
CmdStan User’s Guide
Version 2.38

Stan Development Team

Table of Contents

Overview 1

I Getting Started 3

1. CmdStan Installation 5

1.1 Installation via conda 5

1.2 Installation from GitHub 6

1.3 Checking the Stan compiler 8

1.4 Troubleshooting the installation 9

1.5 C++ Toolchain 10

1.6 Using GNU Make 13

2. Example Model and Data 16

3. Compiling a Stan Program 17

3.1 Invoking the Make utility 17

3.2 Dependencies 18

3.3 Compiler errors 18

3.4 Troubleshooting C++ compiler or linker errors 19

3.5 C++ compilation and linking flags 20

4. Parallelization 21

4.1 Multi-threading with TBB 21

4.2 Multi-processing with MPI 22

4.3 OpenCL 23

II Running CmdStan 25

5. Command-Line Interface Overview 27

5.1 Input data argument 27

ii

TABLE OF CONTENTS iii

5.2 Output control arguments 28

5.3 Initialize model parameters argument 29

5.4 Random number generator arguments 30

5.5 Chain identifier argument: id 30

5.6 Command line help 30

5.7 Error messages and return codes 31

6. MCMC Sampling using Hamiltonian Monte Carlo 32

6.1 Running the sampler 32

6.2 Stan CSV output file 34

6.3 Iterations 36

6.4 Adaptation 37

6.5 Algorithm 39

6.6 Sampler diagnostic file 42

6.7 Running multiple chains 42

6.8 Summarizing sampler output(s) with stansummary 44

6.9 Examples - older parallelism 45

7. Optimization 52

7.1 Jacobian adjustments 55

7.2 Optimization algorithms 55

7.3 The quasi-Newton optimizers 55

7.4 The Newton optimizer 56

8. Pathfinder Method for Approximate Bayesian Inference 57

8.1 Pathfinder Configuration 59

8.2 L-BFGS Configuration 59

8.3 Multi-path Pathfinder CSV files 60

8.4 Single-path Pathfinder Outputs 61

9. Variational Inference using ADVI 64

9.1 Variational algorithms 66

9.2 Configuration 66

9.3 CSV output 67

10. Generating Quantities of Interest from a Fitted Model 70

iv TABLE OF CONTENTS

10.1 Example 70

10.2 Errors 73

11. Laplace sampling 74

11.1 Configuration 74

11.2 CSV output 74

11.3 Diagnostic file outputs 75

11.4 Example 75

12. Extracting log probabilities and gradients for diagnostics 77

12.1 Configuration 77

12.2 CSV output 77

13. Diagnosing HMC by Comparison of Gradients 79

III CmdStan Utilities 81

14. stanc: Translating Stan to C++ 83

14.1 Instantiating the stanc binary 83

14.2 The Stan compiler program 83

15. stansummary: MCMC Output Analysis 85

15.1 Building the stansummary command 86

15.2 Running the stansummary program 86

15.3 Command-line options 88

16. diagnose: Diagnosing Biased Hamiltonian Monte Carlo
Inferences 90

16.1 Building the diagnose command 90

16.2 Running the diagnose command 90

16.3 diagnose warnings and recommendations 93

17. print (deprecated): MCMC Output Analysis 96

IV Appendices 97

18. Stan CSV File Format 99

TABLE OF CONTENTS v

18.1 CSV column names and order 99

18.2 MCMC sampler CSV output 100

18.3 Optimization output 105

18.4 Variational inference output 105

18.5 Generate quantities outputs 105

18.6 Diagnose method outputs 106

19. JSON Format for CmdStan 107

19.1 Creating JSON files 107

19.2 JSON syntax summary 107

19.3 Stan data types in JSON notation 109

20. RDump Format for CmdStan 112

20.1 Creating dump files 112

20.2 Scalar variables 112

20.3 Sequence variables 112

20.4 Array variables 113

20.5 Matrix- and vector-valued variables 114

20.6 Complex-valued variables 115

20.7 Integer- and real-valued variables 115

20.8 Quoted variable names 117

20.9 Line breaks 117

20.10 BNF grammar for dump data 117

21. Using external C++ code 119

21.1 Derivative specializations 120

21.2 Special functions: RNGs, distributions, editing target 123

References 124

Overview

This document is a user’s guide for CmdStan, the command-line interface to the
Stan statistical modeling language. CmdStan provides the programs and tools
to compile Stan programs into C++ executables that can be run directly from the
command line, together with a few utilities to check and summarize the resulting
outputs.

In CmdStan, statistical models written in the Stan probabilistic programming lan-
guage are translated into a C++ program which is then compiled together with
the CmdStan routines that provide the logic needed to manage all user inputs and
program outputs and the Stan inference algorithms and math library. The resulting
command line executable program can be used to

• do inference on data, producing an exact or approximate estimate of the
posterior;

• generate new quantities of interest from an existing estimate;

• generate data from the model according to a given set of parameters.

The packages CmdStanR and CmdStanPy provide interfaces to CmdStan from R
and Python, respectively, similarly, JuliaStan also interfaces with CmdStan.

Benefits of CmdStan
• With every new Stan release, there is a corresponding CmdStan release, there-

fore CmdStan provides access to the latest version of Stan, and can be used to
run the development version of Stan as well.

• Of the Stan interfaces, CmdStan has the lightest memory footprint, therefore
it can fit larger and more complex models. It has has the fewest dependencies,
which makes it easier to run in limited environments such as clusters.

• The output generated is in CSV format and can be post-processed using other
Stan interfaces or general tools.

Stan documentation
• Stan User’s Guide The Stan user’s guide provides example models and

programming techniques for coding statistical models in Stan. It also serves
as an example-driven introduction to Bayesian modeling and inference:

1

https://mc-stan.org/
https://mc-stan.org/docs/stan-users-guide/index.html

2 Overview

• Stan Reference Manual Stan’s modeling language is shared across all of its
interfaces. The Stan Language Reference Manual provides a concise definition
of the language syntax for all elements in the language together with an
overview of the inference algorithms and posterior inference tools.

• Stan Functions Reference The Stan Functions Reference provides defini-
tions and examples for all the functions defined in the Stan math library
and available in the Stan programming language, including all probability
distributions.

Copyright and trademark
• Copyright 2011–2025, Stan Development Team and their assignees.

• The Stan name and logo are registered trademarks of NumFOCUS.

Licensing
• Text content: CC-BY ND 4.0 license

• Computer code: BSD 3-clause license

• Logo: Stan logo usage guidelines

https://mc-stan.org/docs/reference-manual/index.html
https://mc-stan.org/docs/functions-reference/index.html
https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://opensource.org/licenses/BSD-3-Clause
https://mc-stan.org/about/#copyright-and-trademark

Part I

Getting Started

3

1. CmdStan Installation

There are a few ways that you can install CmdStan. Depending on your operating
system and your level of expertise, you can either:

• Use the conda package management system to install a pre-built version of
CmdStan along with the required dependencies. Recommended for Windows
users.

• Install the source code from GitHub CmdStan repository. This requires a
modern C++ compiler and toolchain. See the C++ Toolchain section for
further details.

1.1. Installation via conda
With conda, you can install CmdStan from the conda-forge channel. This will
install a pre-built version of CmdStan along with the required dependencies (i.e. a
C++ compiler, a version of Make, and required libraries). The conda installation is
designed so one can use the R or Python bindings to CmdStan seamlessly. Addition-
ally, it provides the command cmdstan_model to activate the CmdStan makefile
from anywhere.

Note: This requires that conda has been installed already on your machine. We
recommend using the miniforge distribution.

We recommend installing CmdStan in a new conda environment:

conda create -n stan -c conda-forge cmdstan

This command creates a new conda environment named stan and downloads and
installs the cmdstan package as well as CmdStan and the required C++ toolchain.

To install into an existing conda environment, use the conda install command
instead of create:

conda install -c conda-forge cmdstan

Whichever installation method you use, afterwards you must activate the new
environment or deactivate/activate the existing one. For example, if you installed
cmdstan into a new environment stan, run the command

conda activate stan

5

https://docs.conda.io/en/latest/
https://github.com/stan-dev/cmdstan
https://conda-forge.org/
https://github.com/conda-forge/miniforge

6 CHAPTER 1. CMDSTAN INSTALLATION

By default, the latest release of CmdStan is installed. If you require a specific release
of CmdStan, CmdStan versions 2.26.1 and newer can be installed by specifying
cmdstan==VERSION in the install command. For example to install an earlier version
of CmdStan into your current conda environment, run the following command,
then re-activate the environment

conda install -c conda-forge cmdstan=2.27.0

CmdStan install location under conda
A Conda environment is a directory that contains a specific collection of Conda
packages. To see the locations of your conda environments, use the command

conda info -e

The shell environment variable CONDA_PREFIX points to the active conda environ-
ment (if any). Both CmdStan and the C++ toolchain are installed into the bin sub-
directory of the conda environment directory, i.e., $CONDA_PREFIX/bin/cmdstan
(Linux, MacOS), %CONDA_PREFIX%\bin\cmdstan (Windows).

Please report conda-specific install problems directly to the conda-forge issue
tracker, here.

1.2. Installation from GitHub
Installation from GitHub consists of the following steps:

• Verify that you have a modern C++ toolchain. See the C++ Toolchain section
for details.

• Download the CmdStan source code from GitHub

• Build the CmdStan libraries and executables

• Check the installation by compiling and running the CmdStan example model
bernoulli.stan.

Downloading the source code
The GitHub source code is divided into sub-modules, each in its own repository.
The CmdStan repo contains just the cmdstan module; the Stan inference engine
algorithms and Stan math library functions are specified as submodules and stored
in the GitHub repositories stan and math, respectively.

A CmdStan release is compressed tarfile which contains CmdStan and the Stan and
math library submodules. The most recent CmdStan release is always available
as https://github.com/stan-dev/cmdstan/releases/latest. A CmdStan release

https://github.com/conda-forge/cmdstan-feedstock/issues
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/stan-dev/stan
https://github.com/stan-dev/math
https://github.com/stan-dev/cmdstan/releases

1.2. INSTALLATION FROM GITHUB 7

is versioned by major, minor, patch numbers, e.g., “2.29.2”. Please ensure you
download a tarfile which is named “cmdstan-<version-number” rather than using
the “Source Code” links at the bottom of the release. These are automatically
generated by GitHub and do not contain the required submodules. The release
tarfile unpacks into a directory named “cmdstan-”, e.g. “cmdstan-2.29.2”.

By cloning the CmdStan repository with argument --recursive, Git automatically
initializes and updates each submodule in the repository, including nested submod-
ules if any of the submodules in the repository have submodules themselves. The
following command will download the source code from the current development
branch of CmdStan into a directory named cmdstan:

> git clone https://github.com/stan-dev/cmdstan.git --recursive

Throughout this manual, we refer to this top-level CmdStan source directory as
<cmdstan-home>. This directory contains the following subdirectories:

• directory cmdstan/stan contains the sub-module stan
(https://github.com/stan-dev/stan)

• directory cmdstan/stan/lib/stan_math contains the sub-module math
(https://github.com/stan-dev/math)

Building CmdStan
Building CmdStan involves preparing a set of executable programs and compiling
the command line interface and supporting libraries. The CmdStan tools are:

• stanc: the Stan compiler (translates Stan language to C++).

• stansummary: a basic posterior analysis tool. The stansummary utility pro-
cesses one or more output files from a run or set of runs of Stan’s HMC
sampler. For all parameters and quantities of interest in the Stan program,
stansummary reports a set of statistics including mean, standard deviation,
percentiles, effective sample size, and R̂ values.

• diagnose: a basic sampler diagnostic tool which checks for indications that
the HMC sampler was unable to sample from the full posterior.

CmdStan releases include pre-built binaries of the Stan language compiler
(https://github.com/stan-dev/stanc3): bin/linux-stanc, bin/mac-stanc and
bin/windows-stanc. The CmdStan makefile build task copies the appropriate
binary to bin/stanc. For CmdStan installations which have been cloned of down-
loaded from the CmdStan GitHub repository, the makefile task will download the
appropriate OS-specific binary from the stanc3 repository’s nightly release.

8 CHAPTER 1. CMDSTAN INSTALLATION

Steps to build CmdStan:

• Open a command-line terminal window and change directories to the Cmd-
Stan home directory.

• Run the makefile target build which instantiates the CmdStan utilities and
compiles all necessary C++ libraries.

> cd <cmdstan-home>
> make build

If your computer has multiple cores and sufficient ram, the build process can be
parallelized by providing the -j option. For example, to build on 4 cores, type:

> make -j4 build

When make build is successful, the directory <cmdstan-home>/bin/ will contain
the executables stanc, stansummary, and diagnose (on Windows, corresponding
.exe files) and the final lines of console output will show the version of CmdStan
that has just been built, e.g.:

--- CmdStan v2.29.2 built ---

Warning: The Make program may take 10+ minutes and consume 2+ GB of memory to
build CmdStan.

Windows only: CmdStan requires that the Intel TBB library, which is built by
the above command, can be found by the Windows system. This requires that
the directory <cmdstan-home>/stan/lib/stan_math/lib/tbb is part of the PATH
environment variable. See these instructions for details on changing the PATH. To
permanently make this setting for the current user, you may execute:

> make install-tbb

After changing the PATH environment variable, you must open an new shell in order
for the new environment variable settings to take effect. (This is not necessary on
Mac and Linux systems because they can use the absolute path to the Intel TBB
library when linking into Stan programs.)

1.3. Checking the Stan compiler
To check that the CmdStan installation is complete and in working order, run the
following series of commands from the folder which CmdStan was installed.

On Linux and macOS:

compile the example

https://helpdeskgeek.com/windows-10/add-windows-path-environment-variable/

1.4. TROUBLESHOOTING THE INSTALLATION 9

> make examples/bernoulli/bernoulli

fit to provided data (results of 10 trials, 2 out of 10 successes)
> ./examples/bernoulli/bernoulli sample\
data file=examples/bernoulli/bernoulli.data.json

default output written to file `output.csv`,
default num_samples is 1000, output file should have approx. 1050 lines
> wc -l output.csv

run the `bin/stansummary utility to summarize parameter estimates
> bin/stansummary output.csv

On Windows:

compile the example
> make examples/bernoulli/bernoulli.exe

fit to provided data (results of 10 trials, 2 out of 10 successes)
> ./examples/bernoulli/bernoulli.exe sample data file=examples/bernoulli/bernoulli.data.json

run the `bin/stansummary.exe utility to summarize parameter estimates
> bin/stansummary.exe output.csv

The sample data in file bernoulli.json.data specifies 2 out of 10 successes, there-
fore the range mean(theta)±sd(theta) should include 0.2.

1.4. Troubleshooting the installation
Updates to CmdStan, changes in compiler options, or updates to the C++ toolchain
may result in errors when trying to compile a Stan program. Often, these problems
can be resolved by removing the existing CmdStan binaries and recompiling. To do
this, you must run the makefile commands from the <cmdstan-home> directory:

> cd <cmdstan-home>
> make clean-all
> make build

Common problems
This section contains solutions to problems reported on https://discourse.mc-
stan.org

Compiler error message about PCH file

To speed up compilation, the Stan makefile pre-compiles parts of the core Stan

10 CHAPTER 1. CMDSTAN INSTALLATION

library. If these pre-compiled files are out of sync with the compiled model, the
compiler will complain, e.g.:

error: PCH file uses an older PCH format that is no longer supported

In this case, clean and rebuild CmdStan, as shown in the previous section.

Windows: ‘g++’, ‘make’, or ‘cut’ is not recognized

The CmdStan makefile uses a few shell utilities which might not be present in
Windows, resulting in the error message:

'cut' is not recognized as an internal or external command,
operable program or batch file.

To fix this, ensure you have followed the steps for adding the toolchain to your
PATH and installing the additional utilities covered in the configuration instructions

Spaces in paths to CmdStan or model

make can fail when dealing with files in folders with a space somewhere in their file
path. Particularly on Windows, this can be an issue when CmdStan, or the models
you are trying to build, are placed in the One Drive folder.

Unfortunately, the errors created by this situation are not alwas informative. Some
errors you may see are:

make: *** INTERNAL: readdir: Invalid argument

make: *** [make/program:50: x.hpp] Error 2

If the (fully-expanded) folder path to CmdStan or the model you are trying to build
contains a space, we recommend trying a different location if you encounter any
issues during building.

1.5. C++ Toolchain
Compiling a Stan program requires a modern C++ compiler and the GNU Make
build utility (a.k.a. “gmake”). These vary by operating system.

Linux
The required C++ compiler is g++ 4.9 3. On most systems the GNU Make utility
is pre-installed and is the default make utility. There is usually a pre-installed C++
compiler as well, however, it may not be new enough. To check, run commands:

g++ --version
make --version

1.5. C++ TOOLCHAIN 11

If these are at least at g++ version 4.9.3 or later and make version 3.81 or later, no
additional installations are necessary. It may still be desirable to update the C++
compiler g++, because later versions are faster.

To install the latest version of these tools (or upgrade an older version), use the
following commands or their equivalent for your distribution, install via the com-
mands:

sudo apt install g++
sudo apt install make

If you can’t run sudo, you will need to ask your sysadmin or cluster administrator
to install these tools for you.

MacOS
To check if you already already have an appropriate toolchain installed, open the
Terminal application and enter:

clang++ --version
make --version

If either of these commands prints the message command not found, you will need
to install Xcode’s command line tools.

Open the Terminal application and enter:

xcode-select --install

Select “Install” in the window that opens.

After the installation completes, you can double check that installation was success-
ful by reopening the Terminal and running:

clang++ --version
make --version

You can read more about Xcode on its site: https://developer.apple.com/xcode/

We don’t recommend trying to use the GNU C++ compiler, available via Homebrew,
based on the number of reports of installation difficulties from Mac users on GitHub
as well as the Stan forums.

Windows
The Windows toolchain consists of programs g++, the C++ compiler, and make, the
GNU Make utility. To check if these are present, open a command shell [ˆ1] and
type:

https://developer.apple.com/xcode/

12 CHAPTER 1. CMDSTAN INSTALLATION

g++ --version
make --version

CmdStan is known compatible with the RTools45 toolchain. The toolchain will
require updating your PATH variable, See these instructions for details on changing
the PATH if you are unfamiliar. The following instructions will assume that the
default installation directory was used, so be sure to update the paths accordingly
if you have chosen a different directory.

1.5.0.3.1 RTools45 All required utilities (e.g., make, g++) for compiling and run-
ning CmdStan models on Windows are provided by the RTools45 toolchain from
the R Project. Installation steps are provided below, and for more technical details
on the toolchain refer to the R Project documentation.

The R Project provides RTools45 for both Intel/AMD 64-bit (x86_64) and ARM
64-bit (aarch64) systems. If you are unsure which to use, then you can check by
going to the Windows Settings, selecting the ‘System’ menu and then the ‘About’
option. If the ‘System Type’ field lists ‘ARM-based processor’, then you should
follow the ARM64 instructions below.

Note that the toolchain is only available for 64-bit systems, and uses the new
Universal C Runtime (UCRT). UCRT is only natively supported on Windows 10
and newer, older systems will require a Microsoft update.

1.5.0.3.1.1 Installation - Intel/AMD 64-bit (x86_64) Download the installer and
complete the prompts for installation:

• RTools45

Next, you need to add the toolchain directory to your PATH variable:

C:\rtools45\usr\bin
C:\rtools45\x86_64-w64-mingw32.static.posix\bin

1.5.0.3.1.2 Installation - ARM 64-bit (arm64/aarch64) Download the installer
and complete the prompts for installation:

• RTools45 - ARM64

Next, you need to add the toolchain directory to your PATH variable:

C:\rtools45-aarch64\usr\bin
C:\rtools45-aarch64\aarch64-w64-mingw32.static.posix\bin

https://helpdeskgeek.com/windows-10/add-windows-path-environment-variable/
https://cran.r-project.org/bin/windows/Rtools/rtools45/rtools.html
https://support.microsoft.com/en-us/topic/update-for-universal-c-runtime-in-windows-c0514201-7fe6-95a3-b0a5-287930f3560c
https://github.com/r-hub/rtools45/releases/download/latest/rtools45.exe
https://github.com/r-hub/rtools45/releases/download/latest/rtools45-aarch64.exe

1.6. USING GNU MAKE 13

1.6. Using GNU Make
CmdStan relies on the GNU Make utility to build both the Stan model executables
and the CmdStan tools.

GNU Make builds executable programs and libraries from source code by reading
files called Makefiles which specify how to derive the target program. A Makefile
consists of a set of recursive rules where each rule specifies a target, its dependencies,
and the specific operations required to build the target. Specifying dependencies for
a target provides a way to control the build process so that targets which depend
on other files will be updated as needed only when there are changes to those other
files. Thus Make provides an efficient way to manage complex software.

The CmdStan Makefile is in the <cmdstan-home> directory and is named makefile.
This is one of the default GNU Makefile names, which allows you to omit the
-f makefile argument to the Make command. Because the CmdStan Makefile
includes several other Makefiles, Make only works properly when invoked from
the <cmdstan-home> directory; attempts to use this Makefile from another directory
by specifying the full path to the file makefile won’t work. For example, trying to
call Make from another directory by specifying the full path the the makefile results
in the following set of error messages:

make -f ~/github/stan-dev/cmdstan/makefile
/Users/mitzi/github/stan-dev/cmdstan/makefile:58: make/stanc: No such file or directory
/Users/mitzi/github/stan-dev/cmdstan/makefile:59: make/program: No such file or directory
/Users/mitzi/github/stan-dev/cmdstan/makefile:60: make/tests: No such file or directory
/Users/mitzi/github/stan-dev/cmdstan/makefile:61: make/command: No such file or directory
make: *** No rule to make target `make/command'. Stop.

The conda-forge cmdstan package provides a solution to this problem via cmd-
stan_model command which lets you run the CmdStan makefile from anywhere
to compile a Stan model.

Makefile syntax allows general pattern rules based on file suffixes. Stan programs
must be stored in files with suffix .stan; the CmdStan makefile rules specify how
to transform the Stan source code into a binary executable. For example, to compile
the Stan program my_program.stan in directory ../my_dir/, the make target is
../my_dir/my_program or ../my_dir/my_program.exe (on Windows).

To call Make, you invoke the utility name, make, followed by, in order:

• zero or more Make program options, then specify any Make variables as a
series of

https://www.gnu.org/software/make/manual/html_node/Makefile-Names.html
https://www.gnu.org/software/make/manual/html_node/Options-Summary.html

14 CHAPTER 1. CMDSTAN INSTALLATION

• zero of more Make variables, described below

• zero or more target names; the set of names is determined by the Makefile
rules.

make <flags> <variables> <targets>

Makefile Variables

Make targets can be preceded by any number of Makefile variable name=value
pairs. For example, to compile ../my_dir/my_program.stan for an OpenCL (GPU)
machine, set the makefile variable STAN_OPENCL to TRUE:

> make STAN_OPENCL=TRUE ../my_dir/my_program

Makefile variables can also be set by creating a file named local in the CmdStan
make subdirectory which contains a list of <VARIABLE>=<VALUE> pairs, one per line.
For example, to get the same effect as the above command every time, you would
put the line STAN_OPENCL=TRUE into the file <cmdstan_home>/make/local.

