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Overview

This is the official user’s guide for Stan. It provides example models and program-
ming techniques for coding statistical models in Stan.

• Part 1 gives Stan code and discussions for several important classes of models.

• Part 2 discusses various general Stan programming techniques that are not
tied to any particular model.

• Part 3 introduces algorithms for calibration and model checking that require
multiple runs of Stan.

• The appendices provide an introduction to the stanc3 compiler used in the
various interfaces to Stan, a style guide, and advice for users of BUGS and
JAGS.

We recommend working through this guide using the textbooks Bayesian Data
Analysis and Statistical Rethinking: A Bayesian Course with Examples in R and Stan as
references on the concepts, and using the Stan Reference Manual when necessary to
clarify programming issues.

Copyright and trademark
• Copyright 2011–2024, Stan Development Team and their assignees.

• The Stan name and logo are registered trademarks of NumFOCUS.

Licensing
• Text content: CC-BY ND 4.0 license

• Computer code: BSD 3-clause license

• Logo: Stan logo usage guidelines
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Part I

Example Models
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1. Regression Models

Stan supports regression models from simple linear regressions to multilevel gener-
alized linear models.

1.1. Linear regression
The simplest linear regression model is the following, with a single predictor and a
slope and intercept coefficient, and normally distributed noise. This model can be
written using standard regression notation as

yn = α + βxn + ϵn where ϵn ∼ normal(0, σ).

This is equivalent to the following sampling involving the residual,

yn − (α + βXn) ∼ normal(0, σ),

and reducing still further, to

yn ∼ normal(α + βXn, σ).

This latter form of the model is coded in Stan as follows.

data {
int<lower=0> N;
vector[N] x;
vector[N] y;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

y ~ normal(alpha + beta * x, sigma);
}

There are N observations and for each observation, n ∈ N, we have predictor x[n]
and outcome y[n]. The intercept and slope parameters are alpha and beta. The

4
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model assumes a normally distributed noise term with scale sigma. This model has
improper priors for the two regression coefficients.

Matrix notation and vectorization
The distribution statement in the previous model is vectorized, with

y ~ normal(alpha + beta * x, sigma);

providing the same model as the unvectorized version,

for (n in 1:N) {
y[n] ~ normal(alpha + beta * x[n], sigma);

}

In addition to being more concise, the vectorized form is much faster.1

In general, Stan allows the arguments to distributions such as normal to be vectors.
If any of the other arguments are vectors or arrays, they have to be the same size. If
any of the other arguments is a scalar, it is reused for each vector entry.

The other reason this works is that Stan’s arithmetic operators are overloaded to
perform matrix arithmetic on matrices. In this case, because x is of type vector
and beta of type real, the expression beta * x is of type vector. Because Stan
supports vectorization, a regression model with more than one predictor can be
written directly using matrix notation.

data {
int<lower=0> N; // number of data items
int<lower=0> K; // number of predictors
matrix[N, K] x; // predictor matrix
vector[N] y; // outcome vector

}
parameters {

real alpha; // intercept
vector[K] beta; // coefficients for predictors
real<lower=0> sigma; // error scale

}
model {

1Unlike in Python and R, which are interpreted, Stan is translated to C++ and compiled, so loops and
assignment statements are fast. Vectorized code is faster in Stan because (a) the expression tree used to
compute derivatives can be simplified, leading to fewer virtual function calls, and (b) computations that
would be repeated in the looping version, such as log(sigma) in the above model, will be computed
once and reused.
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y ~ normal(x * beta + alpha, sigma); // data model
}

The constraint lower=0 in the declaration of sigma constrains the value to be greater
than or equal to 0. With no prior in the model block, the effect is an improper prior
on non-negative real numbers. Although a more informative prior may be added,
improper priors are acceptable as long as they lead to proper posteriors.

In the model above, x is an N × K matrix of predictors and beta a K-vector of
coefficients, so x * beta is an N-vector of predictions, one for each of the N data
items. These predictions line up with the outcomes in the N-vector y, so the entire
model may be written using matrix arithmetic as shown. It would be possible to
include a column of ones in the data matrix x to remove the alpha parameter.

The distribution statement in the model above is just a more efficient, vector-based
approach to coding the model with a loop, as in the following statistically equivalent
model.

model {
for (n in 1:N) {
y[n] ~ normal(x[n] * beta, sigma);

}
}

With Stan’s matrix indexing scheme, x[n] picks out row n of the matrix x; because
beta is a column vector, the product x[n] * beta is a scalar of type real.

Intercepts as inputs
In the model formulation

y ~ normal(x * beta, sigma);

there is no longer an intercept coefficient alpha. Instead, we have assumed that
the first column of the input matrix x is a column of 1 values. This way, beta[1]
plays the role of the intercept. If the intercept gets a different prior than the slope
terms, then it would be clearer to break it out. It is also slightly more efficient in
its explicit form with the intercept variable singled out because there’s one fewer
multiplications; it should not make that much of a difference to speed, though, so
the choice should be based on clarity.
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1.2. The QR reparameterization
In the previous example, the linear predictor can be written as η = xβ, where η is
a N-vector of predictions, x is a N × K matrix, and β is a K-vector of coefficients.
Presuming N ≥ K, we can exploit the fact that any design matrix x can be de-
composed using the thin QR decomposition into an orthogonal matrix Q and an
upper-triangular matrix R, i.e. x = QR.

The functions qr_thin_Q and qr_thin_R implement the thin QR decomposition,
which is to be preferred to the fat QR decomposition that would be obtained by
using qr_Q and qr_R, as the latter would more easily run out of memory (see the
Stan Functions Reference for more information on the qr_thin_Q and qr_thin_R
functions). In practice, it is best to write x = Q∗R∗ where Q∗ = Q ∗

√
n − 1 and

R∗ = 1√
n−1

R. Thus, we can equivalently write η = xβ = QRβ = Q∗R∗β. If we let

θ = R∗β, then we have η = Q∗θ and β = R∗−1
θ. In that case, the previous Stan

program becomes

data {
int<lower=0> N; // number of data items
int<lower=0> K; // number of predictors
matrix[N, K] x; // predictor matrix
vector[N] y; // outcome vector

}
transformed data {

matrix[N, K] Q_ast;
matrix[K, K] R_ast;
matrix[K, K] R_ast_inverse;
// thin and scale the QR decomposition
Q_ast = qr_thin_Q(x) * sqrt(N - 1);
R_ast = qr_thin_R(x) / sqrt(N - 1);
R_ast_inverse = inverse(R_ast);

}
parameters {

real alpha; // intercept
vector[K] theta; // coefficients on Q_ast
real<lower=0> sigma; // error scale

}
model {

y ~ normal(Q_ast * theta + alpha, sigma); // data model
}
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generated quantities {
vector[K] beta;
beta = R_ast_inverse * theta; // coefficients on x

}

Since this Stan program generates equivalent predictions for y and the same poste-
rior distribution for α, β, and σ as the previous Stan program, many wonder why
the version with this QR reparameterization performs so much better in practice,
often both in terms of wall time and in terms of effective sample size. The reasoning
is threefold:

1. The columns of Q∗ are orthogonal whereas the columns of x generally are
not. Thus, it is easier for a Markov Chain to move around in θ-space than in
β-space.

2. The columns of Q∗ have the same scale whereas the columns of x generally
do not. Thus, a Hamiltonian Monte Carlo algorithm can move around the
parameter space with a smaller number of larger steps

3. Since the covariance matrix for the columns of Q∗ is an identity matrix, θ
typically has a reasonable scale if the units of y are also reasonable. This also
helps HMC move efficiently without compromising numerical accuracy.

Consequently, this QR reparameterization is recommended for linear and general-
ized linear models in Stan whenever K > 1 and you do not have an informative
prior on the location of β. It can also be worthwhile to subtract the mean from
each column of x before obtaining the QR decomposition, which does not affect the
posterior distribution of θ or β but does affect α and allows you to interpret α as the
expectation of y in a linear model.

1.3. Priors for coefficients and scales
See our general discussion of priors for tips on priors for parameters in regression
models.

Later sections discuss univariate hierarchical priors and multivariate hierarchical
priors, as well as priors used to identify models.

However, as described in QR-reparameterization section, if you do not have an
informative prior on the location of the regression coefficients, then you are better
off reparameterizing your model so that the regression coefficients are a generated
quantity. In that case, it usually does not matter much what prior is used on on the
reparameterized regression coefficients and almost any weakly informative prior

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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that scales with the outcome will do.

1.4. Robust noise models
The standard approach to linear regression is to model the noise term ϵ as having
a normal distribution. From Stan’s perspective, there is nothing special about
normally distributed noise. For instance, robust regression can be accommodated by
giving the noise term a Student-t distribution. To code this in Stan, the distribution
distribution is changed to the following.

data {
// ...
real<lower=0> nu;

}
// ...
model {

y ~ student_t(nu, alpha + beta * x, sigma);
}

The degrees of freedom constant nu is specified as data.

1.5. Logistic and probit regression
For binary outcomes, either of the closely related logistic or probit regression models
may be used. These generalized linear models vary only in the link function they
use to map linear predictions in (−∞, ∞) to probability values in (0, 1). Their
respective link functions, the logistic function and the standard normal cumulative
distribution function, are both sigmoid functions (i.e., they are both S-shaped).

A logistic regression model with one predictor and an intercept is coded as follows.

data {
int<lower=0> N;
vector[N] x;
array[N] int<lower=0, upper=1> y;

}
parameters {

real alpha;
real beta;

}
model {

y ~ bernoulli_logit(alpha + beta * x);
}
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The noise parameter is built into the Bernoulli formulation here rather than specified
directly.

Logistic regression is a kind of generalized linear model with binary outcomes and
the log odds (logit) link function, defined by

logit(v) = log
(

v
1 − v

)
.

The inverse of the link function appears in the model:

logit−1(u) = inv_logit(u) = 1
1 + exp(−u)

.

The model formulation above uses the logit-parameterized version of the Bernoulli
distribution, which is defined by

bernoulli_logit (y | α) = bernoulli
(

y | logit−1(α)
)

.

The formulation is also vectorized in the sense that alpha and beta are scalars and
x is a vector, so that alpha + beta * x is a vector. The vectorized formulation
is equivalent to the less efficient version

for (n in 1:N) {
y[n] ~ bernoulli_logit(alpha + beta * x[n]);

}

Expanding out the Bernoulli logit, the model is equivalent to the more explicit, but
less efficient and less arithmetically stable

for (n in 1:N) {
y[n] ~ bernoulli(inv_logit(alpha + beta * x[n]));

}

Other link functions may be used in the same way. For example, probit regression
uses the cumulative normal distribution function, which is typically written as

Φ(x) =
∫ x

−∞
normal (y | 0, 1) dy.
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The cumulative standard normal distribution function Φ is implemented in Stan as
the function Phi. The probit regression model may be coded in Stan by replacing
the logistic model’s distribution statement with the following.

y[n] ~ bernoulli(Phi(alpha + beta * x[n]));

A fast approximation to the cumulative standard normal distribution function
Φ is implemented in Stan as the function Phi_approx.2 The approximate probit
regression model may be coded with the following.

y[n] ~ bernoulli(Phi_approx(alpha + beta * x[n]));

1.6. Multi-logit regression
Multiple outcome forms of logistic regression can be coded directly in Stan. For
instance, suppose there are K possible outcomes for each output variable yn. Also
suppose that there is a D-dimensional vector xn of predictors for yn. The multi-logit
model with normal(0, 5) priors on the coefficients is coded as follows.

data {
int K;
int N;
int D;
array[N] int y;
matrix[N, D] x;

}
parameters {

matrix[D, K] beta;
}
model {

matrix[N, K] x_beta = x * beta;

to_vector(beta) ~ normal(0, 5);

for (n in 1:N) {
y[n] ~ categorical_logit(x_beta[n]');

}
}

2The Phi_approx function is a rescaled version of the inverse logit function, so while the scale is
roughly the same Φ, the tails do not match.
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where x_beta[n]' is the transpose of x_beta[n]. The prior on beta is coded in
vectorized form. As of Stan 2.18, the categorical-logit distribution is not vectorized
for parameter arguments, so the loop is required. The matrix multiplication is
pulled out to define a local variable for all of the predictors for efficiency. Like
the Bernoulli-logit, the categorical-logit distribution applies softmax internally to
convert an arbitrary vector to a simplex,

categorical_logit (y | α) = categorical (y | softmax(α)) ,

where
softmax(u) = exp(u)/ sum (exp(u)) .

The categorical distribution with log-odds (logit) scaled parameters used above is
equivalent to writing

y[n] ~ categorical(softmax(x[n] * beta));

Constraints on data declarations
The data block in the above model is defined without constraints on sizes K, N,
and D or on the outcome array y. Constraints on data declarations provide error
checking at the point data are read (or transformed data are defined), which is
before sampling begins. Constraints on data declarations also make the model
author’s intentions more explicit, which can help with readability. The above
model’s declarations could be tightened to

int<lower=2> K;
int<lower=0> N;
int<lower=1> D;
array[N] int<lower=1, upper=K> y;

These constraints arise because the number of categories, K, must be at least two
in order for a categorical model to be useful. The number of data items, N, can be
zero, but not negative; unlike R, Stan’s for-loops always move forward, so that
a loop extent of 1:N when N is equal to zero ensures the loop’s body will not be
executed. The number of predictors, D, must be at least one in order for beta *
x[n] to produce an appropriate argument for softmax(). The categorical outcomes
y[n] must be between 1 and K in order for the discrete sampling to be well defined.

Constraints on data declarations are optional. Constraints on parameters declared
in the parameters block, on the other hand, are not optional—they are required to
ensure support for all parameter values satisfying their constraints. Constraints
on transformed data, transformed parameters, and generated quantities are also
optional.
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Identifiability
Because softmax is invariant under adding a constant to each component of its input,
the model is typically only identified if there is a suitable prior on the coefficients.

An alternative is to use (K − 1)-vectors by fixing one of them to be zero. The
partially known parameters section discusses how to mix constants and parameters
in a vector. In the multi-logit case, the parameter block would be redefined to use
(K − 1)-vectors

parameters {
matrix[D, K - 1] beta_raw;

}

and then these are transformed to parameters to use in the model. First, a trans-
formed data block is added before the parameters block to define a vector of zero
values,

transformed data {
vector[D] zeros = rep_vector(0, D);

}

which can then be appended to beta_raw to produce the coefficient matrix beta,

transformed parameters {
matrix[D, K] beta = append_col(beta_raw, zeros);

}

The rep_vector(0, D) call creates a column vector of size D with all entries set
to zero. The derived matrix beta is then defined to be the result of appending the
vector zeros as a new column at the end of beta_raw; the vector zeros is defined
as transformed data so that it doesn’t need to be constructed from scratch each time
it is used.

This is not the same model as using K-vectors as parameters, because now the prior
only applies to (K − 1)-vectors. In practice, this will cause the maximum likelihood
solutions to be different and also the posteriors to be slightly different when taking
priors centered around zero, as is typical for regression coefficients.

1.7. Parameterizing centered vectors
When there are varying effects in a regression, the resulting likelihood is not identi-
fied unless further steps are taken. For example, we might have a global intercept α
and then a varying effect βk for age group k to make a linear predictor α + βk. With
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this predictor, we can add a constant to α and subtract from each βk and get exactly
the same likelihood.

The traditional approach to identifying such a model is to pin the first varing effect
to zero, i.e., β1 = 0. With one of the varying effects fixed, you can no longer add
a constant to all of them and the model’s likelihood is identified. In addition to
the difficulty in specifying such a model in Stan, it is awkward to formulate priors
because the other coefficients are all interpreted relative to β1.

In a Bayesian setting, a proper prior on each of the β is enough to identify the model.
Unfortunately, this can lead to inefficiency during sampling as the model is still
only weakly identified through the prior—there is a very simple example of the
difference in the discussion of collinearity in (collinearity.section?).

An alternative identification strategy that allows a symmetric prior is to enforce a
sum-to-zero constraint on the varying effects, i.e., ∑K

k=1 βk = 0.

A parameter vector constrained to sum to zero may also be used to identify a
multi-logit regression parameter vector (see the multi-logit section for details), or
may be used for ability or difficulty parameters (but not both) in an IRT model (see
the item-response model section for details).

Built-in sum-to-zero vector
As of Stan 2.36, there is a built in sum_to_zero_vector type, which can be used as
follows.

parameters {
sum_to_zero_vector[K] beta;
// ...

}

This produces a vector of size K such that sum(beta) = 0. In the unconstrained
representation requires only K - 1 values because the last is determined by the
first K - 1.

Placing a prior on beta in this parameterization, for example,

beta ~ normal(0, 1);

leads to a subtly different posterior than what you would get with the same prior
on an unconstrained size-K vector. As explained below, the variance is reduced.

The sum-to-zero constraint can be implemented naively by setting the last element
to the negative sum of the first elements, i.e., βK = −∑K−1

k=1 βk. But that leads to
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high correlation among the βk.

The transform used in Stan eliminates these correlations by constructing an orthog-
onal basis and applying it to the zero-sum-constraint; Seyboldt (2024) provides an
explanation. The Stan Reference Manual provides the details in the chapter on trans-
forms. Although any orthogonal basis can be used, Stan uses the inverse isometric
log transform because it is convenient to describe and the transform simplifies to
efficient scalar operations rather than more expensive matrix operations.

Marginal distribution of sum-to-zero components
On the Stan forums, Aaron Goodman provided the following code to produce a
prior with standard normal marginals on the components of beta,

model {
beta ~ normal(0, inv(sqrt(1 - inv(K))));
// ...

}

The scale component can be multiplied by sigma to produce a normal(0, sigma)
prior marginally.

To generate distributions with marginals other than standard normal, the resulting
beta may be scaled by some factor sigma and translated to some new location mu.

Soft centering
Adding a prior such as β ∼ normal(0, ϵ) for a small ϵ will provide a kind of soft
centering of a parameter vector β by preferring, all else being equal, that ∑K

k=1 βk =
0. This approach is only guaranteed to roughly center if β and the elementwise
addition β + c for a scalar constant c produce the same likelihood (perhaps by
another vector α being transformed to α − c, as in the IRT models). This is another
way of achieving a symmetric prior, though it requires choosing an ϵ. If ϵ is too
large, there won’t be a strong enough centering effect and if it is too small, it will
add high curvature to the target density and impede sampling.

1.8. Ordered logistic and probit regression
Ordered regression for an outcome yn ∈ {1, . . . , k} with predictors xn ∈ RD is
determined by a single coefficient vector β ∈ RD along with a sequence of cutpoints
c ∈ RK−1 sorted so that cd < cd+1. The discrete output is k if the linear predictor
xnβ falls between ck−1 and ck, assuming c0 = −∞ and cK = ∞. The noise term is
fixed by the form of regression, with examples for ordered logistic and ordered
probit models.
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Ordered logistic regression
The ordered logistic model can be coded in Stan using the ordered data type for
the cutpoints and the built-in ordered_logistic distribution.

data {
int<lower=2> K;
int<lower=0> N;
int<lower=1> D;
array[N] int<lower=1, upper=K> y;
array[N] row_vector[D] x;

}
parameters {

vector[D] beta;
ordered[K - 1] c;

}
model {

for (n in 1:N) {
y[n] ~ ordered_logistic(x[n] * beta, c);

}
}

The vector of cutpoints c is declared as ordered[K - 1], which guarantees that
c[k] is less than c[k + 1].

If the cutpoints were assigned independent priors, the constraint effectively trun-
cates the joint prior to support over points that satisfy the ordering constraint.
Luckily, Stan does not need to compute the effect of the constraint on the normaliz-
ing term because the probability is needed only up to a proportion.

Ordered probit
An ordered probit model could be coded in exactly the same way by swapping the
cumulative logistic (inv_logit) for the cumulative normal (Phi).

data {
int<lower=2> K;
int<lower=0> N;
int<lower=1> D;
array[N] int<lower=1, upper=K> y;
array[N] row_vector[D] x;

}
parameters {
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vector[D] beta;
ordered[K - 1] c;

}
model {

vector[K] theta;
for (n in 1:N) {
real eta;
eta = x[n] * beta;
theta[1] = 1 - Phi(eta - c[1]);
for (k in 2:(K - 1)) {

theta[k] = Phi(eta - c[k - 1]) - Phi(eta - c[k]);
}
theta[K] = Phi(eta - c[K - 1]);
y[n] ~ categorical(theta);

}
}

The logistic model could also be coded this way by replacing Phi with inv_logit,
though the built-in encoding based on the softmax transform is more efficient and
more numerically stable. A small efficiency gain could be achieved by computing
the values Phi(eta - c[k]) once and storing them for re-use.

1.9. Hierarchical regression
The simplest multilevel model is a hierarchical model in which the data are grouped
into L distinct categories (or levels). An extreme approach would be to completely
pool all the data and estimate a common vector of regression coefficients β. At the
other extreme, an approach with no pooling assigns each level l its own coefficient
vector βl that is estimated separately from the other levels. A hierarchical model
is an intermediate solution where the degree of pooling is determined by the data
and a prior on the amount of pooling.

Suppose each binary outcome yn ∈ {0, 1} has an associated level, lln ∈ {1, . . . , L}.
Each outcome will also have an associated predictor vector xn ∈ RD. Each level l
gets its own coefficient vector βl ∈ RD. The hierarchical structure involves drawing
the coefficients βl,d ∈ R from a prior that is also estimated with the data. This
hierarchically estimated prior determines the amount of pooling. If the data in
each level are similar, strong pooling will be reflected in low hierarchical variance.
If the data in the levels are dissimilar, weaker pooling will be reflected in higher
hierarchical variance.
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The following model encodes a hierarchical logistic regression model with a hierar-
chical prior on the regression coefficients.

data {
int<lower=1> D;
int<lower=0> N;
int<lower=1> L;
array[N] int<lower=0, upper=1> y;
array[N] int<lower=1, upper=L> ll;
array[N] row_vector[D] x;

}
parameters {

array[D] real mu;
array[D] real<lower=0> sigma;
array[L] vector[D] beta;

}
model {

for (d in 1:D) {
mu[d] ~ normal(0, 100);
for (l in 1:L) {

beta[l, d] ~ normal(mu[d], sigma[d]);
}

}
for (n in 1:N) {
y[n] ~ bernoulli(inv_logit(x[n] * beta[ll[n]]));

}
}

The standard deviation parameter sigma gets an implicit uniform prior on (0, ∞)
because of its declaration with a lower-bound constraint of zero. Stan allows
improper priors as long as the posterior is proper. Nevertheless, it is usually helpful
to have informative or at least weakly informative priors for all parameters; see the
regression priors section for recommendations on priors for regression coefficients
and scales.

Optimizing the model
Where possible, vectorizing distribution statements leads to faster log probability
and derivative evaluations. The speed boost is not because loops are eliminated,
but because vectorization allows sharing subcomputations in the log probability
and gradient calculations and because it reduces the size of the expression tree



1.9. HIERARCHICAL REGRESSION 19

required for gradient calculations.

The first optimization vectorizes the for-loop over D as

mu ~ normal(0, 100);
for (l in 1:L) {
beta[l] ~ normal(mu, sigma);

}

The declaration of beta as an array of vectors means that the expression beta[l]
denotes a vector. Although beta could have been declared as a matrix, an array of
vectors (or a two-dimensional array) is more efficient for accessing rows; see the
indexing efficiency section for more information on the efficiency tradeoffs among
arrays, vectors, and matrices.

This model can be further sped up and at the same time made more arithmetically
stable by replacing the application of inverse-logit inside the Bernoulli distribution
with the logit-parameterized Bernoulli,3

for (n in 1:N) {
y[n] ~ bernoulli_logit(x[n] * beta[ll[n]]);

}

Unlike in R or BUGS, loops, array access and assignments are fast in Stan because
they are translated directly to C++. In most cases, the cost of allocating and assigning
to a container is more than made up for by the increased efficiency due to vectorizing
the log probability and gradient calculations. Thus the following version is faster
than the original formulation as a loop over a distribution statement.

{
vector[N] x_beta_ll;
for (n in 1:N) {
x_beta_ll[n] = x[n] * beta[ll[n]];

}
y ~ bernoulli_logit(x_beta_ll);

}

The brackets introduce a new scope for the local variable x_beta_ll; alternatively,
the variable may be declared at the top of the model block.

3The Bernoulli-logit distribution builds in the log link function, taking

bernoulli_logit (y | α) = bernoulli
(

y | logit−1(α)
)

.



20 CHAPTER 1. REGRESSION MODELS

In some cases, such as the above, the local variable assignment leads to models that
are less readable. The recommended practice in such cases is to first develop and
debug the more transparent version of the model and only work on optimizations
when the simpler formulation has been debugged.

