or minus infinity
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Overflow and Rounding

• Because there is a max size, operations can overflow

– e.g., exp(1000), 1e200 * 1e200, ...

• Because there are gaps, operations can round to zero

– e.g., exp(-1000), 1e-200 * 1e-200, ...

– e.g., evaluating
∏N
n=1 p(yn|θ) underflows for N = 2000 if

p(yn|θ) < 0.1.
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Example: log1p and CCDFs

• log1p(x) is for evaluating log near one

– when x is near zero, 1 + x catastrophically rounds to 1

– this forces log(1 + x) to round to 0

– log1p(x) avoids 1 + x operation

– log1p(x) uses Taylor series expansion of log(1+ x)

• Complementary CDFs evaluate CDFs with values near one

– X is some random variable, e.g., X ∼ Normal(0,1)

– CDF: FX(x) = Pr[X ≤ x]
– CCDF: F�X(x) = 1− Pr[X ≤ x]
– converts range around one to range around zero
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Example: log and log_sum_exp
• Multiplication on the log scale: log

– log(a× b) = loga+ logb

– log converts multiplication to addition

– log
∏
n xn =

∑
n logxn

– avoids underflow and overflow even if xn � 1 or xn � 1

– useful absolutely everywhere (e.g., log likelihoods)

• Addition on the log scale: log_sum_exp

– log(a+ b) = log(exp(loga)+ exp(logb))

– log converts addition to log sum of exponentials

– avoids underflow and overflow, preserves precision

– useful for mixtures (e.g., HMMs, zero-inflated Poisson)
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Example: log_sum_exp
• Without loss of generality, assume a > b (otherwise swap)

log_sum_exp(a, b) = log(exp(a)+ exp(b))

= a+ log(exp(a− a)+ exp(b − a))

= a+ log(1+ exp(b − a))

= a+ log1p(exp(b− a))

– increase precision: pull a out of log() and exp()

– increase precision: use log1p

– prevents overflow: can’t overflow because b − a ≤ 0

• Generalize to more than two inputs: subtract max
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Monte Carlo
Integration
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Monte Carlo Calculation of π
• Computing π = 3.14 . . . via simula-

tion is the textbook application of
Monte Carlo methods.

• Generate points uniformly at ran-
dom within the square

• Calculate proportion within circle
(x2 + y2 ≤ 1) and multiply by
square’s area (4) to produce the
area of the circle.

• This area is π (radius is 1, so area
is πr2 = π )

plot by Mysid Yoderj,

courtesy of Wikipedia.
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Monte Carlo Calculation of π (cont.)

• R code to calculate π with Monte Carlo simulation:

> x <- runif(1e6,-1,1)

> y <- runif(1e6,-1,1)

> prop_in_circle <- sum(x^2 + y^2 <= 1) / 1e6

> 4 * prop_in_circle

[1] 3.144032
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π as an Expectation
• If probability is uniform over the sample space,

then an event’s probability is its area (volume in general)

• Suppose X,Y ∼ Uniform(−1,1)

• Then Pr[X2 + Y 2 ≤ 1] = π/4.

• To calculate using Monte Carlo draws (x(m), y(m)),

Pr[X2 + Y 2 ≤ 1] = E
[

I
[
X2 + Y 2 < 1

] ]
=

∫ 1
−1

∫ 1
−1

I
[
x2 + y2 < 1

]
pX(x) pY (y) dxdy

≈ 1
M

I
[(
x(m)

)2
+
(
y(m)

)2
< 1

]
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Calculating π with Stan

• Complete Stan program to compute Pr[X2 + Y 2 ≤ 1]:

generated quantities {
real x = uniform_rng(-1, 1);
real y = uniform_rng(-1, 1);
real pi_div_4 = hypot(x, y) <= 1;

}

• Simulates X and Y

• Codes indicator function implicitly with comparison

– uses Stan’s built-in hypotenuse function

– hypot(a, b) = sqrt(a^2 + b^2)
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Fitting Stan model for π in R

• Fixed_param algorithm for no parameters

> fit <- stan("pi.stan", algorithm="Fixed_param",
iter=100000)

• Print only what’s needed (print output elided manually)