The complete set of Makefile variables can be found in file <cmdstan-
home>/cmdstan/stan/lib/stan_math/make/compiler_flags.

Make Targets

When invoked without any arguments at all, Make prints a help message:

> make
--

CmdStan v2.33.1 help

Build CmdStan utilities:
> make build

This target will:
1. Install the Stan compiler bin/stanc from stanc3 binaries.
2. Build the print utility bin/print (deprecated; will be removed in v3.0)
3. Build the stansummary utility bin/stansummary
4. Build the diagnose utility bin/diagnose
5. Build all libraries and object files compile and link an executable Stan program

Note: to build using multiple cores, use the -j option to make, e.g.,
for 4 cores:
> make build -j4

1.6. USING GNU MAKE 15

Build a Stan program:

Given a Stan program at foo/bar.stan, build an executable by typing:
> make foo/bar

This target will:
1. Install the Stan compiler (bin/stanc), as needed.
2. Use the Stan compiler to generate C++ code, foo/bar.hpp.
3. Compile the C++ code using cc . to generate foo/bar

Additional make options:
STANCFLAGS: defaults to "". These are extra options passed to bin/stanc
when generating C++ code. If you want to allow undefined functions in the
Stan program, either add this to make/local or the command line:

STANCFLAGS = --allow_undefined
USER_HEADER: when STANCFLAGS has --allow_undefined, this is the name of the
header file that is included. This defaults to "user_header.hpp" in the
directory of the Stan program.

STANC3_VERSION: When set, uses that tagged version specified; otherwise, downloads
the nightly version.

STAN_CPP_OPTIMS: Turns on additonal compiler flags for performance.
STAN_NO_RANGE_CHECKS: Removes the range checks from the model for performance.

Example - bernoulli model: examples/bernoulli/bernoulli.stan

1. Build the model:
> make examples/bernoulli/bernoulli

2. Run the sampling algorithm given the model and data:
> examples/bernoulli/bernoulli sample data file=examples/bernoulli/bernoulli.data.R

3. Look at the posterior sample:
> bin/stansummary output.csv

Clean CmdStan:

Remove the built CmdStan tools:
> make clean-all

--

2. Example Model and Data

The following is a simple, complete Stan program for a Bernoulli model of binary
data.1 The model assumes the binary observed data y[1],...,y[N] are i.i.d. with
Bernoulli chance-of-success theta.

data {
int<lower=0> N;
array[N] int<lower=0, upper=1> y;

}
parameters {

real<lower=0, upper=1> theta;
}
model {

theta ~ beta(1, 1); // uniform prior on interval 0,1
y ~ bernoulli(theta);

}

The input data file contains definitions for the two variables N and y which are
specified in the data block of program bernoulli.stan (above).

A data set of N=10 observations is included in the example Bernoulli model directory
in both JSON notation and Rdump data format where 8 out of 10 trials had outcome
0 (failure) and 2 trials had outcome 1 (success). In JSON, this data is:

{
"N" : 10,
"y" : [0,1,0,0,0,0,0,0,0,1]

}

1The model is available with the CmdStan distribution at the path <cmdstan-
home>/examples/bernoulli/bernoulli.stan.

16

3. Compiling a Stan Program

A Stan program must be in a file with extension .stan. The CmdStan makefile
rules specify all necessary steps to translate files with suffix .stan to a CmdStan
executable program. This is a two-stage process:

• first the Stan program is translated to C++ by the stanc compiler
• then the C++ compiler compiles all C++ sources and links them together with

the CmdStan interface program and the Stan and math libraries.

3.1. Invoking the Make utility
To compile Stan programs, you must invoke the Make program from the <cmdstan-
home> directory. The Stan program can be in a different directory, but the directory
path names cannot contain spaces - this limitation is imposed by Make.

> cd <cmdstan_home>

In the call to the Make program, the target is name of the CmdStan executable
corresponding to the Stan program file. On Mac and Linux, this is the name of the
Stan program with the .stan omitted. On Windows, replace .stan with .exe, and
make sure that the path is given with slashes and not backslashes. To build the
Bernoulli example, on Mac and Linux:

> make examples/bernoulli/bernoulli

On Windows, the command is the same with the addition of .exe at the end of the
target (note the use of forward slashes):

> make examples/bernoulli/bernoulli.exe

The generated C++ code (bernoulli.hpp), object file (bernoulli.o) and the com-
piled executable will be placed in the same directory as the Stan program.

The compiled executable consists of the Stan model and the CmdStan command
line interface which provides inference algorithms to do MCMC sampling, opti-
mization, and variational inference. The following sections provide examples of
doing inference using each method on the example model and data file.

17

18 CHAPTER 3. COMPILING A STAN PROGRAM

3.2. Dependencies
When executing a Make target, all its dependencies are checked to see if they
are up to date, and if they are not, they are rebuilt. If the you call Make with
target bernoulli twice in a row, without any editing bernoulli.stan or otherwise
changing the system, on the second invocation, Make will determine that the
executable is already newer than the Stan source file and will not recompile the
program:

> make examples/bernoulli/bernoulli
make: `examples/bernoulli/bernoulli' is up to date.

If the file containing the Stan program is updated, the next call to make will rebuild
the CmdStan executable.

3.3. Compiler errors
The Stan probabilistic programming language is a programming language with a
rich syntax, as such, it is often the case that a carefully written program contains
errors.

The simplest class of errors are simple syntax errors such as forgetting the semi-colon
statement termination marker at the end of a line, or typos such as a misspelled
variable name. For example, if in the bernoulli.stan program, we introduce a
typo on line 9 by writing thata instead of theta, the Make command fails with the
following

--- Translating Stan model to C++ code ---
bin/stanc --o=bernoulli.hpp bernoulli.stan

Semantic error in 'bernoulli.stan', line 9, column 2 to column 7:

7: }
8: model {
9: thata ~ beta(1, 1); // uniform prior on interval 0, 1

^
10: y ~ bernoulli(theta);
11: }

Identifier 'thata' not in scope.

make: *** [bernoulli.hpp] Error 1

Stan is a strongly-typed language; and the compiler will throw an error if statements

https://mc-stan.org/docs/reference-manual/data-types.html

3.4. TROUBLESHOOTING C++ COMPILER OR LINKER ERRORS 19

or expressions violate the type rules. The following trivial program foo.stan
contains an illegal assignment statement:

data {
real x;

}
transformed data {

int y = x;
}

The Make command fails with the following:

Semantic error in 'foo.stan', line 5, column 2 to column 12:

3: }
4: transformed data {
5: int y = x;

^
6: }

Ill-typed arguments supplied to assignment operator =:
lhs has type int and rhs has type real

The Stan Reference Manual provides a complete specification of the Stan program-
ming language. The Stan User’s Guide also contains a full description of the errors
and warnings stanc can emit.

3.4. Troubleshooting C++ compiler or linker errors
If the stanc compiler successfully translates a Stan program to C++, the resulting
C++ code should be valid C++ which can be compiled into an executable. The stanc
compiler is also a program, and while it has been extensively tested, it may still
contain errors such that the generated C++ code fails to compile.

The Make command prints the following message to the terminal at the point when
it compiles and links the C++ file:

--- Compiling, linking C++ code ---

If the program fails to compile for any reason, the C++ compiler and linker will
most likely print a long series of error messages to the console.

If this happens, please report the error, together with the Stan program on either
the Stan Forums or on the Stan compiler GitHub issues tracker.

https://mc-stan.org/docs/reference-manual/index.html
https://mc-stan.org/docs/stan-users-guide/using-stanc.html
https://discourse.mc-stan.org/
https://github.com/stan-dev/stanc3/issues

20 CHAPTER 3. COMPILING A STAN PROGRAM

3.5. C++ compilation and linking flags
Users can set flags for the C++ compiler and linker and compiler to optimize their
executables. We advise users to only do this once they are sure their basic setup of
Cmdstan without flags works.

The CXXFLAGS and LDFLAGS makefile variables can be used to set compiler and
linker flags respectively. We recommend setting these in the make/local file.

For example:

CXXFLAGS = -O2

A recommend a set of CXXFLAGS and LDFLAGS flags can be turned on by setting
STAN_CPP_OPTIMS=true in the make/local file. These are tested compiler and
link-time optimizations that can speed up execution of certain models. We have
observed speedups up to 15 percent, but this depends on the model, operating
system and hardware used. The use of these flags does considerably slow down
compilation, so they are not used by default.

Optimizing by ignoring range checks
When assigning or reading from with vectors, row_vectors, matrices or arrays using
indexing, Stan checks that a supplied index is valid (not out of range), which avoids
segmentation faults and other difficult-to-debug runtime errors.

For some models these checks can represent a significant part of the models ex-
ecution time. By setting the STAN_NO_RANGE_CHECKS=true makefile flag in the
make/local file the range checks can be removed. Use this flag with caution (only
once the indexing has been validated). In case of any unexpected behavior remove
the flag for easier debugging.

4. Parallelization

Stan provides three ways of parallelizing execution of a Stan model:

• multi-threading with Intel Threading Building Blocks (TBB),
• multi-processing with Message Passing Interface (MPI) and
• manycore processing with OpenCL.

4.1. Multi-threading with TBB
In order to exploit multi-threading in a Stan model, the models must be rewritten
to use the reduce_sum and map_rect functions. For instructions on how to rewrite
Stan models to use these functions see Stan’s User guide chapter on parallelization,
the reduce_sum case study or the Multithreading and Map-Reduce tutorial.

Compiling
Once a model is rewritten to use the above-mentioned functions, the model must
be compiled with the STAN_THREADS makefile flag. The flag can be supplied in
the make call but we recommend writing the flag to the make/local file. If the
STAN_THREADS flag is defined/non-empty, threads will be enabled.

An example of the contents of make/local to enable threading with TBB:

STAN_THREADS=true

The model is then compiled as normal:

make path/to/model

Running
Before running a multi-threaded model, we need to specify the maximum number
of threads the program can run (total threads for all chains). This is done by setting
the num_threads argument. Valid values for num_threads are positive integers
and -1. If num_threads is set to -1, all available cores will be used.

Generally, this number should not exceed the number of available cores for best
performance.

Example:

./model sample data file=data.json num_threads=4 ...

21

https://mc-stan.org/docs/stan-users-guide/parallelization.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://github.com/rmcelreath/cmdstan_map_rect_tutorial

22 CHAPTER 4. PARALLELIZATION

When the model is compiled with STAN_THREADS we can sample with multiple
chains with a single executable (see section running multiple chains for cases when
this is available). When running multiple chains num_threads is the maximum
number of threads that can be used by all the chains combined. The exact number
of threads that will be used for each chain at a given point in time is determined
by the TBB scheduler. The following example start 2 chains with 8 total threads
available:

./model sample num_chains=2 data file=data.json num_threads=8 ...

4.2. Multi-processing with MPI
In order to use multi-processing with MPI in a Stan model, the models must be
rewritten to use the map_rect function. By using MPI, the model can be parallelized
across multiple cores or a cluster. MPI with Stan is supported on MacOS and Linux.

Dependencies
Compiling and running Stan models with MPI requires that the system has an MPI
implementation installed. For Unix systems the most commonly used implementa-
tions are MPICH and OpenMPI.

Compiling
Once a model is rewritten to use map_rect, additional makefile flags must be
written to the make/local. These are:

• STAN_MPI: Enables the use of MPI with Stan if defined.
• CXX: The name of the MPI C++ compiler wrapper. Typically mpicxx.
• TBB_CXX_TYPE: The C++ compiler the MPI wrapper wraps. Typically gcc on

Linux and clang on macOS.

An example of make/local on Linux:

STAN_MPI=true
CXX=mpicxx
TBB_CXX_TYPE=gcc

The model is then compiled as normal:

make path/to/model

Running
The Stan model compiled with STAN_MPI is run using an MPI launcher. The MPI
standard suggests using mpiexec, but a vendor wrapper for the launcher like
mpirun can also be used. The launcher is supplied the path to the built executable

https://mc-stan.org/docs/functions-reference/higher-order_functions.html#functions-map
https://www.mpich.org/
https://www.open-mpi.org/

4.3. OPENCL 23

and the number of processes to start: -n X for mpiexec or -np X for mpirun where
X is replaced by the integer representing the number of processes.

Example for running a model with six processes:

mpiexec -n 6 path/to/model sample data file=data.json ...

4.3. OpenCL
Dependencies

OpenCL is supported on most modern CPUs and GPUs. In order to run OpenCL-
enabled Stan models, an OpenCL runtime for the target device must be installed.
This subsection lists installation instructions for OpenCL runtimes of the commonly-
found devices.

In order to check if any OpenCL-enabled device and its runtime is already present
use the clinfo tool. On Linux, clinfo can typically be installed with the default
package manager (for example sudo apt-get install clinfo on Ubuntu). For
Windows, pre-built clinfo binary can be found here.

Also use clinfo to verify successful installation of OpenCL runtimes.

NVIDIA GPU
• Linux:

Install the NVIDIA GPU driver and the NVIDIA CUDA Toolkit. On Ubuntu
the commands to install both is:

sudo apt update
sudo apt install nvidia-driver-460 nvidia-cuda-toolkit

Replace the driver version (460 in the above case) with the lastest number at
the time of installation.

• Windows:

Install the NVIDIA GPU Driver and CUDA Toolkit.

AMD GPU
• Linux:

Install Radeon Software for Linux available here.

• Windows:

We recommend installing the open source OCL-SDK.

https://github.com/Oblomov/clinfo#windows-support
https://www.nvidia.com/Download/index.aspx
https://developer.nvidia.com/cuda-toolkit
https://www.amd.com/en/support/kb/release-notes/rn-amdgpu-unified-linux-20-40
https://github.com/GPUOpen-LibrariesAndSDKs/OCL-SDK/releases

24 CHAPTER 4. PARALLELIZATION

AMD CPU
Install the open source PoCL.

Intel CPU/GPU
Follow Intel’s install instructions given here (requires registration).

Compiling
In order to enable the OpenCL backend the model must be compiled with the
STAN_OPENCL makefile flag defined/non-empty. The flag can be supplied in the
make call but we recommend writing the flag to the make/local file.

An example of the contents of make/local to enable parallelization with OpenCL:

STAN_OPENCL=true

If you are using OpenCL with an integrated GPU you also need to define the
INTEGRATED_OPENCL flag, as the sharing of memory between CPU and GPU is
slightly different with integrated graphics:

INTEGRATED_OPENCL=true

The model is then compiled as normal:

make path/to/model

Running
The Stan model compiled with STAN_OPENCL can also be supplied the OpenCL
platform and device IDs of the target device. These IDs determine the device on
which to run the OpenCL-supported functions on. You can list the devices on your
system using the clinfo program. If the system has one GPU and no OpenCL CPU
runtime, the platform and device IDs of the GPU are typically 0. In that case you
can also omit the OpenCL IDs as the default 0 IDs are used in that case.

We supply these IDs when starting the executable as shown below:

path/to/model sample data file=data.json opencl platform=0 device=1

http://portablecl.org/download.html
https://software.intel.com/content/www/us/en/develop/articles/opencl-drivers.html

Part II

Running CmdStan

25

5. Command-Line Interface Overview

A CmdStan executable is built from the Stan model concept and the CmdStan
command line parser. The command line argument syntax consists of sets of
keywords and keyword-value pairs. Arguments are grouped by the following
keywords:

• method - specifies the kind of inference done on the model. Each kind of
inference requires further configuration via sub-arguments. The method ar-
gument is required. It can be specified overtly as the a keyword-value pair
method=<inference> or implicitly as one of the following:

– sample - obtain a sample (set of draws) from the posterior using HMC
– optimize - penalized maximum likelihood estimation
– variational - automatic variational inference
– generate_quantities - run model’s generated quantities block on

existing sample to obtain new quantities of interest.
– log_prob - compute the log probability and gradient of the model for

one set of parameters.
– diagnose - compute and compare sampler gradient calculations to finite

differences.

• data - specifies the input data file, if any.

• output - specifies program outputs, both disk files and terminal window
outputs.

• init - specifies initial values for the model parameters, if any.

• random - specifies the seed for the pseudo-random number.

The remainder of this chapter covers the general configuration options used for all
processing. The following chapters cover the per-inference configuration options.

5.1. Input data argument
The values for all variables declared in the data block of the model are read in from
an input data file in either JSON or Rdump format. The syntax for the input data
argument is:

data file=<filepath>

27

28 CHAPTER 5. COMMAND-LINE INTERFACE OVERVIEW

The keyword data must be followed directly by the keyword-value pair
file=<filepath>. If the model doesn’t declare any data variables, this argument
is ignored.

The input data file must contain definitions for all data variables declared in the
data block. If one or more data block variables are missing from the input data file,
the program prints an error message to stderr and returns a non-zero return code.
For example, the model bernoulli.stan defines two data variables N and y. If the
input data file doesn’t include both variables, or if the data variable doesn’t match
the declared type and dimensions, the program will exit with an error message at
the point where it first encounters missing data.

For example if the input data file doesn’t include the definition for variable y, the
executable exits with the following message:

Exception: variable does not exist; processing stage=data initialization; variable name=y; base type=int (in 'examples/bernoulli/bernoulli.stan', line 3, column 2 to column 28)

5.2. Output control arguments
The output keyword is used to specify non-default options for output files and
messages written to the terminal window. The output keyword takes several
keyword-value pair sub-arguments.

The keyword value pair file=<filepath> specifies the location of the Stan CSV
output file. If unspecified, the output file is written to a file named output.csv in
the current working directory.

The keyword value pair diagnostic_file=<filepath> specifies the location of
the auxiliary output file. By default, no auxiliary output file is produced. This
option is only valid for the iterative algorithms sample and variational.

The keyword value pair refresh=<int> specifies the number of iterations between
progress messages written to the terminal window. The default value is 100 itera-
tions.

The keyword value pair sig_figs=<int> specifies the number of significant digits
for all numerical values in the output files. Allowable values are between 1 and
18, which is the maximum amount of precision available for 64-bit floating point
arithmetic. The default value is 8. Note: increasing sig_figs above the default
will increase the size of the output CSV files accordingly.

The keyword value pair profile_file=<filepath> specifies the location of the
output file for profiling data. If the model uses no profiling, the output profile
file is not produced. If the model uses profiling and profile_file is unspecified,

5.3. INITIALIZE MODEL PARAMETERS ARGUMENT 29

the profiling data is written to a file named profile.csv in the current working
directory.

The keyword value pair save_cmdstan_config=<boolean> specifies whether to
save the configuration options used to run the program to a file named <output
file>_config.json alongside the other output files. The default value is false,
which means the configuration file is not saved. The contents of this file are similar
to the comments in the Stan CSV file, but should be more portable across versions
and easier to parse.

5.3. Initialize model parameters argument
Initialization is only applied to parameters defined in the parameters block. By
default, all parameters are initialized to random draws from a uniform distribution
over the range [−2, 2]. These values are on the unconstrained scale, so must be
inverse transformed back to satisfy the constraints declared for parameters. Because
zero is chosen to be a reasonable default initial value for most parameters, the inter-
val around zero provides a fairly diffuse starting point. For instance, unconstrained
variables are initialized randomly in (−2, 2), variables constrained to be positive
are initialized roughly in (0.14, 7.4), variables constrained to fall between 0 and 1
are initialized with values roughly in (0.12, 0.88).

The initialization argument is specified as keyword-value pair with keyword init.
The value can be one of the following:

• positive real number x. All parameters will be initialized to random draws
from a uniform distribution over the range [−x, x].

• 0 - All parameters will be initialized to zero values on the unconstrained
scale. The transforms are arranged in such a way that zero initialization
provides reasonable variable initializations: 0 for unconstrained parameters; 1
for parameters constrained to be positive; 0.5 for variables to constrained to
lie between 0 and 1; a symmetric (uniform) vector for simplexes; unit matrices
for both correlation and covariance matrices; and so on.

• filepath - A data file in JSON or Rdump format containing initial parame-
ters values for some or all of the model parameters. User specified initial
values must satisfy the constraints declared in the model (i.e., they are on
the constrained scale). Parameters which aren’t explicitly initialized will be
initialized randomly over the range [−2, 2].

30 CHAPTER 5. COMMAND-LINE INTERFACE OVERVIEW

5.4. Random number generator arguments
The random-number generator’s behavior is determined by the unsigned seed
(positive integer) it is started with. If a seed is not specified, or a seed of 0 or less
is specified, the system time is used to generate a seed. The seed is recorded and
included with Stan’s output regardless of whether it was specified or generated
randomly from the system time.

The syntax for the random seed argument is:

random seed=<int>

The keyword random must be followed directly by the keyword-value pair
seed=<int>.

5.5. Chain identifier argument: id
The chain identifier argument is used in conjunction with the random seed argu-
ment when running multiple Markov chains for sampling. The chain identifier is
used to advance the random number generator a very large number of random
variates so that two chains with the same seed and different identifiers draw from
non-overlapping subsequences of the random-number sequence determined by the
seed. Together, the seed and chain identifier determine the behavior of the random
number generator.

The syntax for the random seed argument is:

id=<int>

The default value is 1.

When running a set of chains from the command line with a specified seed, this
argument should be set to the chain index. E.g., when running 4 chains, the value
should be 1,..,4, successively. When running multiple chains from a single command,
Stan’s interfaces manage the chain identifier arguments automatically.

For complete reproducibility, every aspect of the environment needs to be locked
down from the OS and version to the C++ compiler and version to the version of
Stan and all dependent libraries. See the Stan Reference Manual Reproducibility
chapter for further details.

5.6. Command line help
CmdStan provides a help and help-all mechanism that displays either the avail-
able top-level or keyword-specific key-value argument pairs. To display top-level
help, call the CmdStan executable with keyword help:

https://mc-stan.org/docs/reference-manual/reproducibility.html
https://mc-stan.org/docs/reference-manual/reproducibility.html

5.7. ERROR MESSAGES AND RETURN CODES 31

./bernoulli help

5.7. Error messages and return codes
CmdStan executables and utility programs use streams standard output (stdout)
and standard error (stderr) to report information and error messages, respectively.
Some methods also generate warning messages when the algorithm detects poten-
tial problems with the inference. Depending on the method, these messages are
sent to either standard out or standard error.

All program executables provide a return code between 0 and 255:

• 0 - Program ran to termination as expected.

