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Stan

Who, What, and Why?
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Who is Stan?
• Stan is named in honor of Stanislaw Ulam (1909–1984)

• Co-inventor of the Monte Carlo method

Ulam holding the Fermiac, Enrico Fermi’s physical Monte Carlo simulator
for random neutron diffusion;

image from G. C. Geisler (2000) Los Alamos report LA-UR-2532
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What is Stan?

• Stan is an imperative probabilistic programming lan-
guage

– cf., BUGS: declarative; Church: functional; Figaro: OO

• Stan program: defines a probability model

– declares data and (constrained) parameter variables

– defines log posterior (or penalized likelihood)

• Stan inference: fits model to data & makes predictions

– MCMC for full Bayesian inference

– VB for approximate Bayesian inference

– MLE for penalized maximum likelihood estimation
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Why Choose Stan?
• Expressive

– Stan is a full imperative programming language

– continuously differentiable log densities

• Robust

– usually works; signals when it doesn’t

• Efficient

– effective sample size / time (i.e., information)

– multi-core and GPU code complete on branches

• Ongoing open source development

• Community support!
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What’s Next for Stan?

• Distributed likelihoods: multi-CPU (MPI)

• Big matrix operations: GPU (OpenCL)

• Sparse matrix operations

• Distributed data: asynchronous expectation propagation

• Approximations: parallel max marginal mode

• Coursera specialization

– Gelman: Bayesian data analysis, Multilevel regression

– Carpenter: Monte Carlo methods, Stan

– Fall 2018
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Predator-Prey Dynamics
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Lynxes and Hares

• Snowshoe hare (prey): herbivorous cousin of rabbits

• Canadian lynx (predator): feline eating primarily hares

Lynx image copyright 2009, Keith Williams, CC-BY 2.0.

Hare image copyright 2013 D. Gordon E. Robonson, CC-BY SA 2.0
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Hudson Bay Co. Pelts, 1900–20
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Pelts, Phase Space
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Volterra’s (1927) Model
• population: u(t) prey, v(t) predator

d
dt
u = (α− βv)u

d
dt
v = (−γ + δu)v

– α: prey growth, intrinsic

– β: prey shrinkage due to predation

– γ: predator shrinkage, intrinsic

– δ: predator growth from predation

• dynamics lead to oscillation as observed

Volterra, V., 1927. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. C. Ferrari.
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Lotka-Volterra in Stan (dynamics)
real[] dz_dt(data real t, // time (unused)

real[] z, // system state
real[] theta, // parameters
data real[] x_r, // real data (unused)
data int[] x_i) { // integer data (unused)

real u = z[1]; // extract state
real v = z[2];

real alpha = theta[1];
real beta = theta[2];
real gamma = theta[3];
real delta = theta[4];

real du_dt = (alpha - beta * v) * u;
real dv_dt = (-gamma + delta * u) * v;
return { du_dt, dv_dt };

}
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Data-Generating Model
• Known variables are observed

– yn,k: pelts for species k at times tn for n ∈ 0 : N

• Unknown variables must be inferred (inverse problem)

– initial state: zinit
k : initial population for k

– subsequent states zn,k: population k at time tn
– parameters α,β, γ, δ,σ > 0

• Likelihood assumes errors are proportional (not additive)

yn,k ∼ LogNormal(ẑn,k, σk),

where ẑn is solution at tn to L-V diff eqs for initial zinit

equivalently: logyn,k = log ẑn,k + εn,k, with εn,k ∼ Normal(0, σk)
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L-V in Stan (solution to ODE)

• Define variables for populations predicted by ode, given

– system function (dz_dt), initial populations (z0)

– initial time (0.0), solution times (ts)

– parameters (theta), data arrays (unused: rep_array(...))

– tolerances (1e-6, 1-e4), max iterations (1e3)

transformed parameters {
real z[N, 2]
= integrate_ode_rk45(dz_dt, z0, 0.0, ts, theta,

rep_array(0.0, 0), rep_array(0, 0),
1e-6, 1e-4, 1e3);

}
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L-V in Stan (data, parameters)
• Variables for known constants, observed data

data {
int<lower = 0> N; // num measurements
real ts[N]; // measurement times > 0
real y0[2]; // initial pelts
real<lower = 0> y[N, 2]; // subsequent pelts

}

• Variables for unknown parameters

parameters {
real<lower = 0> theta[4]; // alpha, beta, gamma, delta
real<lower = 0> z0[2]; // initial population
real<lower = 0> sigma[2]; // scale of prediction error