> print(fit, digits=3, probs=c(), pars=c("pi_div_4"))

mean se_mean
pi_div_4 0.786 0.001

• Estimate accurate to within estimated tolerances

– 4× 0.786 = 3.144
– predicted accuracy is 0.004 (four times standard error)
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Accuracy of Monte Carlo
• Monte Carlo Integration computes the exact posterior to

within any ε (not like variational Bayes which yields an ap-
proximation of the posterior)

• Monte Carlo draws are i.i.d. by definition

• Central limit theorem: expected error decreases at rate of

1√
N

• 3 decimal places of accuracy with sample size 1e6

• Need 100× larger sample for each digit of accuracy

32



General Monte Carlo Integration
• MC can calculate arbitrary definite inte-

grals, ∫ b
a
f (x) dx

• Let d upper bound f (x) in (a, b); tightness
determines computational efficiency

• Then generate random points uniformly in
the rectangle bounded by (a, b) and (0, d)

• Multiply proportion of draws (x, y) where
y < f(x) by area of rectangle, d × (b − a).

• Can be generalized to multiple dimensions
in obvious way

Image courtesy of Jeff Cruzan, http://www.drcruzan.com/NumericalIntegration.html
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Expectations of Function of R.V.

• Suppose f (θ) is a function of random variable vector θ

• Suppose the density of θ is p(θ)

– Warning: θ overloaded as random and bound variable

• Then f (θ) is also random variable, with expectation

E[f (θ)] =
∫
Θ
f (θ) p(θ) dθ.

– where Θ is support of p(θ) (i.e., Θ = {θ |p(θ) > 0}
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QoI as Expectations

• Most Bayesian quantities of interest (QoI) are expectations
over the posterior p(θ |y) of functions f (θ)

• Bayesian parameter estimation: θ̂

– f (θ) = θ

– θ̂ = E[θ|y] minimizes expected square error

• Bayesian parameter (co)variance estimation: var[θ |y]
– f (θ) = (θ − θ̂)2

• Bayesian event probability: Pr[A |y]
– f (θ) = I(θ ∈ A)
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Expectations via Monte Carlo

• Generate draws θ(1), θ(2), . . . , θ(M) drawn from p(θ)

• Monte Carlo Estimator plugs in average for expectation:

E[f (θ)|y] ≈ 1
M

M∑
m=1

f (θ(m))

• Can be made as accurate as desired, because

E[f (θ)] = lim
M→∞

1
M

M∑
m=1

f (θ(m))

• Reminder: By CLT, error goes down as 1 /
√
M
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The Curse of
Dimensionality
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The Curse

• Intuitions formed in low dimensions break down do not
generalize

• In high dimensions, everything is far away

– random draws are far away from each other

– random draws are far away from the mode or meaan

• Sampling algorithms that work in low dimensions often
fail in high dimensions
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Volume of Ball in Cube
• Assume x, y, z ∼ Uniform(−1,1),

• Pr[(x, y, z) ∈ unit ball]
is unit ball’s fraction of volume.

• Analytic solution:∫ 1
−1
∫ 1
−1
∫ 1
−1 I[x2 + y2 + z2 ≤ 1]dxdy dz

• Monte Carlo solution:

– simulate multiple (x, y, z) uni-
formly in cube

– count proportion in ball, i.e.,

x2 + y2 + z2 ≤ 1
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4000 simulations;

blue inside unit ball.
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Ball in Cube in Stan
generated quantities {

int<lower = 0, upper = 1> in_ball;
{
real x = uniform_rng(-1, 1);
real y = uniform_rng(-1, 1);
real z = uniform_rng(-1, 1);
in_ball = (x^2 + y^2 + z^2 <= 1);

}
}

• in_ball is value of indicator (implicit in <=).

• Posterior mean of in_ball is fraction draws in ball.

• Posterior mean estimates Pr[x2 + y2 + z2 ≤ 1].

40



Ball in Cube in Stan from RStan

• Use the Fixed_param algorithm:

> fit <- stan("ball-in-cube.stan",
algorithm="Fixed_param",

iter=10000)

> print(fit, probs=c(), digits=3)

mean se_mean sd n_eff Rhat
in_ball 0.528 0.004 0.499 19400 1

• Thus Pr[X2 + Y 2 + Z2 ≤ 1] ≈ 0.53

• with standard error of 0.004, yielding a 95% interval of
±0.008, i.e., roughly (0.52, 0.54)
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Hyperballs in Hypercubes

• sample uniformly from container (square, cube, ...)