• value in range [1 : 125] - Method invoked could not run due to problems with
model or data.

• value > 128 - Fatal error during execution, process terminated by signal. To
determine the signal number, subtract 128 from the return value, e.g. return
code 139 results from termination signal 11 (segmentation violation).

A non-zero return code or outputs sent to stderr indicate problems with the in-
ference. However, a return code of zero and absence of error messages doesn’t
necessarily mean that the inference is valid, it is still necessary to validate the
inferences using all available summary and diagnostic techniques.

6. MCMC Sampling using Hamiltonian
Monte Carlo

The sample method provides Bayesian inference over the model conditioned on
data using Hamiltonian Monte Carlo (HMC) sampling. By default, the inference
engine used is the No-U-Turn sampler (NUTS), an adaptive form of Hamiltonian
Monte Carlo sampling. For details on HMC and NUTS, see the Stan Reference
Manual chapter on MCMC Sampling.

6.1. Running the sampler
To generate a sample from the posterior distribution of the model conditioned on the
data, we run the executable program with the argument sample or method=sample
together with the input data. The executable can be run from any directory.

The full set of configuration options available for the sample method is available
by using the sample help-all subcommand. The arguments with their requested
values or defaults are also reported at the beginning of the sampler console output
and in the output CSV file’s comments.

Here, we run it in the directory which contains the Stan program and input data,
<cmdstan-home>/examples/bernoulli:

> cd examples/bernoulli
> ls
bernoulli bernoulli.data.json bernoulli.data.R bernoulli.stan

To execute sampling of the model under Linux or Mac, use:

> ./bernoulli sample data file=bernoulli.data.json

In Windows, the ./ prefix is not needed:

> bernoulli.exe sample data file=bernoulli.data.json

The output is the same across all supported platforms. First, the configuration of
the program is echoed to the standard output:

method = sample (Default)
sample
num_samples = 1000 (Default)

32

https://mc-stan.org/docs/reference-manual/mcmc.html

6.1. RUNNING THE SAMPLER 33

num_warmup = 1000 (Default)
save_warmup = false (Default)
thin = 1 (Default)
adapt
engaged = true (Default)
gamma = 0.050000000000000003 (Default)
delta = 0.80000000000000004 (Default)
kappa = 0.75 (Default)
t0 = 10 (Default)
init_buffer = 75 (Default)
term_buffer = 50 (Default)
window = 25 (Default)
save_metric = false (Default)

algorithm = hmc (Default)
hmc
engine = nuts (Default)
nuts
max_depth = 10 (Default)

metric = diag_e (Default)
metric_file = (Default)
stepsize = 1 (Default)
stepsize_jitter = 0 (Default)

num_chains = 1 (Default)
id = 0 (Default)
data
file = bernoulli.data.json

init = 2 (Default)
random
seed = 3252652196 (Default)

output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

After the configuration has been displayed, a short timing message is given.

Gradient evaluation took 1.2e-05 seconds
1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
Adjust your expectations accordingly!

Next, the sampler reports the iteration number, reporting the percentage complete.

Iteration: 1 / 2000 [0%] (Warmup)
...

34 CHAPTER 6. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO

Iteration: 2000 / 2000 [100%] (Sampling)

Finally, the sampler reports timing information:

Elapsed Time: 0.007 seconds (Warm-up)
0.017 seconds (Sampling)
0.024 seconds (Total)

6.2. Stan CSV output file
Each execution of the model results in draws from a single Markov chain being
written to a file in comma-separated value (CSV) format. The default name of the
output file is output.csv.

The first part of the output file records the version of the underlying Stan library
and the configuration as comments (i.e., lines beginning with the pound sign (#)).

When the example model bernoulli.stan is run via the command line with all
default arguments, the following configuration is displayed:

stan_version_major = 2
stan_version_minor = 23
stan_version_patch = 0
model = bernoulli_model
method = sample (Default)
sample
num_samples = 1000 (Default)
num_warmup = 1000 (Default)
save_warmup = false (Default)
thin = 1 (Default)
adapt
engaged = 1 (Default)
gamma = 0.050000 (Default)
delta = 0.800000 (Default)
kappa = 0.750000 (Default)
t0 = 10.000000 (Default)
init_buffer = 75 (Default)
term_buffer = 50 (Default)
window = 25 (Default)
save_metric = false (Default)
algorithm = hmc (Default)
hmc
engine = nuts (Default)
nuts
max_depth = 10 (Default)

stan_csv_apdx.qmd

6.2. STAN CSV OUTPUT FILE 35

metric = diag_e (Default)
metric_file = (Default)
stepsize = 1.000000 (Default)
stepsize_jitter = 0.000000 (Default)
num_chains = 1 (Default)
output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

This is followed by a CSV header indicating the names of the values sampled.

lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,theta

The first output columns report the HMC sampler information:

• lp__ - the total log probability density (up to an additive constant) at each
sample

• accept_stat__ - the average Metropolis acceptance probability over each
simulated Hamiltonian trajectory

• stepsize__ - integrator step size
• treedepth__ - depth of tree used by NUTS (NUTS sampler)
• n_leapfrog__ - number of leapfrog calculations (NUTS sampler)
• divergent__ - has value 1 if trajectory diverged, otherwise 0. (NUTS sam-

pler)
• energy__ - value of the Hamiltonian
• int_time__ - total integration time (static HMC sampler)

Because the above header is from the NUTS sampler, it has columns treedepth__,
n_leapfrog__, and divergent__ and doesn’t have column int_time__. The re-
maining columns correspond to model parameters. For the Bernoulli model, it is
just the final column, theta.

The header line is written to the output file before warmup begins. If option
save_warmup is set to true, the warmup draws are output directly after the header.
The total number of warmup draws saved is num_warmup divided by thin, rounded
up (i.e., ceiling).

Following the warmup draws (if any), are comments which record the results of
adaptation: the stepsize, and inverse mass metric used during sampling:

Adaptation terminated
Step size = 0.884484
Diagonal elements of inverse mass matrix:

36 CHAPTER 6. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO

0.535006

The default sampler is NUTS with an adapted step size and a diagonal inverse mass
matrix. For this example, the step size is 0.884484, and the inverse mass contains
the single entry 0.535006 corresponding to the parameter theta.

Draws from the posterior distribution are printed out next, each line containing a
single draw with the columns corresponding to the header.

-6.84097,0.974135,0.884484,1,3,0,6.89299,0.198853
-6.91767,0.985167,0.884484,1,1,0,6.92236,0.182295
-7.04879,0.976609,0.884484,1,1,0,7.05641,0.162299
-6.88712,1,0.884484,1,1,0,7.02101,0.188229
-7.22917,0.899446,0.884484,1,3,0,7.73663,0.383596
...

The output ends with timing details:

Elapsed Time: 0.007 seconds (Warm-up)
0.017 seconds (Sampling)
0.024 seconds (Total)

6.3. Iterations
At every sampler iteration, the sampler returns a set of estimates for all parameters
and quantities of interest in the model. During warmup, the NUTS algorithm
adjusts the HMC algorithm parameters metric and stepsize in order to efficiently
sample from typical set, the neighborhood substantial posterior probability mass
through which the Markov chain will travel in equilibrium. After warmup, the
fixed metric and stepsize are used to produce a set of draws.

The following keyword-value arguments control the total number of iterations:

• num_samples
• num_warmup
• save_warmup
• thin

The values for arguments num_samples and num_warmup must be a non-negative
integer. The default value for both is 1000.

For well-specified models and data, the sampler may converge faster and this
many warmup iterations may be overkill. Conversely, complex models which have
difficult posterior geometries may require more warmup iterations in order to arrive
at good values for the step size and metric.

6.4. ADAPTATION 37

The number of sampling iterations to runs depends on the effective sample size
(EFF) reported for each parameter and the desired precision of your estimates. An
EFF of at least 100 is required to make a viable estimate. The precision of your
estimate is

√
N; therefore every additional decimal place of accuracy increases this

by a factor of 10.

Argument save_warmup takes values false or true. The default value is false,
i.e., warmup draws are not saved to the output file. When the value is true, the
warmup draws are written to the CSV output file directly after the CSV header line.

Argument thin controls the number of draws from the posterior written to the
output file. Some users familiar with older approaches to MCMC sampling might be
used to thinning to eliminate an expected autocorrelation in the draws. HMC is not
nearly as susceptible to this autocorrelation problem and thus thinning is generally
not required nor advised, as HMC can produce anticorrelated draws, which increase
the effective sample size beyond the number of draws from the posterior. Thinning
should only be used in circumstances where storage of the draws is limited and/or
RAM for later processing the draws is limited.

The value of argument thin must be a positive integer. When thin is set to value N,
every Nth iteration is written to the output file. Should the value of thin exceed
the specified number of iterations, the first iteration is saved to the output. This is
because the iteration counter starts from zero and whenever the counter modulo
the value of thin equals zero, the iteration is saved to the output file. Since zero
modulo any positive integer is zero, the first iteration is always saved. When
num_sampling=M and thin=N, the number of iterations written to the output CSV
file will be ceiling(M/N). If save_warmup=true, thinning is applied to the warmup
iterations as well.

6.4. Adaptation
The adapt keyword is used to specify non-default options for the sampler adapta-
tion schedule and settings.

Adaptation can be turned off by setting sub-argument engaged to value false.
If engaged=false, no adaptation will be done, and all other adaptation sub-
arguments will be ignored. Since the default argument is engaged=1, this keyword-
value pair can be omitted from the command.

There are two sets of adaptation sub-arguments: step size optimization parameters
and the warmup schedule. These are described in detail in the Reference Manual
section Automatic Parameter Tuning.

https://mc-stan.org/docs/reference-manual/mcmc.html#hmc-algorithm-parameters

38 CHAPTER 6. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO

The boolean sub-argument save_metric was added in Stan version 2.34. When
save_metric=true, the adapted stepsize and metric are output as JSON at the end
of adaptation. The saved metric file name is the output file basename with the
suffix _metric.json, e.g., if using the default output filename output.csv, the
saved metric file will be output_metric.json. This metric file can be reused in
subsequent sampler runs as the initial metric, via sampler argument metric_file.

Step size optimization configuration
The Stan User’s Guide section on model conditioning and curvature provides a
discussion of adaptation and stepsize issues. The Stan Reference Manual section on
HMC algorithm parameters explains the NUTS-HMC adaptation schedule and the
tuning parameters for setting the step size.

The following keyword-value arguments control the settings used to optimize the
step size:

• delta - The target Metropolis acceptance rate. The default value is 0.8. Its
value must be strictly between 0 and 1. Increasing the default value forces
the algorithm to use smaller step sizes. This can improve sampling efficiency
(effective sample size per iteration) at the cost of increased iteration times.
Raising the value of delta will also allow some models that would otherwise
get stuck to overcome their blockages. Models with difficult posterior geome-
tries may required increasing the delta argument closer to 1; we recommend
first trying to raise it to 0.9 or at most 0.95. Values about 0.95 are strong indi-
cation of bad geometry; the better solution is to change the model geometry
through reparameterization which could yield both more efficient and faster
sampling.

• gamma - Adaptation regularization scale. Must be a positive real number,
default value is 0.05. This is a parameter of the Nesterov dual-averaging
algorithm. We recommend always using the default value.

• kappa - Adaptation relaxation exponent. Must be a positive real number,
default value is 0.75. This is a parameter of the Nesterov dual-averaging
algorithm. We recommend always using the default value.

• t_0 - Adaptation iteration offset. Must be a positive real number, default
value is 10. This is a parameter of the Nesterov dual-averaging algorithm. We
recommend always using the default value.

https://mc-stan.org/docs/stan-users-guide/efficiency-tuning.html#model-conditioning-and-curvature
https://mc-stan.org/docs/reference-manual/mcmc.html#hmc-algorithm-parameters
https://mc-stan.org/docs/stan-users-guide/reparameterization.html

6.5. ALGORITHM 39

Warmup schedule configuration
When adaptation is engaged, the warmup schedule is specified by sub-arguments,
all of which take positive integers as values:

• init_buffer - The number of iterations spent tuning the step size at the
outset of adaptation.

• window - The initial number of iterations devoted to tune the metric, will be
doubled successively.

• term_buffer - The number of iterations used to re-tune the step size once the
metric has been tuned.

The specified values may be modified slightly in order to ensure alignment between
the warmup schedule and total number of warmup iterations.

The following figure is taken from the Stan Reference Manual, where label “I”
correspond to init_buffer, the initial “II” corresponds to window, and the final
“III” corresponds to term_buffer:

Warmup Epochs Figure. Adaptation during warmup occurs in three stages: an initial fast
adaptation interval (I), a series of expanding slow adaptation intervals (II), and a final fast
adaptation interval (III). For HMC, both the fast and slow intervals are used for adapting
the step size, while the slow intervals are used for learning the (co)variance necessitated by
the metric. Iteration numbering starts at 1 on the left side of the figure and increases to the
right.

6.5. Algorithm
The algorithm keyword-value pair specifies the algorithm used to generate the
sample. There are two possible values: hmc, which generates from an HMC-driven
Markov chain; and fixed_param which generates a new sample without changing
the state of the Markov chain. The default argument is algorithm=hmc.

40 CHAPTER 6. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO

Samples from a set of fixed parameters
If a model doesn’t specify any parameters, then argument algorithm=fixed_param
is mandatory.

The fixed parameter sampler generates a new sample without changing the current
state of the Markov chain. This can be used to write models which generate pseudo-
data via calls to RNG functions in the transformed data and generated quantities
blocks.

HMC samplers
All HMC algorithms have three parameters:

• step size
• metric
• integration time - the number of steps taken along the Hamiltonian trajectory

See the Stan Reference Manual section on HMC algorithm parameters for further
details.

Step size
The HMC algorithm simulates the evolution of a Hamiltonian system. The step
size parameter controls the resolution of the sampler. Low step sizes can get HMC
samplers unstuck that would otherwise get stuck with higher step sizes.

The following keyword-value arguments control the step size:

• stepsize - How far to move each time the Hamiltonian system evolves
forward. Must be a positive real number, default value is 1.

• stepsize_jitter - Allows step size to be “jittered” randomly during sam-
pling to avoid any poor interactions with a fixed step size and regions of
high curvature. Must be a real value between 0 and 1. The default value is 0.
Setting stepsize_jitter to 1 causes step sizes to be selected in the range of 0
to twice the adapted step size. Jittering below the adapted value will increase
the number of steps required and will slow down sampling, while jittering
above the adapted value can cause premature rejection due to simulation error
in the Hamiltonian dynamics calculation. We strongly recommend always
using the default value.

Metric
All HMC implementations in Stan utilize quadratic kinetic energy functions which
are specified up to the choice of a symmetric, positive-definite matrix known as a
mass matrix or, more formally, a metric Betancourt (2017).

https://mc-stan.org/docs/reference-manual/mcmc.html#hmc-algorithm-parameters

6.5. ALGORITHM 41

The metric argument specifies the choice of Euclidean HMC implementations:

• metric=unit specifies unit metric (diagonal matrix of ones).
• metric=diag_e specifies a diagonal metric (diagonal matrix with positive

diagonal entries). This is the default value.
• metric=dense_e specifies a dense metric (a dense, symmetric positive defi-

nite matrix).

By default, the metric is estimated during warmup. However, when met-
ric=diag_e or metric=dense_e, an initial guess for the metric can be specified
with the metric_file argument whose value is the filepath to a JSON or Rdump file
which contains a single variable inv_metric. For a diag_e metric the inv_metric
value must be a vector of positive values, one for each parameter in the system. For
a dense_e metric, inv_metric value must be a positive-definite square matrix with
number of rows and columns equal to the number of parameters in the model.

The metric_file option can be used with and without adaptation enabled. If
adaptation is enabled, the provided metric will be used as the initial guess in the
adaptation process. If the initial guess is good, then adaptation should not change
it much. If the metric is no good, then the adaptation will override the initial guess.

If adaptation is disabled, both the metric_file and stepsize arguments should
be specified.

Integration time
The total integration time is determined by the argument engine which take possi-
ble values:

• nuts - the No-U-Turn Sampler which dynamically determines the optimal
integration time.

• static - an HMC sampler which uses a user-specified integration time.

The default argument is engine=nuts.

The NUTS sampler generates a proposal by starting at an initial position determined
by the parameters drawn in the last iteration. It then evolves the initial system both
forwards and backwards in time to form a balanced binary tree. The algorithm is
iterative; at each iteration the tree depth is increased by one, doubling the number
of leapfrog steps thus effectively doubling the computation time. The algorithm
terminates in one of two ways: either the NUTS criterion (i.e., a U-turn in Euclidean
space on a subtree) is satisfied for a new subtree or the completed tree; or the depth
of the completed tree hits the maximum depth allowed.

When engine=nuts, the subargument max_depth can be used to control the depth

42 CHAPTER 6. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO

of the tree. The default argument is max_depth=10. In the case where a model has a
difficult posterior from which to sample, max_depth should be increased to ensure
that that the NUTS tree can grow as large as necessary.

When the argument engine=static is specified, the user must specify the integra-
tion time via keyword int_time which takes as a value a positive number. The
default value is 2π.

6.6. Sampler diagnostic file
The output keyword sub-argument diagnostic_file=<filepath> specifies the
location of the auxiliary output file which contains sampler information for each
draw, and the gradients on the unconstrained scale and log probabilities for all
parameters in the model. By default, no auxiliary output file is produced.

6.7. Running multiple chains
A Markov chain generates draws from the target distribution only after it has con-
verged to equilibrium. In theory, convergence is only guaranteed asymptotically as
the number of draws grows without bound. In practice, diagnostics must be ap-
plied to monitor convergence for the finite number of draws actually available. One
way to monitor whether a chain has approximately converged to the equilibrium
distribution is to compare its behavior to other randomly initialized chains. For
robust diagnostics, we recommend running 4 chains.

The preferred way of using multiple chains is to run them all from the same exe-
cutable using the num_chains argument. There is also the option to use the Unix or
DOS shell to run multiple executables.

Using the num_chains argument to run multiple chains
The num_chains argument can be used for all of Stan’s samplers with the exception
of the static HMC engine. This will run multiple chains of MCMC from the
same executable, which can save on memory usage due to only needing one copy
of the model and data. Depending on whether the model was compiled with
STAN_THREADS=true, these will either run in parallel or one after the other.

When num_chains is greather than 1 (the default), arguments related to filenames
(e.g. output file=, init=) can accept a comma separated list of values, one per
each chain.

For example, sample will specify the names of the three chain’s output files.

./bernoulli sample num_chains=3 data file=bernoulli.data.json output file=output_1.csv,output_2.csv,output_3.csv

6.7. RUNNING MULTIPLE CHAINS 43

This will write the output in output_1.csv, output_2.csv, output_3.csv.

If the model was not compiled with STAN_THREADS=true, the above command will
run 3 chains sequentially.

If the model was compiled with STAN_THREADS=true, the chains can run in parallel,
with the num_threads argument defining the maximum number of threads used
to run the chains. If the model uses no within-chain parallelization (map_rect or
reduce_sum calls), the below command will run 3 chains in parallel, provided there
are cores available:

./bernoulli sample num_chains=4 data file=bernoulli.data.json num_threads=4

If the model uses within-chain parallelization (map_rect or reduce_sum calls), the
threads are automatically scheduled to run the parallel parts of a single chain or
run the sequential parts of another chains. The below call starts 4 chains that can
use 16 threads. At a given moment a single chain may use all 16 threads, 1 thread,
anything in between, or can wait for a thread to be available. The scheduling is left
to the Threading Building Blocks scheduler.

./bernoulli_par sample num_chains=4 data file=bernoulli.data.json num_threads=16

Legacy filename behavior
If a comma separated list is not used, the num_chains argument changes the normal
meanings of filename arguments when it is greater than 1 (the default). They are
now interpreted as a “template” which is used for each chain.

For example, when num_chains=2, the argument output file=foo.csv no longer
produces a file foo.csv, but instead produces two files, foo_1.csv and foo_2.csv.
If you also supply id=5, the files produced will be foo_5.csv and foo_6.csv –
id=5 gives the id of the first chain, and the remaining chains are sequential from
there.

This also applies to input files, like those used for initialization. For example, if
num_chains=3 and init=bar.json will first look for bar_1.json. If it exists, it
will use bar_1.json for the first chain, bar_2.json for the second, and so on. If
bar_1.json does not exist, it falls back to looking for bar.json, and if it exists,
uses the same initial values for each chain. The numbers in these filenames are also
based on the id argument, which defaults to 1.

For example, this shorthand is equivalent to the example given above:

./bernoulli sample num_chains=3 data file=bernoulli.data.json output file=output.csv

A suffix with the chain id is appended to the provided output filename (output.csv

https://www.intel.com/content/www/us/en/docs/onetbb/developer-guide-api-reference/2021-11/how-task-scheduler-works.html

44 CHAPTER 6. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO

in the above command), so this will also produce files output_1.csv, out-
put_2.csv, output_3.csv.

6.8. Summarizing sampler output(s) with stansummary
The stansummary utility processes one or more output files from a run or set of
runs of Stan’s HMC sampler given a model and data. For all columns in the Stan
CSV output file stansummary reports a set of statistics including mean, standard
deviation, percentiles, effective sample size, and R̂ values.

To run stansummary on the output files generated by the for loop above, by the
above run of the bernoulli model on Mac or Linux:

<cmdstan-home>/bin/stansummary output_*.csv

On Windows, use backslashes to call the stansummary.exe.

<cmdstan-home>\bin\stansummary.exe output_*.csv

The stansummary output consists of one row of statistics per column in the Stan
CSV output file. Therefore, the first rows in the stansummary report statistics over
the sampler state. The final row of output summarizes the estimates of the model
variable theta:

Inference for Stan model: bernoulli_model
4 chains: each with iter=1000; warmup=1000; thin=1; 1000 iterations saved.

Warmup took (0.0060, 0.0040, 0.0050, 0.0050) seconds, 0.020 seconds total
Sampling took (0.0080, 0.010, 0.010, 0.010) seconds, 0.038 seconds total

Mean MCSE StdDev MAD 5% 50% 95% ESS_bulk ESS_tail ESS_bulk/s R_hat

lp__ -7.3 1.9e-02 0.72 0.34 -8.7 -7.0 -
6.8 1731 1610 45546 1.0
accept_stat__ 0.93 2.7e-03 0.12 0.041 0.68 0.97 1.0 5078 3437 1.3e+05 1.0
stepsize__ 0.90 nan 0.10 0.046 0.82 0.86 1.1 nan nan nan nan
treedepth__ 1.4 9.3e-03 0.51 0.00 1.0 1.0 2.0 3167 3441 8.3e+04 1.0
n_leapfrog__ 2.7 1.7e-01 1.6 0.00 1.0 3.0 7.0 494 2000 1.3e+04 1.0
divergent__ 0.00 nan 0.00 0.00 0.00 0.00 0.00 nan nan nan nan
energy__ 7.8 2.6e-02 1.0 0.70 6.8 7.4 9.8 1598 2069 4.2e+04 1.0

theta 0.26 2.9e-03 0.12 0.12 0.084 0.24 0.47 1658 1490 43629 1.0

Samples were drawn using hmc with nuts.
For each parameter, ESS_bulk and ESS_tail measure the effective sample size for the entire sample (bulk)

stansummary.qmd

6.9. EXAMPLES - OLDER PARALLELISM 45

and for the .05 and .95 tails (tail), and R_hat measures the potential scale reduction on split chains.
At convergence R_hat will be very close to 1.00.

