(Not That) Advanced Hierarchical Models

Ben Goodrich

StanCon: January 10, 2018
Obligatory Disclosure

• Ben is an employee of Columbia University, which has received several research grants to develop Stan.

• Ben is also a manager of GG Statistics LLC, which utilizes Stan for business purposes.

• According to Columbia University policy, any such employee who has any equity stake in, a title (such as officer or director) with, or is expected to earn at least $5,000.00 per year from a private company is required to disclose these facts in presentations.
Goals for the Tutorial

• Think about conditional distributions, the building blocks for hierarchical models
• Practice writing functions in the Stan language to draw from the prior predictive distribution
• Write simple Stan programs where some parameters are functions of other parameters
• Prepare for more advanced material tomorrow and Friday at 7AM
Hierarchical Data Generating Processes: Bowling

- How to model how person i does on the jth bowling frame?

```r
first_roll <- sample(0:10, size = 1)
pins_left <- 10 - first_roll
second_roll <- sample(0:pins_left, size = 1)
first_roll + second_roll
## [1] 9
```
Hierarchical Data Generating Processes: Bowling

• How to model how person \(i \) does on the \(j \)th bowling frame?

• You would need (at least) two probability distributions:
 1. Probability of knocking down 0, 1, \ldots, 10 pins on the first roll
 2. Probability of knocking down 0, 1, \ldots, 10 pins on the second roll, given what transpired on the first roll

```r
first_roll <- sample(0:10, size = 1)
pins_left <- 10 - first_roll
second_roll <- sample(0:pins_left, size = 1)
first_roll + second_roll

## [1] 9
```
Hierarchical Data Generating Processes: IV

A generative model for an instrumental variable (IV) design is

\[
\sigma_1 \sim \text{Exponential}(r_1)
\]

Priors: \(\sigma_2 \sim \text{Exponential}(r_2) \)

\(\rho \sim \text{Uniform}(-1, 1) \)

Errors: \[
\begin{bmatrix}
\nu_i \\
\varepsilon_i
\end{bmatrix}
\sim \mathcal{N}_2\left(\begin{bmatrix}0 \\ 0\end{bmatrix}, \begin{bmatrix}\sigma_1^2 & \rho \sigma_1 \sigma_2 \\
\rho \sigma_1 \sigma_2 & \sigma_2^2\end{bmatrix}\right) \quad \forall i
\]

Priors: \[
\begin{bmatrix}
\alpha_0 \\
\alpha_1 \\
\alpha_2
\end{bmatrix}
\sim \mathcal{N}_3(\mu_1, \Sigma_1)
\quad
\begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2
\end{bmatrix}
\sim \mathcal{N}_3(\mu_2, \Sigma_2)
\]

1st stage: \(t_i \equiv \alpha_0 + \alpha_1 x_i + \alpha_2 z_i + \nu_i \forall i \)

2nd stage: \(y_i \equiv \beta_0 + \beta_1 x_i + \beta_2 t_i + \varepsilon_i \forall i \)
Write a Stan function to draw N times from this DGP

```stan
vector[] IV_DGP_rng(int N, vector x, vector z, real r1,
             real r2, vector mu_1, matrix Sigma_1,
             vector mu_2, matrix Sigma_2) {
  real sigma_1 = exponential_rng(r1);
  real sigma_2 = exponential_rng(r2);
  real cov_12 = uniform_rng(-1, 1) * sigma_1 * sigma_2;
  matrix[2,2] Sigma = [
    [square(sigma_1), cov_12],
    [cov_12, square(sigma_2)]
  ];
  vector[3] alpha = multi_normal_rng(mu_1, Sigma_1);
  vector[3] beta = multi_normal_rng(mu_2, Sigma_2);
  vector[2] zeros = rep_vector(0, 2);
  for (n in 1:N) {
    vector[2] errors = multi_normal_rng(zeros, Sigma);
    ty[1][n] += errors[1];
  }
  return ty;
}
```
Write a Stan function to draw N times from this DGP

```stan
vector[] IV_DGP_rng(int N, vector x, vector z, real r1, real r2, vector mu_1, matrix Sigma_1, vector mu_2, matrix Sigma_2) {
  real sigma_1 = exponential_rng(r1);
  real sigma_2 = exponential_rng(r2);
  real cov_12 = uniform_rng(-1, 1) * sigma_1 * sigma_2;
  matrix[2,2] Sigma = [
    [square(sigma_1), cov_12],
    [cov_12, square(sigma_2)]
  ];
  vector[3] alpha = multi_normal_rng(mu_1, Sigma_1);
  vector[3] beta = multi_normal_rng(mu_2, Sigma_2);
  vector[2] zeros = rep_vector(0, 2);
  for (n in 1:N) {
    vector[2] errors = multi_normal_rng(zeros, Sigma);
    ty[1][n] += errors[1];
  }
  return ty;
}
```
Exposing Stan Functions in R

- If you put the previous function inside the functions block of an otherwise empty Stan program, you can export it to R

```r
rstan::expose_stan_functions("IV_DGP.stan")
args(IV_DGP_rng)
```