• 2 dimensions (x, y): compute Pr[X2 + Y 2 ≤ 1]
– unit disc inscribed in square

– calculate π given known area of circle (2π )

• 3 dimensions (x, y, z): compute Pr[X2 + Y 2 + Z2 ≤ 1]
– unit ball inscribed in cube

• N-dimensions (x1, . . . , xN): compute Pr[X21 + · · ·X2N ≤ 1]
– unit hyperball inscribed in hypercube

• Code event probability as expectation of indicator
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Hyperballs in Hypercubes in Stan

generated quantities {
int<lower=0, upper=1> in_ball[10];
{
real len = 0;
for (n in 1:10) {

len = len + uniform_rng(-1, 1)^2;
in_ball[n] = (len <= 1);

}
}

}

• draw x1, . . . , xN is implicit in uniform_rng

• in_ball[n] is 1 iff x21+· · ·+x2n ≤ 1; coded as indicator (len <= 1)

• sum of squares accumulation reduces quadratic time to linear
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Hyperballs in Hypercubes in RStan
> fit <- stan("hyperballs.stan", algorithm="Fixed_param",

iter=1e4)

> print(fit, probs=c())

mean se_mean sd n_eff Rhat
in_ball[1] 1.00 0 0.00 20000 NaN
in_ball[2] 0.78 0 0.41 20000 1
in_ball[3] 0.52 0 0.50 20000 1
in_ball[4] 0.31 0 0.46 20000 1
in_ball[5] 0.17 0 0.38 20000 1
in_ball[6] 0.08 0 0.27 20000 1
in_ball[7] 0.04 0 0.19 18460 1
in_ball[8] 0.02 0 0.12 19370 1
in_ball[9] 0.01 0 0.08 20000 1
in_ball[10] 0.00 0 0.05 20000 1
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Proportion Volume in Hyperball
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Typical Sets
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Typical Set Example (1)

• Consider a game of chance with an 80% chance of winning

• Play the game 100 times independently

• What is most likely outcome?
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Typical Set Example (2)

• For each trial, there is a 80% chance of success

• For each trial, most likely outcome is success

• Overall, the single most likely outcome is all successes

• What’s the most likely number of successes?
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Typical Set Example (3)
• Let yn ∼ Bernoulli(0.9) for n ∈ 1 : 100 be the trials

• Expected number of successes

E
[∑100

n=1 yn
]
=

∑100
n=1 E[yn]

=
∑100
n=1 0.8

= 0.8× 100

= 80

• most likely outcome (all successes) is an outlier!

Pr[100 successes] = 0.8100 < 10−10
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Typical Set Example (4)
• Maximum likelihood (most likely) outcome is atypical

• Expectations involve count times probability

• 100 success sequences:
(
100
100

)
= 100!

100! × 1! = 1

• 80 success sequences:
(
100
80

)
= 100!

80! × 20! > 1020

• Thus chance of 80 success is much higher than 100

Binomial(80 | 100,0.8) =
(
100
20

)
× 0.880 × 0.220

�
(
100
1

)
× 0.8100

= Binomial(100 | 100,0.8)
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Typical Set
• Goal is to evaluate posterior expectations using draws

E [f (θ) | y] =
∫
Θ
f (θ)p(θ|y)dθ

≈ 1
M

M∑
m=1

f (θ(m))

• A typical set Aε (at some level) is the set

– of values with typical log density (near distribution entropy)

– containing 1− ε of the probability mass

• A typical set Aε suffices for integration∫
Θ
f (θ)p(θ|y)dθ =

∫
Aε
f (θ)p(θ|y)dθ
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Typical Draws from Multi-Normal

• Y ∼ MultiNormal(0, IN) is standard multivariate normal

• Yn ∼ Normal(0,1) is thus independently standard normal

• Joint density: pY (y) =
∏N
n=1 Normal(yn | 0,1)

• Mean, median, and mode (max) of pY (y) at y = 0

• How far do we expect Y to be from the mode?