In this example, we conditioned the model on data consisting of the outcomes of
10 bernoulli trials, where only 2 trials reported success. The 5%, 50%, and 95%
percentile values for theta reflect the uncertainty in our estimate, due to the small
amount of data, given the prior of beta(1, 1)

6.9. Examples - older parallelism
Note: Many of these examples can be simplified by using the num_chains argument.

When the num_chains argument is not available or is undesirable for whatever
reason, built-in tools in the system shell can be used.

To run multiple chains given a model and data, either sequentially or in parallel,
we can also use the Unix or DOS shell for loop to set up index variables needed to
identify each chain and its outputs.

On MacOS or Linux, the for-loop syntax for both the bash and zsh interpreters is:

for NAME [in LIST]; do COMMANDS; done

The list can be a simple sequence of numbers, or you can use the shell expansion
syntax {1..N} which expands to the sequence from 1 to N, e.g. {1..4} expands to
1 2 3 4. Note that the expression {1..N} cannot contain spaces.

To run 4 chains for the example bernoulli model on MacOS or Linux:

> for i in {1..4}
do

./bernoulli sample data file=bernoulli.data.json \
output file=output_${i}.csv

done

The backslash (\) indicates a line continuation in Unix. The expression ${i} sub-
stitutes in the value of loop index variable i. To run chains in parallel, put an
ampersand (&) at the end of the nested sampler command:

> for i in {1..4}
do

./bernoulli sample data file=bernoulli.data.json \
output file=output_${i}.csv &

done

This pushes each process into the background which allows the loop to continue
without waiting for the current chain to finish.

46 CHAPTER 6. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO

On Windows, the DOS for-loop syntax is one of:

for %i in (SET) do COMMAND COMMAND-ARGUMENTS
for /l %i in (START, STEP, END) do COMMAND COMMAND-ARGUMENTS

To run 4 chains in parallel on Windows:

>for /l %i in (1, 1, 4) do start /b bernoulli.exe sample ^
data file=bernoulli.data.json my_data ^
output file=output_%i.csv

The caret (ˆ) indicates a line continuation in DOS. The expression %i is the loop
index.

In the following extended examples, we focus on just the nested sampler command
for Unix.

Running multiple chains with a specified RNG seed
For reproducibility, we specify the same RNG seed across all chains and use the
chain id argument to specify the RNG offset.

The RNG seed is specified by random seed=<int> and the offset is specified by
id=<loop index>, so the call to the sampler is:

./my_model sample data file=my_model.data.json \
output file=output_${i}.csv \
random seed=12345 id=${i}

Changing the default warmup and sampling iterations
The warmup and sampling iteration keyword-value arguments must follow the
sample keyword. The call to the sampler which overrides the default warmup and
sampling iterations is:

./my_model sample num_warmup=500 num_sampling=500 \
data file=my_model.data.json \
output file=output_${i}.csv

Saving warmup draws
To save warmup draws as part of the Stan CSV output file, use the keyword-
value argument save_warmup=true. This must be grouped with the other sample
keyword sub-arguments.

./my_model sample num_warmup=500 num_sampling=500 save_warmup=true \
data file=my_model.data.json \
output file=output_${i}.csv

https://www.windows-commandline.com/windows-for-loop-examples/

6.9. EXAMPLES - OLDER PARALLELISM 47

Initializing parameters
By default, all parameters are initialized on an unconstrained scale to random
draws from a uniform distribution over the range [−2, 2]. To initialize some or all
parameters to good starting points on the constrained scale from a data file in JSON
or Rdump format, use the keyword-value argument init=<filepath>:

./my_model sample init=my_param_inits.json data file=my_model.data.json \
output file=output_${i}.csv

To verify that the specified values will be used by the sampler, you can run the sam-
pler with option algorithm=fixed_param, so that the initial values are used to gen-
erate the sample. Since this generates a set of identical draws, setting num_warmp=0
and num_samples=1 saves unnecessary iterations. As the output values are also
on the constrained scale, the set of reported values will match the set of specified
initial values.

For example, if we run the example Bernoulli model with specified initial value for
parameter “theta”:

{ "theta" : 0.5 }

via command:

./bernoulli sample algorithm=fixed_param num_warmup=0 num_samples=1 \
init=bernoulli.init.json data file=bernoulli.data.json

The resulting output CSV file contains a single draw:

lp__,accept_stat__,theta
0,0,0.5
#
Elapsed Time: 0 seconds (Warm-up)
0 seconds (Sampling)
0 seconds (Total)
#

Specifying the metric and stepsize
An initial estimate for the metric can be specified with the metric_file argument
whose value is the filepath to a JSON or Rdump file which contains a variable
inv_metric. The metric_file option can be used with and without adaptation
enabled.

By default, the metric is estimated during warmup adaptation. If the initial guess
is good, then adaptation should not change it much. If the metric is no good,

48 CHAPTER 6. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO

then the adaptation will override the initial guess. For example, the JSON file
bernoulli.diag_e.json, contents

{ "inv_metric" : [0.296291] }

can be used as the initial metric as follows:

../my_model sample algorithm=hmc metric_file=bernoulli.diag_e.json \
data file=my_model.data.json \
output file=output_${i}.csv

If adaptation is disabled, both the metric_file and stepsize arguments should
be specified.

../my_model sample adapt engaged=false \
algorithm=hmc stepsize=0.9 \
metric_file=bernoulli.diag_e.json \
data file=my_model.data.json \
output file=output_${i}.csv

The resulting output CSV file will contain the following set of comment lines:

Adaptation terminated
Step size = 0.9
Diagonal elements of inverse mass matrix:
0.296291

As of Stan versione 2.34, the adapted metric can be saved in JSON format, via sub-
argument save_metric, described above. This allows for no or minimal adaptation
starting from this file. It is still necessary to specify the stepsize argument as well
as the metric_file arguments; the former is the value of the stepsize element in
the saved metric file, and the later is the metric file path.

Changing the NUTS-HMC adaptation parameters
The keyword-value arguments for these settings are grouped together under the
adapt keyword which itself is a sub-argument of the sample keyword.

Models with difficult posterior geometries may required increasing the delta
argument closer to 1.

./my_model sample adapt delta=0.95 \
data file=my_model.data.json \
output file=output_${i}.csv

To skip adaptation altogether, use the keyword-value argument engaged=false.
Disabling adaptation disables both metric and stepsize adaptation, so a stepsize
should be provided along with a metric to enable efficient sampling.

6.9. EXAMPLES - OLDER PARALLELISM 49

../my_model sample adapt engaged=false \
algorithm=hmc stepsize=0.9 \
metric_file=bernoulli.diag_e.json \
data file=my_model.data.json \
output file=output_${i}.csv

Even with adaptation disabled, it is still advisable to run warmup iterations in order
to allow the initial parameter values to be adjusted to estimates which fall within
the typical set.

To skip warmup altogether requires specifying both num_warmup=0 and adapt
engaged=false.

../my_model sample num_warmup=0 adapt engaged=false \
algorithm=hmc stepsize=0.9 \
metric_file=bernoulli.diag_e.json \
data file=my_model.data.json \
output file=output_${i}.csv

Increasing the tree-depth
Models with difficult posterior geometries may required increasing the max_depth
argument from its default value 10. This requires specifying a series of keyword-
argument pairs:

./my_model sample adapt delta=0.95 \
algorithm=hmc engine=nuts max_depth=15 \
data file=my_model.data.json \
output file=output_${i}.csv

Capturing Hamiltonian diagnostics and gradients
The output keyword sub-argument diagnostic_file=<filepath> write the sam-
pler parameters and gradients of all model parameters for each draw to a CSV
file:

./my_model sample data file=my_model.data.json \
output file=output_${i}.csv \
diagnostic_file=diagnostics_${i}.csv

Suppressing progress updates to the console
The output keyword sub-argument refresh=<int> specifies the number of itera-
tions between progress messages written to the terminal window. The default value
is 100 iterations. The progress updates look like:

Iteration: 1 / 2000 [0%] (Warmup)
Iteration: 100 / 2000 [5%] (Warmup)

https://mc-stan.org/docs/stan-users-guide/efficiency-tuning.html#model-conditioning-and-curvature

50 CHAPTER 6. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO

Iteration: 200 / 2000 [10%] (Warmup)
Iteration: 300 / 2000 [15%] (Warmup)

For simple models which fit quickly, such updates can be annoying; to suppress
them altogether, set refresh=0. This only turns off the Iteration: messages; the
configuration and timing information are still written to the terminal.

./my_model sample data file=my_model.data.json \
output file=output_${i}.csv \
refresh=0

For complicated models which take a long time to fit, setting the refresh rate to a
low number, e.g. 10 or even 1, provides a way to more closely monitor the sampler.

Everything example
The CmdStan argument parser requires keeping sampler config sub-arguments
together; interleaving sampler config with the inputs, outputs, inits, RNG seed and
chain id config results in an error message such as the following:

./bernoulli sample data file=bernoulli.data.json adapt delta=0.95
adapt is either mistyped or misplaced.
Perhaps you meant one of the following valid configurations?
method=sample sample adapt
method=variational variational adapt

Failed to parse arguments, terminating Stan

The following example provides a template for a call to the sampler which specifies
input data, initial parameters, initial step-size and metric, adaptation, output, and
RNG initialization.

./my_model sample num_warmup=2000 \
init=my_param_inits.json \
adapt delta=0.95 init_buffer=100 \
window=50 term_buffer=100 \
algorithm=hmc engine=nuts max_depth=15 \
metric=dense_e metric_file=my_metric.json \
stepsize=0.6555 \
data file=my_model.data.json \
output file=output_${i}.csv refresh=10 \
random seed=12345 id=${i}

The keywords sample, data, output, and random are the top-level argument
groups. Within the sample config arguments, the keyword adapt groups the
adaptation algorithm parameters and the keyword-value algorithm=hmc groups
the NUTS-HMC parameters.

6.9. EXAMPLES - OLDER PARALLELISM 51

The top-level groups can be freely ordered with respect to one another. The follow-
ing is also a valid command:

./my_model random seed=12345 id=${i} \
data file=my_model.data.json \
output file=output_${i}.csv refresh=10 \
sample num_warmup=2000 \
init=my_param_inits.json \
algorithm=hmc engine=nuts max_depth=15 \
metric=dense_e metric_file=my_metric.json \
stepsize=0.6555 \
adapt delta=0.95 init_buffer=100 \
window=50 term_buffer=100

7. Optimization

The CmdStan executable can run Stan’s optimization algorithms, which provide
a deterministic method to find the posterior mode. If the posterior is not convex,
there is no guarantee Stan will be able to find the global optimum as opposed to a
local optimum of log probability.

The full set of configuration options available for the optimize method is avail-
able by using the optimize help-all subcommand. The arguments with their
requested values or defaults are also reported at the beginning of the optimizer
console output and in the output CSV file’s comments.

The executable does not need to be recompiled in order to switch from sampling to
optimization, and the data input format is the same. The following is a minimal call
to Stan’s optimizer using defaults for everything but the location of the data file.

> ./bernoulli optimize data file=bernoulli.data.json

Executing this command prints both output to the console and to a CSV file.

The first part of the console output reports on the configuration used. The above
command uses all default configurations, therefore the optimizer used is the L-BFGS
optimizer and its default initial stepsize and tolerances for monitoring convergence:

./bernoulli optimize data file=bernoulli.data.json
method = optimize
optimize
algorithm = lbfgs (Default)
lbfgs
init_alpha = 0.001 (Default)
tol_obj = 1e-12 (Default)
tol_rel_obj = 10000 (Default)
tol_grad = 1e-08 (Default)
tol_rel_grad = 1e+07 (Default)
tol_param = 1e-08 (Default)
history_size = 5 (Default)

jacobian = false (Default)
iter = 2000 (Default)
save_iterations = false (Default)

id = 1 (Default)
data

52

53

file = bernoulli.data.json
init = 2 (Default)
random
seed = 87122538 (Default)

output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)
sig_figs = 8 (Default)
profile_file = profile.csv (Default)
save_cmdstan_config = false (Default)

num_threads = 1 (Default)

The second part of the output indicates how well the algorithm fared, here con-
verging and terminating normally. The numbers reported indicate that it took 5
iterations and 8 gradient evaluations. This is, not surprisingly, far fewer iterations
than required for sampling; even fewer iterations would be used with less stringent
user-specified convergence tolerances. The alpha value is for step size used. In
the final state the change in parameters was roughly 0.002 and the length of the
gradient roughly 3e-05 (0.00003).

Initial log joint probability = -6.85653
Iter log prob ||dx|| ||grad|| alpha alpha0 # evals Notes

5 -5.00402 0.00184936 3.35074e-
05 1 1 8
Optimization terminated normally:

Convergence detected: relative gradient magnitude is below tolerance

The output from optimization is written into the file output.csv by default. The
output follows the same pattern as the output for sampling, first dumping the entire
set of parameters used as comment lines:

stan_version_major = 2
stan_version_minor = 23
stan_version_patch = 0
model = bernoulli_model
method = optimize
optimize
algorithm = lbfgs (Default)
lbfgs
init_alpha = 0.001 (Default)
tol_obj = 1e-12 (Default)
tol_rel_obj = 10000 (Default)
tol_grad = 1e-08 (Default)

stan_csv_apdx.qmd

54 CHAPTER 7. OPTIMIZATION

tol_rel_grad = 1e+07 (Default)
tol_param = 1e-08 (Default)
history_size = 5 (Default)
jacobian = false (Default)
iter = 2000 (Default)
save_iterations = false (Default)

Following the config information are two lines of output, the CSV headers and the
recorded values:

lp__,theta
-5.00402,0.200003

Note that everything is a comment other than a line for the header, and a line
for the values. Here, the header indicates the unnormalized log probability with
lp__ and the model parameter theta. The maximum log probability is -5.0 and
the posterior mode for theta is 0.20. The mode exactly matches what we would
expect from the data. Because the prior was uniform, the result 0.20 represents the
maximum likelihood estimate (MLE) for the very simple Bernoulli model. Note
that no uncertainty is reported.

All of the optimizers stream per-iteration intermediate approximations to the com-
mand line console. The sub-argument save_iterations specifies whether or not
to save the intermediate iterations to the output file. Allowed values are true or
false. The default value is false, i.e., intermediate iterations are not saved to the
output file. Running the optimizer with save_iterations=true writes both the
initial log joint probability and values for all iterations to the output CSV file.

Running the example model with option save_iterations=true, i.e., the com-
mand

> ./bernoulli optimize save_iterations=1 data file=bernoulli.data.json

produces CSV file output rows:

lp__,theta
-6.85653,0.493689
-6.10128,0.420936
-5.02953,0.22956
-5.00517,0.206107
-5.00403,0.200299
-5.00402,0.200003

7.1. JACOBIAN ADJUSTMENTS 55

7.1. Jacobian adjustments
If there are constrained parameters, Stan makes a transformation to an uncon-
strained space and runs the optimization algorithm in the unconstrained space.

The jacobian argument specifies whether or not the call to the model’s log prob-
ability function should include the log absolute Jacobian determinant of inverse
parameter transforms.

If the Jacobian adjustment is not included (the default), the optimization returns
parameter values that correspond to a mode of the target in the constrained space
(if such mode exists). Thus this option is useful for any optimization where we
want to find the mode in the original constrained parameter space.

If the Jacobian adjustment is included, the optimization returns parameter values
that correspond to a mode in the unconstrained space. This is useful, for example,
if we want to make a distributional approximation of the posterior at the mode (see,
Laplace sampling, as then Jacobian adjustment needs to be included for correct
results.

7.2. Optimization algorithms
The algorithm argument specifies the optimization algorithm. This argument takes
one of the following three values:

• lbfgs A quasi-Newton optimizer. This is the default optimizer and also much
faster than the other optimizers.

• bfgs A quasi-Newton optimizer.

• newton A Newton optimizer. This is the least efficient optimization algorithm,
but has the advantage of setting its own stepsize.

See the Stan Reference Manual’s Optimization chapter for a description of these
algorithms.

All of the optimizers stream per-iteration intermediate approximations to the com-
mand line console. The sub-argument save_iterations specifies whether or not
to save the intermediate iterations to the output file. Allowed values are true or
false. The default value isfalse‘, i.e., intermediate iterations are not saved to
the output file.

7.3. The quasi-Newton optimizers
For both BFGS and L-BFGS optimizers, convergence monitoring is controlled by a
number of tolerance values, any one of which being satisfied causes the algorithm

https://mc-stan.org/docs/reference-manual/transforms.html
https://mc-stan.org/docs/reference-manual/transforms.html
https://mc-stan.org/docs/reference-manual/transforms.html
https://mc-stan.org/docs/reference-manual/transforms.html
laplace_sample_config.qmd
https://mc-stan.org/docs/reference-manual/optimization.html

56 CHAPTER 7. OPTIMIZATION

to terminate with a solution. See the BFGS and L-BFGS configuration section for
details on the convergence tests.

Both BFGS and L-BFGS have the following configuration arguments:

• init_alpha - The initial step size parameter. Must be a positive real number.
Default value is 0.001

• tol_obj - Convergence tolerance on changes in objective function value. Must
be a positive real number. Default value is 1−12.

• tol_rel_obj - Convergence tolerance on relative changes in objective func-
tion value. Must be a positive real number. Default value is 14.

• tol_grad - Convergence tolerance on the norm of the gradient. Must be a
positive real number. Default value is 1−8.

• tol_rel_grad - Convergence tolerance on the relative norm of the gradient.
Must be a positive real number. Default value is 17.

• tol_param - Convergence tolerance on changes in parameter value. Must be
a positive real number. Default value is 1−8.

The init_alpha argument specifies the first step size to try on the initial iteration.
If the first iteration takes a long time (and requires a lot of function evaluations),
set init_alpha to be the roughly equal to the alpha used in that first iteration. The
default value is very small, which is reasonable for many problems but might be
too large or too small depending on the objective function and initialization. Being
too big or too small just means that the first iteration will take longer (i.e., require
more gradient evaluations) before the line search finds a good step length.

In addition to the above, the L-BFGS algorithm has argument history_size which
controls the size of the history it uses to approximate the Hessian. The value should
be less than the dimensionality of the parameter space and, in general, relatively
small values (5-10) are sufficient; the default value is 5.

If L-BFGS performs poorly but BFGS performs well, consider increasing the history
size. Increasing history size will increase the memory usage, although this is
unlikely to be an issue for typical Stan models.

7.4. The Newton optimizer
There are no configuration parameters for the Newton optimizer. It is not recom-
mended because of the slow Hessian calculation involving finite differences.

https://mc-stan.org/docs/reference-manual/optimization.html#bfgs-and-l-bfgs-configuration

8. Pathfinder Method for Approximate
Bayesian Inference

The CmdStan method pathfinder uses the Pathfinder algorithm of Zhang et al.
(2022), which is further described in the Stan Reference Manual.

A single run of the Pathfinder algorithm generates a set of approximate draws.
Inference is improved by running multiple Pathfinder instances and using Pareto-
smoothed importance resampling (PSIS) of the resulting sets of draws. This better
matches non-normal target densities and also eliminates minor modes.

The pathfinder method runs multi-path Pathfinder by default, which returns a
PSIS sample over the draws from several individual (“single-path”) Pathfinder runs.
Argument num_paths specifies the number of single-path Pathfinders, the default
is 4. If num_paths is set to 1, then only one individual Pathfinder is run without the
PSIS reweighting of the sample.

The full set of configuration options available for the pathfinder method is avail-
able by using the pathfinder help-all subcommand. The arguments with their
requested values or defaults are also reported at the beginning of the algorithm’s
console output and in the output CSV file’s comments.

The following is a minimal call to the Pathfinder algorithm using defaults for
everything but the location of the data file.

> ./bernoulli pathfinder data file=bernoulli.data.R

Executing this command prints output both to the console and to csv files.

The first part of the console output reports on the configuration used.

method = pathfinder
pathfinder
init_alpha = 0.001 (Default)
tol_obj = 1e-12 (Default)
tol_rel_obj = 10000 (Default)
tol_grad = 1e-08 (Default)
tol_rel_grad = 1e+07 (Default)
tol_param = 1e-08 (Default)
history_size = 5 (Default)

57

https://mc-stan.org/docs/reference-manual/pathfinder.html

58CHAPTER 8. PATHFINDER METHOD FOR APPROXIMATE BAYESIAN INFERENCE

num_psis_draws = 1000 (Default)
num_paths = 4 (Default)
save_single_paths = false (Default)
psis_resample = true (Default)
calculate_lp = true (Default)
max_lbfgs_iters = 1000 (Default)
num_draws = 1000 (Default)
num_elbo_draws = 25 (Default)

id = 1 (Default)
data
file = bernoulli.data.json

init = 2 (Default)
random
seed = 2790476610 (Default)

output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)
sig_figs = 8 (Default)
profile_file = profile.csv (Default)
save_cmdstan_config = false (Default)

num_threads = 1 (Default)

The rest of the output describes the progression of the algorithm.

By default, the Pathfinder algorithm runs 4 single-path Pathfinders in parallel, then
uses importance resampling on the set of returned draws to produce the specified
number of draws.

Path [1] :Initial log joint density = -11.543343
Path [1] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes

5 -6.748e+00 1.070e-03 1.707e-
05 1.000e+00 1.000e+00 126 -6.220e+00 -6.220e+00
Path [1] :Best Iter: [5] ELBO (-6.219833) evaluations: (126)
Path [2] :Initial log joint density = -7.443345
Path [2] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes

5 -6.748e+00 9.936e-05 3.738e-
07 1.000e+00 1.000e+00 126 -6.164e+00 -6.164e+00
Path [2] :Best Iter: [5] ELBO (-6.164015) evaluations: (126)
Path [3] :Initial log joint density = -18.986308
Path [3] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes

5 -6.748e+00 2.996e-04 4.018e-
06 1.000e+00 1.000e+00 126 -6.201e+00 -6.201e+00
Path [3] :Best Iter: [5] ELBO (-6.200559) evaluations: (126)

8.1. PATHFINDER CONFIGURATION 59

Path [4] :Initial log joint density = -8.304453
Path [4] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes

5 -6.748e+00 2.814e-04 2.034e-
06 1.000e+00 1.000e+00 126 -6.221e+00 -6.221e+00
Path [4] :Best Iter: [3] ELBO (-6.161276) evaluations: (126)
Total log probability function evaluations:8404

8.1. Pathfinder Configuration
• num_psis_draws - Final number of draws from multi-path pathfinder. Must

be a positive integer. Default value is 1000.