}
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L-V in Stan (priors, likelihood)
• Sampling statements for priors and likelihood

model {
// priors
sigma ~ lognormal(0, 0.5);
theta[{1, 3}] ~ normal(1, 0.5);
theta[{2, 4}] ~ normal(0.05, 0.05);

z0[1] ~ lognormal(log(30), 5);
z0[2] ~ lognormal(log(5), 5);

// likelihood (lognormal)
for (k in 1:2) {
y0[k] ~ lognormal(log(z0[k]), sigma[k]);
y[ , k] ~ lognormal(log(z[, k]), sigma[k]);

}
}
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Lotka-Volterra Parameter Estimates
> print(fit, c("theta", "sigma"), probs=c(0.1, 0.5, 0.9))

mean se_mean sd 10% 50% 90% n_eff Rhat
theta[1] 0.55 0 0.07 0.46 0.54 0.64 1168 1
theta[2] 0.03 0 0.00 0.02 0.03 0.03 1305 1
theta[3] 0.80 0 0.10 0.68 0.80 0.94 1117 1
theta[4] 0.02 0 0.00 0.02 0.02 0.03 1230 1
sigma[1] 0.29 0 0.05 0.23 0.28 0.36 2673 1
sigma[2] 0.29 0 0.06 0.23 0.29 0.37 2821 1

• Rhat near 1 signals convergence; n_eff is effective sample size

• 10%, ... posterior quantiles; e.g., Pr[α ∈ (0.46,0.64) | y] = 0.8
• posterior mean is Bayesian point estimate: α̂ = θ1 = 0.55
• standard error in posterior mean estimate is 0 (with rounding)

• posterior standard deviation of α estimated as 0.07
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Lotka-Volterra Posterior Predictions
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Bayesian Methodology

19



Probability is Epistemic

• John Stuart Mill (Logic 1882, Part III, Ch. 2):

– ... the probability of an event is not a quality of the event
itself, but a mere name for the degree of ground which we,
or some one else, have for expecting it.

– Every event is in itself certain, not probable; if we knew
all, we should either know positively that it will happen, or
positively that it will not.

– ... its probability to us means the degree of expectation
of its occurrence, which we are warranted in entertaining
by our present evidence.

• Probabilities quantify uncertainty

• Statistical reasoning is counterfactual
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Random Variables

• Random variables are the currency of probability theory

• Random variables typically take numbers as values

• Imagine a bin filled with balls representing the way the
world might be

• A ball records the value of every random variable

• Examples

– the sum of the three best among a roll of four dice (d6)

– time before the next traffic accident on a given highway

– prevalence of a disease in a population
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Events

• Event is a set of outcomes

• Usually subset of random variable values

– prevalence of disease λ > 0.02

– probability that one player is better than another, θ1 > θ2

– probability that team A wins a game against B

– probability that team A betas team B by more than 5 points

• Probability is that one of the outcomes occurs
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Conditional Probability

• What is probability a man is taller than 6’?

– What if I tell you he’s Dutch?

– What if I tell you he’s a professional athlete?

– What if I tell you he’s a jockey? or basketball player?

– What if I tell you his mother is taller than 6’?
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Bayesian Data Analysis

• “By Bayesian data analysis, we mean practical methods for
making inferences from data using probability models for
quantities we observe and about which we wish to learn.”

• “The essential characteristic of Bayesian methods is their
explicit use of probability for quantifying uncertainty
in inferences based on statistical analysis.”

Gelman et al., Bayesian Data Analysis, 3rd edition, 2013
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Bayesian Methodology
• Set up full probability model

– for all observable & unobservable quantities

– consistent w. problem knowledge & data collection

• Condition on observed data (where Stan comes in!)

– to calculate posterior probability of unobserved quan-
tities (e.g., parameters, predictions, missing data)

• Evaluate

– model fit and implications of posterior

• Repeat as necessary

Ibid.
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Where do Models Come from?

• Sometimes model comes first, based on substantive con-
siderations

– toxicology, economics, ecology, physics, . . .

• Sometimes model chosen based on data collection

– traditional statistics of surveys and experiments

• Other times the data comes first

– observational studies, meta-analysis, . . .

• Usually its a mix
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Model Checking
• Do the inferences make sense?

– are parameter values consistent with model’s prior?

– does simulating from parameter values produce reason-
able fake data?

– are marginal predictions consistent with the data?

• Do predictions and event probabilities for new data make
sense?

• Not: Is the model true?

• Not: What is Pr[model is true]?

• Not: Can we “reject” the model?
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Model Improvement

• Expanding the model

– hierarchical and multilevel structure . . .