1.10. Hierarchical priors
Priors on priors, also known as “hyperpriors,” should be treated the same way as
priors on lower-level parameters in that as much prior information as is available
should be brought to bear. Because hyperpriors often apply to only a handful of
lower-level parameters, care must be taken to ensure the posterior is both proper
and not overly sensitive either statistically or computationally to wide tails in the
priors.

Boundary-avoiding priors for MLE in hierarchical models
The fundamental problem with maximum likelihood estimation (MLE) in the hi-
erarchical model setting is that as the hierarchical variance drops and the values
cluster around the hierarchical mean, the overall density grows without bound. As
an illustration, consider a simple hierarchical linear regression (with fixed prior
mean) of yn ∈ R on xn ∈ RK, formulated as

yn ∼ normal(xnβ, σ)

βk ∼ normal(0, τ)

τ ∼ Cauchy(0, 2.5)

In this case, as τ → 0 and βk → 0, the posterior density

p(β, τ, σ|y, x) ∝ p(y|x, β, τ, σ)

grows without bound. See the plot of Neal’s funnel density, which has similar
behavior.

There is obviously no MLE estimate for β, τ, σ in such a case, and therefore the
model must be modified if posterior modes are to be used for inference. The
approach recommended by Chung et al. (2013) is to use a gamma distribution as a
prior, such as

σ ∼ Gamma(2, 1/A),

for a reasonably large value of A, such as A = 10.
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1.11. Item-response theory models
Item-response theory (IRT) models the situation in which a number of students
each answer one or more of a group of test questions. The model is based on
parameters for the ability of the students, the difficulty of the questions, and in more
articulated models, the discriminativeness of the questions and the probability of
guessing correctly; see Andrew Gelman and Hill (2007, pps. 314–320) for a textbook
introduction to hierarchical IRT models and Curtis (2010) for encodings of a range
of IRT models in BUGS.

Data declaration with missingness
The data provided for an IRT model may be declared as follows to account for the
fact that not every student is required to answer every question.

data {
int<lower=1> J; // number of students
int<lower=1> K; // number of questions
int<lower=1> N; // number of observations
array[N] int<lower=1, upper=J> jj; // student for observation n
array[N] int<lower=1, upper=K> kk; // question for observation n
array[N] int<lower=0, upper=1> y; // correctness for observation n

}

This declares a total of N student-question pairs in the data set, where each n in 1:N
indexes a binary observation y[n] of the correctness of the answer of student jj[n]
on question kk[n].

The prior hyperparameters will be hard coded in the rest of this section for simplicity,
though they could be coded as data in Stan for more flexibility.

1PL (Rasch) model
The 1PL item-response model, also known as the Rasch model, has one parameter
(1P) for questions and uses the logistic link function (L).

The model parameters are declared as follows.

parameters {
real delta; // mean student ability
array[J] real alpha; // ability of student j - mean ability
array[K] real beta; // difficulty of question k

}

The parameter alpha[J] is the ability coefficient for student j and beta[k] is
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the difficulty coefficient for question k. The non-standard parameterization used
here also includes an intercept term delta, which represents the average student’s
response to the average question.4

The model itself is as follows.

model {
alpha ~ std_normal(); // informative true prior
beta ~ std_normal(); // informative true prior
delta ~ normal(0.75, 1); // informative true prior
for (n in 1:N) {
y[n] ~ bernoulli_logit(alpha[jj[n]] - beta[kk[n]] + delta);

}
}

This model uses the logit-parameterized Bernoulli distribution, where

bernoulli_logit (y | α) = bernoulli
(

y | logit−1(α)
)

.

The key to understanding it is the term inside the bernoulli_logit distribution,
from which it follows that

Pr[yn = 1] = logit−1
(

αjj[n] − βkk[n] + δ
)

.

The model suffers from additive identifiability issues without the priors. For
example, adding a term ξ to each αj and βk results in the same predictions. The use
of priors for α and β located at 0 identifies the parameters; see Andrew Gelman and
Hill (2007) for a discussion of identifiability issues and alternative approaches to
identification.

For testing purposes, the IRT 1PL model distributed with Stan uses informative
priors that match the actual data generation process used to simulate the data
in R (the simulation code is supplied in the same directory as the models). This
is unrealistic for most practical applications, but allows Stan’s inferences to be
validated. A simple sensitivity analysis with fatter priors shows that the posterior is
fairly sensitive to the prior even with 400 students and 100 questions and only 25%
missingness at random. For real applications, the priors should be fit hierarchically
along with the other parameters, as described in the next section.

4Andrew Gelman and Hill (2007) treat the δ term equivalently as the location parameter in the
distribution of student abilities.
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Multilevel 2PL model
The simple 1PL model described in the previous section is generalized in this section
with the addition of a discrimination parameter to model how noisy a question
is and by adding multilevel priors for the question difficulty and discrimination
parameters. The model parameters are declared as follows.

parameters {
real mu_beta; // mean question difficulty
vector[J] alpha; // ability for j - mean
vector[K] beta; // difficulty for k
vector<lower=0>[K] gamma; // discrimination of k
real<lower=0> sigma_beta; // scale of difficulties
real<lower=0> sigma_gamma; // scale of log discrimination

}

The parameters should be clearer after the model definition.

model {
alpha ~ std_normal();
beta ~ normal(0, sigma_beta);
gamma ~ lognormal(0, sigma_gamma);
mu_beta ~ cauchy(0, 5);
sigma_beta ~ cauchy(0, 5);
sigma_gamma ~ cauchy(0, 5);
y ~ bernoulli_logit(gamma[kk] .* (alpha[jj] - (beta[kk] + mu_beta)));

}

The std_normal function is used here, defined by

std_normal(y) = normal (y | 0, 1) .

The distribution statement is also vectorized using elementwise multiplication; it is
equivalent to

for (n in 1:N) {
y[n] ~ bernoulli_logit(gamma[kk[n]]

* (alpha[jj[n]] - (beta[kk[n]] + mu_beta));
}

The 2PL model is similar to the 1PL model, with the additional parameter gamma[k]
modeling how discriminative question k is. If gamma[k] is greater than 1, responses
are more attenuated with less chance of getting a question right at random. The
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parameter gamma[k] is constrained to be positive, which prohibits there being
questions that are easier for students of lesser ability; such questions are not unheard
of, but they tend to be eliminated from most testing situations where an IRT model
would be applied.

The model is parameterized here with student abilities alpha being given a standard
normal prior. This is to identify both the scale and the location of the parameters,
both of which would be unidentified otherwise; see the problematic posteriors
chapter for further discussion of identifiability. The difficulty and discrimination
parameters beta and gamma then have varying scales given hierarchically in this
model. They could also be given weakly informative non-hierarchical priors, such
as

beta ~ normal(0, 5);
gamma ~ lognormal(0, 2);

The point is that the alpha determines the scale and location and beta and gamma
are allowed to float.

The beta parameter is here given a non-centered parameterization, with parameter
mu_beta serving as the mean beta location. An alternative would’ve been to take:

beta ~ normal(mu_beta, sigma_beta);

and

y[n] ~ bernoulli_logit(gamma[kk[n]] * (alpha[jj[n]] - beta[kk[n]]));

Non-centered parameterizations tend to be more efficient in hierarchical models;
see the reparameterization section for more information on non-centered reparame-
terizations.

The intercept term mu_beta can’t itself be modeled hierarchically, so it is given
a weakly informative Cauchy(0, 5) prior. Similarly, the scale terms, sigma_beta,
and sigma_gamma, are given half-Cauchy priors. As mentioned earlier, the scale
and location for alpha are fixed to ensure identifiability. The truncation in the
half-Cauchy prior is implicit; explicit truncation is not necessary because the log
probability need only be calculated up to a proportion and the scale variables are
constrained to (0, ∞) by their declarations.

problematic-posteriors.qmd
problematic-posteriors.qmd
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1.12. Priors for identifiability
Location and scale invariance
One application of (hierarchical) priors is to identify the scale and/or location of
a group of parameters. For example, in the IRT models discussed in the previous
section, there is both a location and scale non-identifiability. With uniform priors,
the posteriors will float in terms of both scale and location. See the collinearity
section for a simple example of the problems this poses for estimation.

The non-identifiability is resolved by providing a standard normal (i.e., normal(0, 1))
prior on one group of coefficients, such as the student abilities. With a standard
normal prior on the student abilities, the IRT model is identified in that the posterior
will produce a group of estimates for student ability parameters that have a sample
mean of close to zero and a sample variance of close to one. The difficulty and
discrimination parameters for the questions should then be given a diffuse, or
ideally a hierarchical prior, which will identify these parameters by scaling and
locating relative to the student ability parameters.

Collinearity
Another case in which priors can help provide identifiability is in the case of
collinearity in a linear regression. In linear regression, if two predictors are collinear
(i.e, one is a linear function of the other), then their coefficients will have a correlation
of 1 (or -1) in the posterior. This leads to non-identifiability. By placing normal priors
on the coefficients, the maximum likelihood solution of two duplicated predictors
(trivially collinear) will be half the value than would be obtained by only including
one.

Separability
In a logistic regression, if a predictor is positive in cases of 1 outcomes and negative
in cases of 0 outcomes, then the maximum likelihood estimate for the coefficient for
that predictor diverges to infinity. This divergence can be controlled by providing
a prior for the coefficient, which will “shrink” the estimate back toward zero and
thus identify the model in the posterior.

Similar problems arise for sampling with improper flat priors. The sampler will
try to draw large values. By providing a prior, the posterior will be concentrated
around finite values, leading to well-behaved sampling.

1.13. Multivariate priors for hierarchical models
In hierarchical regression models (and other situations), several individual-level
variables may be assigned hierarchical priors. For example, a model with multiple
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varying intercepts and slopes within might assign them a multivariate prior.

As an example, the individuals might be people and the outcome income, with
predictors such as education level and age, and the groups might be states or
other geographic divisions. The effect of education level and age as well as an
intercept might be allowed to vary by state. Furthermore, there might be state-level
predictors, such as average state income and unemployment level.

Multivariate regression example
Andrew Gelman and Hill (2007, chap. 13, Chapter 17) provide a discussion of a
hierarchical model with N individuals organized into J groups. Each individual
has a predictor row vector xn of size K; to unify the notation, they assume that
xn,1 = 1 is a fixed “intercept” predictor. To encode group membership, they assume
individual n belongs to group jj[n] ∈ {1, . . . , J}. Each individual n also has an
observed outcome yn taking on real values.

Data model
The model is a linear regression with slope and intercept coefficients varying by
group, so that β j is the coefficient K-vector for group j. The data model for individ-
ual n is then just

yn ∼ normal(xn β jj[n], σ) for n ∈ {1, . . . , N}.

Coefficient prior
Gelman and Hill model the coefficient vectors β j as being drawn from a multivariate
distribution with mean vector µ and covariance matrix Σ,

β j ∼ multivariate normal(µj, Σ) for j ∈ {1, . . . , J}.

Below, we discuss the full model of Gelman and Hill, which uses group-level
predictors to model µ; for now, we assume µ is a simple vector parameter.

Hyperpriors
For hierarchical modeling, the group-level mean vector µ and covariance matrix
Σ must themselves be given priors. The group-level mean vector can be given a
reasonable weakly-informative prior for independent coefficients, such as

µj ∼ normal(0, 5).

If more is known about the expected coefficient values β j,k, this information can be
incorporated into the prior for µj.
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For the prior on the covariance matrix, Gelman and Hill suggest using a scaled
inverse Wishart. That choice was motivated primarily by convenience as it is
conjugate to the multivariate likelihood function and thus simplifies Gibbs sampling

In Stan, there is no restriction to conjugacy for multivariate priors, and we in fact
recommend a slightly different approach. Like Gelman and Hill, we decompose our
prior into a scale and a matrix, but are able to do so in a more natural way based on
the actual variable scales and a correlation matrix. Specifically, we define

Σ = diag_matrix(τ)× Ω × diag_matrix(τ),

where Ω is a correlation matrix and τ is the vector of coefficient scales. This mapping
from scale vector τ and correlation matrix Ω can be inverted, using

τk =
√

Σk,k and Ωi,j =
Σi,j

τi τj
.

The components of the scale vector τ can be given any reasonable prior for scales,
but we recommend something weakly informative like a half-Cauchy distribution
with a small scale, such as

τk ∼ Cauchy(0, 2.5) for k ∈ {1, . . . , K} constrained by τk > 0.

As for the prior means, if there is information about the scale of variation of co-
efficients across groups, it should be incorporated into the prior for τ. For large
numbers of exchangeable coefficients, the components of τ itself (perhaps excluding
the intercept) may themselves be given a hierarchical prior.

Our final recommendation is to give the correlation matrix Ω an LKJ prior with
shape η ≥ 1,5

Ω ∼ LKJCorr(η).

The LKJ correlation distribution is defined by

LKJCorr (Σ | η) ∝ det (Σ)η−1 .

The basic behavior of the LKJ correlation distribution is similar to that of a beta
distribution. For η = 1, the result is a uniform distribution. Despite being the

5The prior is named for Lewandowski, Kurowicka, and Joe, as it was derived by inverting the random
correlation matrix generation strategy of Lewandowski, Kurowicka, and Joe (2009).
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identity over correlation matrices, the marginal distribution over the entries in that
matrix (i.e., the correlations) is not uniform between -1 and 1. Rather, it concentrates
around zero as the dimensionality increases due to the complex constraints.

For η > 1, the density increasingly concentrates mass around the unit matrix, i.e.,
favoring less correlation. For η < 1, it increasingly concentrates mass in the other
direction, i.e., favoring more correlation.

The LKJ prior may thus be used to control the expected amount of correlation
among the parameters β j. For a discussion of decomposing a covariance prior into
a prior on correlation matrices and an independent prior on scales, see Barnard,
McCulloch, and Meng (2000).

Group-level predictors for prior mean
To complete Gelman and Hill’s model, suppose each group j ∈ {1, . . . , J} is supplied
with an L-dimensional row-vector of group-level predictors uj. The prior mean for
the β j can then itself be modeled as a regression, using an L-dimensional coefficient
vector γ. The prior for the group-level coefficients then becomes

β j ∼ multivariate normal(uj γ, Σ)

The group-level coefficients γ may themselves be given independent weakly infor-
mative priors, such as

γl ∼ normal(0, 5).

As usual, information about the group-level means should be incorporated into this
prior.

Coding the model in Stan
The Stan code for the full hierarchical model with multivariate priors on the group-
level coefficients and group-level prior means follows its definition.

data {
int<lower=0> N; // num individuals
int<lower=1> K; // num ind predictors
int<lower=1> J; // num groups
int<lower=1> L; // num group predictors
array[N] int<lower=1, upper=J> jj; // group for individual
matrix[N, K] x; // individual predictors
array[J] row_vector[L] u; // group predictors
vector[N] y; // outcomes

}
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parameters {
corr_matrix[K] Omega; // prior correlation
vector<lower=0>[K] tau; // prior scale
matrix[L, K] gamma; // group coeffs
array[J] vector[K] beta; // indiv coeffs by group
real<lower=0> sigma; // prediction error scale

}
model {

tau ~ cauchy(0, 2.5);
Omega ~ lkj_corr(2);
to_vector(gamma) ~ normal(0, 5);
{
array[J] row_vector[K] u_gamma;
for (j in 1:J) {

u_gamma[j] = u[j] * gamma;
}
beta ~ multi_normal(u_gamma, quad_form_diag(Omega, tau));

}
for (n in 1:N) {
y[n] ~ normal(x[n] * beta[jj[n]], sigma);

}
}

The hyperprior covariance matrix is defined implicitly through the quadratic form
in the code because the correlation matrix Omega and scale vector tau are more
natural to inspect in the output; to output Sigma, define it as a transformed param-
eter. The function quad_form_diag is defined so that quad_form_diag(Sigma,
tau) is equivalent to diag_matrix(tau) * Sigma * diag_matrix(tau), where
diag_matrix(tau) returns the matrix with tau on the diagonal and zeroes off
diagonal; the version using quad_form_diag should be faster. For details on these
and other matrix arithmetic operators and functions, see the function reference
manual.

Optimization through vectorization
The code in the Stan program above can be sped up dramatically by replacing the
the distribution statement inside the for loop:

for (n in 1:N) {
y[n] ~ normal(x[n] * beta[jj[n]], sigma);

}
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with the vectorized distribution statement:

{
vector[N] x_beta_jj;
for (n in 1:N) {
x_beta_jj[n] = x[n] * beta[jj[n]];

}
y ~ normal(x_beta_jj, sigma);

}

The outer brackets create a local scope in which to define the variable x_beta_jj,
which is then filled in a loop and used to define a vectorized distribution statement.
The reason this is such a big win is that it allows us to take the log of sigma only
once and it greatly reduces the size of the resulting expression graph by packing all
of the work into a single distribution function.

Although it is tempting to redeclare beta and include a revised model block distri-
bution statement,

parameters {
matrix[J, K] beta;

// ...
}
model {

y ~ normal(rows_dot_product(x, beta[jj]), sigma);
// ...

}

this fails because it breaks the vectorization for beta,6

beta ~ multi_normal(...);

which requires beta to be an array of vectors. Both vectorizations are important, so
the best solution is to just use the loop above, because rows_dot_product cannot
do much optimization in and of itself because there are no shared computations.

The code in the Stan program above also builds up an array of vectors for the
outcomes and for the multivariate normal, which provides a major speedup by
reducing the number of linear systems that need to be solved and differentiated.

{
matrix[K, K] Sigma_beta;

6Thanks to Mike Lawrence for pointing this out in the GitHub issue for the manual.



1.13. MULTIVARIATE PRIORS FOR HIERARCHICAL MODELS 31

Sigma_beta = quad_form_diag(Omega, tau);
for (j in 1:J) {
beta[j] ~ multi_normal((u[j] * gamma)', Sigma_beta);

}
}

In this example, the covariance matrix Sigma_beta is defined as a local variable so
as not to have to repeat the quadratic form computation J times. This vectorization
can be combined with the Cholesky-factor optimization in the next section.

Optimization through Cholesky factorization
The multivariate normal density and LKJ prior on correlation matrices both require
their matrix parameters to be factored. Vectorizing, as in the previous section,
ensures this is only done once for each density. An even better solution, both in
terms of efficiency and numerical stability, is to parameterize the model directly
in terms of Cholesky factors of correlation matrices using the multivariate version
of the non-centered parameterization. For the model in the previous section, the
program fragment to replace the full matrix prior with an equivalent Cholesky
factorized prior is as follows.

data {
matrix[L, J] u; // group predictors transposed
// ...

}
parameters {

matrix[K, J] z;
cholesky_factor_corr[K] L_Omega;
matrix[K, L] gamma;
// ...

}
transformed parameters {

matrix[K, J] beta;
beta = gamma * u + diag_pre_multiply(tau, L_Omega) * z;

}
model {

to_vector(z) ~ std_normal();
L_Omega ~ lkj_corr_cholesky(2);
// ...

}
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The data variable u was originally an array of vectors, which is efficient for access;
here it is redeclared as a matrix in order to use it in matrix arithmetic. Moreover, it
is transposed, along with gamma and beta, to minimize the number of transposition
operations. The new parameter L_Omega is the Cholesky factor of the original
correlation matrix Omega, so that

Omega = L_Omega * L_Omega'

The prior scale vector tau is unchanged, and furthermore, pre-multiplying the
Cholesky factor by the scale produces the Cholesky factor of the final covariance
matrix,

Sigma_beta
= quad_form_diag(Omega, tau)
= diag_pre_multiply(tau, L_Omega) * diag_pre_multiply(tau, L_Omega)'

where the diagonal pre-multiply compound operation is defined by

diag_pre_multiply(a, b) = diag_matrix(a) * b

The new variable z is declared as a matrix, the entries of which are given indepen-
dent standard normal priors; the to_vector operation turns the matrix into a vector
so that it can be used as a vectorized argument to the univariate normal density.
This results in every column of z being a K-variate normal random vector with the
identity as covariance matrix. Therefore, multiplying z by the Cholesky factor of the
covariance matrix and adding the mean (u * gamma)' produces a beta distributed
as in the original model, where the variance is, letting L = diag(τ)ΩL,

V[β] = E
(
(L z)(L z)⊤)

= E
(
(L z z⊤ L⊤)

= L E(z z⊤) L⊤

= L L⊤ = (diag(τ)ΩL) (diag(τ)ΩL)
⊤

= diag(τ)Ω diag(τ)

= Σ.

Where we have used the linearity of expectations (line 2 to 3), the definition of
Ω = ΩL Ω⊤

L , and the fact that E(z z⊤) = I since z ∼ N (0, I).

Omitting the remaining data declarations, which are the same as before with the
exception of u, the optimized model is as follows.
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parameters {
matrix[K, J] z;
cholesky_factor_corr[K] L_Omega;
vector<lower=0, upper=pi() / 2>[K] tau_unif; // prior scale
matrix[K, L] gamma; // group coeffs
real<lower=0> sigma; // prediction error scale

}
transformed parameters {

vector<lower=0>[K] tau = 2.5 * tan(tau_unif);
matrix[K, J] beta = gamma * u + diag_pre_multiply(tau, L_Omega) * z;

}
model {

vector[N] mu;
for(n in 1:N) {
mu[n] = x[n, ] * beta[, jj[n]];

}
to_vector(z) ~ std_normal();
L_Omega ~ lkj_corr_cholesky(2);
to_vector(gamma) ~ normal(0, 5);
y ~ normal(mu, sigma);

}

This model also reparameterizes the prior scale tau to avoid potential problems with
the heavy tails of the Cauchy distribution. The statement tau_unif ~ uniform(0,
pi() / 2) can be omitted from the model block because Stan increments the log
posterior for parameters with uniform priors without it.

1.14. Prediction, forecasting, and backcasting
Stan models can be used for “predicting” the values of arbitrary model unknowns.
When predictions are about the future, they’re called “forecasts;” when they are
predictions about the past, as in climate reconstruction or cosmology, they are some-
times called “backcasts” (or “aftcasts” or “hindcasts” or “antecasts,” depending on
the author’s feelings about the opposite of “fore”).

Programming predictions
As a simple example, the following linear regression provides the same setup for
estimating the coefficients beta as in our very first example, using y for the N
observations and x for the N predictor vectors. The model parameters and model
for observations are exactly the same as before.
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To make predictions, we need to be given the number of predictions, N_new, and
their predictor matrix, x_new. The predictions themselves are modeled as a parame-
ter y_new. The model statement for the predictions is exactly the same as for the
observations, with the new outcome vector y_new and prediction matrix x_new.

data {
int<lower=1> K;
int<lower=0> N;
matrix[N, K] x;
vector[N] y;

int<lower=0> N_new;
matrix[N_new, K] x_new;

}
parameters {

vector[K] beta;
real<lower=0> sigma;

vector[N_new] y_new; // predictions
}
model {

y ~ normal(x * beta, sigma); // observed model

y_new ~ normal(x_new * beta, sigma); // prediction model
}

Predictions as generated quantities
Where possible, the most efficient way to generate predictions is to use the generated
quantities block. This provides proper Monte Carlo (not Markov chain Monte Carlo)
inference, which can have a much higher effective sample size per iteration.

// ...data as above...

parameters {
vector[K] beta;
real<lower=0> sigma;

}
model {

y ~ normal(x * beta, sigma);
}
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generated quantities {
vector[N_new] y_new;
for (n in 1:N_new) {
y_new[n] = normal_rng(x_new[n] * beta, sigma);

}
}

Now the data are just as before, but the parameter y_new is now declared as a
generated quantity, and the prediction model is removed from the model and
replaced by a pseudo-random draw from a normal distribution.

Overflow in generated quantities
It is possible for values to overflow or underflow in generated quantities. The
problem is that if the result is NaN, then any constraints placed on the variables
will be violated. It is possible to check a value assigned by an RNG and reject it
if it overflows, but this is both inefficient and leads to biased posterior estimates.
Instead, the conditions causing overflow, such as trying to generate a negative
binomial random variate with a mean of 231, must be intercepted and dealt with.
This is typically done by reparameterizing or reimplementing the random number
generator using real values rather than integers, which are upper-bounded by
231 − 1 in Stan.

1.15. Multivariate outcomes
Most regressions are set up to model univariate observations (be they scalar, boolean,
categorical, ordinal, or count). Even multinomial regressions are just repeated
categorical regressions. In contrast, this section discusses regression when each
observed value is multivariate. To relate multiple outcomes in a regression setting,
their error terms are provided with covariance structure.

This section considers two cases, seemingly unrelated regressions for continuous
multivariate quantities and multivariate probit regression for boolean multivariate
quantities.