• num_paths - Number of single pathfinders. Must be a positive integer. Default
value is 4.

• save_single_paths - When true, save outputs from single pathfinders.
Valid values: [true, false]. Default is false.

• max_lbfgs_iters - Maximum number of L-BFGS iterations. Must be a posi-
tive integer. Default value is 1000.

• num_draws - Number of approximate posterior draws for each single
pathfinder. Must be a positive integer. Default value is 1000. Can differ
from num_psis_draws.

• num_elbo_draws - Number of Monte Carlo draws to evaluate ELBO. Must be
a positive integer. Default value is 25.

• psis_resample - If true, perform PSIS resampling on draws returned from
individual pathfinders. If false, returns all num_paths * num_draws draws
from the individual pathfinders. Valid values: [true, false]. Default is
true.

• calculate_lp - If true, log probabilities of the approximate draws are calcu-
lated and returned with the output. If false, each pathfinder will only calcu-
late the lp values needed for the ELBO calculation. If false, PSIS resampling
cannot be performed and the algorithm returns num_paths * num_draws
samples. The output will still contain any lp values used when calculating
ELBO scores within L-BFGS iterations. Valid values: [true, false]. Default
is true.

8.2. L-BFGS Configuration
Arguments init_alpha through history_size are the full set of arguments to the
L-BFGS optimizer and have the same defaults for optimization.

60CHAPTER 8. PATHFINDER METHOD FOR APPROXIMATE BAYESIAN INFERENCE

8.3. Multi-path Pathfinder CSV files
By default, the pathfinder method uses 4 independent Pathfinder runs, each of
which produces 1000 approximate draws, which are then importance resampled
down to 1000 final draws. The importance resampled draws are output as a StanCSV
file.

The CSV files have the following structure:

The initial CSV comment rows contain the complete set of CmdStan configuration
options.

...
method = pathfinder
pathfinder
init_alpha = 0.001 (Default)
tol_obj = 9.9999999999999998e-13 (Default)
tol_rel_obj = 10000 (Default)
tol_grad = 1e-08 (Default)
tol_rel_grad = 10000000 (Default)
tol_param = 1e-08 (Default)
history_size = 5 (Default)
num_psis_draws = 1000 (Default)
num_paths = 4 (Default)
psis_resample = 1 (Default)
calculate_lp = 1 (Default)
save_single_paths = 0 (Default)
max_lbfgs_iters = 1000 (Default)
num_draws = 1000 (Default)
num_elbo_draws = 25 (Default)
...

Next is the column header line, followed the set of approximate draws. The
Pathfinder algorithm first outputs lp_approx__, the log density in the approxi-
mating distribution, and lp__, the log density in the target distribution, followed
by estimates of the model parameters, transformed parameters, and generated
quantities.

lp_approx__,lp__,theta
-2.4973, -8.2951, 0.0811852
-0.87445, -7.06526, 0.160207
-0.812285, -7.07124, 0.35819
...

The final lines are comment lines which give timing information.

stan_csv_apdx.qmd
stan_csv_apdx.qmd

8.4. SINGLE-PATH PATHFINDER OUTPUTS 61

Elapsed Time: 0.016000 seconds (Pathfinders)
0.003000 seconds (PSIS)
0.019000 seconds (Total)

Pathfinder provides option save_single_paths which will save output from the
single-path Pathfinder runs.

8.4. Single-path Pathfinder Outputs
The boolean option save_single_paths is used to save both the draws and the
ELBO iterations from the individual Pathfinder runs. When save_single_paths
is true, the draws from each are saved to StanCSV files with the same format as
the PSIS sample and the ELBO evaluations along the L-BFGS trajectory for each
are saved as JSON. Given an output file name, CmdStan adds suffixes to the base
filename to distinguish between the output files. For the default output file name
output.csv and default number of runs (4), the resulting CSV files are

output.csv
output_path_1.csv
output_path_1.json
output_path_2.csv
output_path_2.json
output_path_3.csv
output_path_3.json
output_path_4.csv
output_path_4.json

The individual sample CSV files have the same structure as the PSIS sample CSV
file. The JSON files contain information from each ELBO iteration.

To see how this works, we run Pathfinder on the centered-parameterization of the
eight-schools model, where the posterior distribution has a funnel shape:

> ./eight_schools pathfinder save_single_paths=true data file=eight_schools.data.json

Each JSON file records the approximations to the target density at each point along
the trajectory of the L-BFGS optimization algorithms.

{
"0": {
"iter": 0,
"unconstrained_parameters": [1.00595, -0.503687, 1.79367, 0.99083, 0.498077, -

0.65816, 1.49176, -1.22647, 1.62911, 0.767445],
"grads": [-0.868919, 0.45198, -0.107675, -0.0123304, 0.163172, 0.354362, -

0.108746, 0.673306, -0.102268, -4.51445]

62CHAPTER 8. PATHFINDER METHOD FOR APPROXIMATE BAYESIAN INFERENCE

},
"1": {
"iter": 1,
"unconstrained_parameters": [1.00595, -0.503687, 1.79367, 0.99083, 0.498077, -

0.65816, 1.49176, -1.22647, 1.62911, 0.767445],
"grads": [-0.868919, 0.45198, -0.107675, -0.0123304, 0.163172, 0.354362, -

0.108746, 0.673306, -0.102268, -4.51445],
"history_size": 1,
"lbfgs_success": true,
"pathfinder_success": true,
"x_center": [0.126047, -0.065048, 1.55708, 0.958509, 0.628075, -

0.217041, 1.32032, -0.561338, 1.42988, 1.23213],
"logDetCholHk": -2.6839,
"L_approx": [[-0.0630456, -0.0187959], [0, 1.08328]],
"Qk": [[-0.361073, 0.5624], [0.183922, -0.279474], [-

0.0708175, 0.15715], [-0.00917823, 0.0215802], [0.0606019, -
0.0814513], [0.164071, -0.285769], [-0.057723, 0.112428], [0.276376, -
0.424348], [-0.0620524, 0.131786], [-0.846488, -0.531094]],

"alpha": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
"full": false,
"lbfgs_note": ""

},
...,
"171": {
"iter": 171,
"unconstrained_parameters": [1.60479, 1.60479, 1.60479, 1.60479, 1.60479, 1.60479, 1.60479, 1.60479, 1.60479, -

35.7821],
"grads": [2.66927e+15, -0.117312, -0.0639521, -2.66927e+15, -

0.0445885, 0.0321579, 0.00499827, -0.163952, -0.032084, 6.4073],
"history_size": 5,
"lbfgs_success": true,
"pathfinder_success": true,
"x_center": [5.58876e+15, 5.58876e+15, 5.58876e+15, 5.58876e+15, 5.58876e+15, 5.58876e+15, 5.58876e+15, 5.58876e+15, 5.58876e+15, -

2.02979e+17],
"logDetCholHk": 299.023,
"L_approx": [[4.6852e+06, 4.6852e+06, 4.6852e+06, 4.6852e+06, 4.6852e+06, 4.6852e+06, 4.6852e+06, 4.6852e+06, 4.6852e+06, -

1.70162e+08], [0, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, -
7.97244e+14], [0, 0, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, -
7.97244e+14], [0, 0, 0, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, -
7.97244e+14], [0, 0, 0, 0, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, -
7.97244e+14], [0, 0, 0, 0, 0, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, -
7.97244e+14], [0, 0, 0, 0, 0, 0, 2.19511e+13, 2.19511e+13, 2.19511e+13, -
7.97244e+14], [0, 0, 0, 0, 0, 0, 0, 2.19511e+13, 2.19511e+13, -

8.4. SINGLE-PATH PATHFINDER OUTPUTS 63

7.97244e+14], [0, 0, 0, 0, 0, 0, 0, 0, 2.19511e+13, -
7.97244e+14], [0, 0, 0, 0, 0, 0, 0, 0, 0, 2.89552e+16]],

"Qk": [],
"alpha": [1.11027e-12, 2.24669e-12, 2.05603e-12, 3.71177e-12, 5.7855e-

12, 1.80169e-12, 3.40291e-12, 2.29699e-12, 3.43423e-12, 1.25815e-08],
"full": true,
"lbfgs_note": ""

},
"172": {
"iter": 172,
"unconstrained_parameters": [1.60531, 1.60531, 1.60531, 1.60531, 1.60531, 1.60531, 1.60531, 1.60531, 1.60531, -

35.801],
"grads": [-0, -0.11731, -0.0639469, 0.0179895, -

0.0445842, 0.0321643, 0.00500256, -0.163947, -0.0320824, 7],
"history_size": 5,
"lbfgs_success": false,
"pathfinder_success": false,
"lbfgs_note": ""

}
}

Option num_paths=1 runs one single-path Pathfinder and the output CSV file
contains the draws from that run without PSIS reweighting. The combination of
arguments num_paths=1 save_single_paths=true creates just two output files,
the CSV sample and the set of ELBO iterations. In this case, the default output file
name is “output.csv” and the default diagnostic file name is “output.json”.

9. Variational Inference using ADVI

Stan implements an automatic variational inference algorithm, called Automatic
Differentiation Variational Inference (ADVI) Kucukelbir et al. (2017). ADVI uses
Monte Carlo integration to approximate the variational objective function, the ELBO
(evidence lower bound). ADVI optimizes the ELBO in the real-coordinate space
using stochastic gradient ascent. The measures of convergence are similar to the
relative tolerance scheme of Stan’s optimization algorithms.

The algorithm progression consists of an adaptation phase followed by a sampling
phase. The adaptation phase finds a good value for the step size scaling parameter
eta. The evidence lower bound (ELBO) is the variational objective function and is
evaluated based on a Monte Carlo estimate. The variational inference algorithm in
Stan is stochastic, which makes it challenging to assess convergence. The algorithm
runs until the mean change in ELBO drops below the specified tolerance.

The full set of configuration options available for the variational method is avail-
able by using the variational help-all subcommand. The arguments with their
requested values or defaults are also reported at the beginning of the algorithm’s
console output and in the output CSV file’s comments.

The following is a minimal call to Stan’s variational inference algorithm using
defaults for everything but the location of the data file.

> ./bernoulli variational data file=bernoulli.data.R

Executing this command prints both output to the console and to a csv file.

The first part of the console output reports on the configuration used: the de-
fault option algorithm=meanfield and the default tolerances for monitoring the
algorithm’s convergence.

method = variational
variational
algorithm = meanfield (Default)
meanfield

iter = 10000 (Default)
grad_samples = 1 (Default)
elbo_samples = 100 (Default)
eta = 1 (Default)
adapt

64

https://mc-stan.org/docs/reference-manual/variational.html#stochastic-gradient-ascent
https://mc-stan.org/docs/reference-manual/optimization.html

65

engaged = true (Default)
iter = 50 (Default)

tol_rel_obj = 0.01 (Default)
eval_elbo = 100 (Default)
output_samples = 1000 (Default)

id = 1 (Default)
data

file = bernoulli.data.json
init = 2 (Default)
random
seed = 2790599354 (Default)

output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)
sig_figs = 8 (Default)
profile_file = profile.csv (Default)
save_cmdstan_config = false (Default)

num_threads = 1 (Default)

After the configuration has been displayed, informational and timing messages are
output:

--
EXPERIMENTAL ALGORITHM:
This procedure has not been thoroughly tested and may be unstable
or buggy. The interface is subject to change.

--

Gradient evaluation took 2.1e-05 seconds
1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
Adjust your expectations accordingly!

The rest of the output describes the progression of the algorithm. An adaptation
phase finds a good value for the step size scaling parameter eta. The evidence
lower bound (ELBO) is the variational objective function and is evaluated based on
a Monte Carlo estimate. The variational inference algorithm in Stan is stochastic,
which makes it challenging to assess convergence. That is, while the algorithm
appears to have converged in ∼ 250 iterations, the algorithm runs for another few
thousand iterations until mean change in ELBO drops below the default tolerance
of 0.01.

Begin eta adaptation.
Iteration: 1 / 250 [0%] (Adaptation)

66 CHAPTER 9. VARIATIONAL INFERENCE USING ADVI

Iteration: 50 / 250 [20%] (Adaptation)
Iteration: 100 / 250 [40%] (Adaptation)
Iteration: 150 / 250 [60%] (Adaptation)
Iteration: 200 / 250 [80%] (Adaptation)
Success! Found best value [eta = 1] earlier than expected.

Begin stochastic gradient ascent.
iter ELBO delta_ELBO_mean delta_ELBO_med notes
100 -6.131 1.000 1.000
200 -6.458 0.525 1.000
300 -6.300 0.359 0.051
400 -6.137 0.276 0.051
500 -6.243 0.224 0.027
600 -6.305 0.188 0.027
700 -6.289 0.162 0.025
800 -6.402 0.144 0.025
900 -6.103 0.133 0.025
1000 -6.314 0.123 0.027
1100 -6.348 0.024 0.025
1200 -6.244 0.020 0.018
1300 -6.293 0.019 0.017
1400 -6.250 0.017 0.017
1500 -6.241 0.015 0.010 MEDIAN ELBO CONVERGED

Drawing a sample of size 1000 from the approximate posterior...
COMPLETED.

9.1. Variational algorithms
Stan implements two variational algorithms. They differ in the approximating
distribution used in the unconstrained variable space. By default, ADVI uses
option algorithm=meanfield. The algorithm argument specifies the variational
algorithm.

• algorithm=meanfield - Use a fully factorized Gaussian for the approxima-
tion. This is the default algorithm.

• algorithm=fullrank Use a Gaussian with a full-rank covariance matrix for
the approximation.

9.2. Configuration
• iter=<int> Maximum number of iterations. Must be > 0. Default is 10000.

9.3. CSV OUTPUT 67

• grad_samples=<int> Number of samples for Monte Carlo estimate of gradi-
ents. Must be > 0. Default is 1.

• elbo_samples=<int> Number of samples for Monte Carlo estimate of ELBO
(objective function). Must be > 0. Default is 100.

• eta=<double> Stepsize weighting parameter for adaptive stepsize sequence.
Must be > 0. Default is 1.0.

• adapt Warmup Adaptation keyword, takes sub-arguments:

– engaged=<boolean> Adaptation engaged? Valid values: [true,
false]. Default is true.

– iter=<int> Maximum number of adaptation iterations. Must be > 0.
Default is 50.

• tol_rel_obj=<double> Convergence tolerance on the relative norm of the
objective. Must be > 0. Default is 0.01.

• eval_elbo=<int> Evaluate ELBO every Nth iteration. Must be > 0. Default
is 100.

• output_samples=<int> Number of posterior samples to draw and save.
Must be > 0. Default is 1000.

9.3. CSV output
The output file consists of the following pieces of information:

• The full set of configuration options available for the variational method is
reported at the beginning of the sampler output file as CSV comments.

• The first three output columns are labelled lp__, log_p__, log_g__, the rest
are the model parameters.

• The stepsize adaptation information is output as CSV comments following
column header row.

• The following line contains the mean of the variational approximation.

• The rest of the output contains output_samples number of draws sampled
from the variational approximation.

To illustrate, we call Stan’s variational inference on the example model and data:

> ./bernoulli variational data file=bernoulli.data.R

68 CHAPTER 9. VARIATIONAL INFERENCE USING ADVI

By default, the output file is output.csv.

The output follows the same pattern as the output for sampling, first dumping the
entire set of parameters used as CSV comments:

stan_version_major = 2
stan_version_minor = 23
stan_version_patch = 0
model = bernoulli_model
method = variational
variational
algorithm = meanfield (Default)
meanfield
iter = 10000 (Default)
grad_samples = 1 (Default)
elbo_samples = 100 (Default)
eta = 1 (Default)
adapt
engaged = true (Default)
iter = 50 (Default)
tol_rel_obj = 0.01 (Default)
eval_elbo = 100 (Default)
output_samples = 1000 (Default)
...

Next, the column header row:

lp__,log_p__,log_g__,theta

Additional comments provide stepsize adaptation information:

Stepsize adaptation complete.
eta = 1

Followed by the data rows. The first line is special — it is the mean of the variational
approximation.

0,0,0,0.214911

That is, the estimate for theta given the data is 0.2.

The rest of the output contains output_samples number of draws samples from
the variational approximation.

The following is a sample based on this approximation:

0,-14.0252,-5.21718,0.770397

9.3. CSV OUTPUT 69

0,-7.05063,-0.10025,0.162061
0,-6.75031,-0.0191099,0.241606
...

The header indicates the unnormalized log probability with lp__. This is a legacy
feature that we do not use for variational inference. The ELBO is not stored unless
a diagnostic option is given.

10. Generating Quantities of Interest from a
Fitted Model

The generate_quantities method allows you to generate additional quantities of
interest from a fitted model without re-running the sampler. Instead, you write a
modified version of the original Stan program and add a generated quantities block
or modify the existing one which specifies how to compute the new quantities of
interest. Running the generate_quantities method on the new program together
with sampler outputs (i.e., a set of draws) from the fitted model runs the generated
quantities block of the new program using the the existing sample by plugging in
the per-draw parameter estimates for the computations in the generated quantities
block.

This method requires sub-argument fitted_params which takes as its value an
existing Stan CSV file that contains a parameter values from an equivalent model,
i.e., a model with the same parameters block, conditioned on the same data.

The generated quantities block computes quantities of interest (QOIs) based on the
data, transformed data, parameters, and transformed parameters. It can be used to:

• generate simulated data for model testing by forward sampling
• generate predictions for new data
• calculate posterior event probabilities, including multiple comparisons, sign

tests, etc.
• calculate posterior expectations
• transform parameters for reporting
• apply full Bayesian decision theory
• calculate log likelihoods, deviances, etc. for model comparison

For an overview of the uses of this feature, see the Stan User’s Guide section on
Stand-alone generated quantities and ongoing prediction.

10.1. Example
To illustrate how this works we use the generate_quantities method to do pos-
terior predictive checks using the estimate of theta given the example bernoulli
model and data, following the posterior predictive simulation procedure in the Stan
User’s Guide.

70

stan_csv_apdx.qmd
https://mc-stan.org/docs/reference-manual/blocks.html#generated-quantities
https://mc-stan.org/docs/stan-users-guide/posterior-prediction.html#stand-alone-generated-quantities-and-ongoing-prediction
https://mc-stan.org/docs/stan-users-guide/posterior-prediction.html#posterior-predictive-simulation-in-stan

10.1. EXAMPLE 71

We write a program bernoulli_ppc.stan which contains the following generated
quantities block, with comments to explain the procedure:

generated quantities {
array[N] int y_sim;
// use current estimate of theta to generate new sample
for (n in 1:N) {
y_sim[n] = bernoulli_rng(theta);

}
// estimate theta_rep from new sample
real<lower=0, upper=1> theta_rep = sum(y_sim) * 1.0 / N;

}

The rest of the program is the same as in bernoulli.stan.

The generate_method requires the sub-argument fitted_params which takes as
its value the name of a Stan CSV file. The per-draw parameter values from the
fitted_params file will be used to run the generated quantities block.

If we run the bernoulli.stan program for a single chain to generate a sample in
file bernoulli_fit.csv:

> ./bernoulli sample data file=bernoulli.data.json output file=bernoulli_fit.csv

Then we can run the bernoulli_ppc.stan to carry out the posterior predictive
checks:

> ./bernoulli_ppc generate_quantities fitted_params=bernoulli_fit.csv \
data file=bernoulli.data.json \
output file=bernoulli_ppc.csv

The output file bernoulli_ppc.csv contains only the values for the variables
declared in the generated quantities block, i.e., theta_rep and the elements of
y_sim:

model = bernoulli_ppc_model
method = generate_quantities
generate_quantities
fitted_params = bernoulli_fit.csv
id = 1 (Default)
data
file = bernoulli.data.json
init = 2 (Default)
random
seed = 2983956445 (Default)

72CHAPTER 10. GENERATING QUANTITIES OF INTEREST FROM A FITTED MODEL

output
file = output.csv (Default)
y_sim.1,y_sim.2,y_sim.3,y_sim.4,y_sim.5,y_sim.6,y_sim.7,y_sim.8,y_sim.9,y_sim.10,theta_rep
1,1,1,0,0,0,1,1,0,1,0.6
1,1,0,1,0,0,1,0,1,0,0.5
1,0,1,1,1,1,1,1,0,1,0.8
0,1,0,1,0,1,0,1,0,0,0.4
1,0,0,0,0,0,0,0,0,0,0.1
0,0,0,0,0,1,1,1,0,0,0.3
0,0,1,0,1,0,0,0,0,0,0.2
1,0,1,0,1,1,0,1,1,0,0.6
...

Given the current implementation, to see the fitted parameter values for each draw,
create a copy variable in the generated quantities block, e.g.:

generated quantities {
array[N] int y_sim;
// use current estimate of theta to generate new sample
for (n in 1:N) {
y_sim[n] = bernoulli_rng(theta);

}
real<lower=0, upper=1> theta_cp = theta;
// estimate theta_rep from new sample
real<lower=0, upper=1> theta_rep = sum(y_sim) * 1.0 / N;

}

Now the output is slightly more interpretable: theta_cp is the same as the theta
used to generate the values y_sim[1] through y_sim[1]. Comparing columns
theta_cp and theta_rep allows us to see how the uncertainty in our estimate of
theta is carried forward into our predictions:

y_sim.1,y_sim.2,y_sim.3,y_sim.4,y_sim.5,y_sim.6,y_sim.7,y_sim.8,y_sim.9,y_sim.10,theta_cp,theta_rep
0,1,1,0,1,0,0,1,1,0,0.545679,0.5
1,1,1,1,1,1,0,1,1,0,0.527164,0.8
1,1,1,1,0,1,1,1,1,0,0.529116,0.8
1,0,1,1,1,1,0,0,1,0,0.478844,0.6
0,1,0,0,0,0,1,0,1,0,0.238793,0.3
0,0,0,0,0,1,1,0,0,0,0.258294,0.2
1,1,1,0,0,0,0,0,0,0,0.258465,0.3

10.2. ERRORS 73

10.2. Errors
The fitted_params file must be a Stan CSV file; attempts to use a regular CSV file
will result an error message of the form:

Error reading fitted param names from sample csv file <filename.csv>

The fitted_params file must contain columns corresponding to legal values for all
parameters defined in the model. If any parameters are missing, the program will
exit with an error message of the form:

Error reading fitted param names from sample csv file <filename.csv>

The parameter values of the fitted_params are on the constrained scale and must
obey all constraints. For example, if we modify the contents of the first reported
draw in bernoulli_fit.csv so that the value of theta is outside the declared
bounds real<lower=0, upper=1>, the program will return the following error
message:

Exception: lub_free: Bounded variable is 1.21397, but must be in the interval [0, 1] \
(in 'bernoulli_ppc.stan', line 5, column 2 to column 30)

stan_csv_apdx.qmd

11. Laplace sampling

The laplace method produces a sample from a normal approximation centered
at the mode of a distribution in the unconstrained space. If the mode is a maxi-
mum a posteriori (MAP) estimate, the sample provides an estimate of the mean
and standard deviation of the posterior distribution. If the mode is a maximum
likelihood estimate (MLE), the sample provides an estimate of the standard error of
the likelihood. In general, the posterior mode in the unconstrained space doesn’t
correspond to the mean (nor mode) in the constrained space, and thus the sample
is needed to infer the mean as well as the standard deviation. (See this case study
for a visual illustration.)