– more flexible distributions (overdispersion, covariance)

– more structure (geospatial, time series)

– more modeling of measurement methods and errors

– . . .

• Including more data

– breadth (more predictors or kinds of observations)

– depth (more observations)
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Properties of Bayesian Inference

• Explores full range of parameters consistent with prior
info and data∗

– ∗ if such agreement is possible

– Stan automates this procedure with diagnostics

• Inferences can be plugged in directly for

– parameter estimates minimizing expected error

– predictions for future outcomes with uncertainty

– event probability updates conditioned on data

– risk assessment / decision analysis conditioned on uncer-
tainty
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“All Models are Wrong,

but some are useful”

“Now it would be very remarkable if any system exist-
ing in the real world could be exactly represented by
any simple model. However, cunningly chosen parsi-
monious models often do provide remarkably useful
approximations.”

— George Box (1979)

• Slide title was section title in Box’s paper

Box, G. E. P. 1979. Robustness in the strategy of scientific model building. In Robustness in Statistics, Academic Press.
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Model (Mis)Specification

• A model is well specified if it matches the data-generating
process of the data.

• All of our models will be misspecified to some extent

– mildly misspecified: Newtonian physics (most speeds)

– wildly misspecified: social science regression

– wildly mispsecified: Newtonian physics (near speed of light)

• Models assumptions and predictions must be tested

– ideally with cross-validation on quantities of interest

31



The Folk Theorem

“When you have computational problems, often there’s
a problem with your model.”

— Andrew Gelman, blog

• The usual culprits are

– bugs in: samplers, data munging, model coding, etc.

– model misspecification

http://andrewgelman.com/2008/05/13/the_folk_theore/
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Model Calibration
• Consider 100 days for which a meteorologist predicted a

70% chance of rain

– about 70 of them should have had rain

– not fewer, not more!

– technically, expect Binomial(100,0.7) rainy day from a cal-
ibrated model

• Use posterior predictive checks to test calibration on

– training data—can it fit?

– held out data—can it predict?

– cross-validation—approximates held out with trainin data

• Also applies to interval coverage of parameter values
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Model Sharpness
• Ideal forecasts are deterministic

– predict 100% chance of rain or 0% chance of rain

– always right

• A forecast of 90% chance of rain reduces uncertainty more
than a 50% prediction

• A model is sharp if it has narrow posterior intervals

– Prediction Pr[α ∈ (1.2,1.9)] = 0.9
– is sharper than Pr[α ∈ (1,2)] = 0.9

• I.e., sharper models are more certain in its predictions

• Given calibration, we want our predictions to be sharp
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Cross-Validation
• Uses single data set to model held-out performance

• Assumes stationarity (as most models do)

• Partition data evenly into disjoint subsets (called folds)

– 10 is a common choice

– leave-one-out (LOO) uses a the number of training data
points

• For each fold

– estimate model on all data but that fold

– test on that fold

• Usual comparison statistic is held out log likelihood
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Bayesian Inference
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Notation for Basic Quantities

• Basic Quantities

– y: observed data

– θ: parameters (and other unobserved quantities)

– x: constants, predictors for conditional (aka “discrimina-
tive”) models

• Basic Predictive Quantities

– ỹ: unknown, potentially observable quantities

– x̃: constants, predictors for unknown quantities
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Naming Conventions

• Joint: p(y, θ)

• Sampling / Likelihood: p(y|θ)
– Sampling is function of y with θ fixed (prob function)

– Likelihood is function of θ with y fixed (not prob function)

• Prior: p(θ)

• Posterior: p(θ|y)

• Data Marginal (Evidence): p(y)

• Posterior Predictive: p(ỹ|y)
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Bayes’s Rule for Posterior

p(θ|y) = p(y, θ)
p(y)

[def of conditional]

= p(y|θ)p(θ)
p(y)

[chain rule]

= p(y|θ)p(θ)∫
Θ p(y, θ′) dθ′

[law of total prob]

= p(y|θ)p(θ)∫
Θ p(y|θ′)p(θ′) dθ′

[chain rule]

• Inversion: Final result depends only on sampling distribu-
tion (likelihood) p(y|θ) and prior p(θ)
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Bayes’s Rule up to Proportion

• If data y is fixed, then

p(θ|y) = p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ)

= p(y, θ)

• Posterior proportional to likelihood times prior

• Equivalently, posterior proportional to joint

• The nasty integral for data marginal p(y) goes away
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What Stan Computes
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Draws from Posterior

• Stan performs (Markov chain) Monte Carlo sampling

• Produces sequence of draws

θ(1), θ(2), . . . , θ(M)