Seemingly unrelated regressions
The first model considered is the “seemingly unrelated” regressions (SUR) of econo-
metrics where several linear regressions share predictors and use a covariance error
structure rather than independent errors (Zellner 1962; Greene 2011).
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The model is easy to write down as a regression,

yn = xn β + ϵn

ϵn ∼ multivariate normal(0, Σ)

where xn is a J-row-vector of predictors (x is an (N × J) matrix), yn is a K-vector
of observations, β is a (K × J) matrix of regression coefficients (vector βk holds
coefficients for outcome k), and Σ is covariance matrix governing the error. As
usual, the intercept can be rolled into x as a column of ones.

The basic Stan code is straightforward (though see below for more optimized code
for use with LKJ priors on correlation).

data {
int<lower=1> K;
int<lower=1> J;
int<lower=0> N;
array[N] vector[J] x;
array[N] vector[K] y;

}
parameters {

matrix[K, J] beta;
cov_matrix[K] Sigma;

}
model {

array[N] vector[K] mu;
for (n in 1:N) {
mu[n] = beta * x[n];

}
y ~ multi_normal(mu, Sigma);

}

For efficiency, the multivariate normal is vectorized by precomputing the array of
mean vectors and sharing the same covariance matrix.

Following the advice in the multivariate hierarchical priors section, we will place
a weakly informative normal prior on the regression coefficients, an LKJ prior on
the correlations and a half-Cauchy prior on standard deviations. The covariance
structure is parameterized in terms of Cholesky factors for efficiency and arithmetic
stability.
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// ...
parameters {

matrix[K, J] beta;
cholesky_factor_corr[K] L_Omega;
vector<lower=0>[K] L_sigma;

}
model {

array[N] vector[K] mu;
matrix[K, K] L_Sigma;

for (n in 1:N) {
mu[n] = beta * x[n];

}

L_Sigma = diag_pre_multiply(L_sigma, L_Omega);

to_vector(beta) ~ normal(0, 5);
L_Omega ~ lkj_corr_cholesky(4);
L_sigma ~ cauchy(0, 2.5);

y ~ multi_normal_cholesky(mu, L_Sigma);
}

The Cholesky factor of the covariance matrix is then reconstructed as a local variable
and used in the model by scaling the Cholesky factor of the correlation matrices.
The regression coefficients get a prior all at once by converting the matrix beta to a
vector.

If required, the full correlation or covariance matrices may be reconstructed from
their Cholesky factors in the generated quantities block.

Multivariate probit regression
The multivariate probit model generates sequences of boolean variables by applying
a step function to the output of a seemingly unrelated regression.

The observations yn are D-vectors of boolean values (coded 0 for false, 1 for true).
The values for the observations yn are based on latent values zn drawn from a
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seemingly unrelated regression model (see the previous section),

zn = xn β + ϵn

ϵn ∼ multivariate normal(0, Σ)

These are then put through the step function to produce a K-vector zn of boolean
values with elements defined by

yn,k = I (zn,k > 0) ,

where I() is the indicator function taking the value 1 if its argument is true and 0
otherwise.

Unlike in the seemingly unrelated regressions case, here the covariance matrix Σ
has unit standard deviations (i.e., it is a correlation matrix). As with ordinary probit
and logistic regressions, letting the scale vary causes the model (which is defined
only by a cutpoint at 0, not a scale) to be unidentified (see Greene (2011)).

Multivariate probit regression can be coded in Stan using the trick introduced by
Albert and Chib (1993), where the underlying continuous value vectors yn are coded
as truncated parameters. The key to coding the model in Stan is declaring the latent
vector z in two parts, based on whether the corresponding value of y is 0 or 1.
Otherwise, the model is identical to the seemingly unrelated regression model in
the previous section.

First, we introduce a sum function for two-dimensional arrays of integers; this is
going to help us calculate how many total 1 values there are in y.

functions {
int sum2d(array[,] int a) {
int s = 0;
for (i in 1:size(a)) {

s += sum(a[i]);
}
return s;

}
}

The function is trivial, but it’s not a built-in for Stan and it’s easier to understand the
rest of the model if it’s pulled into its own function so as not to create a distraction.

The data declaration block is much like for the seemingly unrelated regressions, but
the observations y are now integers constrained to be 0 or 1.
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data {
int<lower=1> K;
int<lower=1> D;
int<lower=0> N;
array[N, D] int<lower=0, upper=1> y;
array[N] vector[K] x;

}

After declaring the data, there is a rather involved transformed data block whose
sole purpose is to sort the data array y into positive and negative components,
keeping track of indexes so that z can be easily reassembled in the transformed
parameters block.

transformed data {
int<lower=0> N_pos;
array[sum2d(y)] int<lower=1, upper=N> n_pos;
array[size(n_pos)] int<lower=1, upper=D> d_pos;
int<lower=0> N_neg;
array[(N * D) - size(n_pos)] int<lower=1, upper=N> n_neg;
array[size(n_neg)] int<lower=1, upper=D> d_neg;

N_pos = size(n_pos);
N_neg = size(n_neg);
{
int i;
int j;
i = 1;
j = 1;
for (n in 1:N) {
for (d in 1:D) {
if (y[n, d] == 1) {

n_pos[i] = n;
d_pos[i] = d;
i += 1;

} else {
n_neg[j] = n;
d_neg[j] = d;
j += 1;

}
}
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}
}

}

The variables N_pos and N_neg are set to the number of true (1) and number of false
(0) observations in y. The loop then fills in the sequence of indexes for the positive
and negative values in four arrays.

The parameters are declared as follows.

parameters {
matrix[D, K] beta;
cholesky_factor_corr[D] L_Omega;
vector<lower=0>[N_pos] z_pos;
vector<upper=0>[N_neg] z_neg;

}

These include the regression coefficients beta and the Cholesky factor of the corre-
lation matrix, L_Omega. This time there is no scaling because the covariance matrix
has unit scale (i.e., it is a correlation matrix; see above).

The critical part of the parameter declaration is that the latent real value z is broken
into positive-constrained and negative-constrained components, whose size was
conveniently calculated in the transformed data block. The transformed data block’s
real work was to allow the transformed parameter block to reconstruct z.

transformed parameters {
array[N] vector[D] z;
for (n in 1:N_pos) {
z[n_pos[n], d_pos[n]] = z_pos[n];

}
for (n in 1:N_neg) {
z[n_neg[n], d_neg[n]] = z_neg[n];

}
}

At this point, the model is simple, pretty much recreating the seemingly unrelated
regression.

model {
L_Omega ~ lkj_corr_cholesky(4);
to_vector(beta) ~ normal(0, 5);
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{
array[N] vector[D] beta_x;
for (n in 1:N) {
beta_x[n] = beta * x[n];

}
z ~ multi_normal_cholesky(beta_x, L_Omega);

}
}

This simple form of model is made possible by the Albert and Chib-style constraints
on z.

Finally, the correlation matrix itself can be put back together in the generated
quantities block if desired.

generated quantities {
corr_matrix[D] Omega;
Omega = multiply_lower_tri_self_transpose(L_Omega);

}

The same could be done for the seemingly unrelated regressions in the previous
section.

1.16. Applications of pseudorandom number generation
The main application of pseudorandom number generator (PRNGs) is for posterior
inference, including prediction and posterior predictive checks. They can also be
used for pure data simulation, which is like a posterior predictive check with no
conditioning. See the function reference manual for a complete description of the
syntax and usage of pseudorandom number generators.

Prediction
Consider predicting unobserved outcomes using linear regression. Given predic-
tors x1, . . . , xN and observed outcomes y1, . . . , yN , and assuming a standard linear
regression with intercept α, slope β, and error scale σ, along with improper uniform
priors, the posterior over the parameters given x and y is

p (α, β, σ | x, y) ∝
N

∏
n=1

normal (yn | α + βxn, σ) .

For this model, the posterior predictive inference for a new outcome ỹm given a
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predictor x̃m, conditioned on the observed data x and y, is

p (ỹn | x̃n, x, y) =
∫
(α,β,σ)

normal (ỹn | α + βx̃n, σ)× p (α, β, σ | x, y) d(α, β, σ).

To code the posterior predictive inference in Stan, a standard linear regression is
combined with a random number in the generated quantities block.

data {
int<lower=0> N;
vector[N] y;
vector[N] x;
int<lower=0> N_tilde;
vector[N_tilde] x_tilde;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

y ~ normal(alpha + beta * x, sigma);
}
generated quantities {

vector[N_tilde] y_tilde;
for (n in 1:N_tilde) {
y_tilde[n] = normal_rng(alpha + beta * x_tilde[n], sigma);

}
}

Given observed predictors x and outcomes y, y_tilde will be drawn according to
p (ỹ | x̃, y, x). This means that, for example, the posterior mean for y_tilde is the
estimate of the outcome that minimizes expected square error (conditioned on the
data and model).

Posterior predictive checks
A good way to investigate the fit of a model to the data, a critical step in Bayesian
data analysis, is to generate simulated data according to the parameters of the
model. This is carried out with exactly the same procedure as before, only the
observed data predictors x are used in place of new predictors x̃ for unobserved
outcomes. If the model fits the data well, the predictions for ỹ based on x should
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match the observed data y.

To code posterior predictive checks in Stan requires only a slight modification of
the prediction code to use x and N in place of x̃ and Ñ,

generated quantities {
vector[N] y_tilde;
for (n in 1:N) {
y_tilde[n] = normal_rng(alpha + beta * x[n], sigma);

}
}

Andrew Gelman et al. (2013) recommend choosing several posterior draws
ỹ(1), . . . , ỹ(M) and plotting each of them alongside the data y that was actually
observed. If the model fits well, the simulated ỹ will look like the actual data y.



2. Time-Series Models

Times series data come arranged in temporal order. This chapter presents two kinds
of time series models, regression-like models such as autoregressive and moving
average models, and hidden Markov models.

The Gaussian processes chapter presents Gaussian processes, which may also be
used for time-series (and spatial) data.

2.1. Autoregressive models
A first-order autoregressive model (AR(1)) with normal noise takes each point yn in
a sequence y to be generated according to

yn ∼ normal(α + βyn−1, σ).

That is, the expected value of yn is α + βyn−1, with noise scaled as σ.

AR(1) models
With improper flat priors on the regression coefficients α and β and on the positively-
constrained noise scale (σ), the Stan program for the AR(1) model is as follows.1

data {
int<lower=0> N;
vector[N] y;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

for (n in 2:N) {
y[n] ~ normal(alpha + beta * y[n-1], sigma);

}
}

1The intercept in this model is α/(1 − β). An alternative parameterization in terms of an intercept γ
suggested Mark Scheuerell on GitHub is yn ∼ normal (γ + β · (yn−1 − γ), σ).

44
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The first observed data point, y[1], is not modeled here because there is nothing to
condition on; instead, it acts to condition y[2]. This model also uses an improper
prior for sigma, but there is no obstacle to adding an informative prior if information
is available on the scale of the changes in y over time, or a weakly informative prior
to help guide inference if rough knowledge of the scale of y is available.

Slicing for efficiency
Although perhaps a bit more difficult to read, a much more efficient way to write
the above model is by slicing the vectors, with the model above being replaced with
the one-liner

model {
y[2:N] ~ normal(alpha + beta * y[1:(N - 1)], sigma);

}

The left-hand side slicing operation pulls out the last N − 1 elements and the
right-hand side version pulls out the first N − 1.

Extensions to the AR(1) model
Proper priors of a range of different families may be added for the regression
coefficients and noise scale. The normal noise model can be changed to a Student-t
distribution or any other distribution with unbounded support. The model could
also be made hierarchical if multiple series of observations are available.

To enforce the estimation of a stationary AR(1) process, the slope coefficient beta
may be constrained with bounds as follows.

real<lower=-1, upper=1> beta;

In practice, such a constraint is not recommended. If the data are not well fit by
a stationary model it is best to know this. Stationary parameter estimates can be
encouraged with a prior favoring values of beta near zero.

AR(2) models
Extending the order of the model is also straightforward. For example, an AR(2)
model could be coded with the second-order coefficient gamma and the following
model statement.

for (n in 3:N) {
y[n] ~ normal(alpha + beta*y[n-1] + gamma*y[n-2], sigma);

}



46 CHAPTER 2. TIME-SERIES MODELS

AR(K) models
A general model where the order is itself given as data can be coded by putting the
coefficients in an array and computing the linear predictor in a loop.

data {
int<lower=0> K;
int<lower=0> N;
array[N] real y;

}
parameters {

real alpha;
array[K] real beta;
real sigma;

}
model {

for (n in (K+1):N) {
real mu = alpha;
for (k in 1:K) {
mu += beta[k] * y[n-k];

}
y[n] ~ normal(mu, sigma);

}
}

ARCH(1) models
Econometric and financial time-series models usually assume heteroscedasticity:
they allow the scale of the noise terms defining the series to vary over time. The
simplest such model is the autoregressive conditional heteroscedasticity (ARCH)
model (Engle 1982). Unlike the autoregressive model AR(1), which modeled the
mean of the series as varying over time but left the noise term fixed, the ARCH(1)
model takes the scale of the noise terms to vary over time but leaves the mean term
fixed. Models could be defined where both the mean and scale vary over time; the
econometrics literature presents a wide range of time-series modeling choices.

The ARCH(1) model is typically presented as the following sequence of equations,
where rt is the observed return at time point t and µ, α0, and α1 are unknown
regression coefficient parameters.
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rt = µ + at

at = σtϵt

ϵt ∼ normal(0, 1)

σ2
t = α0 + α1a2

t−1

In order to ensure the noise terms σ2
t are positive, the scale coefficients are con-

strained to be positive, α0, α1 > 0. To ensure stationarity of the time series, the slope
is constrained to be less than one, i.e., α1 < 1.2

The ARCH(1) model may be coded directly in Stan as follows.

data {
int<lower=0> T; // number of time points
array[T] real r; // return at time t

}
parameters {

real mu; // average return
real<lower=0> alpha0; // noise intercept
real<lower=0, upper=1> alpha1; // noise slope

}
model {

for (t in 2:T) {
r[t] ~ normal(mu, sqrt(alpha0 + alpha1

* pow(r[t - 1] - mu,2)));
}

}

The loop in the model is defined so that the return at time t = 1 is not modeled; the
model in the next section shows how to model the return at t = 1. The model can be
vectorized to be more efficient; the model in the next section provides an example.

2.2. Modeling temporal heteroscedasticity
A set of variables is homoscedastic if their variances are all the same; the variables
are heteroscedastic if they do not all have the same variance. Heteroscedastic
time-series models allow the noise term to vary over time.

2In practice, it can be useful to remove the constraint to test whether a non-stationary set of coefficients
provides a better fit to the data. It can also be useful to add a trend term to the model, because an unfitted
trend will manifest as non-stationarity.
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GARCH(1,1) models
The basic generalized autoregressive conditional heteroscedasticity (GARCH)
model, GARCH(1,1), extends the ARCH(1) model by including the squared previ-
ous difference in return from the mean at time t − 1 as a predictor of volatility at
time t, defining

σ2
t = α0 + α1a2

t−1 + β1σ2
t−1.

To ensure the scale term is positive and the resulting time series stationary, the
coefficients must all satisfy α0, α1, β1 > 0 and the slopes α1 + β1 < 1.

data {
int<lower=0> T;
array[T] real r;
real<lower=0> sigma1;

}
parameters {

real mu;
real<lower=0> alpha0;
real<lower=0, upper=1> alpha1;
real<lower=0, upper=(1-alpha1)> beta1;

}
transformed parameters {

array[T] real<lower=0> sigma;
sigma[1] = sigma1;
for (t in 2:T) {
sigma[t] = sqrt(alpha0

+ alpha1 * pow(r[t - 1] - mu, 2)
+ beta1 * pow(sigma[t - 1], 2));

}
}
model {

r ~ normal(mu, sigma);
}

To get the recursive definition of the volatility regression off the ground, the data
declaration includes a non-negative value sigma1 for the scale of the noise at t = 1.

The constraints are coded directly on the parameter declarations. This declaration
is order-specific in that the constraint on beta1 depends on the value of alpha1.

A transformed parameter array of non-negative values sigma is used to store the
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scale values at each time point. The definition of these values in the transformed
parameters block is where the regression is now defined. There is an intercept
alpha0, a slope alpha1 for the squared difference in return from the mean at the
previous time, and a slope beta1 for the previous noise scale squared. Finally, the
whole regression is inside the sqrt function because Stan requires scale (deviation)
parameters (not variance parameters) for the normal distribution.

With the regression in the transformed parameters block, the model reduces a single
vectorized distribution statement. Because r and sigma are of length T, all of the
data are modeled directly.

2.3. Moving average models
A moving average model uses previous errors as predictors for future outcomes.
For a moving average model of order Q, MA(Q), there is an overall mean parameter
µ and regression coefficients θq for previous error terms. With ϵt being the noise at
time t, the model for outcome yt is defined by

yt = µ + θ1ϵt−1 + · · ·+ θQϵt−Q + ϵt,

with the noise term ϵt for outcome yt modeled as normal,

ϵt ∼ normal(0, σ).

In a proper Bayesian model, the parameters µ, θ, and σ must all be given priors.

MA(2) example
An MA(2) model can be coded in Stan as follows.

data {
int<lower=3> T; // number of observations
vector[T] y; // observation at time T

}
parameters {

real mu; // mean
real<lower=0> sigma; // error scale
vector[2] theta; // lag coefficients

}
transformed parameters {

vector[T] epsilon; // error terms
epsilon[1] = y[1] - mu;
epsilon[2] = y[2] - mu - theta[1] * epsilon[1];
for (t in 3:T) {
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epsilon[t] = ( y[t] - mu
- theta[1] * epsilon[t - 1]
- theta[2] * epsilon[t - 2] );

}
}
model {

mu ~ cauchy(0, 2.5);
theta ~ cauchy(0, 2.5);
sigma ~ cauchy(0, 2.5);
for (t in 3:T) {
y[t] ~ normal(mu

+ theta[1] * epsilon[t - 1]
+ theta[2] * epsilon[t - 2],
sigma);

}
}

The error terms ϵt are defined as transformed parameters in terms of the obser-
vations and parameters. The definition of the distribution statement (which also
defines the likelihood) follows the definition, which can only be applied to yn for
n > Q. In this example, the parameters are all given Cauchy (half-Cauchy for σ)
priors, although other priors can be used just as easily.

This model could be improved in terms of speed by vectorizing the distribution
statement in the model block. Vectorizing the calculation of the ϵt could also be
sped up by using a dot product instead of a loop.

Vectorized MA(Q) model
A general MA(Q) model with a vectorized distribution statement may be defined
as follows.

data {
int<lower=0> Q; // num previous noise terms
int<lower=3> T; // num observations
vector[T] y; // observation at time t

}
parameters {

real mu; // mean
real<lower=0> sigma; // error scale
vector[Q] theta; // error coeff, lag -t
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}
transformed parameters {

vector[T] epsilon; // error term at time t
for (t in 1:T) {
epsilon[t] = y[t] - mu;
for (q in 1:min(t - 1, Q)) {

epsilon[t] = epsilon[t] - theta[q] * epsilon[t - q];
}

}
}
model {

vector[T] eta;
mu ~ cauchy(0, 2.5);
theta ~ cauchy(0, 2.5);
sigma ~ cauchy(0, 2.5);
for (t in 1:T) {
eta[t] = mu;
for (q in 1:min(t - 1, Q)) {
eta[t] = eta[t] + theta[q] * epsilon[t - q];

}
}
y ~ normal(eta, sigma);

}

Here all of the data are modeled, with missing terms just dropped from the regres-
sions as in the calculation of the error terms. Both models converge quickly and
mix well at convergence, with the vectorized model being faster (per iteration, not
to converge—they compute the same model).

2.4. Autoregressive moving average models
Autoregressive moving-average models (ARMA), combine the predictors of the
autoregressive model and the moving average model. An ARMA(1,1) model, with
a single state of history, can be encoded in Stan as follows.

data {
int<lower=1> T; // num observations
array[T] real y; // observed outputs

}
parameters {
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real mu; // mean coeff
real phi; // autoregression coeff
real theta; // moving avg coeff
real<lower=0> sigma; // noise scale

}
model {

vector[T] nu; // prediction for time t
vector[T] err; // error for time t
nu[1] = mu + phi * mu; // assume err[0] == 0
err[1] = y[1] - nu[1];
for (t in 2:T) {
nu[t] = mu + phi * y[t - 1] + theta * err[t - 1];
err[t] = y[t] - nu[t];

}
mu ~ normal(0, 10); // priors
phi ~ normal(0, 2);
theta ~ normal(0, 2);
sigma ~ cauchy(0, 5);
err ~ normal(0, sigma); // error model

}

The data are declared in the same way as the other time-series regressions and the
parameters are documented in the code.

In the model block, the local vector nu stores the predictions and err the errors.
These are computed similarly to the errors in the moving average models described
in the previous section.

The priors are weakly informative for stationary processes. The data model only
involves the error term, which is efficiently vectorized here.

Often in models such as these, it is desirable to inspect the calculated error terms.
This could easily be accomplished in Stan by declaring err as a transformed param-
eter, then defining it the same way as in the model above. The vector nu could still
be a local variable, only now it will be in the transformed parameter block.

Wayne Folta suggested encoding the model without local vector variables as follows.

model {
real err;
mu ~ normal(0, 10);
phi ~ normal(0, 2);
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theta ~ normal(0, 2);
sigma ~ cauchy(0, 5);
err = y[1] - (mu + phi * mu);
err ~ normal(0, sigma);
for (t in 2:T) {
err = y[t] - (mu + phi * y[t - 1] + theta * err);
err ~ normal(0, sigma);

}
}

This approach to ARMA models illustrates how local variables, such as err in this
case, can be reused in Stan. Folta’s approach could be extended to higher order
moving-average models by storing more than one error term as a local variable and
reassigning them in the loop.

Both encodings are fast. The original encoding has the advantage of vectorizing the
normal distribution, but it uses a bit more memory. A halfway point would be to
vectorize just err.

Identifiability and stationarity
MA and ARMA models are not identifiable if the roots of the characteristic polyno-
mial for the MA part lie inside the unit circle, so it’s necessary to add the following
constraint3

real<lower=-1, upper=1> theta;

When the model is run without the constraint, using synthetic data generated from
the model, the simulation can sometimes find modes for (theta, phi) outside the
[−1, 1] interval, which creates a multiple mode problem in the posterior and also
causes the NUTS tree depth to get large (often above 10). Adding the constraint
both improves the accuracy of the posterior and dramatically reduces the tree depth,
which speeds up the simulation considerably (typically by much more than an order
of magnitude).

Further, unless one thinks that the process is really non-stationary, it’s worth adding
the following constraint to ensure stationarity.

real<lower=-1, upper=1> phi;

3This subsection is a lightly edited comment of Jonathan Gilligan’s on GitHub; see https://github.c
om/stan-dev/stan/issues/1617#issuecomment-160249142

https://github.com/stan-dev/stan/issues/1617#issuecomment-160249142
https://github.com/stan-dev/stan/issues/1617#issuecomment-160249142
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2.5. Stochastic volatility models
Stochastic volatility models treat the volatility (i.e., variance) of a return on an asset,
such as an option to buy a security, as following a latent stochastic process in discrete
time (Kim, Shephard, and Chib 1998). The data consist of mean corrected (i.e.,
centered) returns yt on an underlying asset at T equally spaced time points. Kim et
al. formulate a typical stochastic volatility model using the following regression-like
equations, with a latent parameter ht for the log volatility, along with parameters
µ for the mean log volatility, and ϕ for the persistence of the volatility term. The
variable ϵt represents the white-noise shock (i.e., multiplicative error) on the asset
return at time t, whereas δt represents the shock on volatility at time t.

yt = ϵt exp(ht/2)

ht+1 = µ + ϕ(ht − µ) + δtσ

h1 ∼ normal
(

µ,
σ√

1 − ϕ2

)
ϵt ∼ normal(0, 1)

δt ∼ normal(0, 1)

Rearranging the first line, ϵt = yt exp(−ht/2), allowing the distribution for yt to be
written as

yt ∼ normal(0, exp(ht/2)).

The recurrence equation for ht+1 may be combined with the scaling of δt to yield
the distribution

ht ∼ normal(µ + ϕ(ht−1 − µ), σ).

This formulation can be directly encoded, as shown in the following Stan model.

data {
int<lower=0> T; // # time points (equally spaced)
vector[T] y; // mean corrected return at time t

}
parameters {

real mu; // mean log volatility
real<lower=-1, upper=1> phi; // persistence of volatility
real<lower=0> sigma; // white noise shock scale
vector[T] h; // log volatility at time t

}
model {
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phi ~ uniform(-1, 1);
sigma ~ cauchy(0, 5);
mu ~ cauchy(0, 10);
h[1] ~ normal(mu, sigma / sqrt(1 - phi * phi));
for (t in 2:T) {
h[t] ~ normal(mu + phi * (h[t - 1] - mu), sigma);

}
for (t in 1:T) {
y[t] ~ normal(0, exp(h[t] / 2));

}
}

Compared to the Kim et al. formulation, the Stan model adds priors for the parame-
ters ϕ, σ, and µ. The shock terms ϵt and δt do not appear explicitly in the model,
although they could be calculated efficiently in a generated quantities block.