This is computationally inexpensive compared to exact Bayesian inference with
MCMC. The goodness of this estimate depends on both the estimate of the mode
and how much the true posterior in the unconstrained space resembles a Gaussian.

11.1. Configuration
This method takes several arguments:

• mode - Input file of parameters values on the constrained scale. When Stan’s
optimize method is used to estimate the modal values, the value of boolean
argument jacobian should be false if optimize was run with default set-
tings, i.e., the input is the MLE estimate; if optimize was run with argument
jacobian=true, then the laplace method default setting, jacobian=true,
should be used.

• jacobian - Whether or not the Jacobian adjustment should be included in
the gradient. The default value is true (include adjustment). (Note: in
optimization, the default value is false, for historical reasons.)

• draws - How many total draws to return. The default is 1000.

• calculate_lp - Whether to calculate the log probability of the model at each
draw. If this is false, the log_p__ column of the output will be entirely nan.
The default value is true.

11.2. CSV output
The output file consists of the following pieces of information:

74

optimize_config.qmd
https://avehtari.github.io/casestudies/Jacobian/jacobian.html
https://mc-stan.org/docs/stan-users-guide/reparameterization.html

11.3. DIAGNOSTIC FILE OUTPUTS 75

• The full set of configuration options available for the laplace method is
reported at the beginning of the output file as CSV comments.

• Output columns log_p__ and log_q__, the unnormalized log density and
the unnormalized density of the Laplace approximation, respectively. These
can be used for diagnostics and importance sampling.

• Output columns for all model parameters on the constrained scale.

11.3. Diagnostic file outputs
If requested with output diagnostic_file=, a JSON file will be created which
contains the log density, the gradient, and the Hessian of the log density evaluated
at the mode.

11.4. Example
To get an approximate estimate of the mode and standard deviation of the example
Bernoulli model given the example dataset:

• find the MAP estimate by running optimization with argument jaco-
bian=true

• run the Laplace estimator using the MAP estimate as the mode argument.

Because the default output file name from all methods is output.csv, a more
informative name is used for the output of optimization. We run the commands
from the CmdStan home directory. This results in a sample with mean 2.7 and
standard deviation 0.12. In comparison, running the NUTS-HMC sampler results
in mean 2.6 and standard deviation 0.12.

./examples/bernoulli/bernoulli optimize jacobian=1 \
data file=examples/bernoulli/bernoulli.data.json \
output file=bernoulli_optimize_lbfgs.csv random seed=1234

./examples/bernoulli/bernoulli laplace mode=bernoulli_optimize_lbfgs.csv \
data file=examples/bernoulli/bernoulli.data.json random seed=1234

The header and first few data rows of the output sample are shown below.

method = laplace
laplace
mode = bernoulli_lbfgs.csv
jacobian = true (Default)
draws = 1000 (Default)

76 CHAPTER 11. LAPLACE SAMPLING

calculate_lp = true (default)
id = 1 (Default)
data
file = examples/bernoulli/bernoulli.data.json
init = 2 (Default)
random
seed = 875960551 (Default)
output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)
sig_figs = 8 (Default)
profile_file = profile.csv (Default)
num_threads = 1 (Default)
log_p__,log_q__,theta
-9.4562,-2.33997,0.0498545
-6.9144,-0.0117349,0.182898
-7.18171,-0.746034,0.376428
...

12. Extracting log probabilities and gradients
for diagnostics

CmdStan can return the computed log probability and the gradient with respect to
a set of parameters.

This is similar to the diagnose subcommand, but the output format differs and the
results here are not compared with those from finite differences.

Note: Startup and data initialization costs mean that this method is not an efficient
way to calculate these quantities. It is provided only for convenience and should
not be used for serious computation.

12.1. Configuration
This method takes 3 arguments:

• jacobian - Whether or not the Jacobian adjustment for constrained param-
eters should be included in the gradient. Default value is true (include
adjustment).

• constrained_params - Input file of parameters values on the constrained
scale. A single set of constrained parameters can be specified using JSON
format. Alternatively, the input file can be set of draws in StanCSV format.

• unconstrained_params - Input file (JSON or R dump) of parameter values
on unconstrained scale. These files should contain a single variable, called
params_r, which is a flattened vector of all unconstrained parameters. If this
object is two dimensional, each entry should be a vector of the same form and
the output will feature multiple rows.

Only one of constrained_params and unconstrained_params can be specified.

For more on the differences between constrained and unconstrained parameters,
see the Stan reference manual section on variable transforms.

12.2. CSV output
The output file consists of the following pieces of information:

77

https://mc-stan.org/docs/stan-users-guide/reparameterization.html
json_apdx.qmd
stan_csv_apdx.qmd
https://mc-stan.org/docs/reference-manual/transforms.html

78CHAPTER 12. EXTRACTING LOG PROBABILITIES AND GRADIENTS FOR DIAGNOSTICS

• The full set of configuration options available for the log_prob method is
reported at the beginning of the output file as CSV comments.

• Column headers, the first column is labelled lp__, and the rest are named
after parameters. These will be the unconstrained parameters, regardless of
whether constrained or unconstrained parameters were supplied as input.

• Values which correspond to the value of the log density (column 1) and the
gradient with respect to each parameter (remaining columns).

For example, if we have a file called params.json:

{
"theta" : 0.1

}

We can run the example model:

/bernoulli log_prob constrained_params=params.json data file=bernoulli.data.json

This yields

method = log_prob
log_prob
unconstrained_params = (Default)
constrained_params = params.json
jacobian = true (Default)
id = 1 (Default)
data
file = bernoulli.data.json
init = 2 (Default)
random
seed = 2390820139 (Default)
output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)
sig_figs = 8 (Default)
profile_file = profile.csv (Default)
num_threads = 1 (Default)
lp_,theta
-7.856,1.8

13. Diagnosing HMC by Comparison of Gra-
dients

CmdStan has a basic diagnostic feature that will calculate the gradients of the initial
state and compare them with gradients calculated by finite differences. Discrepan-
cies between the two indicate that there is a problem with the model or initial states
or else there is a bug in Stan.

To allow for the possibility of adding other kinds of diagnostic tests, the diagnose
method argument configuration has subargument test which currently only takes
value gradient. There are two available gradient test configuration arguments:

• epsilon - The finite difference step size. Must be a positive real number.
Default value is 1−6

• error - The error threshold. Must be a positive real number. Default value is
1−6

To run on the different platforms with the default configuration, use one of the
following.

Mac OS and Linux

> ./my_model diagnose data file=my_data

Windows

> my_model diagnose data file=my_data

To relax the test threshold, specify the error argument as follows:

> ./my_model diagnose test=gradient error=0.0001 data file=my_data

To see how this works, we run diagnostics on the example bernoulli model:

> ./bernoulli diagnose data file=bernoulli.data.R

Executing this command prints output to the console and as a series of comment
lines to the output csv file. The console output is:

method = diagnose
diagnose
test = gradient (Default)

79

80 CHAPTER 13. DIAGNOSING HMC BY COMPARISON OF GRADIENTS

gradient
epsilon = 9.9999999999999995e-07 (Default)
error = 9.9999999999999995e-07 (Default)

id = 0 (Default)
data
file = bernoulli.data.json

init = 2 (Default)
random
seed = 2152196153 (Default)

output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

TEST GRADIENT MODE

Log probability=-8.42814

param idx value model finite diff error
0 0.0361376 -3.1084 -3.1084 -2.37554e-10

The same information is printed to the output file as csv comments, i.e., each line is
prefixed with a pound sign #.

Part III

CmdStan Utilities

81

14. stanc: Translating Stan to C++

CmdStan translates Stan programs to C++ using the Stan compiler program which
is included in the CmdStan release bin directory as program stanc. One can view
the complete stanc documentation in the Stan User’s Guide.

As of release 2.22, the CmdStan Stan to C++ compiler is written in OCaml. This
compiler is called “stanc3” and has has its own repository https://github.com/stan-
dev/stanc3, from which pre-built binaries for Linux, Mac, and Windows can be
downloaded.

14.1. Instantiating the stanc binary
Before the Stan compiler can be used, the binary stanc must be created. This can be
done using the makefile as follows. For Mac and Linux:

make bin/stanc

For Windows:

make bin/stanc.exe

This is also done as part of the make build command.

14.2. The Stan compiler program
The Stan compiler program stanc converts Stan programs to C++ concepts. If the
compiler encounters syntax errors in the program, it will provide an error message
indicating the location in the input where the failure occurred and reason for the
failure. The following example illustrates a fully qualified call to stanc to generate
the C++ translation of the example model bernoulli.stan. For Linux and Mac:

> cd <cmdstan-home>
> bin/stanc --o=bernoulli.hpp examples/bernoulli/bernoulli.stan

For Windows:

> cd <cmdstan-home>
> bin/stanc.exe --o=bernoulli.hpp examples/bernoulli/bernoulli.stan

The base name of the Stan program file determines the name of the C++ model
class. Because this name is the name of a C++ class, it must start with an alphabetic
character (a--z or A--Z) and contain only alphanumeric characters (a--z, A--Z,

83

https://mc-stan.org/docs/stan-users-guide/using-stanc.html

84 CHAPTER 14. STANC: TRANSLATING STAN TO C++

and 0--9) and underscores (_) and should not conflict with any C++ reserved
keyword.

The C++ code implementing the class is written to the file bernoulli.hpp in the
current directory. The final argument, bernoulli.stan, is the file from which to
read the Stan program.

In practice, stanc is invoked indirectly, via the GNU Make utility, which contains
rules that compile a Stan program to its corresponding executable. To build the
simple Bernoulli model via make, we specify the name of the target executable file.
On Mac and Linux, this is the name of the Stan program with the .stan omitted.
On Windows, replace .stan with .exe, and make sure that the path is given with
slashes and not backslashes. For Linux and Mac:

> make examples/bernoulli/bernoulli

For Windows:

> make examples/bernoulli/bernoulli.exe

The makefile rules first invoke the stanc compiler to translate the Stan model to
C++ , then compiles and links the C++ code to a binary executable. The makefile
variable STANCFLAGS can be used to to override the default arguments to stanc, e.g.,

> make STANCFLAGS="--include-paths=~/foo" examples/bernoulli/bernoulli

https://mc-stan.org/docs/stan-users-guide/using-stanc.html#stanc-args

15. stansummary: MCMC Output Analysis

The CmdStan stansummary program reports statistics for one or more sampler
chains over all sampler and model parameters and quantities of interest. The
statistics reported include both summary statistics of the estimates and diagnostic
statistics on the sampler chains, reported in the following order:

• Mean - sample mean
• MCSE - Monte Carlo Standard Error, a measure of the amount of noise in the

sample
• StdDev - sample standard deviation - the standard deviation around the

sample mean.
• MAD - Median Absolute Deviation - the median absolute deviation around

the sample median.
• Quantiles - default 5%, 50%, 95%
• ESS_bulk
• ESS_tail
• ESS_bulk/s - Bulk ESS per second
• R_hat - R̂ statistic, a MCMC convergence diagnostic

When reviewing the stansummary output, it is important to check the final three
output columns first - these are the diagnostic statistics on MCMC convergence and
effective sample size. A R̂ statistic of greater than 1 indicates potential convergence
problems and that the sample is not presentative of the target posterior, thus the
estimates of the mean and all other summary statistics are likely to be invalid. A
value 1.01 can be used as generic threshold to decide whether more iterations or
further convergence analysis is needed, but other thresholds can be used depending
on the specific use case.

Estimation by sampling produces an approximate value for the model parameters;
the MCSE statistic indicates the amount of uncertainty in the estimate. Therefore
MCSE column is placed next to the sample mean column, in order to make it easy
to compare this sample with others.

For more information, see the Posterior Analysis chapter of the Stan Reference Man-
ual which describes both the theory and practice of MCMC estimation techniques.

The statistics - Mean, StdDev, MAD, and Quantiles - are computed directly from all
draws across all chains. The diagnostic statistics - ESS_bulk, ESS_tail, and R_hat

85

https://mc-stan.org/docs/reference-manual/analysis.html

86 CHAPTER 15. STANSUMMARY: MCMC OUTPUT ANALYSIS

are computed from the rank-normalized, folded, and splitted chains according to
the definitions by Vehtari et al. (2021). the MCSE statistic is computed using split
chain R_hat and autocorrelations. The summary statistics and the algorithms used
to compute them are described in sections Notation for draws and Effective sample
size.

15.1. Building the stansummary command
The CmdStan makefile task build compiles the stansummary utility into the bin
directory. It can be compiled directly using the makefile as follows:

> cd <cmdstan-home>
> make bin/stansummary

15.2. Running the stansummary program
The stansummary utility processes one or more output files from a set of chains
from one run of the HMC sampler. To run stansummary on the output file or files
generated by a run of the sampler, on Mac or Linux:

<cmdstan-home>/bin/stansummary <file_1.csv> ... <file_N.csv>

On Windows, use backslashes to call the stansummary.exe.

<cmdstan-home>\bin\stansummary.exe <file_1.csv> ... <file_N.csv>

For example, after running 4 chains to fit the example model eight_schools.stan
to the supplied example data file, we run stansummary on the resulting Stan CSV
output files to get the following report:

> bin/stansummary eight_*.csv
Inference for Stan model: eight_schools_model
4 chains: each with iter=1000; warmup=1000; thin=1; 1000 iterations saved.

Warmup took (0.065, 0.078, 0.080, 0.086) seconds, 0.31 seconds total
Sampling took (0.047, 0.044, 0.045, 0.053) seconds, 0.19 seconds total

Mean MCSE StdDev MAD 5% 50% 95% ESS_bulk ESS_tail ESS_bulk/s R_hat

lp__ -19 0.31 4.9 5.0 -27 -19 -
11 264 275 1396 1.0
accept_stat__ 0.77 0.024 0.31 0.096 6.5e-
03 0.93 1.00 243 273 1287 1.0
stepsize__ 0.25 nan 0.016 0.016 2.2e-
01 0.25 0.26 nan nan nan nan

https://mc-stan.org/docs/reference-manual/analysis.html#notation-for-samples-chains-and-draws
https://mc-stan.org/docs/reference-manual/analysis.html#effective-sample-size.section
https://mc-stan.org/docs/reference-manual/analysis.html#effective-sample-size.section

15.2. RUNNING THE STANSUMMARY PROGRAM 87

treedepth__ 3.4 0.048 0.76 0.00 2.0e+00 4.0 4.0 285 295 1507 1.0
n_leapfrog__ 13 0.80 7.1 0.00 3.0e+00 15 31 220 274 1165 1.0
divergent__ 0.015 nan 0.12 0.00 0.0e+00 0.00 0.00 nan nan nan nan
energy__ 24 0.32 5.4 5.5 1.5e+01 24 33 289 488 1527 1.0

mu 7.8 0.20 5.5 4.9 -
1.3 7.7 17 688 915 3641 1.0
theta[1] 12 0.28 8.7 7.4 -
0.36 11 28 908 763 4802 1.0
theta[2] 7.7 0.19 6.8 6.1 -
3.4 7.8 19 1194 2011 6320 1.0
theta[3] 5.6 0.23 8.5 7.0 -
9.1 6.2 18 1260 1723 6669 1.0
theta[4] 7.5 0.20 7.0 6.5 -
4.1 7.6 19 1171 1744 6197 1.0
theta[5] 4.6 0.21 6.7 6.3 -
7.0 4.9 15 1045 1513 5530 1.0
theta[6] 5.7 0.23 7.2 6.4 -
6.8 6.0 17 1012 1626 5354 1.0
theta[7] 11 0.24 7.1 6.6 0.025 11 24 885 473 4682 1.0
theta[8] 8.4 0.23 8.5 7.3 -
4.8 8.1 23 1280 1848 6773 1.0
tau 7.8 0.26 5.9 4.5 1.8 6.3 18 248 178 1310 1.0

Samples were drawn using hmc with nuts.
For each parameter, ESS_bulk and ESS_tail measure the effective sample size for the entire sample (bulk)
and for the .05 and .95 tails (tail), and R_hat measures the potential scale reduction on split chains.
At convergence R_hat will be very close to 1.00.

The console output information consists of

• Model, chains, and timing summaries
• Sampler parameter statistics
• Model parameter statistics
• Sampling algorithm - either nuts (shown here) or static HMC.

There is one row per parameter and the row order in the summary report corre-
sponds to the column order in the Stan CSV output file. NaN values for some
columns are expected if the value doesn’t change, e.g. if there are no divergent
transitions.

88 CHAPTER 15. STANSUMMARY: MCMC OUTPUT ANALYSIS

Sampler parameters
The initial Stan CSV columns provide information on the sampler state for each
draw:

• lp__ - the total log probability density (up to an additive constant) at each
sample

• accept_stat__ - the average Metropolis acceptance probability over each
simulated Hamiltonian trajectory

• stepsize__ - integrator step size
• treedepth__ - depth of tree used by NUTS (NUTS sampler)
• n_leapfrog__ - number of leapfrog calculations (NUTS sampler)
• divergent__ - has value 1 if trajectory diverged, otherwise 0. (NUTS sam-

pler)
• energy__ - value of the Hamiltonian
• int_time__ - total integration time (static HMC sampler)

Because we ran the NUTS sampler, the above summary reports sampler parameters
treedepth__, n_leapfrog__, and divergent__; the static HMC sampler would
report int_time__ instead.

Model parameters and quantities of interest
The remaining Stan CSV columns report the values of all parameters, transformed
parameters, and generated quantities in the order in which these variables are
declared in the Stan program. For container variables, i.e., vector, row_vector,
matrix, and array variables, the statistics for each element are reported separately,
in row-major order. The eight_schools.stan program parameters block contains
the following parameter variable declarations:

real mu;
array[J] real theta;
real<lower=0> tau;

In the example data, J is 8; therefore the stansummary listing reports on theta[1]
through theta[8].

15.3. Command-line options
The stansummary command syntax provides a set of flags to customize the output
which must precede the list of filenames. When invoked with no arguments or with
the -h or --help option, the program prints the usage message to the console and
exits.

Report statistics for one or more Stan CSV files from a HMC sampler run.

15.3. COMMAND-LINE OPTIONS 89

Example: stansummary model_chain_1.csv model_chain_2.csv
Options:
-a, --autocorr [n] Display the chain autocorrelation for the n-

th
input file, in addition to statistics.

-c, --csv_filename [file] Write statistics to a CSV file.
-h, --help Produce help message, then exit.
-p, --percentiles [values] Percentiles to report as ordered set of

comma-separated numbers from (0.1,99.9), inclusive.
Default is 5,50,95.

-s, --sig_figs [n] Significant figures reported. Default is 2.
Must be an integer from (1, 18), inclusive.

-i, --include_param [name] Include the named parameter in the summary output.
By default, all parameters in the file are summarized,
passing this argument one or more times will filter
the output down to just the requested arguments.

Both short an long option names are allowed. Short names are specified as -<o>
<value>; long option names can be specified either as --<option>=<value> or
--<option> <value>.

The --percentiles argument can also be passed an empty string "", which results
in no percentiles being displayed in the output of the command.

The amount of precision in the sampler output limits the amount of real precision in
the summary report. CmdStan’s command line interface also has output argument
sig_figs. The default sampler output precision is 8. The --sig_figs argument
to the stansummary program should not exceed the sig_figs argument to the
sampler.

16. diagnose: Diagnosing Biased Hamilto-
nian Monte Carlo Inferences

CmdStan is distributed with a utility that is able to read in and analyze the output
of one or more Markov chains to check for the following potential problems:

• Divergent transitions
• Transitions that hit the maximum treedepth
• Low E-BFMI values
• Low effective sample sizes
• High R̂ values

The meanings of several of these problems are discussed in
https://arxiv.org/abs/1701.02434.

16.1. Building the diagnose command
The CmdStan makefile task build compiles the diagnose utility into the bin direc-
tory. It can be compiled directly using the makefile as follows:

> cd <cmdstan-home>
> make bin/diagnose

16.2. Running the diagnose command
The diagnose command is executed on one or more output files, which are provided
as command-line arguments separated by spaces. If there are no apparent problems
with the output files passed to diagnose, it outputs a message that all transitions
are within treedepth limit and that no divergent transitions were found. It problems
are detected, it outputs a summary of the problem along with possible ways to
mitigate it.

To fully exercise the diagnose command, we run 4 chains to sample from the Neal’s
funnel distribution, discussed in the Stan User’s Guide reparameterization section.
This program defines a distribution which exemplifies the difficulties of sampling
from some hierarchical models:

parameters {
real y;
vector[9] x;

90

https://mc-stan.org/docs/stan-users-guide/reparameterization.html

16.2. RUNNING THE DIAGNOSE COMMAND 91

}
model {

y ~ normal(0, 3);
x ~ normal(0, exp(y / 2));

}

This program is available on GitHub: https://github.com/stan-dev/example-
models/blob/master/misc/funnel/funnel.stan

Stan has trouble sampling from the region where y is small and thus x is constrained
to be near 0. This is due to the fact that the density’s scale changes with y, so that a
step size that works well when y is large is inefficient when y is small and vice-versa.

Running 4 chains produces output files output_1.csv, . . . , output_4.csv. We run
diagnose command on this fileset:

> bin/diagnose output_*.csv

The output is printed to the terminal window:

Checking sampler transitions treedepth.
18 of 4000 (0.45%) transitions hit the maximum treedepth limit of 10, or 2^10 leapfrog steps.
Trajectories that are prematurely terminated due to this limit will result in slow exploration.
For optimal performance, increase this limit.

Checking sampler transitions for divergences.
11 of 4000 (0.28%) transitions ended with a divergence.
These divergent transitions indicate that HMC is not fully able to explore the posterior distribution.
Try increasing adapt delta closer to 1.
If this doesn't remove all divergences, try to reparameterize the model.