• What is the log density of a typical draw of Y ?
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Multi-Normal Draws in Stan
generated quantities {

real dist_to_origin[256];
real log_lik[256];
real log_lik_mean[256];
{
real sq_dist = 0; real ll = 0; real llm = 0;
for (n in 1:256) {

real y = normal_rng(0, 1);
ll = ll + normal_lpdf(y | 0, 1);
llm = llm + normal_lpdf(0 | 0, 1);
sq_dist = sq_dist + y^2;
dist_to_origin[n] = sqrt(sq_dist);
log_lik[n] = ll;
log_lik_mean[n] = llm;

}
}

}
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Normal Variate Distance to Mode
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Normal Variate Log Density
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Normal Mode not in Typical Set

• Plots show that in a standard normal of more than 5 di-
mensions, that the mode is not in the typical set

• An Asimov data set uses an average member of a set
represent the whole set

– based on Isaac Asimov’s short story “Franchise” in which a
single average voter represented everyone

– the average member of a multivariate normal is the mean

– thus no members of the typical set are average in this sense

– popular in physics

– very poor solution for most inferential purposes
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Concentration
of Measure
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Concentration of Measure

• We care about probability mass, not density

• Events with non-zero probability have probability mass,
e.g., Pr[θ0 > θ1 | y]

• Mass arises from integrating over density

• As data size increases, posterior concentrates around true
value
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E.g., Binomial Concentration

• y ∼ Binomial(N,θ)

Binomial(y | N,θ) =
(
N
y

)
θy (1− θ)N−y

• As N →∞, posterior average y/N concentrates around θ

• Concentration governed by central limit theorem
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Binomial Concentration, N = 25
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Binomial Concentration, N = 100
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Binomial Concentration, N = 400
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Continuous Hypervolumes

• Generalize discrete to continuous

– discrete: combinations times probability mass

– continuous: volume times probabilty density

• Volume of ball at given radius (r ) grows exponentially with

dimension (d):

volume∝ rd
– line has length ∝ r
– disc has area ∝ r2

– ball has volume ∝ r3

– 4-dimensional hyperball has volume ∝ r4
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Markov Chain
Monte Carlo
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Markov Chain Monte Carlo

• Standard Monte Carlo draws i.i.d. samples

θ(1), . . . , θ(M)

according to a probability function p(θ)

• Drawing i.i.d. samples typically impossible for complex
densities like Bayesian posteriors p(θ|y)

• Instead, use Markov chain Monte Carlo (MCMC) to draw
θ(1), . . . , θ(M) from a Markov chain with appropriate sta-
tionary distribution p(θ|y).
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Markov Chains

• A Markov Chain is a sequence of random variables

θ(1), θ(2), . . . , θ(M)

such that θ(m) only depends on θ(m−1), i.e.,

p(θ(m)|y, θ(1), . . . , θ(m−1)) = p(θ(m)|y, θ(m−1))
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Markov Chain Monte Carlo

• Simulating independent draws from the posterior p(θ|y)
usually intractable

• Simulating a Markov chain θ(1), . . . , θ(M) with marginals
equal to posterior, i.e.,

p(θ(m)|y) = p(θ|y)

often is tractable

• Replace indepedent draws with Markov chain of draws

– Plug in just like ordinary (non-Markov chain) Monte Carlo

– Adjust standard errors for correlation in Markov chain
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MCMC for Posterior Mean
• Standard Bayesian estimator is posterior mean

θ̂ =
∫
Θ
θ p(θ|y)dθ

– Posterior mean minimizes expected square error

• Estimate is a conditional expectation

θ̂ = E[θ|y]

• Compute by averaging

θ̂ ≈ 1
M

M∑
m=1

θ
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MCMC for Posterior Variance

• Posterior variance works the same way, given previous re-
sult

E[(θ − E[θ])2] ≈ 1
M

M∑
m=1
(θ(m) − θ̂)2
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MCMC for Posterior Median

• Alternative Bayesian estimator is posterior median

– Posterior median minimizes expected absolute error

• Calculate as middle draw of θ(1), . . . , θ(M)

– just sort and take halfway value

– e.g., Stan shows 50% point (or other quantiles)
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MCMC for Event Probability

• Event probabilities are also expectations, e.g.,

Pr[θ1 > θ2] = E[I[θ1 > θ2]] =
∫
Θ

I[θ1 > θ2]p(θ|y)dθ.

