
(Not That) Advanced Hierarchical Models

Ben Goodrich

StanCon: January 10, 2018

Ben Goodrich Advanced Hierarchical Models StanCon 1 / 13

Obligatory Disclosure

• Ben is an employee of Columbia University, which has received
several research grants to develop Stan

• Ben is also a manager of GG Statistics LLC, which utilizes Stan
for business purposes

• According to Columbia University policy, any such employee who
has any equity stake in, a title (such as officer or director) with, or
is expected to earn at least $5,000.00 per year from a private
company is required to disclose these facts in presentations

Ben Goodrich Advanced Hierarchical Models StanCon 2 / 13

Goals for the Tutorial

• Think about conditional distributions, the building blocks for
hierarchical models

• Practice writing functions in the Stan language to draw from the
prior predictive distribution

• Write simple Stan programs where some parameters are
functions of other parameters

• Prepare for more advanced material tomorrow and Friday at 7AM

Ben Goodrich Advanced Hierarchical Models StanCon 3 / 13

Hierarchical Data Generating Processes: Bowling

• How to model how person i does on the j th bowling frame?

• You would need (at least) two probability distributions:
1. Probability of knocking down 0,1, . . . ,10 pins on the first roll

2. Probability of knocking down 0,1, . . . ,10 pins on the second roll,
given what transpired on the first roll

first_roll <- sample(0:10, size = 1)
pins_left <- 10 - first_roll
second_roll <- sample(0:pins_left, size = 1)
first_roll + second_roll

[1] 9

Ben Goodrich Advanced Hierarchical Models StanCon 4 / 13

Hierarchical Data Generating Processes: Bowling

• How to model how person i does on the j th bowling frame?

• You would need (at least) two probability distributions:
1. Probability of knocking down 0,1, . . . ,10 pins on the first roll

2. Probability of knocking down 0,1, . . . ,10 pins on the second roll,
given what transpired on the first roll

first_roll <- sample(0:10, size = 1)
pins_left <- 10 - first_roll
second_roll <- sample(0:pins_left, size = 1)
first_roll + second_roll

[1] 9

Ben Goodrich Advanced Hierarchical Models StanCon 4 / 13

Hierarchical Data Generating Processes: IV
A generative model for an instrumental variable (IV) design is

σ1 ∼ Exponential(r1)

Priors: σ2 ∼ Exponential(r2)

ρ ∼ Uniform(−1,1)

Errors:
[

νi
εi

]
∼ N2

([
0
0

]
,

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

])
∀i

Priors:

α0
α1
α2

∼ N3 (µµµ1,ΣΣΣ1)

β0
β1
β2

∼ N3 (µµµ2,ΣΣΣ2)

1st stage: ti ≡ α0 + α1xi + α2zi + νi ∀i
2nd stage: yi ≡ β0 + β1xi + β2ti + εi ∀i

Ben Goodrich Advanced Hierarchical Models StanCon 5 / 13

Write a Stan function to draw N times from this DGP
vector[] IV_DGP_rng(int N, vector x, vector z, real r1,

real r2, vector mu_1, matrix Sigma_1,
vector mu_2, matrix Sigma_2) {

real sigma_1 = exponential_rng(r1);
real sigma_2 = exponential_rng(r2);
real cov_12 = uniform_rng(-1, 1) * sigma_1 * sigma_2;
matrix[2,2] Sigma = [[square(sigma_1), cov_12],

[cov_12, square(sigma_2)]];
vector[3] alpha = multi_normal_rng(mu_1, Sigma_1);
vector[3] beta = multi_normal_rng(mu_2, Sigma_2);
vector[N] ty[2] = {alpha[1] + alpha[2] * x + alpha[3] *

z, beta[1] + beta[2] * x};
vector[2] zeros = rep_vector(0, 2);
for (n in 1:N) {

vector[2] errors = multi_normal_rng(zeros, Sigma);
ty[1][n] += errors[1];
ty[2][n] += beta[3] * ty[1][n] + errors[2];

}
return ty;

}

Ben Goodrich Advanced Hierarchical Models StanCon 6 / 13

Write a Stan function to draw N times from this DGP
vector[] IV_DGP_rng(int N, vector x, vector z, real r1,

real r2, vector mu_1, matrix Sigma_1,
vector mu_2, matrix Sigma_2) {

real sigma_1 = exponential_rng(r1);
real sigma_2 = exponential_rng(r2);
real cov_12 = uniform_rng(-1, 1) * sigma_1 * sigma_2;
matrix[2,2] Sigma = [[square(sigma_1), cov_12],

[cov_12, square(sigma_2)]];
vector[3] alpha = multi_normal_rng(mu_1, Sigma_1);
vector[3] beta = multi_normal_rng(mu_2, Sigma_2);
vector[N] ty[2] = {alpha[1] + alpha[2] * x + alpha[3] *

z, beta[1] + beta[2] * x};
vector[2] zeros = rep_vector(0, 2);
for (n in 1:N) {

vector[2] errors = multi_normal_rng(zeros, Sigma);
ty[1][n] += errors[1];
ty[2][n] += beta[3] * ty[1][n] + errors[2];

}
return ty;

}
Ben Goodrich Advanced Hierarchical Models StanCon 6 / 13

Exposing Stan Functions in R

• If you put the previous function inside the functions block of an
otherwise empty Stan program, you can export it to R

rstan::expose_stan_functions("IV_DGP.stan")
args(IV_DGP_rng)

• At this point, you can call the IV_DGP_rng function with
appropriate arguments and get back a list of two numeric vectors