• wher each draw θ(m) is marginally distributed according to
the posterior p(θ|y)

• Draws characterize posterior

• Plot with histograms, kernel density estimates, etc.
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Parameter Estimates
• An estimator maps data into a parameter estimate

• The standard Bayesian estimator is the posterior mean

θ̂ = E[θ | y]

=
∫
Θ
θ p(θ|y) dθ

≈ 1
M

M∑
m=1

θ(m)

• Posterior mean minimizes expected square error

θ̂ = arg minθE[(θ − θ̂)2]
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Parameter Variance Estimates

• Variances is expected squared error

• Calculated by plugging in estimated value θ̂

var[θ | y] = E[(θ − E[θ | y])2 | y]

=
∫
(θ − θ̂)2 p(θ|y)dθ

≈ 1
M − 1

M∑
m=1
(θ(m) − θ̂)2

44



Posterior Quantiles

• Let Y be a random variable

• If Pr[Y ≤ q] = α, then q is the α-quantile of Y

• Median is 0.5 quantile, i.e., q such that Pr[Y ≤ q] = 0.5

• Central 90

• To compute quantile α for θ in the posterior p(θ|y):

quantile(θ,α) = sort_ascending(θ(1), . . . , θ(M)) [ dα×Me ]
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Event Probabilities
• Events are fundamental probability bearing units which

– are defined by sets of outcomes

– which occur or not with some probability

• Outcomes defined by values of random variables

• Use conditions on parameters to define sets of outcomes

– e.g., θb > θg for more boy births than girl births

– e.g., zk = 1 for team A beating team B in game k

• A set S corresponds to an indicator function f ,

f (s) =

1 if s ∈ S
0 if s 6∈ S
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Calculating Event Probabilities

• Event probabilities are expectations of indicator functions

• Write the indicator function for event E be cond(θ)

Pr[E | y] = E[cond(θ) | y]

=
∫
Θ

I[cond(θ) | y]dθ

≈ 1
M

M∑
m=1

I[cond(θ(m))]

• Just proportion of posterior draws for which condition holds
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Posterior Event Probabilities
• An event A is a collection of outcomes

• So A may be defined by an indicator f on parameters

f (θ) =

1 if θ ∈ A
0 if θ 6∈ A

– f (θ) = I(θ1 > θ2) for Pr[θ1 > θ2 |y],
– f (θ) = I(θ ∈ (0.50,0.52) for Pr [θ ∈ (0.50,0.52) |y]

• Defined by posterior expectation of indicator f (θ)

Pr[A |y] = E [f (θ) |y] =
∫
Θ
f (θ)p(θ|y)dθ.
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Posterior Predictive Distribution

• Predict new data ỹ based on observed data y

• Marginalize parameters θ out of posterior and likelihood

p(ỹ | y) = E[p(ỹ|θ) | y]

=
∫
p(ỹ|θ)p(θ|y)dθ.

≈ 1
M

M∑
m=1

p(ỹ|θ(m))

• Weights predictions p(ỹ|θ) by posterior p(θ|y)
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Calculations in Stan

• Stan automatically computes estimates, variances, and quan-
tiles for parameters

• To compute event probabilities, define indicator in gener-
ated quantities block

generated quantities {
int<lower=0, upper=1> theta_gt_half = (theta > 0.5);

}

• To compute predictions, define with random number gen-
erators in the generated quantities block

generated quantities {
real y_predict = normal_rng(x_predict * alpha, sigma);

}
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Repeated Binary Trials
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Repeated Binary Trial Model
• Data

– N ∈ {0,1, . . .}: number of trials (constant)

– yn ∈ {0,1}: trial n success (known, modeled data)

• Parameter

– θ ∈ [0,1] : chance of success (unknown)

• Prior

– p(θ) = Uniform(θ |0,1) = 1

• Likelihood

– p(y |θ) =
∏N
n=1 Bernoulli(yn |θ) =

∏N
n=1 θyn (1− θ)1−yn

• Posterior

– p(θ |y)∝ p(θ)p(y |θ)
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Stan Program

data {
int<lower=0> N; // number of trials
int<lower=0, upper=1> y[N]; // success on trial n

}
parameters {

real<lower=0, upper=1> theta; // chance of success
}
model {

theta ~ uniform(0, 1); // prior
y ~ bernoulli(theta); // likelihood

}
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A Stan Program...

• defines log (posterior) density up to constant, so...

