(Moderately) Advanced Hierarchical Models

Ben Goodrich

StanCon: January 12, 2018
Obligatory Disclosure

• Ben is an employee of Columbia University, which has received several research grants to develop Stan
• Ben is also a manager of GG Statistics LLC, which utilizes Stan for business purposes
• According to Columbia University policy, any such employee who has any equity stake in, a title (such as officer or director) with, or is expected to earn at least $5,000.00 per year from a private company is required to disclose these facts in presentations
Goals for the Tutorial

• Thinking in terms of conditional distributions is good
• But conditional distributions make things harder for NUTS
• By reparameterizing, you can make hierarchical models easier for NUTS
• Also, want to learn about matrix decompositions and priors on components
Cluster Sampling Designs

Consider a more elaborate version of the school example:

\[
\begin{align*}
\tau & \sim \text{Exponential}(r_{\tau}) \\
\alpha & \sim \mathcal{N}(\mu_{\alpha}, \mu_{\beta}) \\
\alpha_j & \sim \mathcal{N}(\alpha, \tau) \quad \forall j \\
\sigma & \sim \text{Exponential}(r_{\sigma}) \\
\sigma_j & \sim \text{Exponential}\left(\frac{1}{\sigma}\right) \quad \forall j \\
\epsilon_{ij} & \sim \mathcal{N}(0, \sigma_j) \quad \forall i \in j \\
\beta & \sim \mathcal{N}(\mu_{\beta}, \sigma_{\beta}) \\
y_{ij} & \equiv \alpha_j + \beta \times \text{class_size}_i + \epsilon_{ij} \quad \forall i, j
\end{align*}
\]
Frequentist vs. Bayesian Perspective

- The previous DGP seems reasonable but
 - In order to estimate α, β, and σ consistently as $J \uparrow \infty$, α_j and σ_j must be integrated out of the likelihood function.
 - However, σ_j cannot be integrated out of the likelihood function analytically.
 - Therefore, the `lmer` function in `lme4` requires $\sigma_j = \sigma \forall j$.

- Bayesian methods condition on the J groups rather than integrating over the process by which they were selected.
- MCMC methods may have considerable difficulty drawing from this posterior distribution sufficiently efficiently.
- By reparameterizing, you can improve the prospects for Stan to sample from this posterior distribution well.
Sampling Efficiency

• If we could obtain S independent draws from a posterior distribution, posterior means would converge at a \sqrt{S} rate

• But we cannot obtain independent draws from non-trivial posterior distributions

• MCMC methods yield S dependent draws from posterior distributions and posterior means converge at a $\sqrt{S_{\text{eff}}}$ rate

• If the draws are moderately dependent, then $\sqrt{S_{\text{eff}}} \approx \sqrt{S}$ and everything is basically fine

• If the draws are severely dependent, then there is no finite S that yields reliable posterior means

• NUTS produces draws that have less dependence than other MCMC algorithms

• But whether $\sqrt{S_{\text{eff}}} \approx \sqrt{S}$ under NUTS depends on the (parameterization of the) posterior distribution
When Does NUTS “Fail”?

- NUTS only uses first derivatives of the log-posterior kernel
- A curve can be approximated by a line over a small interval
- NUTS would work perfectly with only first derivatives if higher derivatives of a posterior distribution were constant
- Independent Gaussian log-PDFs have constant second derivatives:
 \[
 \frac{\partial^2}{\partial \mu \partial \mu} \left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2 \right) = -\frac{1}{\sigma}
 \]
- When the higher derivatives are not constant, NUTS has to reduce its step size to approximate a curve sufficiently well
- If the higher derivatives change rapidly, the step size can go to zero numerically and NUTS takes infinite steps / time
- By changing the parameterization, you change derivatives without changing the posterior means or inferences
Let’s simplify to the case where only the intercept varies across groups, i.e. \(\alpha_j \sim \mathcal{N} (\alpha, \sigma) \) \(\forall j \)

- \(\sigma = e^\omega \) is unknown and \(\omega \) has an improper uniform prior
- \(\mathcal{N} (\alpha, \sigma) \overset{d}{=} \alpha + \sigma \times \mathcal{N} (0, 1) \) and similarly for other distributions in the location-scale family

You can often help Stan via transformations

\[
\begin{align*}
 u_j & \sim \mathcal{N} (0, 1) \implies \\
 \alpha_j = \alpha + e^\omega u_j \forall j & \sim \mathcal{N} (\alpha, e^\omega)
\end{align*}
\]