The posterior of a stochastic volatility model such as this one typically has high
posterior variance. For example, simulating 500 data points from the above model
with µ = −1.02, ϕ = 0.95, and σ = 0.25 leads to 95% posterior intervals for µ of
(−1.23,−0.54), for ϕ of (0.82, 0.98), and for σ of (0.16, 0.38).

The samples using NUTS show a high degree of autocorrelation among the samples,
both for this model and the stochastic volatility model evaluated in (Hoffman and
Gelman 2014). Using a non-diagonal mass matrix provides faster convergence and
more effective samples than a diagonal mass matrix, but will not scale to large
values of T.

It is relatively straightforward to speed up the effective samples per second gen-
erated by this model by one or more orders of magnitude. First, the distribution
statements for return y is easily vectorized to

y ~ normal(0, exp(h / 2));

This speeds up the iterations, but does not change the effective sample size because
the underlying parameterization and log probability function have not changed.
Mixing is improved by reparameterizing in terms of a standardized volatility, then
rescaling. This requires a standardized parameter h_std to be declared instead of h.

parameters {
// ...
vector[T] h_std; // std log volatility time t

}
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The original value of h is then defined in a transformed parameter block.

transformed parameters {
vector[T] h = h_std * sigma; // now h ~ normal(0, sigma)
h[1] /= sqrt(1 - phi * phi); // rescale h[1]
h += mu;
for (t in 2:T) {
h[t] += phi * (h[t - 1] - mu);

}
}

The first assignment rescales h_std to have a normal(0, σ) distribution and tem-
porarily assigns it to h. The second assignment rescales h[1] so that its prior differs
from that of h[2] through h[T]. The next assignment supplies a mu offset, so that
h[2] through h[T] are now distributed normal(µ, σ); note that this shift must be
done after the rescaling of h[1]. The final loop adds in the moving average so that
h[2] through h[T] are appropriately modeled relative to phi and mu.

As a final improvement, the distribution statements for h[1] to h[T] are replaced
with a single vectorized standard normal distribution statement.

model {
// ...
h_std ~ std_normal();

}

Although the original model can take hundreds and sometimes thousands of itera-
tions to converge, the reparameterized model reliably converges in tens of iterations.
Mixing is also dramatically improved, which results in higher effective sample sizes
per iteration. Finally, each iteration runs in roughly a quarter of the time of the
original iterations.

2.6. Hidden Markov models
A hidden Markov model (HMM) generates a sequence of T output variables yt con-
ditioned on a parallel sequence of latent categorical state variables zt ∈ {1, . . . , K}.
These “hidden” state variables are assumed to form a Markov chain so that zt
is conditionally independent of other variables given zt−1. This Markov chain is
parameterized by a transition matrix θ where θk is a K-simplex for k ∈ {1, . . . , K}.
The probability of transitioning to state zt from state zt−1 is

zt ∼ categorical(θz[t−1]).
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The output yt at time t is generated conditionally independently based on the latent
state zt.

This section describes HMMs with a simple categorical model for outputs yt ∈
{1, . . . , V}. The categorical distribution for latent state k is parameterized by a
V-simplex ϕk. The observed output yt at time t is generated based on the hidden
state indicator zt at time t,

yt ∼ categorical(ϕz[t]).

In short, HMMs form a discrete mixture model where the mixture component
indicators form a latent Markov chain.

Supervised parameter estimation
In the situation where the hidden states are known, the following naive model can
be used to fit the parameters θ and ϕ.

data {
int<lower=1> K; // num categories
int<lower=1> V; // num words
int<lower=0> T; // num instances
array[T] int<lower=1, upper=V> w; // words
array[T] int<lower=1, upper=K> z; // categories
vector<lower=0>[K] alpha; // transit prior
vector<lower=0>[V] beta; // emit prior

}
parameters {

array[K] simplex[K] theta; // transit probs
array[K] simplex[V] phi; // emit probs

}
model {

for (k in 1:K) {
theta[k] ~ dirichlet(alpha);

}
for (k in 1:K) {
phi[k] ~ dirichlet(beta);

}
for (t in 1:T) {
w[t] ~ categorical(phi[z[t]]);

}
for (t in 2:T) {
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z[t] ~ categorical(theta[z[t - 1]]);
}

}

Explicit Dirichlet priors have been provided for θk and ϕk; dropping these two
statements would implicitly take the prior to be uniform over all valid simplexes.

Start-state and end-state probabilities
Although workable, the above description of HMMs is incomplete because the start
state z1 is not modeled (the index runs from 2 to T). If the data are conceived as a
subsequence of a long-running process, the probability of z1 should be set to the
stationary state probabilities in the Markov chain. In this case, there is no distinct
end to the data, so there is no need to model the probability that the sequence ends
at zT .

An alternative conception of HMMs is as models of finite-length sequences. For
example, human language sentences have distinct starting distributions (usually
a capital letter) and ending distributions (usually some kind of punctuation). The
simplest way to model the sequence boundaries is to add a new latent state K + 1,
generate the first state from a categorical distribution with parameter vector θK+1,
and restrict the transitions so that a transition to state K + 1 is forced to occur at the
end of the sentence and is prohibited elsewhere.

Calculating sufficient statistics
The naive HMM estimation model presented above can be sped up dramatically
by replacing the loops over categorical distributions with a single multinomial
distribution.

The data are declared as before. The transformed data block computes the sufficient
statistics for estimating the transition and emission matrices.

transformed data {
array[K, K] int<lower=0> trans;
array[K, V] int<lower=0> emit;
for (k1 in 1:K) {
for (k2 in 1:K) {
trans[k1, k2] = 0;

}
}
for (t in 2:T) {
trans[z[t - 1], z[t]] += 1;
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}
for (k in 1:K) {
for (v in 1:V) {

emit[k, v] = 0;
}

}
for (t in 1:T) {
emit[z[t], w[t]] += 1;

}
}

The data model component based on looping over the input is replaced with
multinomials as follows.

model {
// ...
for (k in 1:K) {
trans[k] ~ multinomial(theta[k]);

}
for (k in 1:K) {
emit[k] ~ multinomial(phi[k]);

}
}

In a continuous HMM with normal emission probabilities could be sped up in the
same way by computing sufficient statistics.

Analytic posterior
With the Dirichlet-multinomial HMM, the posterior can be computed analytically
because the Dirichlet is the conjugate prior to the multinomial. The following
example illustrates how a Stan model can define the posterior analytically. This is
possible in the Stan language because the model only needs to define the conditional
probability of the parameters given the data up to a proportion, which can be done
by defining the (unnormalized) joint probability or the (unnormalized) conditional
posterior, or anything in between.

The model has the same data and parameters as the previous models, but now
computes the posterior Dirichlet parameters in the transformed data block.

transformed data {
vector<lower=0>[K] alpha_post[K];
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vector<lower=0>[V] beta_post[K];
for (k in 1:K) {
alpha_post[k] = alpha;

}
for (t in 2:T) {
alpha_post[z[t - 1], z[t]] += 1;

}
for (k in 1:K) {
beta_post[k] = beta;

}
for (t in 1:T) {
beta_post[z[t], w[t]] += 1;

}
}

The posterior can now be written analytically as follows.

model {
for (k in 1:K) {
theta[k] ~ dirichlet(alpha_post[k]);

}
for (k in 1:K) {
phi[k] ~ dirichlet(beta_post[k]);

}
}

Semisupervised estimation
HMMs can be estimated in a fully unsupervised fashion without any data for which
latent states are known. The resulting posteriors are typically extremely multimodal.
An intermediate solution is to use semisupervised estimation, which is based on a
combination of supervised and unsupervised data. Implementing this estimation
strategy in Stan requires calculating the probability of an output sequence with an
unknown state sequence. This is a marginalization problem, and for HMMs, it is
computed with the so-called forward algorithm.

In Stan, the forward algorithm is coded as follows. First, two additional data
variable are declared for the unsupervised data.

data {
// ...
int<lower=1> T_unsup; // num unsupervised items
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array[T_unsup] int<lower=1, upper=V> u; // unsup words
// ...

}

The model for the supervised data does not change; the unsupervised data are
handled with the following Stan implementation of the forward algorithm.

model {
// ...
array[K] real acc;
array[T_unsup, K] real gamma;
for (k in 1:K) {
gamma[1, k] = log(phi[k, u[1]]);

}
for (t in 2:T_unsup) {
for (k in 1:K) {

for (j in 1:K) {
acc[j] = gamma[t - 1, j] + log(theta[j, k])

+ log(phi[k, u[t]]);
}
gamma[t, k] = log_sum_exp(acc);

}
}
target += log_sum_exp(gamma[T_unsup]);

}

The forward values gamma[t, k] are defined to be the log marginal probability
of the inputs u[1],...,u[t] up to time t and the latent state being equal to k
at time t; the previous latent states are marginalized out. The first row of gamma
is initialized by setting gamma[1, k] equal to the log probability of latent state k
generating the first output u[1]; as before, the probability of the first latent state is
not itself modeled. For each subsequent time t and output j, the value acc[j] is
set to the probability of the latent state at time t-1 being j, plus the log transition
probability from state j at time t-1 to state k at time t, plus the log probability
of the output u[t] being generated by state k. The log_sum_exp operation just
multiplies the probabilities for each prior state j on the log scale in an arithmetically
stable way.

The brackets provide the scope for the local variables acc and gamma; these could
have been declared earlier, but it is clearer to keep their declaration near their use.
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Predictive inference
Given the transition and emission parameters, θk,k′ and ϕk,v and an observation
sequence u1, . . . , uT ∈ {1, . . . , V}, the Viterbi (dynamic programming) algorithm
computes the state sequence which is most likely to have generated the observed
output u.

The Viterbi algorithm can be coded in Stan in the generated quantities block as
follows. The predictions here is the most likely state sequence y_star[1], ...,
y_star[T_unsup] underlying the array of observations u[1], ..., u[T_unsup].
Because this sequence is determined from the transition probabilities theta and
emission probabilities phi, it may be different from sample to sample in the poste-
rior.

generated quantities {
array[T_unsup] int<lower=1, upper=K> y_star;
real log_p_y_star;
{
array[T_unsup, K] int back_ptr;
array[T_unsup, K] real best_logp;
real best_total_logp;
for (k in 1:K) {
best_logp[1, k] = log(phi[k, u[1]]);

}
for (t in 2:T_unsup) {

for (k in 1:K) {
best_logp[t, k] = negative_infinity();
for (j in 1:K) {

real logp;
logp = best_logp[t - 1, j]

+ log(theta[j, k]) + log(phi[k, u[t]]);
if (logp > best_logp[t, k]) {

back_ptr[t, k] = j;
best_logp[t, k] = logp;

}
}

}
}
log_p_y_star = max(best_logp[T_unsup]);
for (k in 1:K) {
if (best_logp[T_unsup, k] == log_p_y_star) {
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y_star[T_unsup] = k;
}

}
for (t in 1:(T_unsup - 1)) {
y_star[T_unsup - t] = back_ptr[T_unsup - t + 1,

y_star[T_unsup - t + 1]];
}

}
}

The bracketed block is used to make the three variables back_ptr, best_logp, and
best_total_logp local so they will not be output. The variable y_star will hold
the label sequence with the highest probability given the input sequence u. Unlike
the forward algorithm, where the intermediate quantities were total probability,
here they consist of the maximum probability best_logp[t, k] for the sequence
up to time t with final output category k for time t, along with a backpointer to the
source of the link. Following the backpointers from the best final log probability for
the final time t yields the optimal state sequence.

This inference can be run for the same unsupervised outputs u as are used to fit
the semisupervised model. The above code can be found in the same model file as
the unsupervised fit. This is the Bayesian approach to inference, where the data
being reasoned about is used in a semisupervised way to train the model. It is not
“cheating” because the underlying states for u are never observed — they are just
estimated along with all of the other parameters.

If the outputs u are not used for semisupervised estimation but simply as the basis
for prediction, the result is equivalent to what is represented in the BUGS modeling
language via the cut operation. That is, the model is fit independently of u, then
those parameters used to find the most likely state to have generated u.



3. Missing Data and Partially Known Param-
eters

Bayesian inference supports a general approach to missing data in which any
missing data item is represented as a parameter that is estimated in the posterior
(Andrew Gelman et al. 2013). If the missing data are not explicitly modeled, as in
the predictors for most regression models, then the result is an improper prior on
the parameter representing the missing predictor.

Mixing arrays of observed and missing data can be difficult to include in Stan,
partly because it can be tricky to model discrete unknowns in Stan and partly
because unlike some other statistical languages (for example, R and Bugs), Stan
requires observed and unknown quantities to be defined in separate places in the
model. Thus it can be necessary to include code in a Stan program to splice together
observed and missing parts of a data structure. Examples are provided later in the
chapter.

3.1. Missing data
Stan treats variables declared in the data and transformed data blocks as known
and the variables in the parameters block as unknown.

An example involving missing normal observations could be coded as follows.1

data {
int<lower=0> N_obs;
int<lower=0> N_mis;
array[N_obs] real y_obs;

}
parameters {

real mu;
real<lower=0> sigma;
array[N_mis] real y_mis;

}
model {

1A more meaningful estimation example would involve a regression of the observed and missing
observations using predictors that were known for each and specified in the data block.

64
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y_obs ~ normal(mu, sigma);
y_mis ~ normal(mu, sigma);

}

The number of observed and missing data points are coded as data with non-
negative integer variables N_obs and N_mis. The observed data are provided as an
array data variable y_obs. The missing data are coded as an array parameter, y_mis.
The ordinary parameters being estimated, the location mu and scale sigma, are also
coded as parameters. The model is vectorized on the observed and missing data;
combining them in this case would be less efficient because the data observations
would be promoted and have needless derivatives calculated.

3.2. Partially known parameters
In some situations, such as when a multivariate probability function has partially
observed outcomes or parameters, it will be necessary to create a vector mixing
known (data) and unknown (parameter) values. This can be done in Stan by creating
a vector or array in the transformed parameters block and assigning to it.

The following example involves a bivariate covariance matrix in which the variances
are known, but the covariance is not.

data {
int<lower=0> N;
array[N] vector[2] y;
real<lower=0> var1;
real<lower=0> var2;

}
transformed data {

real<lower=0> max_cov = sqrt(var1 * var2);
real<upper=0> min_cov = -max_cov;

}
parameters {

vector[2] mu;
real<lower=min_cov, upper=max_cov> cov;

}
transformed parameters {

matrix[2, 2] Sigma;
Sigma[1, 1] = var1;
Sigma[1, 2] = cov;
Sigma[2, 1] = cov;
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Sigma[2, 2] = var2;
}
model {

y ~ multi_normal(mu, Sigma);
}

The variances are defined as data in variables var1 and var2, whereas the covari-
ance is defined as a parameter in variable cov. The 2 × 2 covariance matrix Sigma is
defined as a transformed parameter, with the variances assigned to the two diagonal
elements and the covariance to the two off-diagonal elements.

The constraint on the covariance declaration ensures that the resulting covariance
matrix sigma is positive definite. The bound, plus or minus the square root of the
product of the variances, is defined as transformed data so that it is only calculated
once.

The vectorization of the multivariate normal is critical for efficiency here. The
transformed parameter Sigma could be defined as a local variable within the model
block if it does not need to be included in the sampler’s output.

3.3. Sliced missing data
If the missing data are part of some larger data structure, then it can often be
effectively reassembled using index arrays and slicing. Here’s an example for
time-series data, where only some entries in the series are observed.

data {
int<lower=0> N_obs;
int<lower=0> N_mis;
array[N_obs] int<lower=1, upper=N_obs + N_mis> ii_obs;
array[N_mis] int<lower=1, upper=N_obs + N_mis> ii_mis;
array[N_obs] real y_obs;

}
transformed data {

int<lower=0> N = N_obs + N_mis;
}
parameters {

array[N_mis] real y_mis;
real<lower=0> sigma;

}
transformed parameters {
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array[N] real y;
y[ii_obs] = y_obs;
y[ii_mis] = y_mis;

}
model {

sigma ~ gamma(1, 1);
y[1] ~ normal(0, 100);
y[2:N] ~ normal(y[1:(N - 1)], sigma);

}

The index arrays ii_obs and ii_mis contain the indexes into the final array y of
the observed data (coded as a data vector y_obs) and the missing data (coded as
a parameter vector y_mis). See the time series chapter for further discussion of
time-series model and specifically the autoregression section for an explanation of
the vectorization for y as well as an explanation of how to convert this example to a
full AR(1) model. To ensure y[1] has a proper posterior in case it is missing, we
have given it an explicit, albeit broad, prior.

Another potential application would be filling the columns of a data matrix of
predictors for which some predictors are missing; matrix columns can be accessed
as vectors and assigned the same way, as in

x[N_obs_2, 2] = x_obs_2;
x[N_mis_2, 2] = x_mis_2;

where the relevant variables are all hard coded with index 2 because Stan doesn’t
support ragged arrays. These could all be packed into a single array with more
fiddly indexing that slices out vectors from longer vectors (see the ragged data
structures section for a general discussion of coding ragged data structures in Stan).

3.4. Loading matrix for factor analysis
Rick Farouni, on the Stan users group, inquired as to how to build a Cholesky factor
for a covariance matrix with a unit diagonal, as used in Bayesian factor analysis
(Aguilar and West 2000). This can be accomplished by declaring the below-diagonal
elements as parameters, then filling the full matrix as a transformed parameter.

data {
int<lower=2> K;

}
transformed data {

int<lower=1> K_choose_2;

time-series.qmd
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K_choose_2 = (K * (K - 1)) / 2;
}
parameters {

vector[K_choose_2] L_lower;
}
transformed parameters {

cholesky_factor_cov[K] L;
for (k in 1:K) {
L[k, k] = 1;

}
{
int i;
for (m in 2:K) {

for (n in 1:(m - 1)) {
L[m, n] = L_lower[i];
L[n, m] = 0;
i += 1;

}
}

}
}

It is most convenient to place a prior directly on L_lower. An alternative would
be a prior for the full Cholesky factor L, because the transform from L_lower to
L is just the identity and thus does not require a Jacobian adjustment (despite the
warning from the parser, which is not smart enough to do the code analysis to infer
that the transform is linear). It would not be at all convenient to place a prior on the
full covariance matrix L * L', because that would require a Jacobian adjustment;
the exact adjustment is detailed in the reference manual.

3.5. Missing multivariate data
It’s often the case that one or more components of a multivariate outcome are
missing.2

As an example, we’ll consider the bivariate distribution, which is easily marginal-
ized. The coding here is brute force, representing both an array of vector observa-

2This is not the same as missing components of a multivariate predictor in a regression problem; in
that case, you will need to represent the missing data as a parameter and impute missing values in order
to feed them into the regression.
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tions y and a boolean array y_observed to indicate which values were observed
(others can have dummy values in the input).

array[N] vector[2] y;
array[N, 2] int<lower=0, upper=1> y_observed;

If both components are observed, we model them using the full multi-normal,
otherwise we model the marginal distribution of the component that is observed.

for (n in 1:N) {
if (y_observed[n, 1] && y_observed[n, 2]) {
y[n] ~ multi_normal(mu, Sigma);

} else if (y_observed[n, 1]) {
y[n, 1] ~ normal(mu[1], sqrt(Sigma[1, 1]));

} else if (y_observed[n, 2]) {
y[n, 2] ~ normal(mu[2], sqrt(Sigma[2, 2]));

}
}

It’s a bit more work, but much more efficient to vectorize these distribution state-
ments. In transformed data, build up three vectors of indices, for the three cases
above:

transformed data {
array[observed_12(y_observed)] int ns12;
array[observed_1(y_observed)] int ns1;
array[observed_2(y_observed)] int ns2;

}

You will need to write functions that pull out the count of observations in each of
the three situations. This must be done with functions because the result needs to
go in top-level block variable size declaration. Then the rest of transformed data
just fills in the values using three counters.

int n12 = 1;
int n1 = 1;
int n2 = 1;
for (n in 1:N) {
if (y_observed[n, 1] && y_observed[n, 2]) {
ns12[n12] = n;
n12 += 1;

} else if (y_observed[n, 1]) {
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ns1[n1] = n;
n1 += 1;

} else if (y_observed[n, 2]) {
ns2[n2] = n;
n2 += 1;

}
}

Then, in the model block, everything is vectorizable using those indexes constructed
once in transformed data:

y[ns12] ~ multi_normal(mu, Sigma);
y[ns1] ~ normal(mu[1], sqrt(Sigma[1, 1]));
y[ns2] ~ normal(mu[2], sqrt(Sigma[2, 2]));

The result will be much more efficient than using latent variables for the missing
data, but it requires the multivariate distribution to be marginalized analytically.
It’d be more efficient still to precompute the three arrays in the transformed data
block, though the efficiency improvement will be relatively minor compared to
vectorizing the probability functions.

This approach can easily be generalized with some index fiddling to the general
multivariate case. The trick is to pull out entries in the covariance matrix for
the missing components. It can also be used in situations such as multivariate
differential equation solutions where only one component is observed, as in a
phase-space experiment recording only time and position of a pendulum (and not
recording momentum).



4. Truncated or Censored Data

Data in which measurements have been truncated or censored can be coded in Stan
following their respective probability models.

4.1. Truncated distributions
Truncation in Stan is restricted to univariate distributions for which the correspond-
ing log cumulative distribution function (CDF) and log complementary cumulative
distribution (CCDF) functions are available. See the reference manual section on
truncated distributions for more information on truncated distributions, CDFs, and
CCDFs.

4.2. Truncated data
Truncated data are data for which measurements are only reported if they fall above
a lower bound, below an upper bound, or between a lower and upper bound.

Truncated data may be modeled in Stan using truncated distributions. For example,
suppose the truncated data are yn with an upper truncation point of U = 300 so
that yn < 300. In Stan, this data can be modeled as following a truncated normal
distribution for the observations as follows.

data {
int<lower=0> N;
real U;
array[N] real<upper=U> y;

}
parameters {

real mu;
real<lower=0> sigma;

}
model {

y ~ normal(mu, sigma) T[ , U];
}

The model declares an upper bound U as data and constrains the data for y to
respect the constraint; this will be checked when the data are loaded into the model
before sampling begins.
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This model implicitly uses an improper flat prior on the scale and location parame-
ters; these could be given priors in the model using distribution statements.

Constraints and out-of-bounds returns
If the sampled variate in a truncated distribution lies outside of the truncation range,
the probability is zero, so the log probability will evaluate to −∞. For instance, if
variate y is sampled with the statement.

y ~ normal(mu, sigma) T[L, U];

then if any value inside y is less than the value of L or greater than the value of U,
the distribution statement produces a zero-probability estimate. For user-defined
truncation, this zeroing outside of truncation bounds must be handled explicitly.

To avoid variables straying outside of truncation bounds, appropriate constraints
are required. For example, if y is a parameter in the above model, the declaration
should constrain it to fall between the values of L and U.

parameters {
array[N] real<lower=L, upper=U> y;
// ...

}

If in the above model, L or U is a parameter and y is data, then L and U must be
appropriately constrained so that all data are in range and the value of L is less
than that of U (if they are equal, the parameter range collapses to a single point
and the Hamiltonian dynamics used by the sampler break down). The following
declarations ensure the bounds are well behaved.

parameters {
real<upper=min(y)> L; // L < y[n]
real<lower=fmax(L, max(y))> U; // L < U; y[n] < U

For pairs of real numbers, the function fmax is used rather than max.

Unknown truncation points
If the truncation points are unknown, they may be estimated as parameters. This
can be done with a slight rearrangement of the variable declarations from the model
in the previous section with known truncation points.

data {
int<lower=1> N;
array[N] real y;
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}
parameters {

real<upper=min(y)> L;
real<lower=max(y)> U;
real mu;
real<lower=0> sigma;

}
model {

L ~ // ...
U ~ // ...
y ~ normal(mu, sigma) T[L, U];

}

Here there is a lower truncation point L which is declared to be less than or equal
to the minimum value of y. The upper truncation point U is declared to be larger
than the maximum value of y. This declaration, although dependent on the data,
only enforces the constraint that the data fall within the truncation bounds. With N
declared as type int<lower=1>, there must be at least one data point. The constraint
that L is less than U is enforced indirectly, based on the non-empty data.