• equivalent to define log density directly:

model {
target += 0;
for (n in 1:N)
target += log(y[n] ? theta : (1 - theta));

}

• equivalent to drop constant prior and vectorize likelihood:

model {
y ~ bernoulli(theta);

}
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R: Simulate Data

• Generate data

> theta <- 0.30;
> N <- 20;
> y <- rbinom(N, 1, 0.3);

> y

[1] 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1

• Calculate MLE as sample mean from data

> sum(y) / N

[1] 0.4
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RStan: Bayesian Posterior

> library(rstan);

> fit <- stan("bern.stan",
data = list(y = y, N = N));

> print(fit, probs=c(0.1, 0.9));

Inference for Stan model: bern.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000,
total post-warmup draws=4000.

mean se_mean sd 10% 90% n_eff Rhat
theta 0.41 0.00 0.10 0.28 0.55 1580 1
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Plug in Posterior Draws

• Extracting the posterior draws

> theta_draws <- extract(fit)$theta;

• Calculating posterior mean (estimator)

> mean(theta_draws);

[1] 0.4128373

• Calculating posterior intervals

> quantile(theta_draws, probs=c(0.10, 0.90));

10% 90%
0.2830349 0.5496858
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Marginal Posterior Histograms
theta_draws_df <- data.frame(list(theta = theta_draws));
plot <-

ggplot(theta_draws_df, aes(x = theta)) +
geom_histogram(bins=20, color = "gray");

plot;
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200

400

0.2 0.4 0.6 0.8
theta

co
un

t

• Displays the full posterior marginal distribution p(θ |y)
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RStan: MAP, penalized MLE

• Stan’s optimization for estimation; two views:

– max posterior mode, aka max a posteriori (MAP)

– max penalized likelihood (MLE)

> library(rstan);
> N <- 5;
> y <- c(0,1,1,0,0);
> model <- stan_model("bernoulli.stan");
> mle <- optimizing(model, data=c("N", "y"));
...
> print(mle, digits=2)
$par $value (log density)
theta [1] -3.4

0.4
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Male Birth Ratio
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Birth Rate by Sex

• Laplace’s data on live births in Paris from 1745–1770:

sex live births

female 241 945
male 251 527

• Question 1 (Estimation)
What is the birth rate of boys vs. girls?

• Question 2 (Event Probability)
Is a boy more likely to be born than a girl?

• Bayes (1763) set up the “Bayesian” model

• Laplace (1781, 1786) solved for the posterior
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Binomial Distribution
• Binomial distribution is number of successes y in N i.i.d.

Bernoulli trials with chance of success θ

• If y1, . . . , yN ∼ Bernoulli(θ),

then (y1 + · · · + yN) ∼ Binomial(N,θ)

• The analytic form is

Binomial(y|N,θ) =
(
N
y

)
θy(1− θ)N−y

where the binomial coefficient normalizes for permuta-
tions (i.e., which subset of n has yn = 1),(

N
y

)
= N!
y ! (N − y)!
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Binomial Distribution
• Don’t know order of births, only total.

• If y1, . . . , yN ∼ Bernoulli(θ),

then (y1 + · · · + yN) ∼ Binomial(N,θ)

• The analytic form is

Binomial(y|N,θ) =
(
N
y

)
θy(1− θ)N−y

where the binomial coefficient normalizes for permuta-
tions (i.e., which subset of n has yn = 1),(

N
y

)
= N!
y ! (N − y)!
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Mathematics vs. Simulation

• Luckily, we don’t have to be as good at math as Laplace

• Nowadays, we calculate all these integrals by computer
using tools like Stan

If you wanted to do foundational research in
statistics in the mid-twentieth century, you had
to be bit of a mathematician, whether you wanted
to or not. . . . if you want to do statistical re-
search at the turn of the twenty-first century,
you have to be a computer programmer.

—from Andrew’s blog
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Bayes’s Binomial Model
• Data

– y: total number of male live births (251,527)

– N : total number of live births (493,472)

• Parameter

– θ ∈ (0,1): proportion of male live births

• Likelihood

p(y|N,θ) = Binomial(y|N,θ) =
(
N
y

)
θy(1− θ)N−y

• Prior
p(θ) = Uniform(θ |0,1) = 1
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Beta Distribution

• Required for analytic posterior of Bayes’s model

• For parameters α,β > 0 and θ ∈ (0,1),

Beta(θ|α,β) = 1
B(α,β)

θα−1 (1− θ)β−1

• Euler’s Beta function is used to normalize,

B(α,β) =
∫ 1
0
uα−1(1− u)β−1du = Γ(α) Γ(β)

Γ(α+ β)

where Γ() is continuous generalization of factorial

• Note: Beta(θ|1,1) = Uniform(θ|0,1)
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Beta Distribution — Examples
• Unnormalized posterior density assuming uniform prior

and y successes out of n trials (all with mean 0.6).
30 2. SINGLE-PARAMETER MODELS

Figure 2.1 Unnormalized posterior density for binomial parameter θ, based on uniform prior dis-
tribution and y successes out of n trials. Curves displayed for several values of n and y.

