Automatic Differentiation
 
Loading...
Searching...
No Matches
log1m_inv_logit.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_OPENCL_REV_LOG1M_INV_LOGIT_HPP
2#define STAN_MATH_OPENCL_REV_LOG1M_INV_LOGIT_HPP
3#ifdef STAN_OPENCL
4
8
9namespace stan {
10namespace math {
11
19template <typename T,
20 require_all_kernel_expressions_and_none_scalar_t<T>* = nullptr>
22 return make_callback_var(log1m_inv_logit(A.val()),
23 [A](vari_value<matrix_cl<double>>& res) mutable {
24 A.adj() -= inv_logit(A.val());
25 });
26}
27
28} // namespace math
29} // namespace stan
30
31#endif
32#endif
Represents an arithmetic matrix on the OpenCL device.
Definition matrix_cl.hpp:47
var_value< plain_type_t< T > > make_callback_var(T &&value, F &&functor)
Creates a new var initialized with a callback_vari with a given value and reverse-pass callback funct...
fvar< T > log1m_inv_logit(const fvar< T > &x)
Return the natural logarithm of one minus the inverse logit of the specified argument.
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...