- `vector[J] u` would be declared in the parameters block
- `vector[J] alpha` would be declared in the transformed parameters block
- The second derivative with respect to each \(u_j \) is constant
- Look at the bivariate prior for \(\omega \) vs. that of \(u_j, \omega \)
library(rgl)

kernel <- function(alpha, omega) {
 dnorm(alpha, sd = exp(omega), log = TRUE)
}

LIM <- c(-2,2)
persp3d(kernel, xlim = LIM,
 ylim = LIM, zlab = "log kernel")

reparameterized_kernel <- function(u, omega) {
 dnorm(u, log = TRUE)
}
persp3d(reparameterized_kernel, xlim = LIM,
 ylim = LIM, zlab = "log kernel")
Coefficients Depending on Other Coefficients Again
Recall our Stan program where the coefficient on age is a noisy linear function of the person’s income:

```stan
data {
  int<lower=1> N; vector[N] age;
  vector[N] income; int<lower=0,upper=1>[N] vote;
}
parameters {
  vector[2] lambda; // intercept / slope for age's effect
  vector[N] noise; // error in effect of age
  real<lower=0> sigma; // sd of error in beta_age
  vector[2] beta; // intercept / slope for outcome
}
model {
                      + sigma * noise; // non-centering
                  + beta_age .* age;
  target += binomial_logit_lpmf(vote | eta);
  target += normal_lpdf(noise | 0, 1);
} // priors on lambda, sigma, and beta
```
Centered Parameterization

The following is conceptually the same but often problematic:

data {
 int<lower=1> N; vector[N] age;
 vector[N] income; int<lower=0,upper=1>[N] vote;
}
parameters {
 vector[2] lambda; // intercept / slope for age’s effect
 vector[N] beta_age; // coefficient on age
 real<lower=0> sigma; // sd of error in beta_age
 vector[2] beta; // intercept / slope for outcome
}
model {
 + beta_age .* age;
 target += binomial_logit_lpmf(vote | eta);
 target += normal_lpdf(beta_age | lambda[1] +
 lambda[2] * income, sigma);
} // priors on lambda, sigma, and beta
Multivariate Matt Trick

- If $\beta_j \sim \text{MultiNormal}(\mu, \Sigma)$, Stan can have difficulty drawing from the joint posterior distribution
 - When Σ_{kk} is small, β_{kj} must fall in a narrow range, which entails a small stepsize for NUTS
 - When Σ_{kk} is large, β_{kj} can fall in a wide range, which requires a large stepsize or else many small steps
- You can help Stan with this problem via transformations

$$u_{kj} \sim \text{Normal}(0, 1) \forall k, j \implies \beta_j = \mu + \sigma L u_j \sim \text{MultiNormal}(\mu, \sigma^2 LL^\top)$$

where σL is the Cholesky factor of $\Sigma = \sigma^2 LL^\top$ and σ is the standard deviation of the errors

- Both rstanarm and brms do things like this
Decomposing a Covariance Matrix

• Suppose $\beta_j \sim \mathcal{N} (\mu, \Sigma)$ where β_j is a K-vector for group j

• Many people find specifying a prior on the $K \times K$ covariance matrix to be difficult. You will see (inverse) Wishart priors in the literature which are confusing but conjugate with the multivariate normal and thus facilitate Gibbs sampling.

• With Stan, you are free to do what makes sense, such as

\[
\Sigma = \Delta \Lambda \Delta \quad [\text{stds x correlation x stds}]
\]
\[
\Delta^2_k = \tau \pi_k \forall k
\]
\[
\tau = \gamma^2 K
\]
\[
\gamma \sim \text{Jeffreys / Gamma / Exponential}
\]
\[
\pi \sim \text{Dirichlet} (a)
\]
\[
\Lambda \sim \text{prior?}
\]

• π is a simplex, so the kth variance, Δ^2_k, is a proportion of τ, which is the trace of Σ & a function of a scale parameter, γ
Prior for a Correlation Matrix

• There are many choices for a prior on a scale parameter, such as Jeffreys if you want to be non-informative

• A Dirichlet (\mathbf{a}) prior for $\mathbf{\pi}$ is pretty easy to specify, such as $\mathbf{a} = \mathbf{1}$ if you want to be jointly uniform on the K-simplex

• There is an easy and possibly non-informative prior for a correlation matrix Λ, $f(\Lambda | \eta) = \frac{1}{c(\eta, K)} |\Lambda|^{\eta-1}$ called “LKJ”

• η acts like the shape parameter of a Beta distribution
 • if $\eta = 1$, $f(\Lambda | \eta) = \frac{1}{c(\eta, K)}$ is constant
 • if $\eta > 1$, \mathbf{I} is the modal correlation matrix and the only correlation matrix with positive density as $\eta \uparrow \infty$
 • if $\eta < 1$, \mathbf{I} is at the trough of the distribution of correlation matrices, which is a weird thing to believe

• But $\Lambda = \mathbf{C} \mathbf{C}^\top$ where \mathbf{C} is a Cholesky factor

• Can specify a prior on \mathbf{C} such that Λ has the LKJ prior
A Multivariate Matt Trick with \texttt{brms}

\begin{verbatim}
library(brms)
post <- brm(Reaction ~ Days + (Days | Subject),
 data = lme4::sleepstudy) # no warnings!