(2.1), we are assuming that the n births are conditionally independent given θ, with
the probability of a female birth equal to θ for all cases. This modeling assumption
is motivated by the exchangeability that may be judged to arise when we have no
explanatory information (for example, distinguishing multiple births or births within
the same family) that might affect the sex of the baby.

To perform Bayesian inference in the binomial model, we must specify a prior distribu-
tion for θ. We will discuss issues associated with specifying prior distributions many times
throughout this book, but for simplicity at this point, we assume that the prior distribution
for θ is uniform on the interval [0, 1].

Elementary application of Bayes’ rule as displayed in (1.2), applied to (2.1), then gives
the posterior density for θ as

p(θ|y) ∝ θy(1− θ)n−y. (2.2)

With fixed n and y, the factor
(
n
y

)
does not depend on the unknown parameter θ, and so it

can be treated as a constant when calculating the posterior distribution of θ. As is typical
of many examples, the posterior density can be written immediately in closed form, up to a
constant of proportionality. In single-parameter problems, this allows immediate graphical
presentation of the posterior distribution. For example, in Figure 2.1, the unnormalized
density (2.2) is displayed for several different experiments, that is, different values of n and
y. Each of the four experiments has the same proportion of successes, but the sample sizes
vary. In the present case, we can recognize (2.2) as the unnormalized form of the beta
distribution (see Appendix A),

θ|y ∼ Beta(y + 1, n− y + 1). (2.3)

Historical note: Bayes and Laplace
Many early writers on probability dealt with the elementary binomial model. The first
contributions of lasting significance, in the 17th and early 18th centuries, concentrated
on the ‘pre-data’ question: given θ, what are the probabilities of the various possible
outcomes of the random variable y? For example, the ‘weak law of large numbers’ of

Gelman et al. (2013) Bayesian Data Analysis, 3rd Edition.
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Laplace Turns the Crank

• Given Bayes’s general formula for the posterior

p(θ|y,N) = Binomial(y|N,θ)Uniform(θ|0,1)∫
Θ Binomial(y|N,θ′)p(θ′)dθ′

• Laplace used Euler’s Beta function (B) to normalize the pos-
terior, with final solution

p(θ|y,N) = Beta(θ |y + 1, N − y + 1)
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Laplace turns the Crank

• What is probability that a male live birth is more probable?

Pr[θ > 0.5] =
∫
Θ

I[θ > 0.5]p(θ|y,N)dθ

=
∫ 1
0.5
p(θ|y,N)dθ

≈ 1− 10−42

• Laplace solved Bayes’s integral by

– determining that the posterior was a beta distribution (con-
jugacy!)

– and solving the normalization (gamma functions)
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Calculating Laplace’s Answers

transformed data {
int male = 251527;
int female = 241945;

}
parameters {

real<lower=0, upper=1> theta;
}
model {

male ~ binomial(male + female, theta);
}
generated quantities {

int<lower=0, upper=1> theta_gt_half = (theta > 0.5);
}
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And the Answer is...

> fit <- stan("laplace.stan", iter=100000);
> print(fit, probs=c(0.005, 0.995), digits=3)

mean 0.5% 99.5%
theta 0.51 0.508 0.512
theta_gt_half 1.00 1.000 1.000

• Q1: θ is 99% certain to lie in (0.508,0.512)

• Q2: Laplace “morally certain” boys more prevalent
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Estimation

• Posterior is Beta(θ |1+ 241945, 1+ 251527)

• Posterior mean:

1+ 251527
1+ 241945+ 1+ 251527 ≈ 0.50970873

• Maximum likelihood estimate same as posterior mode (be-
cause of uniform prior)

251527
241945+ 251527 ≈ 0.50970882

• As number of observations approaches ∞,
MLE approaches posterior mean

72



Event Probability Inference
• What is probability that a male live birth is more likely than

a female live birth?

Pr[θ > 0.5] =
∫
Θ

I[θ > 0.5]p(θ|y,N)dθ

=
∫ 1
0.5
p(θ|y,N)dθ

= 1− Fθ|y,N(0.5)

≈ 10−42

• I[φ] = 1 if condition φ is true and 0 otherwise.