- At this point, you can call the `IV_DGP_rng` function with appropriate arguments and get back a list of two numeric vectors
Coefficients Depending on Other Coefficients

Write a simple Stan program where the coefficient on age is a linear function of the person’s income, starting with

```stan
data {
  int<lower=1> N;
  vector[N] age;
  vector[N] income;
  int<lower=0,upper=1> vote[N];
}
parameters {
  vector[2] lambda; // intercept / slope for age’s effect
  vector[2] beta; // intercept / slope for outcome
}
```
Coefficients Depending on Other Coefficients

Write a simple Stan program where the coefficient on age is a linear function of the person’s income, starting with

```stan
data {
  int<lower=1> N;
  vector[N] age;
  vector[N] income;
  int<lower=0,upper=1> vote[N];
}
parameters {
  vector[2] lambda; // intercept / slope for age’s effect
  vector[2] beta;   // intercept / slope for outcome
}
model {
                  + beta_age .* age;
  target += bernoulli_logit_lpmf(vote | eta);
} // priors on lambda and beta
```
Relation to Interaction Terms in R

• If

\[\eta_i = \beta_1 + \beta_2 \times \text{Income}_i + \beta_3i \times \text{Age}_i \]

\[\beta_3i = \lambda_1 + \lambda_2 \times \text{Income}_i \]

then by substituting & distributing:

\[\eta_i = \beta_1 + \beta_2 \times \text{Income}_i + (\lambda_1 + \lambda_2 \times \text{Income}_i) \times \text{Age}_i \]

\[= \beta_1 + \beta_2 \times \text{Income}_i + \lambda_1 \times \text{Age}_i + \lambda_2 \times \text{Income}_i \times \text{Age}_i \]

and \(\beta_1, \beta_2, \lambda_1, \) and \(\lambda_2 \) can be estimated (unregularized) via

\texttt{glm(vote ~ income + age + income:age, family = binomial)}

• Stan version is easier to interpret; R version is quick
Coefficients Depending on Other Coefficients Again

Write a simple Stan program where the coefficient on age is a noisy linear function of the person’s income, starting with

```stan
data {
  int<lower=1> N; vector[N] age;
  vector[N] income; int<lower=0,upper=1> vote[N];
}

parameters {
  vector[2] lambda; // intercept / slope for age’s effect
  vector[N] noise; // error in effect of age
  real<lower=0> sigma; // sd of error in beta_age
  vector[2] beta; // intercept / slope for outcome
}

model {
  target += bernoulli_logit_lpmf(vote | eta);
  target += normal_lpdf(noise | 0, 1);
}
```
Coefficients Depending on Other Coefficients Again

Write a simple Stan program where the coefficient on age is a **noisy** linear function of the person’s income, starting with

```stan
data {
  int<lower=1> N; vector[N] age;
  vector[N] income; int<lower=0,upper=1> vote[N];
}
parameters {
  vector[2] lambda; // intercept / slope for age's effect
  vector[N] noise; // error in effect of age
  real<lower=0> sigma; // sd of error in beta_age
  vector[2] beta; // intercept / slope for outcome
}
model {
                      + sigma * noise; // non-centering
                  + beta_age.* age;
  target += bernoulli_logit_lpmf(vote | eta);
  target += normal_lpdf(noise | 0, 1);
} // priors on lambda, sigma, and beta
```
Relation to “Random Coefficient Models”

- Previous model cannot be estimated via `glm` in R.
- In order for MLEs to be consistent as $N \uparrow \infty$, the number of parameters to estimate must remain fixed. So, noise couldn’t be considered a parameter in the previous model.
- A “random coefficient model” (RCM) would consider noise to be “error” and integrate it out of the likelihood function.
- For Gaussian outcomes, this can be done analytically; otherwise it must be done numerically using quadrature.
- Can then use MLE to obtain parameter point estimates: $\hat{\lambda}$, $\hat{\sigma}$, and $\hat{\beta}$.
- Bayesians take noise to be a parameter, draw from the conditional distribution of all parameters given the data, and ignore posterior margins that are not interesting.
Cluster Sampling Designs

• Classic example of cluster sampling:
 1. Randomly draw J schools from the population of schools
 2. For each selected school, randomly draw N_j students
 3. Collect data on these $N = \sum_{j=1}^{J} N_j$ students

• If one tried to replicate this study, both the schools and the students would be different than in the original study

$$
\tau \sim \text{Exponential} (r_\tau)
$$

$$
\alpha_j \sim \mathcal{N} (0, \tau) \forall j
$$

$$
\beta \sim \mathcal{N} (\mu_\beta, \sigma_\beta)
$$

$$
\sigma_\varepsilon \sim \text{Exponential} (r_\sigma)
$$

$$
\varepsilon_{ij} \sim \mathcal{N} (0, \sigma_\varepsilon)
$$

$$
y_{ij} \equiv \alpha_j + \beta \times \text{class_size}_{i} + \varepsilon_{ij} \forall i, j
$$
Write a Stan function to draw from this DGP

```stan
vector cluster_DGP_rng(int J, int[] N, vector class_size, 
real r_tau, real r_sigma, 
real mu_beta, real sigma_beta) {
```