Checking E-BFMI - sampler transitions HMC potential energy.
The E-BFMI, 0.06, is below the nominal threshold of 0.30 which suggests that HMC may have trouble exploring the target distribution.
If possible, try to reparameterize the model.

Rank-normalized split effective sample size satisfactory for all parameters.

The following parameters had rank-normalized split R-
hat greater than 1.01:
y, x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9]

Such high values indicate incomplete mixing and biased estimation.
You should consider regularizing your model with additional prior information or a more effective parameterization.

Processing complete.

92CHAPTER 16. DIAGNOSE: DIAGNOSING BIASED HAMILTONIAN MONTE CARLO INFERENCES

In this example, changing the model to use a non-centered parameterization is the
only way to correct these problems. In this second model, the parameters x_raw
and y_raw are sampled as independent standard normals, which is easy for Stan.

parameters {
real y_raw;
vector[9] x_raw;

}
transformed parameters {

real y;
vector[9] x;

y = 3.0 * y_raw;
x = exp(y / 2) * x_raw;

}
model {

y_raw ~ std_normal(); // implies y ~ normal(0, 3)
x_raw ~ std_normal(); // implies x ~ normal(0, exp(y / 2))

}

This program is available on GitHub: https://github.com/stan-dev/example-
models/blob/master/misc/funnel/funnel_reparam.stan

We compile the program and run 4 chains, as before. Now the diagnose command
doesn’t detect any problems:

Checking sampler transitions treedepth.
Treedepth satisfactory for all transitions.

Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory.

Rank-normalized split effective sample size satisfactory for all parameters.

Rank-normalized split R-hat values satisfactory for all parameters.

Processing complete, no problems detected.

16.3. DIAGNOSE WARNINGS AND RECOMMENDATIONS 93

16.3. diagnose warnings and recommendations
Divergent transitions after warmup

Stan uses Hamiltonian Monte Carlo (HMC) to explore the target distribution — the
posterior defined by a Stan program + data — by simulating the evolution of a
Hamiltonian system. In order to approximate the exact solution of the Hamiltonian
dynamics we need to choose a step size governing how far we move each time we
evolve the system forward. That is, the step size controls the resolution of the sampler.

Unfortunately, for particularly hard problems there are features of the target distri-
bution that are too small for this resolution. Consequently the sampler misses those
features and returns biased estimates. Fortunately, this mismatch of scales manifests
as divergences which provide a practical diagnostic. If there are any divergences
after warmup, then the sample based estimates may be biased.

If the divergent transitions cannot be eliminated by increasing the adapt_delta
parameter, we have to find a different way to write the model that is logically
equivalent but simplifies the geometry of the posterior distribution. This problem
occurs frequently with hierarchical models and one of the simplest examples is
Neal’s Funnel, which is discussed in the reparameterization section of the Stan
User’s Guide.

Maximum treedepth exceeded
Warnings about hitting the maximum treedepth are not as serious as warnings about
divergent transitions. While divergent transitions are a validity concern, hitting the
maximum treedepth is an efficiency concern. Configuring the No-U-Turn-Sampler
(the variant of HMC used by Stan) requires putting a cap on the depth of the trees
that it evaluates during each iteration (for details on this see the Hamiltonian Monte
Carlo Sampling chapter in the Stan Reference Manual). When the maximum allowed
tree depth is reached it indicates that NUTS is terminating prematurely to avoid
excessively long execution time.

This is controlled through the max_depth argument. If the number of transitions
which exceed maximum treedepth is low, increasing max_depth may correct this
problem.

Low E-BFMI values - sampler transitions HMC potential energy.
The sampler csv output column energy__ is used to diagnose the accuracy of any
Hamiltonian Monte Carlo sampler. If the standard deviation of energy is much
larger than

√
D/2, where D is the number of unconstrained parameters, then the

sampler is unlikely to be able to explore the posterior adequately. This is usually
due to heavy-tailed posteriors and can sometimes be remedied by reparameterizing

https://en.wikipedia.org/wiki/Hamiltonian_system
https://mc-stan.org/docs/stan-users-guide/reparameterization.html
https://mc-stan.org/docs/reference-manual/mcmc.html

94CHAPTER 16. DIAGNOSE: DIAGNOSING BIASED HAMILTONIAN MONTE CARLO INFERENCES

the model.

The warning that some number of chains had an estimated Bayesian Fraction of
Missing Information (BFMI) that was too low implies that the adaptation phase
of the Markov Chains did not turn out well and those chains likely did not ex-
plore the posterior distribution efficiently. For more details on this diagnostic,
see https://arxiv.org/abs/1604.00695. Should this occur, you can either run the
sampler for more iterations, or consider reparameterizing your model.

Low effective sample sizes
Roughly speaking, the effective sample size (ESS) of a quantity of interest captures
how many independent draws contain the same amount of information as the
dependent sample obtained by the MCMC algorithm. Clearly, the higher the
ESS the better. Stan uses R̂ adjustment to use the between-chain information in
computing the ESS. For example, in case of multimodal distributions with well-
separated modes, this leads to an ESS estimate that is close to the number of distinct
modes that are found.

Bulk-ESS refers to the effective sample size based on the rank normalized draws.
This does not directly compute the ESS relevant for computing the mean of the
parameter, but instead computes a quantity that is well defined even if the chains do
not have finite mean or variance. Overall bulk-ESS estimates the sampling efficiency
for the location of the distribution (e.g. mean and median).

Often quite smaller ESS would be sufficient for the desired estimation accuracy, but
the estimation of ESS and convergence diagnostics themselves require higher ESS.
We recommend requiring that the bulk-ESS is greater than 100 times the number
of chains. For example, when running four chains, this corresponds to having a
rank-normalized effective sample size of at least 400.

High R̂

R̂ (R-hat) convergence diagnostic compares the between- and within-chain estimates
for model parameters and other univariate quantities of interest. If chains have not
mixed well (ie, the between- and within-chain estimates don’t agree), R̂ is larger
than 1. We recommend running at least four chains by default and only using
the sample if R̂ is less than 1.01. Stan reports R̂ which is the maximum of rank
normalized split-R-hat and rank normalized folded-split-R-hat, which works for
thick tailed distributions and is sensitive also to differences in scale. For more
details on this diagnostic, see https://arxiv.org/abs/1903.08008.

There is further discussion in https://arxiv.org/abs/1701.02434; however the cor-
rect resolution is necessarily model specific, hence all suggestions general guidelines

16.3. DIAGNOSE WARNINGS AND RECOMMENDATIONS 95

only.

17. print (deprecated): MCMC Output Anal-
ysis

The print utility is deprecated, but is still available until CmdStan v3.0. It has been
replaced by the stansummary utility.

96

stansummary.qmd

Part IV

Appendices

97

18. Stan CSV File Format

The output from all CmdStan methods is in CSV format. A Stan CSV file is a data
table where the columns are the method and model parameters and quantities of
interest. Each row contains one record’s worth of data in plain-text format using
the comma character (‘,’) as the field delimiter (hence the name).

For the Stan CSV files, data is strictly numerical, however, possible values include
both positive and negative infinity and “Not-a-Number” which are represented as
the strings NaN, inf, +inf, -inf. All other values are written in decimal notation by
default with at most 8 digits of precision. The number of significant digits written
can be controlled with argument sig_figs=<int>. See more in Output control
arguments section.

Stan CSV files have a header row containing the column names. They also make
extensive use of CSV comments, i.e., lines which begin with the # character. In
addition to initial and final comment rows, some methods also put comment rows in
the middle of the data table, which makes it difficult to use many of the commonly
used CSV parser packages.

18.1. CSV column names and order
The data table is laid out with zero or more method-specific columns followed
by the Stan program variables declared in the parameter block, then the variables
in the transformed parameters block, finally variables declared in the generated
quantities, in declaration order.

Stan provides three types of container objects: arrays, vectors, and matrices. In order
to output all elements of a container object, it is necessary to choose an indexing
notation and a serialization order. The Stan CSV file indexing notation is

• The column name consists of the variable name followed by the element
indices.

• Indices are delimited by periods (‘.’).
• Indexing is 1-based, i.e., given a dimension of size N, the first element index

is 1 and the last element index is N.
• Tuples are laid out element-by-element, with each tuple slot being delimited

by a colon (‘:’).

Container variables are serialized in column major order, a.k.a. “Fortran” order.

99

https://en.wikipedia.org/wiki/Comma-separated_values
https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

100 CHAPTER 18. STAN CSV FILE FORMAT

In column major-order for a 2-D container, all elements of column 1 are listed in
ascending order, followed by all elements of column 2, thus the column index
changes the slowest and the row index changes the fastest. For higher dimensions,
this generalizes to the last index changing the slowest and first index changing the
fastest.

To see how this works, consider a 3-dimensional variable with dimension sizes 2,
3, and 4, e.g., an array of matrices, a 2-D array of vectors or row_vectors, or a 3-D
array of scalars. Given a Stan program with model parameter variable:

array[2, 3, 4] real foo;

The Stan CSV file will require 24 columns to output the elements of foo. The first 6
columns will be labeled:

foo.1.1.1,foo.2.1.1,foo.1.2.1,foo.2.2.1,foo.1.3.1,foo.2.3.1

The final 6 columns will be labeled:

foo.1.1.4,foo.2.1.4,foo.1.2.4,foo.2.2.4,foo.1.3.4,foo.2.3.4

To see how a tuple would be laid out, consider the following variable:

tuple(real, array[3] real) bar;

This will correspond to 4 columns in the CSV file, which are labeled

bar:1,bar:2.1,bar:2.2,bar:2.3

18.2. MCMC sampler CSV output
The sample method produces both a Stan CSV output file and a diagnostic file which
contains the sampler parameters together with the gradients on the unconstrained
scale and log probabilities for all parameters in the model.

To see how this works, we show snippets of the output file resulting from the
following command:

./bernoulli sample save_warmup=1 num_warmup=200 num_samples=100 \
data file=bernoulli.data.json \
output file=bernoulli_samples.csv

Sampler Stan CSV output file
The sampler output file contains the following:

• Initial comment rows listing full CmdStan argument configuration.
• Header row
• Data rows containing warmup draws, if run with option save_warmup=1

18.2. MCMC SAMPLER CSV OUTPUT 101

• Comment rows for adaptation listing step size and metric used for sampling
• Sampling draws
• Comment rows giving timing information

Initial comments rows: argument configuration

All configuration arguments are listed, one per line, indented according to Cmd-
Stan’s hierarchy of arguments and sub-arguments. Arguments not overtly specified
on the command line are annotated as (Default).

In the above example the num_samples, num_warmup, and save_warmup arguments
were specified, whereas subargument thin is left at its default value, as seen in the
initial comment rows:

stan_version_major = 2
stan_version_minor = 24
stan_version_patch = 0
model = bernoulli_model
method = sample (Default)
sample
num_samples = 100
num_warmup = 200
save_warmup = 1
thin = 1 (Default)
adapt
engaged = 1 (Default)
gamma = 0.050000000000000003 (Default)
delta = 0.80000000000000004 (Default)
kappa = 0.75 (Default)
t0 = 10 (Default)
init_buffer = 75 (Default)
term_buffer = 50 (Default)
window = 25 (Default)
algorithm = hmc (Default)
hmc
engine = nuts (Default)
nuts
max_depth = 10 (Default)
metric = diag_e (Default)
metric_file = (Default)
stepsize = 1 (Default)
stepsize_jitter = 0 (Default)
id = 0 (Default)
data

102 CHAPTER 18. STAN CSV FILE FORMAT

file = bernoulli.data.json
init = 2 (Default)
random
seed = 2991989946 (Default)
output
file = bernoulli_samples.csv
diagnostic_file = bernoulli_diagnostics.csv
refresh = 100 (Default)

Note that when running multi-threaded programs which use reduce_sum for high-
level parallelization, the number of threads used will also be included in this initial
comment header.

Column headers

The CSV header row lists all sampler parameters, model parameters, transformed
parameters, and quantities of interest. The sampler parameters are described in
detail in the output file section of the chapter on MCMC Sampling. The example
model bernoulli.stan only contains one parameter theta, therefore the CSV file
data table consists of 7 sampler parameter columns and one column for the model
parameter:

lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,theta

As a second example, we show the output of the eight_schools.stan model on
run on example dataset. This model has 3 parameters: mu, theta a vector whose
length is dependent on the input data, here N = 8, and tau. The initial columns
are for the 7 sampler parameters, as before. The column headers for the model
parameters are:

mu,theta.1,theta.2,theta.3,theta.4,theta.5,theta.6,theta.7,theta.8,tau

Data rows containing warmup draws

When run with option save_warmup=1, the thinned warmup draws are written to
the CSV output file directly after the CSV header line. Since the default option is
save_warmup=0, this section is usually not present in the output file.

Here we specified num_warmup=200 and left thin at the default value 1, therefore
the next 200 lines are data rows containing the sampler and model parameter values
for each warmup draw.

-6.74827,1,1,1,1,0,6.75348,0.247195
-6.74827,4.1311e-103,14.3855,1,1,0,6.95087,0.247195
-6.74827,1.74545e-21,2.43117,1,1,0,7.67546,0.247195

parallelization.qmd
parallelization.qmd

18.2. MCMC SAMPLER CSV OUTPUT 103

-6.77655,0.99873,0.239791,2,7,0,6.81982,0.280619
-6.7552,0.999392,0.323158,1,3,0,6.79175,0.26517

Comment rows for adaptation

During warmup, the sampler adjusts the stepsize and the metric. At the end
warmup, the sampler outputs this information as comments.

Adaptation terminated
Step size = 0.813694
Diagonal elements of inverse mass matrix:
0.592879

As the example bernoulli model only contains a single parameter, and as the default
metric is diag_e, the inverse mass matrix is a 1 × 1 matrix, and the length of the
diagonal vector is also 1.

In contrast, if we run the eight schools example model with metric dense_e, the
adaptation comments section lists both the stepsize and the full 10 × 10 inverse
mass matrix:

Adaptation terminated
Step size = 0.211252
Elements of inverse mass matrix:
25.6389, 17.3379, 13.9455, 15.9036, 15.1953, 8.73729, 16.9486, 14.4231, 17.4969, 0.518757
17.3379, 79.8719, 12.2989, -1.28006, 9.92895, -
3.51622, 10.073, 22.0196, 19.8151, 4.71028
13.9455, 12.2989, 36.1572, 12.8734, 11.9446, 9.09582, 9.74519, 10.9539, 12.1204, 0.211353
15.9036, -1.28006, 12.8734, 59.9998, 10.245, 8.03461, 16.9754, 3.13443, 9.68292, -
1.36097
15.1953, 9.92895, 11.9446, 10.245, 43.548, 15.3403, 13.0537, 7.69818, 10.1093, 0.155245
8.73729, -3.51622, 9.09582, 8.03461, 15.3403, 39.981, 12.7695, 1.16248, 6.13749, -
2.08507
16.9486, 10.073, 9.74519, 16.9754, 13.0537, 12.7695, 45.8884, 11.6074, 8.96413, -
1.15946
14.4231, 22.0196, 10.9539, 3.13443, 7.69818, 1.16248, 11.6074, 49.4083, 18.9169, 3.15661
17.4969, 19.8151, 12.1204, 9.68292, 10.1093, 6.13749, 8.96413, 18.9169, 68.0228, 1.74104
0.518757, 4.71028, 0.211353, -1.36097, 0.155245, -2.08507, -
1.15946, 3.15661, 1.74104, 1.50433

Note that when the sampler is run with arguments algorithm=fixed_param, this section
will be missing.

Data rows containing sampling draws

The output file contains the values for the thinned set draws during sampling. Here

104 CHAPTER 18. STAN CSV FILE FORMAT

we specified num_sampling=100 and left thin at the default value 1, therefore the
next 100 lines are data rows containing the sampler and model parameter values
for each sampling iteration.

-8.76921,0.796814,0.813694,1,1,0,9.75854,0.535093
-6.79143,0.979604,0.813694,1,3,0,9.13092,0.214431
-6.79451,0.955359,0.813694,2,3,0,7.19149,0.289341

Timing information

Upon successful completion, the sampler writes timing information to the output
CSV file as a series of final comment lines:

#
Elapsed Time: 0.005 seconds (Warm-up)
0.002 seconds (Sampling)
0.007 seconds (Total)
#

Diagnostic CSV output file
The diagnostic file contains the following:

• Initial comment rows listing full CmdStan argument configuration.
• Header row
• Data rows containing warmup draws, if run with option save_warmup=1
• Sampling draws
• Comment rows giving timing information

The columns in this file contain, in order:

• all sampler parameters
• all model parameter estimates (on the unconstrained scale)
• the latent Hamiltonian for each parameter
• the gradient for each parameters

The labels for the latent Hamiltonian columns are the parameter column label with
prefix p_ and the labels for the gradient columns are the parameter column label
with prefix g_.

These are the column labels from the file bernoulli_diagnostic.csv:

lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,theta,p_theta,g_theta

Profiling CSV output file
The profiling information is stored in a plain CSV format with no meta information
in the comments.

18.3. OPTIMIZATION OUTPUT 105

Each row represents timing information collected in a profile statement for a
given thread. It is possible that some profile statements have only one entry (if
they were only executed by one thread) and others have multiple entries (if they
were executed by multiple threads).

The columns are as follows:

• name, The name of the profile statement that is being timed
• thread_id, The thread that executed the profile statement
• total_time, The combined time spent executing statements inside the pro-

file which includes calculation with and without automatic differentiation
• forward_time, The time spent in the profile statement during the forward

pass of a reverse mode automatic differentiation calculation or during a
calculation without automatic differentiation

• reverse_time, The time spent in the profile statement during the reverse
(backward) pass of reverse mode automatic differentiation

• chain_stack, The number of objects allocated on the chaining automatic
differentiation stack. There is a function call for each of these objects in the
reverse pass

• no_chain_stack, The number of objects allocated on the non-chaining auto-
matic differentiation stack

• autodiff_calls, The total number of times the profile statement was exe-
cuted with automatic differentiation

• no_autodiff_calls - The total number of times the profile statement was
executed without automatic differentiation

18.3. Optimization output
• Config as comments
• Header row
• Penalized maximum likelihood estimate

18.4. Variational inference output
• Config as comments
• Header row
• Adaptation as comments
• Variational estimate
• Sample draws from estimate of the posterior

18.5. Generate quantities outputs
• Header row

106 CHAPTER 18. STAN CSV FILE FORMAT

• Quantities of interest

18.6. Diagnose method outputs
• Header row
• Gradients

19. JSON Format for CmdStan

CmdStan can use JSON format for input data for both model data and parameters.
Model data is read in by the model constructor. Model parameters are used to
initialize the sampler and optimizer.

19.1. Creating JSON files
You can create the JSON file yourself using the guidelines below, but a more
convenient way to create a JSON file for use with CmdStan is to use the
write_stan_json() function provided by the CmdStanR interface.

19.2. JSON syntax summary
JSON is a data interchange notation, defined by an EMCA standard. JSON data
files must in Unicode. JSON data is a series of structural tokens, literal tokens, and
values:

• Structural tokens are the left and right curly bracket {}, left and right square
bracket [], the semicolon ;, and the comma ,.

• Literal tokens must always be in lowercase. There are three literal tokens:
true, false, null.

• A primitive value is a single token which is either a literal, a string, or a
number.

• A string consists of zero or more Unicode characters enclosed in double quotes,
e.g. "foo". A backslash is used to escape the double quote character as well
as the backslash itself. JSON allows the use of Unicode character escapes,
e.g. "\\uHHHH" where HHHH is the Unicode code point in hex.

• Numbers are represented using either decimal notation or scientific notation.
The following are examples of numbers: 17, 17.2, -17.2, -17.2e8, 17.2e-8.
There is no distinction between integer and real numbers in the JSON format
other than whether they have periods or scientific notation.

• The special floating point values for positive infinity, negative infinity, and
not-a-number can be represented in multiple ways. Positive infinity can be
represented as the string "Inf", the string "Infinity", or the atom Infin-
ity. Negative infinity can be represented as the string "-Inf", the string

107

https://mc-stan.org/cmdstanr/reference/write_stan_json
https://ecma-international.org/publications-and-standards/standards/ecma-404/

108 CHAPTER 19. JSON FORMAT FOR CMDSTAN

"-Infinity", or the atom -Infinity. Not-a-number can be represented as
the string "NaN" or the atom NaN. These values may be mixed with other
numerical types.

• A complex scalar is represented as a two-element array consisting of its real
component followed by its imaginary component. For example, the complex
number 2.3 − 1.83i would be represented in JSON as the two-element array
[2.3, -1.83].

• A JSON array is an ordered, comma-separated list of zero or more JSON
values enclosed in square brackets. The elements of an array can be of any
type. The following are examples of arrays: [], [1], [0.2, "-inf", true].

• Vectors and row vectors in JSON are representing as arrays of their elements.
For example, both the vector [1 2]⊤ and the row vector [1 2] are represented
by the JSON array [1, 2].

• Complex vectors are represented as arrays of two-element arrays. For exam-
ple, the complex vector [2.3 − 1.83i − 4.8 + 2i]⊤ is represented as [[2.3,
-1.83], [-4.8, 2]] in JSON. A complex row vector has the same represen-
tation as its transpose (the vector with the same elements).

• Matrices are represented as arrays of their row vectors. For example, the 2 × 3
matrix [

1 2.7 −9.8
4.2 1.8 −7.3

]
is represented in JSON as [[1, 2.7, -9.8], [4.2, 1.8, -7.3]].

• Complex matrices are also represented as arrays of their row vectors. For
example, the 2 × 3 complex matrix[

1 + 2i 3 − 4.2i 13.1 + 2.7i
3.1 −5i 0

]
would be represented in JSON as [[[1, 2], [3, -4.2], [13.1, 2.7]],
[[3.1, 0], [0, -5], [0, 0]]].

• Tuples are written as nested JSON objects where the keys are strings for the
numbered slots in the tuple. For example, the tuple (1.5, 3.4) is represented
in JSON as {"1": 1.5, "2": 3.4}.

• A name-value pair consists of a string followed by a colon followed by a value,
either primitive or compound.

19.3. STAN DATA TYPES IN JSON NOTATION 109

• A JSON object is a comma-separated series of zero or more name-value pairs
enclosed in curly brackets. Each name-value pair is a member of the object.
Membership is unordered. Member names are not required to be unique.
The following are examples of objects: { }, {"foo": null}, {"bar" : 17,
"baz" : [14,15,16.6] }.