Ben Goodrich Advanced Hierarchical Models StanCon 7 / 13

Coefficients Depending on Other Coefficients
Write a simple Stan program where the coefficient on age is a linear
function of the person’s income, starting with

data {
int<lower=1> N;
vector[N] age;
vector[N] income;
int<lower=0,upper=1> vote[N];

}
parameters {
vector[2] lambda; // intercept / slope for age’s effect
vector[2] beta; // intercept / slope for outcome

}

model {
vector[N] beta_age = lambda[1] + lambda[2] * income;
vector[N] eta = beta[1] + beta[2] * income

+ beta_age .* age;
target += bernoulli_logit_lpmf(vote | eta);

} // priors on lambda and beta

Ben Goodrich Advanced Hierarchical Models StanCon 8 / 13

Coefficients Depending on Other Coefficients
Write a simple Stan program where the coefficient on age is a linear
function of the person’s income, starting with

data {
int<lower=1> N;
vector[N] age;
vector[N] income;
int<lower=0,upper=1> vote[N];

}
parameters {
vector[2] lambda; // intercept / slope for age’s effect
vector[2] beta; // intercept / slope for outcome

}

model {
vector[N] beta_age = lambda[1] + lambda[2] * income;
vector[N] eta = beta[1] + beta[2] * income

+ beta_age .* age;
target += bernoulli_logit_lpmf(vote | eta);

} // priors on lambda and beta

Ben Goodrich Advanced Hierarchical Models StanCon 8 / 13

Relation to Interaction Terms in R
• If

ηi = β1 + β2× Incomei + β3i ×Agei

β3i = λ1 + λ2× Incomei

then by substituting & distributing:

ηi = β1 + β2× Incomei + (λ1 + λ2× Incomei)×Agei

= β1 + β2× Incomei + λ1×Agei + λ2× Incomei ×Agei

and β1, β2, λ1, and λ2 can be estimated (unregularized) via

glm(vote ~ income + age + income:age, family = binomial)

• Stan version is easier to interpret; R version is quick

Ben Goodrich Advanced Hierarchical Models StanCon 9 / 13

Coefficients Depending on Other Coefficients Again
Write a simple Stan program where the coefficient on age is a noisy
linear function of the person’s income, starting with

data {
int<lower=1> N; vector[N] age;
vector[N] income; int<lower=0,upper=1> vote[N];

}
parameters {
vector[2] lambda; // intercept / slope for age’s effect
vector[N] noise; // error in effect of age
real<lower=0> sigma; // sd of error in beta_age
vector[2] beta; // intercept / slope for outcome

}

model {
vector[N] beta_age = lambda[1] + lambda[2] * income

+ sigma * noise; // non-centering
vector[N] eta = beta[1] + beta[2] * income

+ beta_age .* age;
target += bernoulli_logit_lpmf(vote | eta);
target += normal_lpdf(noise | 0, 1);

} // priors on lambda, sigma, and beta

Ben Goodrich Advanced Hierarchical Models StanCon 10 / 13

Coefficients Depending on Other Coefficients Again
Write a simple Stan program where the coefficient on age is a noisy
linear function of the person’s income, starting with

data {
int<lower=1> N; vector[N] age;
vector[N] income; int<lower=0,upper=1> vote[N];

}
parameters {
vector[2] lambda; // intercept / slope for age’s effect
vector[N] noise; // error in effect of age
real<lower=0> sigma; // sd of error in beta_age
vector[2] beta; // intercept / slope for outcome

}

model {
vector[N] beta_age = lambda[1] + lambda[2] * income

+ sigma * noise; // non-centering
vector[N] eta = beta[1] + beta[2] * income

+ beta_age .* age;
target += bernoulli_logit_lpmf(vote | eta);
target += normal_lpdf(noise | 0, 1);

} // priors on lambda, sigma, and beta
Ben Goodrich Advanced Hierarchical Models StanCon 10 / 13

Relation to “Random Coefficient Models”

• Previous model cannot be estimated via glm in R

• In order for MLEs to be consistent as N ↑ ∞, the number of
parameters to estimate must remain fixed. So, noise couldn’t be
considered a parameter in the previous model.

• A “random coefficient model” (RCM) would consider noise to be
“error” and integrate it out of the likelihood function

• For Gaussian outcomes, this can be done analytically; otherwise it
must be done numerically using quadrature

• Can then use MLE to obtain parameter point estimates:
λ̂λλ , σ̂ , and β̂ββ

• Bayesians take noise to be a parameter, draw from the
conditional distribution of all parameters given the data, and
ignore posterior margins that are not interesting

Ben Goodrich Advanced Hierarchical Models StanCon 11 / 13

Cluster Sampling Designs
• Classic example of cluster sampling:

1. Randomly draw J schools from the population of schools

2. For each selected school, randomly draw Nj students

3. Collect data on these N = ∑
J
j=1 Nj students

• If one tried to replicate this study, both the schools and the
students would be different than in the original study

τ ∼ Exponential(rτ)

αj ∼ N (0,τ) ∀j
β ∼ N

(
µβ ,σβ

)
σε ∼ Exponential(rσ)

εij ∼ N (0,σε)

yij ≡ αj + β ×class_sizei + εij ∀i , j

Ben Goodrich Advanced Hierarchical Models StanCon 12 / 13

Write a Stan function to draw from this DGP

vector cluster_DGP_rng(int J, int[] N, vector class_size,
real r_tau, real r_sigma,
real mu_beta, real sigma_beta) {

Ben Goodrich Advanced Hierarchical Models StanCon 13 / 13