The ellipses where the priors for the bounds L and U should go should be filled in
with a an informative prior in order for this model to not concentrate L strongly
around min(y) and U strongly around max(y).

4.3. Censored data
Censoring hides values from points that are too large, too small, or both. Unlike
with truncated data, the number of data points that were censored is known. The
textbook example is the household scale which does not report values above 300
pounds.

Estimating censored values
One way to model censored data is to treat the censored data as missing data that
is constrained to fall in the censored range of values. Since Stan does not allow
unknown values in its arrays or matrices, the censored values must be represented
explicitly, as in the following right-censored case.

data {
int<lower=0> N_obs;
int<lower=0> N_cens;
array[N_obs] real y_obs;
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real<lower=max(y_obs)> U;
}
parameters {

array[N_cens] real<lower=U> y_cens;
real mu;
real<lower=0> sigma;

}
model {

y_obs ~ normal(mu, sigma);
y_cens ~ normal(mu, sigma);

}

Because the censored data array y_cens is declared to be a parameter, it will be
sampled along with the location and scale parameters mu and sigma. Because the
censored data array y_cens is declared to have values of type real<lower=U>, all
imputed values for censored data will be greater than U. The imputed censored data
affects the location and scale parameters through the last distribution statement in
the model.

Integrating out censored values
Although it is wrong to ignore the censored values in estimating location and scale,
it is not necessary to impute values. Instead, the values can be integrated out. Each
censored data point has a probability of

Pr[ycens,m > U] =
∫ ∞

U
normal (ycens,m | µ, σ) dycens,m

= 1 − Φ
(

U − µ

σ

)
,

where Φ() is the standard normal cumulative distribution function. This probability
is equivalent to the likelihood contribution of knowing that ycens,m > U. With M
censored observations, the likelihood on the log scale is

log
M

∏
m=1

Pr[ycens,m > U] = log

(
1 − Φ

((
U − µ

σ

))M
)

= M × normal_lccdf (U | µ, σ) ,

where normal_lccdf is the log of complementary CDF (Stan provides
<distr>_lccdf for each distribution implemented in Stan).
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The following right-censored model assumes that the censoring point is known, so
it is declared as data.

data {
int<lower=0> N_obs;
int<lower=0> N_cens;
array[N_obs] real y_obs;
real<lower=max(y_obs)> U;

}
parameters {

real mu;
real<lower=0> sigma;

}
model {

y_obs ~ normal(mu, sigma);
target += N_cens * normal_lccdf(U | mu, sigma);

}

For the observed values in y_obs, the normal model is used without truncation. The
likelihood contribution from the integrated out censored values can not be coded
with distribution statement, and the log probability is directly incremented using
the calculated log cumulative normal probability of the censored observations.

For the left-censored data the CDF (normal_lcdf) has to be used instead of comple-
mentary CDF. If the censoring point variable (L) is unknown, its declaration should
be moved from the data to the parameters block.

data {
int<lower=0> N_obs;
int<lower=0> N_cens;
array[N_obs] real y_obs;

}
parameters {

real<upper=min(y_obs)> L;
real mu;
real<lower=0> sigma;

}
model {

L ~ normal(mu, sigma);
y_obs ~ normal(mu, sigma);
target += N_cens * normal_lcdf(L | mu, sigma);
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}



5. Finite Mixtures

Finite mixture models of an outcome assume that the outcome is drawn from one
of several distributions, the identity of which is controlled by a categorical mixing
distribution. Mixture models typically have multimodal densities with modes near
the modes of the mixture components. Mixture models may be parameterized in
several ways, as described in the following sections. Mixture models may be used
directly for modeling data with multimodal distributions, or they may be used as
priors for other parameters.

5.1. Relation to clustering
Clustering models, as discussed in the clustering chapter, are just a particular class
of mixture models that have been widely applied to clustering in the engineering
and machine-learning literature. The normal mixture model discussed in this chap-
ter reappears in multivariate form as the statistical basis for the K-means algorithm;
the latent Dirichlet allocation model, usually applied to clustering problems, can be
viewed as a mixed-membership multinomial mixture model.

5.2. Latent discrete parameterization
One way to parameterize a mixture model is with a latent categorical variable
indicating which mixture component was responsible for the outcome. For example,
consider K normal distributions with locations µk ∈ R and scales σk ∈ (0, ∞). Now
consider mixing them in proportion λ, where λk ≥ 0 and ∑K

k=1 λk = 1 (i.e., λ lies in
the unit K-simplex). For each outcome yn there is a latent variable zn in {1, . . . , K}
with a categorical distribution parameterized by λ,

zn ∼ categorical(λ).

The variable yn is distributed according to the parameters of the mixture component
zn,

yn ∼ normal(µz[n], σz[n]).

This model is not directly supported by Stan because it involves discrete parameters
zn, but Stan can sample µ and σ by summing out the z parameter as described in
the next section.
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5.3. Summing out the responsibility parameter
To implement the normal mixture model outlined in the previous section in Stan,
the discrete parameters can be summed out of the model. If Y is a mixture of K
normal distributions with locations µk and scales σk with mixing proportions λ in
the unit K-simplex, then

pY (y | λ, µ, σ) =
K

∑
k=1

λk normal (y | µk, σk) .

Log sum of exponentials: linear Sums on the log scale
The log sum of exponentials function is used to define mixtures on the log scale. It
is defined for two inputs by

log_sum_exp(a, b) = log (exp(a) + exp(b)) .

If a and b are probabilities on the log scale, then exp(a) + exp(b) is their sum
on the linear scale, and the outer log converts the result back to the log scale; to
summarize, log_sum_exp does linear addition on the log scale. The reason to use
Stan’s built-in log_sum_exp function is that it can prevent underflow and overflow
in the exponentiation, by calculating the result as

log (exp(a) + exp(b)) = c + log (exp(a − c) + exp(b − c)) ,

where c = max(a, b). In this evaluation, one of the terms, a − c or b − c, is zero and
the other is negative, thus eliminating the possibility of overflow or underflow in
the leading term while extracting the most arithmetic precision possible by pulling
the max(a, b) out of the log-exp round trip.

For example, the mixture of normal(−1, 2) with normal(3, 1), with mixing proportion
λ = [0.3, 0.7]⊤, can be implemented in Stan as follows.

parameters {
real y;

}
model {

target += log_sum_exp(log(0.3) + normal_lpdf(y | -1, 2),
log(0.7) + normal_lpdf(y | 3, 1));

}
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The log probability term is derived by taking

log p (y | λ, µ, σ)

= log
(
0.3 × normal (y | −1, 2) + 0.7 × normal (y | 3, 1)

)
= log

(
exp

(
log
(
0.3 × normal (y | −1, 2)

))
+ exp

(
log
(
0.7 × normal (y | 3, 1)

)))
= log_sum_exp

(
log(0.3) + log normal (y | −1, 2) , log(0.7) + log normal (y | 3, 1)

)
.

Dropping uniform mixture ratios
If a two-component mixture has a mixing ratio of 0.5, then the mixing ratios can be
dropped, because

log_half = log(0.5);
for (n in 1:N) {

target +=
log_sum_exp(log_half + normal_lpdf(y[n] | mu[1], sigma[1]),

log_half + normal_lpdf(y[n] | mu[2], sigma[2]));
}

then the log 0.5 term isn’t contributing to the proportional density, and the above
can be replaced with the more efficient version

for (n in 1:N) {
target += log_sum_exp(normal_lpdf(y[n] | mu[1], sigma[1]),

normal_lpdf(y[n] | mu[2], sigma[2]));
}

The same result holds if there are K components and the mixing simplex λ is
symmetric, i.e.,

λ =

(
1
K

, . . . ,
1
K

)
.

The result follows from the identity

log_sum_exp(c + a, c + b) = c + log_sum_exp(a, b)

and the fact that adding a constant c to the log density accumulator has no effect
because the log density is only specified up to an additive constant in the first place.
There is nothing specific to the normal distribution here; constants may always be
dropped from the target.
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Recovering posterior mixture proportions
The posterior p(zn | yn, µ, σ) over the mixture indicator zn ∈ 1 : K is often of
interest as p(zn = k | y, µ, σ) is the posterior probability that that observation yn
was generated by mixture component k. The posterior can be computed via Bayes’s
rule,

Pr[zn = k | yn, µ, σ, λ] ∝ p (yn | zn = k, µ, σ) p (zn = k | λ)

= normal (yn | µk, σk) · λk.

The normalization can be done via summation, because zn ∈ 1:K only takes on
finitely many values. In detail,

p (zn = k | yn, µ, σ, λ) =
p (yn | zn = k, µ, σ) · p (zn = k | λ)

∑K
k′=1 p (yn | zn = k′, µ, σ) · p (zn = k′ | λ)

.

On the log scale, the normalized probability is computed as

log Pr[zn = k | yn, µ, σ, λ]

= log p (yn | zn = k, µ, σ) + log Pr[zn = k | λ]

− log_sum_expK
k′=1

(
log p

(
yn | zn = k′, µ, σ

)
+ log p

(
zn = k′ | λ

) )
.

This can be coded up directly in Stan; the change-point model in the change point
section provides an example.

Estimating parameters of a mixture
Given the scheme for representing mixtures, it may be moved to an estimation
setting, where the locations, scales, and mixture components are unknown. Fur-
ther generalizing to a number of mixture components specified as data yields the
following model.

data {
int<lower=1> K; // number of mixture components
int<lower=1> N; // number of data points
array[N] real y; // observations

}
parameters {

simplex[K] theta; // mixing proportions
ordered[K] mu; // locations of mixture components
vector<lower=0>[K] sigma; // scales of mixture components

}
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model {
vector[K] log_theta = log(theta); // cache log calculation
sigma ~ lognormal(0, 2);
mu ~ normal(0, 10);
for (n in 1:N) {
vector[K] lps = log_theta;
for (k in 1:K) {
lps[k] += normal_lpdf(y[n] | mu[k], sigma[k]);

}
target += log_sum_exp(lps);

}
}

The model involves Kmixture components and N data points. The mixing proportion
parameter theta is declared to be a unit K-simplex, whereas the component location
parameter mu and scale parameter sigma are both defined to be K-vectors.

The location parameter mu is declared to be an ordered vector in order to identify
the model. This will not affect inferences that do not depend on the ordering of the
components as long as the prior for the components mu[k] is symmetric, as it is
here (each component has an independent normal(0, 10) prior). It would even be
possible to include a hierarchical prior for the components.

The values in the scale array sigma are constrained to be non-negative, and have a
weakly informative prior given in the model chosen to avoid zero values and thus
collapsing components.

The model declares a local array variable lps to be size K and uses it to accumulate
the log contributions from the mixture components. The main action is in the
loop over data points n. For each such point, the log of θk × normal (yn | µk, σk) is
calculated and added to the array lps. Then the log probability is incremented with
the log sum of exponentials of those values.

5.4. Vectorizing mixtures
There is (currently) no way to vectorize mixture models at the observation level in
Stan. This section is to warn users away from attempting to vectorize naively, as it
results in a different model. A proper mixture at the observation level is defined
as follows, where we assume that lambda, y[n], mu[1], mu[2], and sigma[1],
sigma[2] are all scalars and lambda is between 0 and 1.
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for (n in 1:N) {
target += log_sum_exp(log(lambda)

+ normal_lpdf(y[n] | mu[1], sigma[1]),
log1m(lambda)
+ normal_lpdf(y[n] | mu[2], sigma[2]));

or equivalently

for (n in 1:N) {
target += log_mix(lambda,

normal_lpdf(y[n] | mu[1], sigma[1]),
normal_lpdf(y[n] | mu[2], sigma[2]))

};

This definition assumes that each observation yn may have arisen from either of the
mixture components. The density is

p (y | λ, µ, σ) =
N

∏
n=1

(
λ × normal (yn | µ1, σ1) + (1 − λ)× normal (yn | µ2, σ2)

)
.

Contrast the previous model with the following (erroneous) attempt to vectorize
the model.

target += log_sum_exp(log(lambda)
+ normal_lpdf(y | mu[1], sigma[1]),

log1m(lambda)
+ normal_lpdf(y | mu[2], sigma[2]));

or equivalently,

target += log_mix(lambda,
normal_lpdf(y | mu[1], sigma[1]),
normal_lpdf(y | mu[2], sigma[2]));

This second definition implies that the entire sequence y1, . . . , yn of observations
comes form one component or the other, defining a different density,

p (y | λ, µ, σ) = λ ×
N

∏
n=1

normal (yn | µ1, σ1) + (1 − λ)×
N

∏
n=1

normal (yn | µ2, σ2) .
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5.5. Inferences supported by mixtures
In many mixture models, the mixture components are underlyingly exchangeable
in the model and thus not identifiable. This arises if the parameters of the mixture
components have exchangeable priors and the mixture ratio gets a uniform prior
so that the parameters of the mixture components are also exchangeable in the
likelihood.

We have finessed this basic problem by ordering the parameters. This will allow us
in some cases to pick out mixture components either ahead of time or after fitting
(e.g., male vs. female, or Democrat vs. Republican).

In other cases, we do not care about the actual identities of the mixture components
and want to consider inferences that are independent of indexes. For example, we
might only be interested in posterior predictions for new observations.

Mixtures with unidentifiable components
As an example, consider the normal mixture from the previous section, which
provides an exchangeable prior on the pairs of parameters (µ1, σ1) and (µ2, σ2),

µ1, µ2 ∼ normal(0, 10)

σ1, σ2 ∼ halfnormal(0, 10)

The prior on the mixture ratio is uniform,

λ ∼ uniform(0, 1),

so that with the likelihood

p (yn | µ, σ) = λ × normal (yn | µ1, σ1) + (1 − λ)× normal (yn | µ2, σ2) ,

the joint distribution p(y, µ, σ, λ) is exchangeable in the parameters (µ1, σ1) and
(µ2, σ2) with λ flipping to 1 − λ.1

Inference under label switching
In cases where the mixture components are not identifiable, it can be difficult to
diagnose convergence of sampling or optimization algorithms because the labels
will switch, or be permuted, in different MCMC chains or different optimization
runs. Luckily, posterior inferences which do not refer to specific component labels
are invariant under label switching and may be used directly. This subsection
considers a pair of examples.

1Imposing a constraint such as θ < 0.5 will resolve the symmetry, but fundamentally changes the
model and its posterior inferences.
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Posterior predictive distribution
Posterior predictive distribution for a new observation ỹ given the complete param-
eter vector θ will be

p(ỹ | y) =
∫

θ
p(ỹ | θ) p(θ | y) dθ.

The normal mixture example from the previous section, with θ = (µ, σ, λ), shows
that the model returns the same density under label switching and thus the pre-
dictive inference is sound. In Stan, that predictive inference can be done either by
computing p(ỹ | y), which is more efficient statistically in terms of effective sample
size, or simulating draws of ỹ, which is easier to plug into other inferences. Both
approaches can be coded directly in the generated quantities block of the program.
Here’s an example of the direct (non-sampling) approach.

data {
int<lower=0> N_tilde;
vector[N_tilde] y_tilde;
// ...

}
generated quantities {
vector[N_tilde] log_p_y_tilde;
for (n in 1:N_tilde) {
log_p_y_tilde[n]

= log_mix(lambda,
normal_lpdf(y_tilde[n] | mu[1], sigma[1])
normal_lpdf(y_tilde[n] | mu[2], sigma[2]));

}
}

It is a bit of a bother afterwards, because the logarithm function isn’t linear and
hence doesn’t distribute through averages (Jensen’s inequality shows which way
the inequality goes). The right thing to do is to apply log_sum_exp of the posterior
draws of log_p_y_tilde. The average log predictive density is then given by
subtracting log(N_new).

Clustering and similarity
Often a mixture model will be applied to a clustering problem and there might be
two data items yi and yj for which there is a question of whether they arose from the
same mixture component. If we take zi and zj to be the component responsibility
discrete variables, then the quantity of interest is zi = zj, which can be summarized
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as an event probability

Pr[zi = zj | y] =
∫

θ

∑1
k=0 p(zi = k, zj = k, yi, yj | θ)

∑1
k=0 ∑1

m=0 p(zi = k, zj = m, yi, yj | θ)
p(θ | y) dθ.

As with other event probabilities, this can be calculated in the generated quantities
block either by sampling zi and zj and using the indicator function on their equality,
or by computing the term inside the integral as a generated quantity. As with
posterior predictive distribute, working in expectation is more statistically efficient
than sampling.

5.6. Zero-inflated and hurdle models
Zero-inflated and hurdle models both provide mixtures of a Poisson and Bernoulli
probability mass function to allow more flexibility in modeling the probability of a
zero outcome. Zero-inflated models, as defined by Lambert (1992), add additional
probability mass to the outcome of zero. Hurdle models, on the other hand, are
formulated as pure mixtures of zero and non-zero outcomes.

Zero inflation and hurdle models can be formulated for discrete distributions other
than the Poisson. Zero inflation does not work for continuous distributions in Stan
because of issues with derivatives; in particular, there is no way to add a point
mass to a continuous distribution, such as zero-inflating a normal as a regression
coefficient prior. Hurdle models can be formulated as combination of point mass at
zero and continuous distribution for positive values.

Zero inflation
Consider the following example for zero-inflated Poisson distributions. There is a
probability θ of observing a zero, and a probability 1 − θ of observing a count with
a Poisson(λ) distribution (now θ is being used for mixing proportions because λ is
the traditional notation for a Poisson mean parameter). Given the probability θ and
the intensity λ, the distribution for yn can be written as

yn = 0 with probability θ, and

yn ∼ Poisson(yn | λ) with probability 1 − θ.

Stan does not support conditional distribution statements (with ~) conditional on
some parameter, and we need to consider the corresponding likelihood

p(yn | θ, λ) =

{
θ + (1 − θ)× Poisson(0 | λ) if yn = 0, and
(1 − θ)× Poisson(yn | λ) if yn > 0.
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The log likelihood can be coded directly in Stan (with target +=) as follows.

data {
int<lower=0> N;
array[N] int<lower=0> y;

}
parameters {

real<lower=0, upper=1> theta;
real<lower=0> lambda;

}
model {

for (n in 1:N) {
if (y[n] == 0) {

target += log_sum_exp(log(theta),
log1m(theta)
+ poisson_lpmf(y[n] | lambda));

} else {
target += log1m(theta)

+ poisson_lpmf(y[n] | lambda);
}

}
}

The log1m(theta) computes log(1-theta), but is more computationally stable.
The log_sum_exp(lp1,lp2) function adds the log probabilities on the linear scale;
it is defined to be equal to log(exp(lp1) + exp(lp2)), but is more computation-
ally stable and faster.

Optimizing the zero-inflated Poisson model
The code given above to compute the zero-inflated Poisson redundantly calculates
all of the Bernoulli terms and also poisson_lpmf(0 | lambda) every time the first
condition body executes. The use of the redundant terms is conditioned on y, which
is known when the data are read in. This allows the transformed data block to be
used to compute some more convenient terms for expressing the log density each
iteration.

The number of zero cases is computed and handled separately. Then the nonzero
cases are collected into their own array for vectorization. The number of zeros is
required to declare y_nonzero, so it must be computed in a function.
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functions {
int num_zeros(array[] int y) {
int sum = 0;
for (n in 1:size(y)) {

sum += (y[n] == 0);
}
return sum;

}
}
// ...
transformed data {

int<lower=0> N_zero = num_zeros(y);
array[N - N_zero] int<lower=1> y_nonzero;
int N_nonzero = 0;
for (n in 1:N) {
if (y[n] == 0) continue;
N_nonzero += 1;
y_nonzero[N_nonzero] = y[n];

}
}
// ...
model {

// ...
target
+= N_zero

* log_sum_exp(log(theta),
log1m(theta)
+ poisson_lpmf(0 | lambda));

target += N_nonzero * log1m(theta);
target += poisson_lpmf(y_nonzero | lambda);
// ...

}

The boundary conditions of all zeros and no zero outcomes is handled appropriately;
in the vectorized case, if y_nonzero is empty, N_nonzero will be zero, and the last
two target increment terms will add zeros.



88 CHAPTER 5. FINITE MIXTURES

Hurdle models
The hurdle model is similar to the zero-inflated model, but more flexible in that the
zero outcomes can be deflated as well as inflated. Given the probability θ and the
intensity λ, the distribution for yn can be written as [

yn = 0 with probability θ, and

yn ∼ Poissonx ̸=0(yn | λ) with probability 1 − θ,

] Where Poissonx ̸=0 is a truncated Poisson distribution, truncated at 0.

The corresponding likelihood function for the hurdle model is defined by

p(y | θ, λ) =

θ if y = 0, and

(1 − θ)
Poisson(y | λ)

1 − PoissonCDF(0 | λ)
if y > 0,

where PoissonCDF is the cumulative distribution function for the Poisson distri-
bution and and 1 − PoissonCDF(0 | λ) is the relative normalization term for the
truncated Poisson (truncated at 0).

The hurdle model is even more straightforward to program in Stan, as it does not
require an explicit mixture.

if (y[n] == 0) {
target += log(theta);

} else {
target += log1m(theta) + poisson_lpmf(y[n] | lambda)

- poisson_lccdf(0 | lambda));
}

Julian King pointed out that because

log (1 − PoissonCDF(0 | λ)) = log (1 − Poisson(0 | λ))

= log(1 − exp(−λ))

the CCDF in the else clause can be replaced with a simpler expression.

target += log1m(theta) + poisson_lpmf(y[n] | lambda)
- log1m_exp(-lambda));

The resulting code is about 15% faster than the code with the CCDF.

This is an example where collecting counts ahead of time can also greatly speed
up the execution speed without changing the density. For data size N = 200 and
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parameters θ = 0.3 and λ = 8, the speedup is a factor of 10; it will be lower for
smaller N and greater for larger N; it will also be greater for larger θ.

To achieve this speedup, it helps to have a function to count the number of non-zero
entries in an array of integers,

functions {
int num_zero(array[] int y) {
int nz = 0;
for (n in 1:size(y)) {

if (y[n] == 0) {
nz += 1;

}
}
return nz;

}
}

Then a transformed data block can be used to store the sufficient statistics,

transformed data {
int<lower=0, upper=N> N0 = num_zero(y);
int<lower=0, upper=N> Ngt0 = N - N0;
array[N - num_zero(y)] int<lower=1> y_nz;
{
int pos = 1;
for (n in 1:N) {
if (y[n] != 0) {
y_nz[pos] = y[n];
pos += 1;

}
}

}
}

The model block is then reduced to three statements.

model {
N0 ~ binomial(N, theta);
y_nz ~ poisson(lambda);
target += -Ngt0 * log1m_exp(-lambda);

}
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The first statement accounts for the Bernoulli contribution to both the zero and
non-zero counts. The second line is the Poisson contribution from the non-zero
counts, which is now vectorized. Finally, the normalization for the truncation is
a single line, so that the expression for the log CCDF at 0 isn’t repeated. Also
note that the negation is applied to the constant Ngt0; whenever possible, leave
subexpressions constant because then gradients need not be propagated until a
non-constant term is encountered.

5.7. Priors and effective data size in mixture models
Suppose we have a two-component mixture model with mixing rate λ ∈ (0, 1).
Because the likelihood for the mixture components is proportionally weighted by
the mixture weights, the effective data size used to estimate each of the mixture
components will also be weighted as a fraction of the overall data size. Thus
although there are N observations, the mixture components will be estimated with
effective data sizes of θ N and (1 − θ) N for the two components for some θ ∈ (0, 1).
The effective weighting size is determined by posterior responsibility, not simply
by the mixing rate λ.

Comparison to model averaging
In contrast to mixture models, which create mixtures at the observation level, model
averaging creates mixtures over the posteriors of models separately fit with the
entire data set. In this situation, the priors work as expected when fitting the models
independently, with the posteriors being based on the complete observed data y.

If different models are expected to account for different observations, we recom-
mend building mixture models directly. If the models being mixed are similar, often
a single expanded model will capture the features of both and may be used on its
own for inferential purposes (estimation, decision making, prediction, etc.). For
example, rather than fitting an intercept-only regression and a slope-only regression
and averaging their predictions, even as a mixture model, we would recommend
building a single regression with both a slope and an intercept. Model complexity,
such as having more predictors than data points, can be tamed using appropriately
regularizing priors. If computation becomes a bottleneck, the only recourse can be
model averaging, which can be calculated after fitting each model independently
(see Hoeting et al. (1999) and Andrew Gelman et al. (2013) for theoretical and
computational details).



6. Measurement Error and Meta-Analysis

Most quantities used in statistical models arise from measurements. Most of these
measurements are taken with some error. When the measurement error is small
relative to the quantity being measured, its effect on a model is usually small. When
measurement error is large relative to the quantity being measured, or when precise
relations can be estimated being measured quantities, it is useful to introduce an
explicit model of measurement error. One kind of measurement error is rounding.