• Fθ|y,N is posterior cumulative distribution function (cdf).
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Fisher "Exact" Test
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Bayesian “Fisher Exact Test”
• Suppose we observe the following data on handedness

sinister dexter TOTAL

male 9 (y1) 43 52 (N1)
female 4 (y2) 44 48 (N2)

• Assume likelihoods Binomial(yk|Nk, θk), uniform priors

• Are men more likely to be lefthanded?

Pr[θ1 > θ2 |y,N] =
∫
Θ

I[θ1 > θ2]p(θ|y,N)dθ

≈ 1
M

M∑
m=1

I[θ(m)1 > θ(m)2 ].
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Stan Binomial Comparison

data {
int y[2];
int N[2];

}
parameters {

vector<lower=0,upper=1> theta[2];
}
model {

y ~ binomial(N, theta);
}
generated quantities {

real boys_minus_girls = theta[1] - theta[2];
int boys_gt_girls = theta[1] > theta[2];

}
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Binomial Comparison Results

mean 2.5% 97.5%
theta[1] 0.22 0.12 0.35
theta[2] 0.11 0.04 0.21
boys_minus_girls 0.12 -0.03 0.26
boys_gt_girls 0.93 0.00 1.00

• Pr[θ1 > θ2 |y] ≈ 0.93

• Pr [(θ1 − θ2) ∈ (−0.03,0.26) |y] = 95%
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Visualizing Posterior Difference
• Plot of posterior difference, p(θ1−θ2 |y,N) (men - women)
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draws from theta[1] − theta[2]
with 95% interval

• Vertical bars: central 95% posterior interval (−0.03,0.26)
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More Stan Models
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Posterior Predictive Distribution

• Predict new data (ỹ) given observed data (y)

• Includes two kinds of uncertainty

– parameter estimation uncertainty: p(θ|y)
– sampling uncertainty: p(ỹ|θ)

p(ỹ|y) =
∫
p(ỹ|θ) p(θ|y) dθ

≈ 1
M

M∑
m=1

p(ỹ|θ(m))

• Can generate predictions as sample of draws ỹ(m) based
on θ(m)
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Posterior Predictive Inference

• Parameters θ, observed data y, and data to predict ỹ

p(ỹ|y) =
∫
Θ
p(ỹ|θ) p(θ|y) dθ

• data {

int<lower=0> N_tilde;

matrix[N_tilde,K] x_tilde;

...

parameters {

vector[N_tilde] y_tilde;

...

model {

y_tilde ~ normal(x_tilde * beta, sigma);
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Predict w. Generated Quantities
• Replace sampling with pseudo-random number generation

generated quantities {
vector[N_tilde] y_tilde;

for (n in 1:N_tilde)
y_tilde[n] = normal_rng(x_tilde[n] * beta, sigma);

}

• Must include noise for predictive uncertainty

• PRNGs only allowed in generated quantities block

– more computationally efficient per iteration

– more statistically efficient with i.i.d. samples
(i.e., MC, not MCMC)
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Linear Regression with Prediction

data {
int<lower=0> N; int<lower=0> K;
matrix[N, K] x; vector[N] y;
matrix[N_tilde, K] x_tilde;

}
parameters {

vector[K] beta; real<lower=0> sigma;
}
model {

y ~ normal(x * beta, sigma);
}
generated quantities {

vector[N_tilde] y_tilde
= normal_rng(x_tilde * beta, sigma);

}
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Transforming Precision to Scale

parameters {
real<lower=0> tau;
...

}
transformed parameters {

real<lower=0> sigma = tau^(-0.5);
}
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Transform: Non-Centered Params

parameters {
vector[K] beta_std; // non-centered

}
transformed parameters {

vector[K] beta = mu + sigma * beta_std;
}
model {

// implies: beta ~ normal(mu, sigma)
beta_std ~ normal(0, 1);

}
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Logistic Regression

data {
int<lower=1> K;
int<lower=0> N;
matrix[N,K] x;
int<lower=0,upper=1> y[N];

}
parameters {
vector[K] beta;

}
model {

beta ~ cauchy(0, 2.5); // prior
y ~ bernoulli_logit(x * beta); // likelihood

}
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Generalized Linear Models

• Direct parameterizations more efficient and stable

• Logistic regression (boolean/binary data)

– y ~ bernoulli(inv_logit(eta));

– y ~ bernoulli_logit(eta);

– Probit via Phi (normal cdf)

– Robit (robust) via Student-t cdf

• Poisson regression (count data)

– y ~ poisson(exp(eta));

– y ~ poisson_log(eta);

– Overdispersion with negative binomial
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GLMS, continued