• Estimation via MCMC just another plug-in:

Pr[θ1 > θ2] ≈
1
M

M∑
m=1

I[θ(m)1 > θ(m)2 ]

• Again, can be made as accurate as necessary
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MCMC for Quantiles (incl. median)

• These are not expectations, but still plug in

• Alternative Bayesian estimator is posterior median

– Posterior median minimizes expected absolute error

• Estimate as median draw of θ(1), . . . , θ(M)

– just sort and take halfway value

– e.g., Stan shows 50% point (or other quantiles)

• Other quantiles including interval bounds similar

– estimate with quantile of draws

– estimation error goes up in tail (based on fewer draws)
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MCMC Algorithms
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Random-Walk Metropolis

• Draw random initial parameter vector θ(1) (in support)

• For m ∈ 2:M
– Sample proposal from a (symmetric) jumping distribution,

e.g.,
θ∗ ∼ MultiNormal(θ(m−1), σ I)

where I is the identity matrix

– Draw u(m) ∼ Uniform(0,1) and set

θ(m) =


θ∗ if u(m) <

p(θ∗|y)
p(θ(m)|y)

θ(m−1) otherwise
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Metropolis and Normalization

• Metropolis only uses posterior in a ratio

p(θ∗ |y)
p(θ(m) |y) = p(y, θ∗) / p(y)

p(y, θ(m)) / p(y)

= p(y, θ∗)
p(y, θ(m))

= p(y | θ∗)p(θ∗)
p(y | θ(m))p(θ(m))

• Drops p(y) term with nasty integral

• Baye’s rule reduces to likelihood and prior
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Metropolis-Hastings

• Generalizes Metropolis to asymmetric proposals

• Acceptance ratio is

J(θ(m)|θ∗) × p(θ∗|y)
J(θ∗|θ(m−1)) × p(θ(m)|y)

where J is the (potentially asymmetric) proposal density

• i.e.,
density at θ∗ and jump to θ(m−1)

density at θ(m−1) and jump to θ∗

• Like Metropolis, only requires ratios
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Detailed Balance & Reversibility

• Sufficient for a stationary distribution on Markov chain

p(θ(m)) = p(θ) for all m� 1

• Suppose π(θ(m+1)|θ(m)) is Markov transition density

• Detailed balance is a reversibility equilibrium condition of

– density at θ(m) and jump density to θ(m+1)

– density at θ(m+1) and jump density back to θ(m)

p(θ(m))×π(θ(m+1)|θ(m)) = p(θ(m+1))×π(θ(m)|θ(m+1))
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Optimal Proposal Scale?
• Proposal scale σ is a free; too low or high is inefficient

• Traceplots show parameter value on y axis, iterations on x

• Empirical tuning problem; theoretical optima exist for some cases

Roberts and Rosenthal (2001) Optimal Scaling for Various Metropolis-Hastings Algorithms. Statistical Science.
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Convergence and Stationarity

• May take many iterations for chain to reach equilibrium

• Different initializations should converge in distribution

• Four chains with different starting points. Left) 50 itera-
tions; Center) 1000 iterations; Right) Draws from second
half of each chain
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Potential Scale Reduction (R̂)
• Gelman & Rubin recommend M chains of N draws with diffuse

initializations

• Measure that each chain has same posterior mean and variance

• If not, may be stuck in multiple modes or just not converged yet

• Define statistic R̂ of chains such that at convergence, R̂ → 1

– R̂ >> 1 implies non-convergence

– R̂ ≈ 1 does not guarantee convergence

– Only measures marginals
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Split R̂
• Vanilla R̂ may not diagnose non-stationarity

– e.g., a sequence of chains with an increasing parameter

• Split R̂: Stan splits each chain into first and second half

– start with M Markov chains of N draws each

– split each in half to creates 2M chains of N/2 draws

– then apply R̂ to the 2M chains
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Calculating R̂ Statistic
• Between-sample variance estimate

B = N
M−1

∑M
m=1(θ̄(•)m − θ̄(•)• )2,

where

θ̄(•)m = 1
N

∑N
n=1 θ(n)m and θ̄(•)• = 1

M

∑M
m=1 θ̄(•)m .