19.3. Stan data types in JSON notation
Stan follows the JSON standard. A Stan input file in JSON notation consists of
single JSON object which contains zero or more name-value pairs. This structure
corresponds to a Python data dictionary object. The following is an example of
JSON data for the simple Bernoulli example model:

{ "N" : 10, "y" : [0,1,0,0,0,0,0,0,0,1] }

Matrix data and multi-dimensional arrays are indexed in row-major order. For a
Stan program which has data block:

data {
int d1;
int d2;
int d3;
array[d1, d2, d3] int ar;

}

the following JSON input would be valid:

{ "d1" : 2,
"d2" : 3,
"d3" : 4,
"ar" : [[[0,1,2,3], [4,5,6,7], [8,9,10,11]],

[[12,13,14,15], [16,17,18,19], [20,21,22,23]]]
}

JSON ignores whitespace. In the above examples, the spaces and newlines are only
used to improve readability and can be omitted.

All data inputs are encoded as name-value pairs. The following table provides more
examples of JSON data. The left column contains a Stan data variable declaration
and the right column contains valid JSON data inputs.

Stan declaration JSON encoding

int i "i": 17

110 CHAPTER 19. JSON FORMAT FOR CMDSTAN

Stan declaration JSON encoding

real a "a" : 17
"a" : 17.2
"a" : "NaN"
"a" : "+inf"
"a" : "-inf"

complex z "z": [1, -2.3]
array[5] int "a" : [1, 2, 3, 4, 5]
array[5] real a "a" : [1, 2, 3.3, "NaN", 5]
array[2] complex b "b" : [[1, -2.3], [4.9, 0]]
vector[5] a "a" : [1, 2, 3.3, "NaN", 5]
row_vector[5] a "a" : [1, 2, 3.3, "NaN", 5]
matrix[2, 3] a "a" : [[1, 2, 3], [4, 5, 6]]
complex_vector[2] c "c" : [[-1.2, 3.3], [4.8, 1.9], [2.3,

0]]
complex_row_vector[2] c "c" : [[-1.2, 3.3], [4.8, 1.9], [2.3,

0]]
complex_matrix[2, 3] d "d" : [[[1, 1], [2, 2], [3, 3]], [4,

4], [5, 5], [6, 6]]]
tuple(real, array[2] int)
t

"t" : { "1": 1.4, "2": [1, 2]}

Empty arrays in JSON
JSON notation is not able to distinguish between multi-dimensional arrays where
any dimension is 0, e.g., a 2-D array with dimensions (1, 0), i.e., an array which
contains a single array which is empty, has JSON representation []. To see how
this works, consider the following Stan program data block:

data {
int d;
array[d] int ar_1d;
array[d, d] int ar_2d;
array[d, d, d] int ar_3d;

}

In the case where variable d is 1, all arrays will contain a single value. If array
variable ar_d1 contains value 7, 2-D array variable ar_d2 contains (an array which

19.3. STAN DATA TYPES IN JSON NOTATION 111

contains) value 8, and 3-D array variable ar_d3 contains (an array which contains
an array which contains) value 9, the JSON representation is:

{ "ar_d1" : [7],
"ar_d2" : [[8]],
"ar_d3" : [[[9]]]

}

However, in the case where variable d is 0, ar_d1 is empty, i.e., it contains no values,
as is ar_d2, ar_d3, and the JSON representation is

{ "d" : 0,
"ar_d1" : [],
"ar_d2" : [],
"ar_d3" : []

}

20. RDump Format for CmdStan

NOTE: Although the RDump format is still supported, I/O with JSON is faster and
recommended. See the chapter on JSON for more details.

RDump format can be used to represent values for Stan variables. This format was
introduced in SPLUS and is used in R, JAGS, and in BUGS (but with a different
ordering).

A dump file is structured as a sequence of variable definitions. Each variable is
defined in terms of its dimensionality and its values. There are three kinds of
variable declarations: - scalars - sequences - general arrays

20.1. Creating dump files
Dump files can be created from R using RStan, via the rstan package function
stan_rdump. Stan RDump files must be created via stan_rdump and not by R’s na-
tive dump function because R’s dump function uses a richer syntax than is supported
by the underlying Stan i/o libraries.

20.2. Scalar variables
A simple scalar value can be thought of as having an empty list of dimensions. Its
declaration in the dump format follows the SPLUS assignment syntax. For example,
the following would constitute a valid dump file defining a single scalar variable y
with value 17.2:

y <- 17.2

20.3. Sequence variables
One-dimensional arrays may be specified directly using the SPLUS sequence nota-
tion. The following example defines an integer-value and a real-valued sequence.

n <- c(1,2,3) y <- c(2.0,3.0,9.7)

Arrays are provided without a declaration of dimensionality because the reader
just counts the number of entries to determine the size of the array.

Sequence variables may alternatively be represented with R’s colon-based notation.
For instance, the first example above could equivalently be written as

112

json_apdx.qmd

20.4. ARRAY VARIABLES 113

n <- 1:3

The sequence denoted by 1:3 is of length 3, running from 1 to 3 inclusive. The colon
notation allows sequences going from high to low. The following are equivalent:

n <- 2:-2
n <- c(2,1,0,-1,-2)

As a special case, a sequence of zeros can also be represented in the dump format
by integer(x) and double(x), for type int and double, respectively. Here x is a
non-negative integer to specify the length. If x is 0, it can be omitted. The following
are some examples.

x1 <- integer()
x2 <- integer(0)
x3 <- integer(2)
y1 <- double()
y2 <- double(0)
y3 <- double(2)

20.4. Array variables
For more than one dimension, the dump format uses a dimensionality specification.
For example, the following defines a 2 × 3 array:

y <- structure(c(1,2,3,4,5,6), .Dim = c(2,3))

Data is stored column-major, thus the values for y will be:

y[1, 1] = 1
y[1, 2] = 3
y[1, 3] = 5
y[2, 1] = 2
y[2, 2] = 4
y[2, 3] = 6

The structure keyword just wraps a sequence of values and a dimensionality
declaration, which is itself just a sequence of non-negative integer values. The
product of the dimensions must equal the length of the array.

If the values happen to form a contiguous sequence of integers, they may be written
with colon notation. Thus the example above is equivalent to the following.

y <- structure(1:6, .Dim = c(2,3))

Sequence notation can be used within any call to the generic c() function in R. In
the above example, c(2,3) could be written as c(2:3).

114 CHAPTER 20. RDUMP FORMAT FOR CMDSTAN

The generalization of column-major indexing is last-index major indexing. Arrays
of more than two dimensions are written in a last-index major form. For example,

z <- structure(1:24, .Dim = c(2,3,4))

produces a three-dimensional int (assignable to real) array z with values:

z[1, 1, 1] = 1
z[2, 1, 1] = 2
z[1, 2, 1] = 3
z[2, 2, 1] = 4
z[1, 3, 1] = 5
z[2, 3, 1] = 6
z[1, 1, 2] = 7
z[2, 1, 2] = 8
z[1, 2, 2] = 9
z[2, 2, 2] = 10
z[1, 3, 2] = 11
z[2, 3, 2] = 12
z[1, 1, 3] = 13
z[2, 1, 3] = 14
z[1, 2, 3] = 15
z[2, 2, 3] = 16
z[1, 3, 3] = 17
z[2, 3, 3] = 18
z[1, 1, 4] = 19
z[2, 1, 4] = 20
z[1, 2, 4] = 21
z[2, 2, 4] = 22
z[1, 3, 4] = 23
z[2, 3, 4] = 24

If the underlying 3-D array is stored as a 1-D array in last-index major format, the
innermost array elements will be contiguous.

The sequence of values inside structure can also be integer(x) or double(x).
In particular, if one or more dimensions is zero, integer() can be put inside
structure. For instance, the following example is supported by the dump format.

y <- structure(integer(), .Dim = c(2,0))

20.5. Matrix- and vector-valued variables
The dump format for matrices and vectors, including arrays of matrices and vectors,
is the same as that for arrays of the same shape.

20.6. COMPLEX-VALUED VARIABLES 115

Vector dump format
The following three declarations have the same dump format for their data.

array[K] real a;
vector[K] b;
row_vector[K] c;

Matrix dump format
The following declarations have the same dump format.

array[M, N] real a;
matrix[M, N] b;

Arrays of vectors and matrices
The key to understanding arrays is that the array indexing comes before any of the
container indexing. That is, an array of vectors is just that: each array element is a
vector. See the chapter on array and matrix types in the user’s guide section of the
language manual for more information.

For the dump data format, the following declarations have the same arrangement.

array[M, N] real a;
matrix[M, N] b;
array[M] vector[N] c;
array[M] row_vector[N] d;

Similarly, the following also have the same dump format.

array[P, M, N] real a;
array[P] matrix[M, N] b;
array[P, M] vector[N] c;
array[P, M] row_vector[N] d;

20.6. Complex-valued variables
At this time, there is no support for complex number input through the R dump
format. As an alternative, the JSON input format supports complex numbers.

20.7. Integer- and real-valued variables
There is no declaration in a dump file that distinguishes integer versus continuous
values. If a value in a dump file’s definition of a variable contains a decimal point
(e.g., 132.3) or uses scientific notation (e.g., 1.323e2), Stan assumes that the values
are real.

For a single value, if there is no decimal point, it may be assigned to an int or

116 CHAPTER 20. RDUMP FORMAT FOR CMDSTAN

real variable in Stan. An array value may only be assigned to an int array if there
is no decimal point or scientific notation in any of the values. This convention is
compatible with the way R writes data.

The following dump file declares an integer value for y.

y <- 2

This definition can be used for a Stan variable y declared as real or as int. Assign-
ing an integer value to a real variable automatically promotes the integer value to a
real value.

Integer values may optionally be followed by L or l, denoting long integer values.
The following example, where the type is explicit, is equivalent to the above.

y <- 2L

The following dump file provides a real value for y.

y <- 2.0

Even though this is a round value, the occurrence of the decimal point in the value,
2.0, causes Stan to infer that y is real valued. This dump file may only be used for
variables y declared as real in Stan.

Scientific notation
Numbers written in scientific notation may only be used for real values in Stan. R
will write out the integer one million as 1e + 06.

Infinite and not-a-number values
Stan’s reader supports infinite and not-a-number values for scalar quantities (see
the section of the reference manual section of the language manual for more infor-
mation on Stan’s numerical data types). Both infinite and not-a-number values are
supported by Stan’s dump-format readers.

Value Preferred Form Alternative Forms

positive infinity Inf Infinity, infinity
negative infinity -Inf -Infinity, -infinity

not a number NaN

These strings are not case sensitive, so inf may also be used for positive infinity, or
NAN for not-a-number.

20.8. QUOTED VARIABLE NAMES 117

20.8. Quoted variable names
In order to support JAGS data files, variables may be double quoted. For instance,
the following definition is legal in a dump file.

"y" <- c(1,2,3) \end{Verbatim}

20.9. Line breaks
The line breaks in a dump file are required to be consistent with the way R reads in
data. Both of the following declarations are legal.

y <- 2
y <-
3

Also following R, breaking before the assignment arrow are not allowed, so the
following is invalid.

y
<- 2 # Syntax Error

Lines may also be broken in the middle of sequences declared using the c(...)
notation., as well as between the comma following a sequence definition and the
dimensionality declaration. For example, the following declaration of a 2 × 2 × 3
array is valid.

y <-
structure(c(1,2,3,
4,5,6,7,8,9,10,11,
12), .Dim = c(2,2,
3))

Because there are no decimal points in the values, the resulting dump file may be
used for three-dimensional array variables declared as int or real.

20.10. BNF grammar for dump data
A more precise definition of the dump data format is provided by the following
(mildly templated) Backus-Naur form grammar.

definition ::= name <- value optional_semicolon

name ::= char* | ''' char* ''' | '"' char* '"'

value ::= value<int> | value<double>

118 CHAPTER 20. RDUMP FORMAT FOR CMDSTAN

value<T> ::= T | seq<T> | zero_array<T> |
'structure' '(' seq<T> ',' ".Dim" '=' seq<int> ')' | 'structure'
'(' zero_array<T> ',' ".Dim" '=' seq<int> ')'

seq<int> ::= int ':' int | cseq<int>

zero_array<int> ::= "integer" '(' <non-negative int>? ')'

zero_array<real> ::= "double" '(' <non-negative int>? ')'

seq<real> ::= cseq<real>

cseq<T> ::= 'c' '(' vseq<T> ')'

vseq<T> ::= T | T ',' vseq<T>

The template parameters T will be set to either int or real. Because Stan allows
promotion of integer values to real values, an integer sequence specification in the
dump data format may be assigned to either an integer- or real-based variable in
Stan.

21. Using external C++ code

The --allow-undefined flag can be passed to the call to stanc, which will allow
undefined functions in the Stan language to be parsed without an error. We can
then include a definition of the function in a C++ header file.

This requires specifying two makefile variables:

• STANCFLAGS=--allow-undefined
• USER_HEADER=<header_file.hpp>, where <header_file.hpp> is the name

of a header file that defines a function with the same name and a compatible
signature. This function can appear in the global namespace or in the model
namespace, which is defined as the name of the model (either the file name,
or the --name argument to stanc) followed by _namespace.

This is an advanced feature which is only recommended to users familiar with the
internals of Stan’s Math library. Most existing C++ code will need to be modified to
work with Stan, to varying degrees.

As an example, consider the following variant of the Bernoulli example

functions {
real make_odds(data real theta);

}
data {

int<lower=0> N;
array[N] int<lower=0, upper=1> y;

}
parameters {

real<lower=0, upper=1> theta;
}
model {

theta ~ beta(1, 1); // uniform prior on interval 0, 1
y ~ bernoulli(theta);

}
generated quantities {

real odds;
odds = make_odds(theta);

}

119

120 CHAPTER 21. USING EXTERNAL C++ CODE

Here the make_odds function is declared but not defined, which would ordinarily
result in a parser error. However, if you put STANCFLAGS = --allow-undefined
into the make/local file or into the stanc call, then the stanc compiler will translate
this program to C++, but the generated C++ code will not compile unless you write
a file such as examples/bernoulli/make_odds.hpp with the following lines

#include <ostream>

double make_odds(const double& theta, std::ostream *pstream__) {
return theta / (1 - theta);

}

The signature for this function needs to fulfill all the usages in the C++ class emitted
by stanc. The pstream__ argument is mandatory in the signature but need not be
used if your function does not print any output. Because make_odds was declared
with a data argument and only used in generated quantites, a signature which
accepts and returns double is acceptable. Functions which will have parameters
passed as input in the transformed parameters or model blocks will require the
ability to accept Stan’s autodiff types. If you wish to autodiff through this function,
the simplest option is to make it a template, like

template <typename T>
T make_odds(const T &theta, std::ostream *pstream__)
{

return theta / (1 - theta);
}

Given the above, the following make invocation should work

> make STANCFLAGS=--allow-undefined USER_HEADER=examples/bernoulli/make_odds.hpp examples/bernoulli/bernoulli # on Windows add .exe

Alternatively, you could put STANCFLAGS and USER_HEADER into the make/local
file instead of specifying them on the command-line.

If the function were more complicated and involved functions in the Stan Math Li-
brary, then you would need to add #include <stan/model/model_header.hpp>
and prefix the function calls with stan::math::.

21.1. Derivative specializations
External C++ functions are currently the only way to encode a function with a
known analytic gradient outside the Stan Math Library. This is done very simi-
larly to how a function would be added to the Math library with a reverse-mode

21.1. DERIVATIVE SPECIALIZATIONS 121

specialization. The following code is adapted from the Stan Math documentation.

Suppose you have the following (nonsensical) model which relies on a function
called my_dot_self. We will implement this as a copy of the built-in dot_self
function.

functions {
// both overloads end up using the same C++ template
real my_dot_self(vector theta);
real my_dot_self(row_vector theta);

}
data {

int<lower=0> N;
vector[N] input_data;

}
transformed data {

// no autodiff for data - will call using doubles
real ds = my_dot_self(input_data);

}
parameters {

row_vector[N] thetas;
}
model {

thetas ~ normal(0,1);
// autodiff - will call using stan::math::var types
input_data ~ normal(thetas, my_dot_self(thetas));

}

If you wanted to autodiff through this function, the following header would suffice1:

#include <stan/model/model_header.hpp>
#include <ostream>

template <typename EigVec, stan::require_eigen_vector_t<EigVec> * = nullptr>
inline stan::value_type_t<EigVec> my_dot_self(const EigVec &x, std::ostream *pstream__)
{

const auto &x_ref = stan::math::to_ref(x);
stan::value_type_t<EigVec> sum_x = 0.0;
for (int i = 0; i < x.size(); ++i)

1Details of programming in the Stan Math style are omitted from this section, it is presented only as
an example

https://mc-stan.org/math/md_doxygen_2contributor__help__pages_2getting__started.html

122 CHAPTER 21. USING EXTERNAL C++ CODE

{
sum_x += x_ref.coeff(i) * x_ref.coeff(i);

}
return sum_x;

}

However, we know the derivative of this function directly. To leverage this, we
could use a more complicated form which has two function templates that differen-
tiate themselves based on whether or not derivatives are required:

#include <stan/model/model_header.hpp>
#include <ostream>

template <typename EigVec, stan::require_eigen_vector_t<EigVec> * = nullptr,
stan::require_not_st_var<EigVec> * = nullptr>

inline double my_dot_self(const EigVec &x, std::ostream *pstream__)
{

auto x_ref = stan::math::to_ref(x);
double sum = 0.0;
for (int i = 0; i < x.size(); ++i)
{

sum += x_ref.coeff(i) * x_ref.coeff(i);
}
return sum;

}

template <typename EigVec, stan::require_eigen_vt<stan::is_var, EigVec> * = nullptr>
inline stan::math::var my_dot_self(const EigVec &v, std::ostream *pstream__)
{

// (1) put v into our memory arena
stan::arena_t<EigVec> arena_v(v);
// (2) calculate forward pass using
// (3) the .val() method for matrices of var types
stan::math::var res = my_dot_self(arena_v.val(), pstream__);
// (4) Place a callback for the reverse pass on the callback stack.
stan::math::reverse_pass_callback(

[res, arena_v]() mutable
{ arena_v.adj() += 2.0 * res.adj() * arena_v.val(); });

return res;
}

21.2. SPECIAL FUNCTIONS: RNGS, DISTRIBUTIONS, EDITING TARGET 123

For more details about how to write C++ code using the Stan Math Library, see
the Math library documentation at https://mc-stan.org/math/ or the paper at
https://arxiv.org/abs/1509.07164.

21.2. Special functions: RNGs, distributions, editing target
Some functions have special meanings in Stan and place additional requirements
on their signatures if used in external C++.

• RNGs must end with _rng. They will be passed a “base RNG object” as the
second to last argument, before the pointer to the ostream. We recommend
making this a template, since it may change. This is currently a stan::rng_t
object (a type alias to boost::rng::mixmax).

• Functions which edit the target directly must end with _lp and will be
passed a reference to lp__ and a reference to a stan::math::accumulator ob-
ject as the final parameters before the ostream pointer. They are also expected
to have a boolean template parameter propto__ which controls whether or
not constant terms can be dropped.

• Probability distributions must end with _lpdf or _lpmf and will be passed a
boolean template parameter propto__ which controls whether or not constant
terms can be dropped.

References

Betancourt, Michael. 2017. “A Conceptual Introduction to Hamiltonian Monte
Carlo.” arXiv 1701.02434. https://arxiv.org/abs/1701.02434.

Kucukelbir, Alp, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M
Blei. 2017. “Automatic Differentiation Variational Inference.” Journal of Machine
Learning Research.

Vehtari, Aki, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian
Bürkner. 2021. “Rank-Normalization, Folding, and Localization: An Improved
R̂ for Assessing Convergence of MCMC.” Bayesian Analysis 16: 667–718.

Zhang, Lu, Bob Carpenter, Andrew Gelman, and Aki Vehtari. 2022. “Pathfinder:
Parallel Quasi-Newton Variational Inference.” Journal of Machine Learning Re-
search 23 (306): 1–49. http://jmlr.org/papers/v23/21-0889.html.

124

https://arxiv.org/abs/1701.02434
http://jmlr.org/papers/v23/21-0889.html

	Overview
	I Getting Started
	CmdStan Installation
	Installation via conda
	Installation from GitHub
	Checking the Stan compiler
	Troubleshooting the installation
	C++ Toolchain
	Using GNU Make

	Example Model and Data
	Compiling a Stan Program
	Invoking the Make utility
	Dependencies
	Compiler errors
	Troubleshooting C++ compiler or linker errors
	C++ compilation and linking flags

	Parallelization
	Multi-threading with TBB
	Multi-processing with MPI
	OpenCL

	II Running CmdStan
	Command-Line Interface Overview
	Input data argument
	Output control arguments
	Initialize model parameters argument
	Random number generator arguments
	Chain identifier argument: id
	Command line help
	Error messages and return codes

	MCMC Sampling using Hamiltonian Monte Carlo
	Running the sampler
	Stan CSV output file
	Iterations
	Adaptation
	Algorithm
	Sampler diagnostic file
	Running multiple chains
	Summarizing sampler output(s) with stansummary
	Examples - older parallelism

	Optimization
	Jacobian adjustments
	Optimization algorithms
	The quasi-Newton optimizers
	The Newton optimizer

	Pathfinder Method for Approximate Bayesian Inference
	Pathfinder Configuration
	L-BFGS Configuration
	Multi-path Pathfinder CSV files
	Single-path Pathfinder Outputs

	Variational Inference using ADVI
	Variational algorithms
	Configuration
	CSV output

	Generating Quantities of Interest from a Fitted Model
	Example
	Errors

	Laplace sampling
	Configuration
	CSV output
	Diagnostic file outputs
	Example

	Extracting log probabilities and gradients for diagnostics
	Configuration
	CSV output

	Diagnosing HMC by Comparison of Gradients

	III CmdStan Utilities
	stanc: Translating Stan to C++
	Instantiating the stanc binary
	The Stan compiler program

	stansummary: MCMC Output Analysis
	Building the stansummary command
	Running the stansummary program
	Command-line options

	diagnose: Diagnosing Biased Hamiltonian Monte Carlo Inferences
	Building the diagnose command
	Running the diagnose command
	diagnose warnings and recommendations

	print (deprecated): MCMC Output Analysis

	IV Appendices
	Stan CSV File Format
	CSV column names and order
	MCMC sampler CSV output
	Optimization output
	Variational inference output
	Generate quantities outputs
	Diagnose method outputs

	JSON Format for CmdStan
	Creating JSON files
	JSON syntax summary
	Stan data types in JSON notation

	RDump Format for CmdStan
	Creating dump files
	Scalar variables
	Sequence variables
	Array variables
	Matrix- and vector-valued variables
	Complex-valued variables
	Integer- and real-valued variables
	Quoted variable names
	Line breaks
	BNF grammar for dump data

	Using external C++ code
	Derivative specializations
	Special functions: RNGs, distributions, editing target

	References