• Multi-logit regression (categorical data)

– y ~ categorical(softmax(eta));

– y ~ categorical_logit(eta);

• Ordinal logistic regression (ordered data)

– Add cutpoints c

– y ~ ordered_logistic(eta, c);

• Robust linear regression (overdispersed noise)

– y ~ student_t(nu, eta, sigma);
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Time Series Autoregressive: AR(1)

data {
int<lower=0> N; vector[N] y;

}
parameters {
real alpha; real beta; real sigma;

}
model {
y[2:n] ~ normal(alpha + beta * y[1:(n-1)], sigma);

}
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LKJ Density and Cholesky Factors

• Density on correlation matrices Ω

• LKJCorr(Ω |ν)∝ det(Ω)(ν−1)

– ν = 1 uniform

– ν > 1 concentrates around unit matrix

• Work with Cholesky factor LΩ s.t. Ω = LΩ L>Ω
– Density: LKJCorrCholesky(LΩ |ν)∝ |J|det(LΩ L>Ω)(ν−1)

– Jacobian adjustment for Cholesky factorization

Lewandowski, Kurowicka, and Joe (2009)

90



Covariance Random-Effects Priors

parameters {
vector[2] beta[G];
cholesky_factor_corr[2] L_Omega;
vector<lower=0>[2] sigma;

model {
sigma ~ cauchy(0, 2.5);
L_Omega ~ lkj_cholesky(4);
beta ~ multi_normal_cholesky(rep_vector(0, 2),

diag_pre_multiply(sigma, L_Omega));
for (n in 1:N)

y[n] ~ bernoulli_logit(... + x[n] * beta[gg[n]]);

• G groups with varying slope and intercept; gg indicates group
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Example: Gaussian Process Estimation

data {
int<lower=1> N; vector[N] x; vector[N] y;

} parameters {
real<lower=0> eta_sq, inv_rho_sq, sigma_sq;

} transformed parameters {
real<lower=0> rho_sq; rho_sq = inv(inv_rho_sq);

} model {
matrix[N,N] Sigma;
for (i in 1:(N-1)) {
for (j in (i+1):N) {

Sigma[i,j] = eta_sq * exp(-rho_sq * square(x[i] - x[j]));
Sigma[j,i] = Sigma[i,j];

}}
for (k in 1:N) Sigma[k,k] = eta_sq + sigma_sq;
eta_sq, inv_rho_sq, sigma_sq ~ cauchy(0,5);
y ~ multi_normal(rep_vector(0,N), Sigma);

}
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Gaussian Process Predictions

• Add predictors x_tilde[M] for points to predict

• Declare predicted values y_tilde[M] as unconstrained pa-
rameters

• Define Sigma[M+N,M+N] in terms of full append_row(x,
x_tilde)

• Model remains the same

append_row(y,y_tilde)

~ multi_normal(rep(0,N+M),Sigma);
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Mixture of Two Normals
for (n in 1:N) {
real lp1; real lp2;

lp1 = bernoulli_log(0, lambda)
+ normal_log(y[n], mu[1], sigma[1]);

lp2 = bernoulli_log(1, lambda)
+ normal_log(y[n], mu[2], sigma[2]);

target += log_sum_exp(lp1,lp2);

• local variables reassigned; direct increment of log posterior

• log_sum_exp(α,β) = log(exp(α)+ exp(β))

• Much more efficient than sampling (Rao-Blackwell Theorem)

94



Other Mixture Applications

• Other multimodal data

• Zero-inflated Poisson or hurdle models

• Model comparison or mixture

• Discrete change-point model

• Hidden Markov model, Kalman filter

• Almost anything with latent discrete parameters

• Other than variable choice, e.g., regression predictors

– marginalization is exponential in number of vars
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Dynamic Systems with Diff Eqs

• Simple harmonic oscillator

d
dt
y1 = −y2

d
dt
y2 = −y1 − θy2

• Code as a function in Stan

functions {
real[] sho(data real t, real[] y, real[] theta,

data real[] x_r, data int[] x_i) {
return { y[2],

-y[1] - theta[1] * y[2] };
}

}
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Fit Noisy State Measurements
data {
int<lower=1> T; real y[T,2];
real t0; real ts[T];

}
parameters {
real y0[2]; // unknown initial state
real theta[1]; // rates for equation
vector<lower=0>[2] sigma; // measurement error

}
model {
real y_hat[T,2];
...priors...
y_hat = integrate_ode(sho, y0, t0, ts, theta, x_r, x_i);
y ~ normal(y_hat, sigma);

}
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