Meta-analysis plays out statistically much like measurement error models, where
the inferences drawn from multiple data sets are combined to do inference over all
of them. Inferences for each data set are treated as providing a kind of measurement
error with respect to true parameter values.

6.1. Bayesian measurement error model
A Bayesian approach to measurement error can be formulated directly by treating
the true quantities being measured as missing data (Clayton 1992; Richardson and
Gilks 1993). This requires a model of how the measurements are derived from the
true values.

Regression with measurement error
Before considering regression with measurement error, first consider a linear re-
gression model where the observed data for N cases includes a predictor xn and
outcome yn. In Stan, a linear regression for y based on x with a slope and intercept
is modeled as follows.

data {
int<lower=0> N; // number of cases
vector[N] x; // predictor (covariate)
vector[N] y; // outcome (variate)

}
parameters {

real alpha; // intercept
real beta; // slope
real<lower=0> sigma; // outcome noise

}
model {
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y ~ normal(alpha + beta * x, sigma);
alpha ~ normal(0, 10);
beta ~ normal(0, 10);
sigma ~ cauchy(0, 5);

}

Now suppose that the true values of the predictors xn are not known, but for each
n, a measurement xmeas

n of xn is available. If the error in measurement can be
modeled, the measured value xmeas

n can be modeled in terms of the true value xn
plus measurement noise. The true value xn is treated as missing data and estimated
along with other quantities in the model. A simple approach is to assume the
measurement error is normal with known deviation τ. This leads to the following
regression model with constant measurement error.

data {
// ...
array[N] real x_meas; // measurement of x
real<lower=0> tau; // measurement noise

}
parameters {

array[N] real x; // unknown true value
real mu_x; // prior location
real sigma_x; // prior scale
// ...

}
model {

x ~ normal(mu_x, sigma_x); // prior
x_meas ~ normal(x, tau); // measurement model
y ~ normal(alpha + beta * x, sigma);
// ...

}

The regression coefficients alpha and beta and regression noise scale sigma are
the same as before, but now x is declared as a parameter rather than as data. The
data are now x_meas, which is a measurement of the true x value with noise scale
tau. The model then specifies that the measurement error for x_meas[n] given true
value x[n] is normal with deviation tau. Furthermore, the true values x are given
a hierarchical prior here.

In cases where the measurement errors are not normal, richer measurement error
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models may be specified. The prior on the true values may also be enriched. For
instance, Clayton (1992) introduces an exposure model for the unknown (but noisily
measured) risk factors x in terms of known (without measurement error) risk factors
c. A simple model would regress xn on the covariates cn with noise term υ,

xn ∼ normal(γ⊤c, υ).

This can be coded in Stan just like any other regression. And, of course, other
exposure models can be provided.

Rounding
A common form of measurement error arises from rounding measurements. Round-
ing may be done in many ways, such as rounding weights to the nearest milligram,
or to the nearest pound; rounding may even be done by rounding down to the
nearest integer.

Exercise 3.5(b) by Andrew Gelman et al. (2013) provides an example.

3.5. Suppose we weigh an object five times and measure weights,
rounded to the nearest pound, of 10, 10, 12, 11, 9. Assume the un-
rounded measurements are normally distributed with a noninformative
prior distribution on µ and σ2.

(b) Give the correct posterior distribution for (µ, σ2), treating the mea-
surements as rounded.

Letting zn be the unrounded measurement for yn, the problem as stated assumes

zn ∼ normal(µ, σ).

The rounding process entails that zn ∈ (yn − 0.5, yn + 0.5)1. The probability mass
function for the discrete observation y is then given by marginalizing out the
unrounded measurement, producing the likelihood

p(yn | µ, σ) =
∫ yn+0.5

yn−0.5
normal(zn | µ, σ) dzn

= Φ
(

yn + 0.5 − µ

σ

)
− Φ

(
yn − 0.5 − µ

σ

)
.

1There are several different rounding rules (see, e.g., Wikipedia: Rounding), which affect which
interval ends are open and which are closed, but these do not matter here as for continuous zn p(zn =
yn − 0.5) = p(zn = yn + 0.5) = 0.

https://en.wikipedia.org/wiki/Rounding
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Gelman’s answer for this problem took the noninformative prior to be uniform in
the variance σ2 on the log scale, but we replace it with more recently recommended
half-normal prior on σ

σ ∼ normal+(0, 1).

The posterior after observing y = (10, 10, 12, 11, 9) can be calculated by Bayes’s rule
as

p(µ, σ | y) ∝ p(µ, σ) p(y | µ, σ)

∝ normal+(σ | 0, 1)
5

∏
n=1

(
Φ
(

yn + 0.5 − µ

σ

)
− Φ

(
yn − 0.5 − µ

σ

))
.

The Stan code simply follows the mathematical definition, providing an example of
the direct definition of a probability function up to a proportion.

data {
int<lower=0> N;
vector[N] y;

}
parameters {

real mu;
real<lower=0> sigma;

}
model {

sigma ~ normal(0, 1);
for (n in 1:N) {
target += log_diff_exp(normal_lcdf(y[n] + 0.5 | mu, sigma),

normal_lcdf(y[n] - 0.5 | mu, sigma));
}

}

where normal_lcdf(y[n]+0.5 | mu, sigma) is equal to log(Phi((y[n] + 0.5
- mu) / sigma)), and log_diff_exp(a, b) computes log(exp(a) - exp(b))
in numerically more stable way.

Alternatively, the model may be defined with latent parameters for the unrounded
measurements zn. The Stan code in this case uses a distribution statement for zn
directly while respecting the constraint zn ∈ (yn − 0.5, yn + 0.5).

data {
int<lower=0> N;
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vector[N] y;
}
parameters {

real mu;
real<lower=0> sigma;
vector<lower=y-0.5, upper=y+0.5>[N] z;

}
model {

sigma ~ normal(0, 1);
z ~ normal(mu, sigma);

}

This explicit model for the unrounded measurements z produces the same poste-
rior for µ and σ as the previous model that marginalizes z out. Both approaches
mix well, but the latent parameter version is about twice as efficient in terms of
effective samples per iteration, as well as providing a posterior for the unrounded
parameters.

6.2. Meta-analysis
Meta-analysis aims to pool the data from several studies, such as the application of
a tutoring program in several schools or treatment using a drug in several clinical
trials.

The Bayesian framework is particularly convenient for meta-analysis, because each
previous study can be treated as providing a noisy measurement of some underlying
quantity of interest. The model then follows directly from two components, a prior
on the underlying quantities of interest and a measurement-error style model for
each of the studies being analyzed.

Treatment effects in controlled studies
Suppose the data in question arise from a total of M studies providing paired
binomial data for a treatment and control group. For instance, the data might be
post-surgical pain reduction under a treatment of ibuprofen (Warn, Thompson, and
Spiegelhalter 2002) or mortality after myocardial infarction under a treatment of
beta blockers (Andrew Gelman et al. 2013, sec. 5.6).

Data
The clinical data consists of J trials, each with nt treatment cases, nc control cases, rt

successful outcomes among those treated and rc successful outcomes among those
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in the control group. This data can be declared in Stan as follows.2

data {
int<lower=0> J;
array[J] int<lower=0> n_t; // num cases, treatment
array[J] int<lower=0> r_t; // num successes, treatment
array[J] int<lower=0> n_c; // num cases, control
array[J] int<lower=0> r_c; // num successes, control

}

Converting to log odds and standard error
Although the clinical trial data are binomial in its raw format, it may be transformed
to an unbounded scale by considering the log odds ratio

yj = log

(
rt

j/(n
t
j − rt

j)

rc
j /(nc

j − rc
j )

)

= log

(
rt

j

nt
j − rt

j

)
− log

(
rc

j

nc
j − rc

j

)

and corresponding standard errors

σj =

√
1
rT

i
+

1
nT

i − rT
i
+

1
rC

i
+

1
nC

i − rC
i

.

The log odds and standard errors can be defined in a transformed data block,
though care must be taken not to use integer division.3

transformed data {
array[J] real y;
array[J] real<lower=0> sigma;
for (j in 1:J) {
y[j] = log(r_t[j]) - log(n_t[j] - r_t[j])

- (log(r_c[j]) - log(n_c[j] - r_c[j]));
}
for (j in 1:J) {
sigma[j] = sqrt(1 / r_t[j] + 1 / (n_t[j] - r_t[j])

2Stan’s integer constraints are not powerful enough to express the constraint that r_t[j] ≤ n_t[j],
but this constraint could be checked in the transformed data block.

3When dividing two integers, the result type is an integer and rounding will ensue if the result is not
exact. See the discussion of primitive arithmetic types in the reference manual for more information.
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+ 1 / r_c[j] + 1 / (n_c[j] - r_c[j]));
}

}

This definition will be problematic if any of the success counts is zero or equal to
the number of trials. If that arises, a direct binomial model will be required or other
transforms must be used than the unregularized sample log odds.

Non-hierarchical model
With the transformed data in hand, two standard forms of meta-analysis can be
applied. The first is a so-called “fixed effects” model, which assumes a single
parameter for the global odds ratio. This model is coded in Stan as follows.

parameters {
real theta; // global treatment effect, log odds

}
model {

y ~ normal(theta, sigma);
}

The distribution statement for y is vectorized; it has the same effect as the following.

for (j in 1:J) {
y[j] ~ normal(theta, sigma[j]);

}

It is common to include a prior for theta in this model, but it is not strictly necessary
for the model to be proper because y is fixed and normal(y | µ, σ) = normal(µ | y, σ).

Hierarchical model
To model so-called “random effects,” where the treatment effect may vary by clinical
trial, a hierarchical model can be used. The parameters include per-trial treatment
effects and the hierarchical prior parameters, which will be estimated along with
other unknown quantities.

parameters {
array[J] real theta; // per-trial treatment effect
real mu; // mean treatment effect
real<lower=0> tau; // deviation of treatment effects

}
model {

y ~ normal(theta, sigma);
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theta ~ normal(mu, tau);
mu ~ normal(0, 10);
tau ~ cauchy(0, 5);

}

Although the vectorized distribution statement for y appears unchanged, the param-
eter theta is now a vector. The distribution statement for theta is also vectorized,
with the hyperparameters mu and tau themselves being given wide priors compared
to the scale of the data.

Donald B. Rubin (1981) provided a hierarchical Bayesian meta-analysis of the
treatment effect of Scholastic Aptitude Test (SAT) coaching in eight schools based
on the sample treatment effect and standard error in each school.

Extensions and alternatives
Smith, Spiegelhalter, and Thomas (1995) and Andrew Gelman et al. (2013, sec. 19.4)
provide meta-analyses based directly on binomial data. Warn, Thompson, and
Spiegelhalter (2002) consider the modeling implications of using alternatives to the
log-odds ratio in transforming the binomial data.

If trial-specific predictors are available, these can be included directly in a regression
model for the per-trial treatment effects θj.



7. Latent Discrete Parameters

Stan does not support sampling discrete parameters. So it is not possible to directly
translate BUGS or JAGS models with discrete parameters (i.e., discrete stochastic
nodes). Nevertheless, it is possible to code many models that involve bounded
discrete parameters by marginalizing out the discrete parameters.1

This chapter shows how to code several widely-used models involving latent
discrete parameters. The next chapter, the clustering chapter, on clustering models,
considers further models involving latent discrete parameters.

7.1. The benefits of marginalization
Although it requires some algebra on the joint probability function, a pleasant
byproduct of the required calculations is the posterior expectation of the marginal-
ized variable, which is often the quantity of interest for a model. This allows far
greater exploration of the tails of the distribution as well as more efficient sampling
on an iteration-by-iteration basis because the expectation at all possible values is
being used rather than itself being estimated through sampling a discrete parameter.

Standard optimization algorithms, including expectation maximization (EM), are
often provided in applied statistics papers to describe maximum likelihood estima-
tion algorithms. Such derivations provide exactly the marginalization needed for
coding the model in Stan.

7.2. Change point models
The first example is a model of coal mining disasters in the U.K. for the years
1851–1962.2

Model with latent discrete parameter
Fonnesbeck et al. (2013, sec. 3.1) provides a Poisson model of disaster Dt in year t
with two rate parameters, an early rate (e) and late rate (l), that change at a given

1The computations are similar to those involved in expectation maximization (EM) algorithms
(Dempster, Laird, and Rubin 1977).

2The source of the data is (Jarrett 1979), which itself is a note correcting an earlier data collection.
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point in time s. The full model expressed using a latent discrete parameter s is

e ∼ exponential(re)

l ∼ exponential(rl)

s ∼ uniform(1, T)
Dt ∼ Poisson(t < s ? e : l)

The last line uses the conditional operator (also known as the ternary operator),
which is borrowed from C and related languages. The conditional operator has the
same behavior as its counterpart in C++.3

It uses a compact notation involving separating its three arguments by a question
mark (?) and a colon (:). The conditional operator is defined by

c ? x1 : x2 =

{
x1 if c is true (i.e., non-zero), and
x2 if c is false (i.e., zero).

Marginalizing out the discrete parameter
To code this model in Stan, the discrete parameter s must be marginalized out to
produce a model defining the log of the probability function p(e, l, Dt). The full
joint probability factors as

p(e, l, s, D) = p(e) p(l) p(s) p(D | s, e, l)
= exponential(e | re) exponential(l | rl) uniform(s | 1, T)

T

∏
t=1

Poisson(Dt | t < s ? e : l).

To marginalize, an alternative factorization into prior and likelihood is used,

p(e, l, D) = p(e, l) p(D | e, l),

3The R counterpart, ifelse, is slightly different in that it is typically used in a vectorized situation.
The conditional operator is not (yet) vectorized in Stan.
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where the likelihood is defined by marginalizing s as

p(D | e, l) =
T

∑
s=1

p(s, D | e, l)

=
T

∑
s=1

p(s) p(D | s, e, l)

=
T

∑
s=1

uniform(s | 1, T)
T

∏
t=1

Poisson(Dt | t < s ? e : l).

Stan operates on the log scale and thus requires the log likelihood,

log p(D | e, l) = log_sum_expT
s=1

(
log uniform(s | 1, T)

+
T

∑
t=1

log Poisson(Dt | t < s ? e : l)

)
,

where the log sum of exponents function is defined by

log_sum_expN
n=1 αn = log

N

∑
n=1

exp(αn).

The log sum of exponents function allows the model to be coded directly in Stan
using the built-in function log_sum_exp, which provides both arithmetic stability
and efficiency for mixture model calculations.

Coding the model in Stan
The Stan program for the change point model is shown in the figure below. The
transformed parameter lp[s] stores the quantity log p(s, D | e, l).

data {
real<lower=0> r_e;
real<lower=0> r_l;

int<lower=1> T;
array[T] int<lower=0> D;

}
transformed data {

real log_unif;
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log_unif = -log(T);
}
parameters {

real<lower=0> e;
real<lower=0> l;

}
transformed parameters {

vector[T] lp;
lp = rep_vector(log_unif, T);
for (s in 1:T) {
for (t in 1:T) {
lp[s] = lp[s] + poisson_lpmf(D[t] | t < s ? e : l);

}
}

}
model {

e ~ exponential(r_e);
l ~ exponential(r_l);
target += log_sum_exp(lp);

}

A change point model in which disaster rates D[t] have one rate, e, before the
change point and a different rate, l, after the change point. The change point itself,
s, is marginalized out as described in the text.

Although the change-point model is coded directly, the doubly nested loop used for
s and t is quadratic in T. Luke Wiklendt pointed out that a linear alternative can
be achieved by the use of dynamic programming similar to the forward-backward
algorithm for Hidden Markov models; he submitted a slight variant of the following
code to replace the transformed parameters block of the above Stan program.

transformed parameters {
vector[T] lp;
{

vector[T + 1] lp_e;
vector[T + 1] lp_l;
lp_e[1] = 0;
lp_l[1] = 0;
for (t in 1:T) {
lp_e[t + 1] = lp_e[t] + poisson_lpmf(D[t] | e);
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lp_l[t + 1] = lp_l[t] + poisson_lpmf(D[t] | l);
}
lp = rep_vector(log_unif + lp_l[T + 1], T)

+ head(lp_e, T) - head(lp_l, T);
}

}

As should be obvious from looking at it, it has linear complexity in T rather than
quadratic. The result for the mining-disaster data is about 20 times faster; the
improvement will be greater for larger T.

The key to understanding Wiklendt’s dynamic programming version is to see
that head(lp_e) holds the forward values, whereas lp_l[T + 1] - head(lp_l,
T) holds the backward values; the clever use of subtraction allows lp_l to be
accumulated naturally in the forward direction.

Fitting the model with MCMC
This model is easy to fit using MCMC with NUTS in its default configuration.
Convergence is fast and sampling produces roughly one effective sample every two
iterations. Because it is a relatively small model (the inner double loop over time is
roughly 20,000 steps), it is fast.

The value of lp for each iteration for each change point is available because it is
declared as a transformed parameter. If the value of lp were not of interest, it could
be coded as a local variable in the model block and thus avoid the I/O overhead of
saving values every iteration.

Posterior distribution of the discrete change point
The value of lp[s] in a given iteration is given by log p(s, D | e, l) for the values of
the early and late rates, e and l, in the iteration. In each iteration after convergence,
the early and late disaster rates, e and l, are drawn from the posterior p(e, l | D)
by MCMC sampling and the associated lp calculated. The value of lp may be
normalized to calculate p(s | e, l, D) in each iteration, based on on the current
values of e and l. Averaging over iterations provides an unnormalized probability
estimate of the change point being s (see below for the normalizing constant),

p(s | D) ∝ q(s | D)

=
1
M

M

∑
m=1

exp(lp[m, s]).
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where lp[m, s] represents the value of lp in posterior draw m for change point s.
By averaging over draws, e and l are themselves marginalized out, and the result
has no dependence on a given iteration’s value for e and l. A final normalization
then produces the quantity of interest, the posterior probability of the change point
being s conditioned on the data D,

p(s | D) =
q(s | D)

∑T
s′=1 q(s′ | D)

.

A plot of the values of log p(s | D) computed using Stan 2.4’s default MCMC
implementation is shown in the posterior plot.

Log probability of change point being in year, calculated analytically.
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Figure 7.1: Analytical change-point posterior

The frequency of change points generated by sampling the discrete change points.
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Figure 7.2: Sampled change-point posterior

In order their range of estimates be visible, the first plot is on the log scale and the
second plot on the linear scale; note the narrower range of years in the second plot
resulting from sampling. The posterior mean of s is roughly 1891.

Discrete sampling
The generated quantities block may be used to draw discrete parameter values
using the built-in pseudo-random number generators. For example, with lp defined
as above, the following program draws a random value for s at every iteration.

generated quantities {
int<lower=1, upper=T> s;
s = categorical_logit_rng(lp);

}

A posterior histogram of draws for s is shown on the second change point posterior
figure above.

Compared to working in terms of expectations, discrete sampling is highly ineffi-
cient, especially for tails of distributions, so this approach should only be used if
draws from a distribution are explicitly required. Otherwise, expectations should
be computed in the generated quantities block based on the posterior distribution
for s given by softmax(lp).
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Posterior covariance
The discrete sample generated for s can be used to calculate covariance with other
parameters. Although the sampling approach is straightforward, it is more statisti-
cally efficient (in the sense of requiring far fewer iterations for the same degree of
accuracy) to calculate these covariances in expectation using lp.

Multiple change points
There is no obstacle in principle to allowing multiple change points. The only issue
is that computation increases from linear to quadratic in marginalizing out two
change points, cubic for three change points, and so on. There are three parameters,
e, m, and l, and two loops for the change point and then one over time, with log
densities being stored in a matrix.

matrix[T, T] lp;
lp = rep_matrix(log_unif, T);
for (s1 in 1:T) {
for (s2 in 1:T) {
for (t in 1:T) {

lp[s1,s2] = lp[s1,s2]
+ poisson_lpmf(D[t] | t < s1 ? e : (t < s2 ? m : l));

}
}

}

The matrix can then be converted back to a vector using to_vector before being
passed to log_sum_exp.

7.3. Mark-recapture models
A widely applied field method in ecology is to capture (or sight) animals, mark
them (e.g., by tagging), then release them. This process is then repeated one or more
times, and is often done for populations on an ongoing basis. The resulting data
may be used to estimate population size.

The first subsection describes a simple mark-recapture model that does not involve
any latent discrete parameters. The following subsections describes the Cormack-
Jolly-Seber model, which involves latent discrete parameters for animal death.

Simple mark-recapture model
In the simplest case, a one-stage mark-recapture study produces the following data

• M : number of animals marked in first capture,
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• C : number animals in second capture, and
• R : number of marked animals in second capture.

The estimand of interest is

• N : number of animals in the population.

Despite the notation, the model will take N to be a continuous parameter; just
because the population must be finite doesn’t mean the parameter representing
it must be. The parameter will be used to produce a real-valued estimate of the
population size.

The Lincoln-Petersen (Lincoln 1930; Petersen 1896) method for estimating popula-
tion size is

N̂ =
MC
R

.

This population estimate would arise from a probabilistic model in which the
number of recaptured animals is distributed binomially,

R ∼ binomial(C, M/N)

given the total number of animals captured in the second round (C) with a recapture
probability of M/N, the fraction of the total population N marked in the first round.

data {
int<lower=0> M;
int<lower=0> C;
int<lower=0, upper=min(M, C)> R;

}
parameters {

real<lower=(C - R + M)> N;
}
model {

R ~ binomial(C, M / N);
}

A probabilistic formulation of the Lincoln-Petersen estimator for population size
based on data from a one-step mark-recapture study. The lower bound on N is
necessary to efficiently eliminate impossible values.

The probabilistic variant of the Lincoln-Petersen estimator can be directly coded in
Stan as shown in the Lincon-Petersen model figure. The Lincoln-Petersen estimate
is the maximum likelihood estimate (MLE) for this model.
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To ensure the MLE is the Lincoln-Petersen estimate, an improper uniform prior
for N is used; this could (and should) be replaced with a more informative prior if
possible, based on knowledge of the population under study.

The one tricky part of the model is the lower bound C − R + M placed on the
population size N. Values below this bound are impossible because it is otherwise
not possible to draw R samples out of the C animals recaptured. Implementing
this lower bound is necessary to ensure sampling and optimization can be carried
out in an unconstrained manner with unbounded support for parameters on the
transformed (unconstrained) space. The lower bound in the declaration for C
implies a variable transform f : (C − R + M, ∞) → (−∞,+∞) defined by f (N) =
log(N − (C − R + M)); the reference manual contains full details of all constrained
parameter transforms.

Cormack-Jolly-Seber with discrete parameter
The Cormack-Jolly-Seber (CJS) model (Cormack 1964; Jolly 1965; Seber 1965) is
an open-population model in which the population may change over time due to
death; the presentation here draws heavily on Schofield (2007).

The basic data are

• I: number of individuals,
• T: number of capture periods, and
• yi,t: Boolean indicating if individual i was captured at time t.

Each individual is assumed to have been captured at least once because an individ-
ual only contributes information conditionally after they have been captured the
first time.

There are two Bernoulli parameters in the model,

• ϕt : probability that animal alive at time t survives until t + 1 and
• pt : probability that animal alive at time t is captured at time t.

These parameters will both be given uniform priors, but information should be
used to tighten these priors in practice.

The CJS model also employs a latent discrete parameter zi,t indicating for each
individual i whether it is alive at time t, distributed as

zi,t ∼ Bernoulli(zi,t−1 ? 0 : ϕt−1).

The conditional prevents the model positing zombies; once an animal is dead, it
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stays dead. The data distribution is then simple to express conditional on z as

yi,t ∼ Bernoulli(zi,t ? 0 : pt).

The conditional enforces the constraint that dead animals cannot be captured.

Collective Cormack-Jolly-Seber model
This subsection presents an implementation of the model in terms of counts for
different history profiles for individuals over three capture times. It assumes
exchangeability of the animals in that each is assigned the same capture and survival
probabilities.

In order to ease the marginalization of the latent discrete parameter zi,t, the Stan
models rely on a derived quantity χt for the probability that an individual is never
captured again if it is alive at time t (if it is dead, the recapture probability is zero).
this quantity is defined recursively by

χt =

{
1 if t = T
(1 − ϕt) + ϕt(1 − pt+1)χt+1 if t < T

The base case arises because if an animal was captured in the last time period, the
probability it is never captured again is 1 because there are no more capture periods.
The recursive case defining χt in terms of χt+1 involves two possibilities: (1) not
surviving to the next time period, with probability (1 − ϕt), or (2) surviving to the
next time period with probability ϕt, not being captured in the next time period
with probability (1− pt+1), and not being captured again after being alive in period
t + 1 with probability χt+1.