• Within-sample variance estimate:

W = 1
M

∑M
m=1 s2m,

where
s2m = 1

N−1
∑N
n=1(θ(n)m − θ̄(•)m )2.
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Calculating R̂ Statistic (cont.)

• Variance estimate:

v̂ar
+(θ|y) = N−1

N W + 1
N B.

• Potential scale reduction statistic (“R hat”)

R̂ =
√Åvar+(θ|y)

W .
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Correlations in Posterior Draws
• Markov chains typically display autocorrelation in the series of

draws θ(1), . . . , θ(m)

• Without i.i.d. draws, central limit theorem does not apply

• Effective sample size Neff divides out autocorrelation

• Neff must be estimated from sample

– Fast Fourier transform efficiently computes correlations at all lags

• Estimation accuracy proportional to

1√
Neff

• Compare previous plots; good choice of σ leads to high Neff
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Effective Sample Size (ESS)
• Autocorrelation at lag t is correlation between subsequences

– (θ(1), . . . , θ(N−t)) and (θ(1+t), . . . , θ(N))

• Suppose chain has density p(θ) with

– E[θ] = µ and Var[θ] = σ 2

• Autocorrelation ρt at lag t ≥ 0:

ρt =
1
σ 2

∫
Θ
(θ(n) − µ)(θ(n+t) − µ)p(θ)dθ

• Because p(θ(n)) = p(θ(n+t)) = p(θ) at convergence,

ρt =
1
σ 2

∫
Θ
θ(n) θ(n+t) p(θ)dθ
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Estimating Autocorrelations
• Effective sample size is defined by

Neff = N∑∞
t=−∞ ρt

= N
1+2

∑∞
t=1 ρt

• Estimate in terms of variograms at lag t,

Vt = 1
M

∑M
m=1

(
1

Nm−t
∑Nm
n=t+1

(
θ(n)m − θ(n−t)m

)2)
• Estimate autocorrelation at lag t using cross-chain variance as

ρ̂t = 1−
Vt

2 v̂ar
+

• If not converged, v̂ar
+

overestimates variance

• Efficiently calculate using fast Fourier transform (w. padding)
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Estimating Nef f
• Let T ′ be first lag s.t. ρT ′+1 < 0,

• Estimate autocorrelation by

N̂eff =
MN

1+
∑T ′
t=1 ρ̂t

.

• NUTS avoids negative autocorrelations, so first negative
autocorrelation estimate is reasonable

• See: Charles Geyer (2013) Introduction to MCMC. In Handbook of MCMC.

(free online at http://www.mcmchandbook.net/index.html)
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Gibbs Sampling

• Draw random initial parameter vector θ(1) (in support)

• For m ∈ 2:M

– For n ∈ 1:N:

* draw θ(m)n according to conditional

p(θn|θ(m)1 , . . . , θ(m)n−1, θ
(m−1)
n+1 , . . . , θ(m−1)N , y).

• e.g, with θ = (θ1, θ2, θ3):
– draw θ(m)1 according to p(θ1|θ(m−1)2 , θ(m−1)3 , y)

– draw θ(m)2 according to p(θ2|θ(m)1 , θ(m−1)3 , y)

– draw θ(m)3 according to p(θ3|θ(m)1 , θ(m)2 , y)
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Generalized Gibbs

• “Proper” Gibbs requires the conditional Monte Carlo draws

– typically works only for conjugate priors

• In general case, may need to use less efficient conditional
draws

– Slice sampling is a popular general technique that works
for discrete or continuous θn

– Adaptive rejection sampling is another alternative

– Very difficult in more than one or two dimensions
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Sampling Efficiency
• We care only about Neff per second

• Decompose into

1. Iterations per second

2. Effective samples per iteration

• Gibbs and Metropolis have high iterations per second (es-
pecially Metropolis)

• But they have low effective samples per iteration (espe-
cially Metropolis)

• Both are particular weak when there is high correlation
among the parameters in the posterior
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Hamiltonian Monte Carlo & NUTS

• Slower iterations per second than Gibbs or Metropolis

• Much higher number of effective samples per iteration for
complex posteriors (i.e., high curvature and correlation)

• Overall, much higher N1ff per second

• Details in the next talk . . .

• Along with details of how Stan implements HMC and NUTS
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