make_stancode(Reaction ~ Days + (Days | Subject),
 data = lme4::sleepstudy)
\end{verbatim}
Data and Transformed Data Blocks

data {
 int<lower=1> N; // total number of observations
 vector[N] Y; // response variable
 int<lower=1> K; // number of population-level effects
 matrix[N, K] X; // population-level design matrix
 // data for group-level effects of ID 1
 int<lower=1> J_1[N];
 int<lower=1> N_1;
 int<lower=1> M_1;
 vector[N] Z_1_1;
 vector[N] Z_1_2;
 int<lower=1> NC_1;
 int prior_only; // should the likelihood be ignored?
}

transformed data {
 int Kc = K - 1;
 matrix[N, K - 1] Xc; // centered version of X
 vector[K - 1] means_X; // column means of X before centering
 for (i in 2:K) {
 means_X[i - 1] = mean(X[, i]);
 Xc[, i - 1] = X[, i] - means_X[i - 1];
 }
}

parameters {
 vector[Kc] b; // population-level effects
 real temp_Intercept; // temporary intercept
 real<lower=0> sigma; // residual SD
 vector<lower=0>[M_1] sd_1; // group-level standard deviations
 matrix[M_1, N_1] z_1; // unscaled group-level effects
 // cholesky factor of correlation matrix
 cholesky_factor_corr[M_1] L_1;
}

transformed parameters {
 // group-level effects
 matrix[N_1, M_1] r_1 = (diag_pre_multiply(sd_1, L_1) * z_1)';
 vector[N_1] r_1_1 = r_1[, 1];
 vector[N_1] r_1_2 = r_1[, 2];
}

model {
 vector[N] mu = Xc * b + temp_Intercept;
 for (n in 1:N) {
 mu[n] = mu[n] + (r_1_1[J_1[n]]) * Z_1_1[n] + (r_1_2[J_1[n]]) * Z_1_2[n];
 }
 // priors including all constants
 target += student_t_lpdf(temp_Intercept | 3, 288.65, 56);
 target += student_t_lpdf(sigma | 3, 0, 56) - 1 * student_t_lccdf(0 | 3, 0, 56);
 target += student_t_lpdf(sd_1 | 3, 0, 56) - 2 * student_t_lccdf(0 | 3, 0, 56);
 target += lkj_corr_cholesky_lpdf(L_1 | 1);
 target += normal_lpdf(to_vector(z_1) | 0, 1);
 // likelihood including all constants
 if (!prior_only) {
 target += normal_lpdf(Y | mu, sigma);
 }
}

generated quantities {
 // actual population-level intercept
 real b_Intercept = temp_Intercept - dot_product(means_X, b);
 corr_matrix[M_1] Cor_1 = multiply_lower_tri_self_transpose(L_1);
 vector<lower=-1,upper=1>[NC_1] cor_1;
 // take only relevant parts of correlation matrix
 cor_1[1] = Cor_1[1,2];
}
parameters {
 vector[Kc] b; // population-level effects
 real temp_Intercept; // temporary intercept
 real<lower=0> sigma; // residual SD
 vector<lower=0>[M_1] sd_1; // group-level standard deviations
 matrix[M_1, N_1] z_1; // unscaled group-level effects
 // cholesky factor of correlation matrix
 cholesky_factor_corr[M_1] L_1;
}
transformed parameters {
 // group-level effects
 matrix[N_1, M_1] r_1 = (diag_pre_multiply(sd_1, L_1) * z_1)';
 vector[N_1] r_1_1 = r_1[, 1];
 vector[N_1] r_1_2 = r_1[, 2];
}
model {
 vector[N] mu = Xc * b + temp_Intercept;
 for (n in 1:N) {
 mu[n] = mu[n] + (r_1_1[J_1[n]]) * Z_1_1[n] + (r_1_2[J_1[n]]) * Z_1_2[n];
 }
 // priors including all constants
 target += student_t_lpdf(temp_Intercept | 3, 288.65, 56);
 target += student_t_lpdf(sigma | 3, 0, 56) - 1 * student_t_lccdf(0 | 3, 0, 56);
 target += student_t_lpdf(sd_1 | 3, 0, 56) - 2 * student_t_lccdf(0 | 3, 0, 56);
 target += lkj_corr_cholesky_lpdf(L_1 | 1);
 target += normal_lpdf(to_vector(z_1) | 0, 1);
 // likelihood including all constants
 if (!prior_only) {
 target += normal_lpdf(Y | mu, sigma);
 }
}
generated quantities {
 // actual population-level intercept
 real b_Intercept = temp_Intercept - dot_product(means_X, b);
 corr_matrix[M_1] Cor_1 = multiply_lower_tri_self_transpose(L_1);
 vector<lower=-1,upper=1>[NC_1] cor_1;
 // take only relevant parts of correlation matrix
 cor_1[1] = Cor_1[1,2];
}
Conclusion

• Should use hierarchical modeling unless there is a strong reason not to
• Hierarchical models are more straightforward from a Bayesian perspective
• NUTS does a better job with hierarchical modeling than does Gibbs
• But the parameterization can make a big difference to NUTS