With three capture times, there are eight captured/not-captured profiles an individ-
ual may have. These may be naturally coded as binary numbers as follows.

captures
profile 1 2 3 probability

0 − − − n/a
1 − − + n/a
2 − + − χ2
3 − + + ϕ2 p3
4 + − − χ1
5 + − + ϕ1 (1 − p2) ϕ2 p3
6 + + − ϕ1 p2 χ2
7 + + + ϕ1 p2 ϕ2 p3
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History 0, for animals that are never captured, is unobservable because only animals
that are captured are observed. History 1, for animals that are only captured in
the last round, provides no information for the CJS model, because capture/non-
capture status is only informative when conditioned on earlier captures. For the
remaining cases, the contribution to the likelihood is provided in the final column.

By defining these probabilities in terms of χ directly, there is no need for a latent
binary parameter indicating whether an animal is alive at time t or not. The
definition of χ is typically used to define the likelihood (i.e., marginalize out the
latent discrete parameter) for the CJS model (Schofield 2007).

The Stan model defines χ as a transformed parameter based on parameters ϕ and
p. In the model block, the log probability is incremented for each history based
on its count. This second step is similar to collecting Bernoulli observations into a
binomial or categorical observations into a multinomial, only it is coded directly in
the Stan program using target += rather than being part of a built-in probability
function.

The following is the Stan program for the Cormack-Jolly-Seber mark-recapture
model that considers counts of individuals with observation histories of being
observed or not in three capture periods

data {
array[7] int<lower=0> history;

}
parameters {

array[2] real<lower=0, upper=1> phi;
array[3] real<lower=0, upper=1> p;

}
transformed parameters {

array[2] real<lower=0, upper=1> chi;
chi[2] = (1 - phi[2]) + phi[2] * (1 - p[3]);
chi[1] = (1 - phi[1]) + phi[1] * (1 - p[2]) * chi[2];

}
model {

target += history[2] * log(chi[2]);
target += history[3] * (log(phi[2]) + log(p[3]));
target += history[4] * (log(chi[1]));
target += history[5] * (log(phi[1]) + log1m(p[2])

+ log(phi[2]) + log(p[3]));
target += history[6] * (log(phi[1]) + log(p[2])
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+ log(chi[2]));
target += history[7] * (log(phi[1]) + log(p[2])

+ log(phi[2]) + log(p[3]));
}
generated quantities {
real<lower=0, upper=1> beta3;
beta3 = phi[2] * p[3];

}

Identifiability
The parameters ϕ2 and p3, the probability of death at time 2 and probability of
capture at time 3 are not identifiable, because both may be used to account for lack
of capture at time 3. Their product, β3 = ϕ2 p3, is identified. The Stan model defines
beta3 as a generated quantity. Unidentified parameters pose a problem for Stan’s
samplers’ adaptation. Although the problem posed for adaptation is mild here
because the parameters are bounded and thus have proper uniform priors, it would
be better to formulate an identified parameterization. One way to do this would be
to formulate a hierarchical model for the p and ϕ parameters.

Individual Cormack-Jolly-Seber model
This section presents a version of the Cormack-Jolly-Seber (CJS) model cast at the
individual level rather than collectively as in the previous subsection. It also extends
the model to allow an arbitrary number of time periods. The data will consist of
the number T of capture events, the number I of individuals, and a boolean flag yi,t
indicating if individual i was observed at time t. In Stan,

data {
int<lower=2> T;
int<lower=0> I;
array[I, T] int<lower=0, upper=1> y;

}

The advantages to the individual-level model is that it becomes possible to add
individual “random effects” that affect survival or capture probability, as well as
to avoid the combinatorics involved in unfolding 2T observation histories for T
capture times.

Utility functions
The individual CJS model is written involves several function definitions. The first
two are used in the transformed data block to compute the first and last time period



112 CHAPTER 7. LATENT DISCRETE PARAMETERS

in which an animal was captured.4

functions {
int first_capture(array[] int y_i) {
for (k in 1:size(y_i)) {

if (y_i[k]) {
return k;

}
}
return 0;

}
int last_capture(array[] int y_i) {
for (k_rev in 0:(size(y_i) - 1)) {
int k;
k = size(y_i) - k_rev;
if (y_i[k]) {
return k;

}
}
return 0;

}
// ...

}

These two functions are used to define the first and last capture time for each
individual in the transformed data block.5

transformed data {
array[I] int<lower=0, upper=T> first;
array[I] int<lower=0, upper=T> last;
vector<lower=0, upper=I>[T] n_captured;
for (i in 1:I) {
first[i] = first_capture(y[i]);

}

4An alternative would be to compute this on the outside and feed it into the Stan model as prepro-
cessed data. Yet another alternative encoding would be a sparse one recording only the capture events
along with their time and identifying the individual captured.

5Both functions return 0 if the individual represented by the input array was never captured. Individ-
uals with no captures are not relevant for estimating the model because all probability statements are
conditional on earlier captures. Typically they would be removed from the data, but the program allows
them to be included even though they make not contribution to the log probability function.
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for (i in 1:I) {
last[i] = last_capture(y[i]);

}
n_captured = rep_vector(0, T);
for (t in 1:T) {
for (i in 1:I) {

if (y[i, t]) {
n_captured[t] = n_captured[t] + 1;

}
}

}
}

The transformed data block also defines n_captured[t], which is the total number
of captures at time t. The variable n_captured is defined as a vector instead of
an integer array so that it can be used in an elementwise vector operation in the
generated quantities block to model the population estimates at each time point.

The parameters and transformed parameters are as before, but now there is a
function definition for computing the entire vector chi, the probability that if an
individual is alive at t that it will never be captured again.

parameters {
vector<lower=0, upper=1>[T - 1] phi;
vector<lower=0, upper=1>[T] p;

}
transformed parameters {

vector<lower=0, upper=1>[T] chi;
chi = prob_uncaptured(T, p, phi);

}

The definition of prob_uncaptured, from the functions block, is

functions {
// ...
vector prob_uncaptured(int T, vector p, vector phi) {
vector[T] chi;
chi[T] = 1.0;
for (t in 1:(T - 1)) {

int t_curr;
int t_next;
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t_curr = T - t;
t_next = t_curr + 1;
chi[t_curr] = (1 - phi[t_curr])

+ phi[t_curr]
* (1 - p[t_next])
* chi[t_next];

}
return chi;

}
}

The function definition directly follows the mathematical definition of χt, unrolling
the recursion into an iteration and defining the elements of chi from T down to 1.

The model
Given the precomputed quantities, the model block directly encodes the CJS model’s
log likelihood function. All parameters are left with their default uniform priors
and the model simply encodes the log probability of the observations q given the
parameters p and phi as well as the transformed parameter chi defined in terms of
p and phi.

model {
for (i in 1:I) {
if (first[i] > 0) {
for (t in (first[i]+1):last[i]) {
1 ~ bernoulli(phi[t - 1]);
y[i, t] ~ bernoulli(p[t]);

}
1 ~ bernoulli(chi[last[i]]);

}
}

}

The outer loop is over individuals, conditional skipping individuals i which are
never captured. The never-captured check depends on the convention of the first-
capture and last-capture functions returning 0 for first if an individual is never
captured.

The inner loop for individual i first increments the log probability based on the
survival of the individual with probability phi[t - 1]. The outcome of 1 is fixed
because the individual must survive between the first and last capture (i.e., no
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zombies). The loop starts after the first capture, because all information in the CJS
model is conditional on the first capture.

In the inner loop, the observed capture status y[i, t] for individual i at time t
has a Bernoulli distribution based on the capture probability p[t] at time t.

After the inner loop, the probability of an animal never being seen again after being
observed at time last[i] is included, because last[i] was defined to be the last
time period in which animal i was observed.

Identified parameters
As with the collective model described in the previous subsection, this model does
not identify phi[T - 1] and p[T], but does identify their product, beta. Thus
beta is defined as a generated quantity to monitor convergence and report.

generated quantities {
real beta;
// ...

beta = phi[T - 1] * p[T];
// ...

}

The parameter p[1] is also not modeled and will just be uniform between 0 and 1.
A more finely articulated model might have a hierarchical or time-series component,
in which case p[1] would be an unknown initial condition and both phi[T - 1]
and p[T] could be identified.

Population size estimates
The generated quantities also calculates an estimate of the population mean at each
time t in the same way as in the simple mark-recapture model as the number of
individuals captured at time t divided by the probability of capture at time t. This
is done with the elementwise division operation for vectors (./) in the generated
quantities block.

generated quantities {
// ...
vector<lower=0>[T] pop;
// ...
pop = n_captured ./ p;
pop[1] = -1;

}
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Generalizing to individual effects
All individuals are modeled as having the same capture probability, but this model
could be easily generalized to use a logistic regression here based on individual-
level inputs to be used as predictors.

7.4. Data coding and diagnostic accuracy models
Although seemingly disparate tasks, the rating/coding/annotation of items with
categories and diagnostic testing for disease or other conditions, share several
characteristics which allow their statistical properties to be modeled similarly.

Diagnostic accuracy
Suppose you have diagnostic tests for a condition of varying sensitivity and speci-
ficity. Sensitivity is the probability a test returns positive when the patient has the
condition and specificity is the probability that a test returns negative when the
patient does not have the condition. For example, mammograms and puncture
biopsy tests both test for the presence of breast cancer. Mammograms have high
sensitivity and low specificity, meaning lots of false positives, whereas puncture
biopsies are the opposite, with low sensitivity and high specificity, meaning lots of
false negatives.

There are several estimands of interest in such studies. An epidemiological study
may be interested in the prevalence of a kind of infection, such as malaria, in a
population. A test development study might be interested in the diagnostic accuracy
of a new test. A health care worker performing tests might be interested in the
disease status of a particular patient.

Data coding
Humans are often given the task of coding (equivalently rating or annotating) data.
For example, journal or grant reviewers rate submissions, a political study may
code campaign commercials as to whether they are attack ads or not, a natural
language processing study might annotate Tweets as to whether they are positive
or negative in overall sentiment, or a dentist looking at an X-ray classifies a patient
as having a cavity or not. In all of these cases, the data coders play the role of the
diagnostic tests and all of the same estimands are in play — data coder accuracy and
bias, true categories of items being coded, or the prevalence of various categories of
items in the data.

Noisy categorical measurement model
In this section, only categorical ratings are considered, and the challenge in the
modeling for Stan is to marginalize out the discrete parameters.
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A. P. Dawid and Skene (1979) introduce a noisy-measurement model for coding and
apply it in the epidemiological setting of coding what doctors say about patient
histories; the same model can be used for diagnostic procedures.

Data
The data for the model consists of J raters (diagnostic tests), I items (patients), and
K categories (condition statuses) to annotate, with yi,j ∈ {1, . . . , K} being the rating
provided by rater j for item i. In a diagnostic test setting for a particular condition,
the raters are diagnostic procedures and often K = 2, with values signaling the
presence or absence of the condition.6

It is relatively straightforward to extend Dawid and Skene’s model to deal with the
situation where not every rater rates each item exactly once.

Model parameters
The model is based on three parameters, the first of which is discrete:

• zi : a value in {1, . . . , K} indicating the true category of item i,
• π : a K-simplex for the prevalence of the K categories in the population, and
• θj,k : a K-simplex for the response of annotator j to an item of true category k.

Noisy measurement model
The true category of an item is assumed to be generated by a simple categorical
distribution based on item prevalence,

zi ∼ categorical(π).

The rating yi,j provided for item i by rater j is modeled as a categorical response of
rater i to an item of category zi,7

yi,j ∼ categorical(θj,πz[i]
).

Priors and hierarchical modeling
Dawid and Skene provided maximum likelihood estimates for θ and π, which
allows them to generate probability estimates for each zi.

To mimic Dawid and Skene’s maximum likelihood model, the parameters θj,k and
π can be given uniform priors over K-simplexes. It is straightforward to generalize

6Diagnostic procedures are often ordinal, as in stages of cancer in oncological diagnosis or the severity
of a cavity in dental diagnosis. Dawid and Skene’s model may be used as is or naturally generalized for
ordinal ratings using a latent continuous rating and cutpoints as in ordinal logistic regression.

7In the subscript, zi is written as z[i] to improve legibility.
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to Dirichlet priors,
π ∼ Dirichlet(α)

and
θj,k ∼ Dirichlet(βk)

with fixed hyperparameters α (a vector) and β (a matrix or array of vectors). The
prior for θj,k must be allowed to vary in k, so that, for instance, βk,k is large enough
to allow the prior to favor better-than-chance annotators over random or adversarial
ones.

Because there are J coders, it would be natural to extend the model to include a
hierarchical prior for β and to partially pool the estimates of coder accuracy and
bias.

Marginalizing out the true category
Because the true category parameter z is discrete, it must be marginalized out of the
joint posterior in order to carry out sampling or maximum likelihood estimation in
Stan. The joint posterior factors as

p(y, θ, π) = p(y | θ, π) p(π) p(θ),

where p(y | θ, π) is derived by marginalizing z out of

p(z, y | θ, π) =
I

∏
i=1

(
categorical(zi | π)

J

∏
j=1

categorical(yi,j | θj,z[i])

)
.

This can be done item by item, with

p(y | θ, π) =
I

∏
i=1

K

∑
k=1

(
categorical(k | π)

J

∏
j=1

categorical(yi,j | θj,k)

)
.

In the missing data model, only the observed labels would be used in the inner
product.

A. P. Dawid and Skene (1979) derive exactly the same equation in their Equation
(2.7), required for the E-step in their expectation maximization (EM) algorithm. Stan
requires the marginalized probability function on the log scale,

log p(y | θ, π) =
I

∑
i=1

log

(
K

∑
k=1

exp

(
log categorical(k | π) +

J

∑
j=1

log categorical(yi,j | θj,k)

))
,

which can be directly coded using Stan’s built-in log_sum_exp function.
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Stan implementation
The Stan program for the Dawid and Skene model is provided below (A. P. Dawid
and Skene 1979).

data {
int<lower=2> K;
int<lower=1> I;
int<lower=1> J;

array[I, J] int<lower=1, upper=K> y;

vector<lower=0>[K] alpha;
vector<lower=0>[K] beta[K];

}
parameters {

simplex[K] pi;
array[J, K] simplex[K] theta;

}
transformed parameters {

array[I] vector[K] log_q_z;
for (i in 1:I) {
log_q_z[i] = log(pi);
for (j in 1:J) {
for (k in 1:K) {
log_q_z[i, k] = log_q_z[i, k]

+ log(theta[j, k, y[i, j]]);
}

}
}

}
model {

pi ~ dirichlet(alpha);
for (j in 1:J) {
for (k in 1:K) {

theta[j, k] ~ dirichlet(beta[k]);
}

}

for (i in 1:I) {
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target += log_sum_exp(log_q_z[i]);
}

}

The model marginalizes out the discrete parameter z, storing the unnormalized
conditional probability log q(zi = k|θ, π) in log_q_z[i, k].

The Stan model converges quickly and mixes well using NUTS starting at diffuse
initial points, unlike the equivalent model implemented with Gibbs sampling over
the discrete parameter. Reasonable weakly informative priors are αk = 3 and
βk,k = 2.5K and βk,k′ = 1 if k ̸= k′. Taking α and βk to be unit vectors and applying
optimization will produce the same answer as the expectation maximization (EM)
algorithm of A. P. Dawid and Skene (1979).

Inference for the true category
The quantity log_q_z[i] is defined as a transformed parameter. It encodes the
(unnormalized) log of p(zi | θ, π). Each iteration provides a value conditioned on
that iteration’s values for θ and π. Applying the softmax function to log_q_z[i]
provides a simplex corresponding to the probability mass function of zi in the
posterior. These may be averaged across the iterations to provide the posterior
probability distribution over each zi.

7.5. The mathematics of recovering marginalized parameters
Introduction
This section describes in more detail the mathematics of statistical inference using
the output of marginalized Stan models, such as those presented in the last three
sections. It provides a mathematical explanation of why and how certain manipula-
tions of Stan’s output produce valid summaries of the posterior distribution when
discrete parameters have been marginalized out of a statistical model. Ultimately,
however, fully understanding the mathematics in this section is not necessary to fit
models with discrete parameters using Stan.

Throughout, the model under consideration consists of both continuous parameters,
Θ, and discrete parameters, Z. It is also assumed that Z can only take finitely
many values, as is the case for all the models described in this chapter of the User’s
Guide. To simplify notation, any conditioning on data is suppressed in this section,
except where specified. As with all Bayesian analyses, however, all inferences using
models with marginalized parameters are made conditional on the observed data.
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Estimating expectations
When performing Bayesian inference, interest often centers on estimating some
(constant) low-dimensional summary statistics of the posterior distribution. Mathe-
matically, we are interested in estimating µ, say, where µ = E[g(Θ, Z)] and g(·) is
an arbitrary function. An example of such a quantity is E[Θ], the posterior mean
of the continuous parameters, where we would take g(θ, z) = θ. To estimate µ
the most common approach is to sample a series of values, at least approximately,
from the posterior distribution of the parameters of interest. The numerical val-
ues of these draws can then be used to calculate the quantities of interest. Often,
this process of calculation is trivial, but more care is required when working with
marginalized posteriors as we describe in this section.

If both Θ and Z were continuous, Stan could be used to sample M draws from the
joint posterior pΘ,Z(θ, z) and then estimate µ with

µ̂ =
1
M

M

∑
i=1

g(θ(i), z(i)).

Given Z is discrete, however, Stan cannot be used to sample from the joint posterior
(or even to do optimization). Instead, as outlined in the previous sections describing
specific models, the user can first marginalize out Z from the joint posterior to give
the marginalized posterior pΘ(θ). This marginalized posterior can then be imple-
mented in Stan as usual, and Stan will give draws {θ(i)}M

i=1 from the marginalized
posterior.

Using only these draws, how can we estimate E[g(Θ, Z)]? We can use a conditional
estimator. We explain in more detail below, but at a high level the idea is that, for
each function g of interest, we compute

h(Θ) = E[g(Θ, Z) | Θ]

and then estimate E[g(Θ, Z)] with

µ̂ =
1
M

M

∑
i=1

h(θ(i)).

This estimator is justified by the law of iterated expectation, the fact that

E[h(Θ)] = E[E[g(Θ, Z)] | Θ] = E[g(Θ, Z)] = µ.

Using this marginalized estimator provides a way to estimate the expectation of
any function g(·) for all combinations of discrete or continuous parameters in the
model. However, it presents a possible new challenge: evaluating the conditional
expectation E[g(Θ, Z) | Θ].
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Evaluating the conditional expectation
Fortunately, the discrete nature of Z makes evaluating E[g(Θ, Z) | Θ] easy. The
function h(Θ) can be written as:

h(Θ) = E[g(Θ, Z) | Θ] = ∑
k

g(Θ, k)Pr[Z = k | Θ],

where we sum over the possible values of the latent discrete parameters. An
essential part of this formula is the probability of the discrete parameters conditional
on the continuous parameters, Pr[Z = k | Θ]. More detail on how this quantity can
be calculated is included below. Note that if Z takes infinitely many values then
computing the infinite sums will involve, potentially computationally expensive,
approximation.

When g(θ, z) is a function of either θ or z only, the above formula simplifies further.

In the first case, where g(θ, z) = g(θ), we have:

h(Θ) = ∑
k

g(Θ)Pr[Z = k | Θ]

= g(Θ)∑
k

Pr[Z = k | Θ]

= g(Θ).

This means that we can estimate E[g(Θ)] with the standard, seemingly uncondi-
tional, estimator:

1
M

M

∑
i=1

g(θ(i)).

Even after marginalization, computing expectations of functions of the continuous
parameters can be performed as if no marginalization had taken place.

In the second case, where g(θ, z) = g(z), the conditional expectation instead simpli-
fies as follows:

h(Θ) = ∑
k

g(k)Pr[Z = k | Θ].

An important special case of this result is when g(θ, z) = I(z = k), where I is the
indicator function. This choice allows us to recover the probability mass function of
the discrete random variable Z, since E[I(Z = k)] = Pr[Z = k]. In this case,

h(Θ) = ∑
k

I(z = k)Pr[Z = k | Θ] = Pr[Z = k | Θ].
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The quantity Pr[Z = k] can therefore be estimated with:

1
M

M

∑
i=1

Pr[Z = k | Θ = θ(i)].

When calculating this conditional probability it is important to remember that we
are also conditioning on the observed data, Y. That is, we are really estimating
Pr[Z = k | Y] with

1
M

M

∑
i=1

Pr[Z = k | Θ = θ(i), Y].

This point is important as it suggests one of the main ways of calculating the
required conditional probability. Using Bayes’s theorem gives us

Pr[Z = k | Θ = θ(i), Y] =
Pr[Y | Z = k, Θ = θ(i)]Pr[Z = k | Θ = θ(i)]

∑K
k=1 Pr[Y | Z = k, Θ = θ(i)]Pr[Z = k | Θ = θ(i)]

.

Here, Pr[Y | Θ = θ(i), Z = k] is the likelihood conditional on a particular value of
the latent variables. Crucially, all elements of the expression can be calculated using
the draws from the posterior of the continuous parameters and knowledge of the
model structure.

Other than the use of Bayes’s theorem, Pr[Z = k | θ = θ(i), Y] can also be extracted
by coding the Stan model to include the conditional probability explicitly (as is
done for the Dawid–Skene model).

For a longer introduction to the mathematics of marginalization in Stan, which
also covers the connections between Rao–Blackwellization and marginalization, see
Pullin, Gurrin, and Vukcevic (2021).



8. Sparse and Ragged Data Structures

Stan does not directly support either sparse or ragged data structures, though both
can be accommodated with some programming effort. The sparse matrices chapter
introduces a special-purpose sparse matrix times dense vector multiplication, which
should be used where applicable; this chapter covers more general data structures.

8.1. Sparse data structures
Coding sparse data structures is as easy as moving from a matrix-like data structure
to a database-like data structure. For example, consider the coding of sparse data for
the IRT models discussed in the item-response model section. There are J students
and K questions, and if every student answers every question, then it is practical to
declare the data as a J × K array of answers.

data {
int<lower=1> J;
int<lower=1> K;
array[J, K] int<lower=0, upper=1> y;
// ...

model {
for (j in 1:J) {
for (k in 1:K) {

y[j, k] ~ bernoulli_logit(delta[k] * (alpha[j] - beta[k]));
}

}
// ...

}

When not every student is given every question, the dense array coding will no
longer work, because Stan does not support undefined values.

The following missing data example shows an example with J = 3 and K = 4, with
missing responses shown as NA, as in R.

y =

 0 1 NA 1
0 NA NA 1

NA 0 NA NA


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There is no support within Stan for R’s NA values, so this data structure cannot
be used directly. Instead, it must be converted to a “long form” as in a database,
with columns indicating the indices along with the value. With columns jj and kk
used for the indexes (following Andrew Gelman and Hill (2007)), the 2-D array y is
recoded as a table. The number of rows in the table equals the number of defined
array elements, here y1,1 = 0, y1,2 = 1, up to y3,2 = 1. As the array becomes larger
and sparser, the long form becomes the more economical encoding.

jj kk y

1 1 0
1 2 1
1 4 1
2 1 0
2 4 1
3 2 0

Letting N be the number of y that are defined, here N = 6, the data and model can
be formulated as follows.

data {
// ...
int<lower=1> N;
array[N] int<lower=1, upper=J> jj;
array[N] int<lower=1, upper=K> kk;
array[N] int<lower=0, upper=1> y;
// ...

}
model {

for (n in 1:N) {
y[n] ~ bernoulli_logit(delta[kk[n]]

* (alpha[jj[n]] - beta[kk[n]]));
}
// ...

}

In the situation where there are no missing values, the two model formulations
produce exactly the same log posterior density.
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8.2. Ragged data structures
Ragged arrays are arrays that are not rectangular, but have different sized entries.
This kind of structure crops up when there are different numbers of observations
per entry.

A general approach to dealing with ragged structure is to move to a full database-
like data structure as discussed in the previous section. A more compact approach
is possible with some indexing into a linear array.

For example, consider a data structure for three groups, each of which has a different
number of observations.

y1 = [1.3 2.4 0.9]
y2 = [−1.8 − 0.1]
y3 = [12.9 18.7 42.9 4.7]

z = [1.3 2.4 0.9 − 1.8 −
0.1 12.9 18.7 42.9 4.7]
s = {3 2 4}

On the left is the definition of a ragged data structure y with three rows of different
sizes (y1 is size 3, y2 size 2, and y3 size 4). On the right is an example of how to code
the data in Stan, using a single vector z to hold all the values and a separate array
of integers s to hold the group row sizes. In this example, y1 = z1:3, y2 = z4:5, and
y3 = z6:9.

Suppose the model is a simple varying intercept model, which, using vectorized
notation, would yield a log-likelihood

3

∑
n=1

log normal(yn | µn, σ).

There’s no direct way to encode this in Stan.

A full database type structure could be used, as in the sparse example, but this is
inefficient, wasting space for unnecessary indices and not allowing vector-based
density operations. A better way to code this data is as a single list of values, with
a separate data structure indicating the sizes of each subarray. This is indicated
on the right of the example. This coding uses a single array for the values and a
separate array for the sizes of each row.

The model can then be coded up using slicing operations as follows.

data {
int<lower=0> N; // # observations
int<lower=0> K; // # of groups
vector[N] y; // observations
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array[K] int s; // group sizes
// ...

}
model {

int pos;
pos = 1;
for (k in 1:K) {
segment(y, pos, s[k]) ~ normal(mu[k], sigma);
pos = pos + s[k];

}

This coding allows for efficient vectorization, which is worth the copy cost entailed
by the segment() vector slicing operation.



9. Clustering Models

Unsupervised methods for organizing data into groups are collectively referred to
as clustering. This chapter describes the implementation in Stan of two widely used
statistical clustering models, soft K-means and latent Dirichlet allocation (LDA). In
addition, this chapter includes naive Bayesian classification, which can be viewed
as a form of clustering which may be supervised. These models are typically
expressed using discrete parameters for cluster assignments. Nevertheless, they
can be implemented in Stan like any other mixture model by marginalizing out the
discrete parameters (see the mixture modeling chapter).

9.1. Relation to finite mixture models
As mentioned in the clustering section, clustering models and finite mixture models
are really just two sides of the same coin. The “soft” K-means model described
in the next section is a normal mixture model (with varying assumptions about
covariance in higher dimensions leading to variants of K-means). Latent Dirichlet
allocation is a mixed-membership multinomial mixture.

9.2. Soft K-means
K-means clustering is a method of clustering data represented as D-dimensional
vectors. Specifically, there will be N items to be clustered, each represented as a
vector yn ∈ RD. In the “soft” version of K-means, the assignments to clusters will
be probabilistic.

Geometric hard K-means clustering
K-means clustering is typically described geometrically in terms of the following
algorithm, which assumes the number of clusters K and data vectors y as input.

1. For each n in {1, . . . , N}, randomly assign vector yn to a cluster in {1, . . . , K};
2. Repeat

1. For each cluster k in {1, . . . , K}, compute the cluster centroid µk by aver-
aging the vectors assigned to that cluster;

2. For each n in {1, . . . , N}, reassign yn to the cluster k for which the (Eu-
clidean) distance from yn to µk is smallest;

3. If no vectors changed cluster, return the cluster assignments.

This algorithm is guaranteed to terminate.
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Soft K-means clustering
Soft K-means clustering treats the cluster assignments as probability distributions
over the clusters. Because of the connection between Euclidean distance and multi-
variate normal models with a fixed covariance, soft K-means can be expressed (and
coded in Stan) as a multivariate normal mixture model.

In the full generative model, each data point n in {1, . . . , N} is assigned a cluster
zn ∈ {1, . . . , K} with symmetric uniform probability,

zn ∼ categorical(1/K),

where 1 is the unit vector of K dimensions, so that 1/K is the symmetric K-simplex.
Thus the model assumes that each data point is drawn from a hard decision about
cluster membership. The softness arises only from the uncertainty about which
cluster generated a data point.

The data points themselves are generated from a multivariate normal distribution
whose parameters are determined by the cluster assignment zn,

yn ∼ normal(µz[n], Σz[n])

The sample implementation in this section assumes a fixed unit covariance matrix
shared by all clusters k,

Σk = diag_matrix(1),

so that the log multivariate normal can be implemented directly up to a proportion
by

normal (yn | µk, diag_matrix(1)) ∝ exp

(
−1

2

D

∑
d=1

(µk,d − yn,d)
2

)
.

The spatial perspective on K-means arises by noting that the inner term is just half
the negative Euclidean distance from the cluster mean µk to the data point yn.

Stan implementation of soft K-means
Consider the following Stan program for implementing K-means clustering.

data {
int<lower=0> N; // number of data points
int<lower=1> D; // number of dimensions
int<lower=1> K; // number of clusters
array[N] vector[D] y; // observations

}



130 CHAPTER 9. CLUSTERING MODELS

transformed data {
real<upper=0> neg_log_K;
neg_log_K = -log(K);

}
parameters {

array[K] vector[D] mu; // cluster means
}
transformed parameters {

array[N, K] real<upper=0> soft_z; // log unnormalized clusters
for (n in 1:N) {
for (k in 1:K) {
soft_z[n, k] = neg_log_K

- 0.5 * dot_self(mu[k] - y[n]);
}

}
}
model {

// prior
for (k in 1:K) {
mu[k] ~ std_normal();

}

// likelihood
for (n in 1:N) {
target += log_sum_exp(soft_z[n]);

}
}

There is an independent standard normal prior on the centroid parameters; this
prior could be swapped with other priors, or even a hierarchical model to fit an
overall problem scale and location.

The only parameter is mu, where mu[k] is the centroid for cluster k. The transformed
parameters soft_z[n] contain the log of the unnormalized cluster assignment
probabilities. The vector soft_z[n] can be converted back to a normalized simplex
using the softmax function (see the functions reference manual), either externally or
within the model’s generated quantities block.
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Generalizing soft K-means
The multivariate normal distribution with unit covariance matrix produces a log
probability density proportional to Euclidean distance (i.e., L2 distance). Other dis-
tributions relate to other geometries. For instance, replacing the normal distribution
with the double exponential (Laplace) distribution produces a clustering model
based on L1 distance (i.e., Manhattan or taxicab distance).

Within the multivariate normal version of K-means, replacing the unit covariance
matrix with a shared covariance matrix amounts to working with distances defined
in a space transformed by the inverse covariance matrix.

Although there is no global spatial analog, it is common to see soft K-means speci-
fied with a per-cluster covariance matrix. In this situation, a hierarchical prior may
be used for the covariance matrices.

9.3. The difficulty of Bayesian inference for clustering
Two problems make it pretty much impossible to perform full Bayesian inference for
clustering models, the lack of parameter identifiability and the extreme multimodal-
ity of the posteriors. There is additional discussion related to the non-identifiability
due to label switching in the label switching section.

Non-identifiability
Cluster assignments are not identified—permuting the cluster mean vectors mu
leads to a model with identical likelihoods. For instance, permuting the first two
indexes in mu and the first two indexes in each soft_z[n] leads to an identical
likelihood (and prior).

The lack of identifiability means that the cluster parameters cannot be compared
across multiple Markov chains. In fact, the only parameter in soft K-means is not
identified, leading to problems in monitoring convergence. Clusters can even fail
to be identified within a single chain, with indices swapping if the chain is long
enough or the data are not cleanly separated.

Multimodality
The other problem with clustering models is that their posteriors are highly mul-
timodal. One form of multimodality is the non-identifiability leading to index
swapping. But even without the index problems the posteriors are highly multi-
modal.

Bayesian inference fails in cases of high multimodality because there is no way to
visit all of the modes in the posterior in appropriate proportions and thus no way
to evaluate integrals involved in posterior predictive inference.
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In light of these two problems, the advice often given in fitting clustering models is
to try many different initializations and select the sample with the highest overall
probability. It is also popular to use optimization-based point estimators such as
expectation maximization or variational Bayes, which can be much more efficient
than sampling-based approaches.

9.4. Naive Bayes classification and clustering
Naive Bayes is a kind of mixture model that can be used for classification or for
clustering (or a mix of both), depending on which labels for items are observed.1

Multinomial mixture models are referred to as “naive Bayes” because they are often
applied to classification problems where the multinomial independence assump-
tions are clearly false.

Naive Bayes classification and clustering can be applied to any data with multino-
mial structure. A typical example of this is natural language text classification and
clustering, which is used an example in what follows.

The observed data consists of a sequence of M documents made up of bags of words
drawn from a vocabulary of V distinct words. A document m has Nm words, which
are indexed as wm,1, . . . , wm,N[m] ∈ {1, . . . , V}. Despite the ordered indexing of
words in a document, this order is not part of the model, which is clearly defective
for natural human language data. A number of topics (or categories) K is fixed.

The multinomial mixture model generates a single category zm ∈ {1, . . . , K} for
each document m ∈ {1, . . . , M} according to a categorical distribution,

zm ∼ categorical(θ).

The K-simplex parameter θ represents the prevalence of each category in the data.

Next, the words in each document are generated conditionally independently of
each other and the words in other documents based on the category of the document,
with word n of document m being generated as

wm,n ∼ categorical(ϕz[m]).

The parameter ϕz[m] is a V-simplex representing the probability of each word in the
vocabulary in documents of category zm.

1For clustering, the non-identifiability problems for all mixture models present a problem, whereas
there is no such problem for classification. Despite the difficulties with full Bayesian inference for
clustering, researchers continue to use it, often in an exploratory data analysis setting rather than for
predictive modeling.
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The parameters θ and ϕ are typically given symmetric Dirichlet priors. The
prevalence θ is sometimes fixed to produce equal probabilities for each category
k ∈ {1, . . . , K}.

Coding ragged arrays
The specification for naive Bayes in the previous sections have used a ragged array
notation for the words w. Because Stan does not support ragged arrays, the models
are coded using an alternative strategy that provides an index for each word in a
global list of words. The data is organized as follows, with the word arrays laid out
in a column and each assigned to its document in a second column.

n w[n] doc[n]
1 w1,1 1
2 w1,2 1
...

...
...

N1 w1,N[1] 1
N1 + 1 w2,1 2
N1 + 2 w2,2 2
...

...
...

N1 + N2 w2,N[2] 2
N1 + N2 + 1 w3,1 3
...

...
...

N = ∑M
m=1 Nm wM,N[M] M

The relevant variables for the program are N, the total number of words in all the
documents, the word array w, and the document identity array doc.

Estimation with category-labeled training data
A naive Bayes model for estimating the simplex parameters given training data
with documents of known categories can be coded in Stan as follows

data {
// training data
int<lower=1> K; // num topics
int<lower=1> V; // num words
int<lower=0> M; // num docs
int<lower=0> N; // total word instances
array[M] int<lower=1, upper=K> z; // topic for doc m
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array[N] int<lower=1, upper=V> w; // word n
array[N] int<lower=1, upper=M> doc; // doc ID for word n
// hyperparameters
vector<lower=0>[K] alpha; // topic prior
vector<lower=0>[V] beta; // word prior

}
parameters {

simplex[K] theta; // topic prevalence
array[K] simplex[V] phi; // word dist for topic k

}
model {

theta ~ dirichlet(alpha);
for (k in 1:K) {
phi[k] ~ dirichlet(beta);

}
for (m in 1:M) {
z[m] ~ categorical(theta);

}
for (n in 1:N) {
w[n] ~ categorical(phi[z[doc[n]]]);

}
}

The topic identifiers zm are declared as data and the latent category assignments
are included as part of the likelihood function.

Estimation without category-labeled training data
Naive Bayes models can be used in an unsupervised fashion to cluster multinomial-
structured data into a fixed number K of categories. The data declaration includes
the same variables as the model in the previous section excluding the topic labels
z. Because z is discrete, it needs to be summed out of the model calculation. This
is done for naive Bayes as for other mixture models. The parameters are the same
up to the priors, but the likelihood is now computed as the marginal document
probability
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log p(wm,1, . . . , wm,Nm | θ, ϕ)

= log
K

∑
k=1

(
categorical(k | θ)×

Nm

∏
n=1

categorical(wm,n | ϕk)

)

= log
K

∑
k=1

exp

(
log categorical(k | θ) +

Nm

∑
n=1

log categorical(wm,n | ϕk)

)
.

The last step shows how the log_sum_exp function can be used to stabilize the
numerical calculation and return a result on the log scale.

model {
array[M, K] real gamma;
theta ~ dirichlet(alpha);
for (k in 1:K) {
phi[k] ~ dirichlet(beta);

}
for (m in 1:M) {
for (k in 1:K) {

gamma[m, k] = categorical_lpmf(k | theta);
}

}
for (n in 1:N) {
for (k in 1:K) {
gamma[doc[n], k] = gamma[doc[n], k]

+ categorical_lpmf(w[n] | phi[k]);
}

}
for (m in 1:M) {
target += log_sum_exp(gamma[m]);

}
}

The local variable gamma[m, k] represents the value

γm,k = log categorical(k | θ) +
Nm

∑
n=1

log categorical(wm,n | ϕk).
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Given γ, the posterior probability that document m is assigned category k is

Pr[zm = k | w, α, β] = exp

(
γm,k − log

K

∑
k=1

exp (γm,k)

)
.

If the variable gamma were declared and defined in the transformed parameter block,
its sampled values would be saved by Stan. The normalized posterior probabilities
could also be defined as generated quantities.

Full Bayesian inference for naive Bayes
Full Bayesian posterior predictive inference for the naive Bayes model can be im-
plemented in Stan by combining the models for labeled and unlabeled data. The
estimands include both the model parameters and the posterior distribution over
categories for the unlabeled data. The model is essentially a missing data model
assuming the unknown category labels are missing completely at random; see
Andrew Gelman et al. (2013) and Andrew Gelman and Hill (2007) for more informa-
tion on missing data imputation. The model is also an instance of semisupervised
learning because the unlabeled data contributes to the parameter estimations.

To specify a Stan model for performing full Bayesian inference, the model for labeled
data is combined with the model for unlabeled data. A second document collection
is declared as data, but without the category labels, leading to new variables M2
N2, w2, and doc2. The number of categories and number of words, as well as the
hyperparameters are shared and only declared once. Similarly, there is only one set
of parameters. Then the model contains a single set of statements for the prior, a set
of statements for the labeled data, and a set of statements for the unlabeled data.

Prediction without model updates
An alternative to full Bayesian inference involves estimating a model using labeled
data, then applying it to unlabeled data without updating the parameter estimates
based on the unlabeled data. This behavior can be implemented by moving the
definition of gamma for the unlabeled documents to the generated quantities block.
Because the variables no longer contribute to the log probability, they no longer
jointly contribute to the estimation of the model parameters.

9.5. Latent Dirichlet allocation
Latent Dirichlet allocation (LDA) is a mixed-membership multinomial clustering
model (Blei, Ng, and Jordan 2003) that generalizes naive Bayes. Using the topic and
document terminology common in discussions of LDA, each document is modeled
as having a mixture of topics, with each word drawn from a topic based on the
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mixing proportions.

The LDA Model
The basic model assumes each document is generated independently based on fixed
hyperparameters. For document m, the first step is to draw a topic distribution
simplex θm over the K topics,

θm ∼ Dirichlet(α).

The prior hyperparameter α is fixed to a K-vector of positive values. Each word in
the document is generated independently conditional on the distribution θm. First,
a topic zm,n ∈ {1, . . . , K} is drawn for the word based on the document-specific
topic-distribution,

zm,n ∼ categorical(θm).

Finally, the word wm,n is drawn according to the word distribution for topic zm,n,

wm,n ∼ categorical(ϕz[m,n]).

The distributions ϕk over words for topic k are also given a Dirichlet prior,

ϕk ∼ Dirichlet(β)

where β is a fixed V-vector of positive values.

Summing out the discrete parameters
Although Stan does not (yet) support discrete sampling, it is possible to calculate
the marginal distribution over the continuous parameters by summing out the
discrete parameters as in other mixture models. The marginal posterior of the topic
and word variables is

p(θ, ϕ | w, α, β) ∝ p(θ | α) p(ϕ | β) p(w | θ, ϕ)

=
M

∏
m=1

p(θm | α)×
K

∏
k=1

p(ϕk | β)×
M

∏
m=1

M[n]

∏
n=1

p(wm,n | θm, ϕ).

The inner word-probability term is defined by summing out the topic assignments,

p(wm,n | θm, ϕ) =
K

∑
z=1

p(z, wm,n | θm, ϕ)

=
K

∑
z=1

p(z | θm) p(wm,n | ϕz).
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Plugging the distributions in and converting to the log scale provides a formula
that can be implemented directly in Stan,

log p(θ, ϕ | w, α, β)

=
M

∑
m=1

log Dirichlet(θm | α) +
K

∑
k=1

log Dirichlet(ϕk | β)

+
M

∑
m=1

N[m]

∑
n=1

log

(
K

∑
z=1

categorical(z | θm)× categorical(wm,n | ϕz)

)

Implementation of LDA
Applying the marginal derived in the last section to the data structure described in
this section leads to the following Stan program for LDA.

data {
int<lower=2> K; // num topics
int<lower=2> V; // num words
int<lower=1> M; // num docs
int<lower=1> N; // total word instances
array[N] int<lower=1, upper=V> w; // word n
array[N] int<lower=1, upper=M> doc; // doc ID for word n
vector<lower=0>[K] alpha; // topic prior
vector<lower=0>[V] beta; // word prior

}
parameters {

array[M] simplex[K] theta; // topic dist for doc m
array[K] simplex[V] phi; // word dist for topic k

}
model {

for (m in 1:M) {
theta[m] ~ dirichlet(alpha); // prior

}
for (k in 1:K) {
phi[k] ~ dirichlet(beta); // prior

}
for (n in 1:N) {
array[K] real gamma;
for (k in 1:K) {

gamma[k] = log(theta[doc[n], k]) + log(phi[k, w[n]]);
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}
target += log_sum_exp(gamma); // likelihood;

}
}

As in the other mixture models, the log-sum-of-exponents function is used to
stabilize the numerical arithmetic.

Correlated topic model
To account for correlations in the distribution of topics for documents, Blei and
Lafferty (2007) introduced a variant of LDA in which the Dirichlet prior on the
per-document topic distribution is replaced with a multivariate logistic normal
distribution.

The authors treat the prior as a fixed hyperparameter. They use an L1-regularized
estimate of covariance, which is equivalent to the maximum a posteriori estimate
given a double-exponential prior. Stan does not (yet) support maximum a posteriori
estimation, so the mean and covariance of the multivariate logistic normal must be
specified as data.

Fixed hyperparameter correlated topic model
The Stan model in the previous section can be modified to implement the correlated
topic model by replacing the Dirichlet topic prior alpha in the data declaration with
the mean and covariance of the multivariate logistic normal prior.

data {
// ... data as before without alpha ...
vector[K] mu; // topic mean
cov_matrix[K] Sigma; // topic covariance

}

Rather than drawing the simplex parameter theta from a Dirichlet, a parameter
eta is drawn from a multivariate normal distribution and then transformed using
softmax into a simplex.

parameters {
array[K] simplex[V] phi; // word dist for topic k
array[M] vector[K] eta; // topic dist for doc m

}
transformed parameters {

array[M] simplex[K] theta;
for (m in 1:M) {
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theta[m] = softmax(eta[m]);
}

}
model {

for (m in 1:M) {
eta[m] ~ multi_normal(mu, Sigma);

}
// ... model as before w/o prior for theta ...

}

Full Bayes correlated topic model
By adding a prior for the mean and covariance, Stan supports full Bayesian inference
for the correlated topic model. This requires moving the declarations of topic mean
mu and covariance Sigma from the data block to the parameters block and providing
them with priors in the model. A relatively efficient and interpretable prior for the
covariance matrix Sigma may be encoded as follows.

// ... data block as before, but without alpha ...
parameters {

vector[K] mu; // topic mean
corr_matrix[K] Omega; // correlation matrix
vector<lower=0>[K] sigma; // scales
array[M] vector[K] eta; // logit topic dist for doc m
array[K] simplex[V] phi; // word dist for topic k

}
transformed parameters {

// ... eta as above ...
cov_matrix[K] Sigma; // covariance matrix
for (m in 1:K) {
Sigma[m, m] = sigma[m] * sigma[m] * Omega[m, m];

}
for (m in 1:(K-1)) {
for (n in (m+1):K) {

Sigma[m, n] = sigma[m] * sigma[n] * Omega[m, n];
Sigma[n, m] = Sigma[m, n];

}
}

}
model {
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mu ~ normal(0, 5); // vectorized, diffuse
Omega ~ lkj_corr(2.0); // regularize to unit correlation
sigma ~ cauchy(0, 5); // half-Cauchy due to constraint
// ... words sampled as above ...

}

The LKJCorr distribution with shape α > 0 has support on correlation matrices (i.e.,
symmetric positive definite with unit diagonal). Its density is defined by

LkjCorr(Ω | α) ∝ det(Ω)α−1

With a scale of α = 2, the weakly informative prior favors a unit correlation matrix.
Thus the compound effect of this prior on the covariance matrix Σ for the multivari-
ate logistic normal is a slight concentration around diagonal covariance matrices
with scales determined by the prior on sigma.



10. Gaussian Processes

Gaussian processes are continuous stochastic processes and thus may be interpreted
as providing a probability distribution over functions. A probability distribution
over continuous functions may be viewed, roughly, as an uncountably infinite
collection of random variables, one for each valid input. The generality of the
supported functions makes Gaussian priors popular choices for priors in general
multivariate (non-linear) regression problems.

The defining feature of a Gaussian process is that the joint distribution of the func-
tion’s value at a finite number of input points is a multivariate normal distribution.
This makes it tractable to both fit models from finite amounts of observed data and
make predictions for finitely many new data points.

Unlike a simple multivariate normal distribution, which is parameterized by a
mean vector and covariance matrix, a Gaussian process is parameterized by a mean
function and covariance function. The mean and covariance functions apply to
vectors of inputs and return a mean vector and covariance matrix which provide
the mean and covariance of the outputs corresponding to those input points in the
functions drawn from the process.

Gaussian processes can be encoded in Stan by implementing their mean and covari-
ance functions or by using the specialized covariance functions outlined below, and
plugging the result into the Gaussian model.
This form of model is straightforward and may be used for simulation, model fitting,
or posterior predictive inference. A more efficient Stan implementation for the GP
with a normally distributed outcome marginalizes over the latent Gaussian process,
and applies a Cholesky-factor reparameterization of the Gaussian to compute the
likelihood and the posterior predictive distribution analytically.

After defining Gaussian processes, this chapter covers the basic implementations
for simulation, hyperparameter estimation, and posterior predictive inference for
univariate regressions, multivariate regressions, and multivariate logistic regres-
sions. Gaussian processes are general, and by necessity this chapter only touches
on some basic models. For more information, see Rasmussen and Williams (2006).

Note that fitting Gaussian processes as described below using exact inference by
computing Cholesky of the covariance matrix scales cubicly with the size of data.
Due to how Stan autodiff is implemented, Stan is also slower than Gaussian process
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specialized software. It is likely that Gaussian processes using exact inference by
computing Cholesky of the covariance matrix with N > 1000 are too slow for
practical purposes in Stan. There are many approximations to speed-up Gaussian
process computation, from which the basis function approaches for 1-3 dimensional
x are easiest to implement in Stan (see, e.g., Riutort-Mayol et al. (2023)).

10.1. Gaussian process regression
The data for a multivariate Gaussian process regression consists of a series of N
inputs x1, . . . , xN ∈ RD paired with outputs y1, . . . , yN ∈ R. The defining feature of
Gaussian processes is that the probability of a finite number of outputs y conditioned
on their inputs x is Gaussian:

y ∼ multivariate normal(m(x), K(x | θ)),

where m(x) is an N-vector and K(x | θ) is an N × N covariance matrix. The
mean function m : RN×D → RN can be anything, but the covariance function
K : RN×D → RN×N must produce a positive-definite matrix for any input x.1

A popular covariance function, which will be used in the implementations later in
this chapter, is an exponentiated quadratic function,

K(x | α, ρ, σ)i,j = α2 exp

(
− 1

2ρ2

D

∑
d=1

(xi,d − xj,d)
2

)
+ δi,jσ

2,

where α, ρ, and σ are hyperparameters defining the covariance function and where
δi,j is the Kronecker delta function with value 1 if i = j and value 0 otherwise; this
test is between the indexes i and j, not between values xi and xj. This kernel is
obtained through a convolution of two independent Gaussian processes, f1 and f2,
with kernels

K1(x | α, ρ)i,j = α2 exp

(
− 1

2ρ2

D

∑
d=1

(xi,d − xj,d)
2

)
and

K2(x | σ)i,j = δi,jσ
2,

The addition of σ2 on the diagonal is important to ensure the positive definiteness
of the resulting matrix in the case of two identical inputs xi = xj. In statistical terms,
σ is the scale of the noise term in the regression.

1Gaussian processes can be extended to covariance functions producing positive semi-definite matri-
ces, but Stan does not support inference in the resulting models because the resulting distribution does
not have unconstrained support.
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The hyperparameter ρ is the length-scale, and corresponds to the frequency of the
functions represented by the Gaussian process prior with respect to the domain.
Values of ρ closer to zero lead the GP to represent high-frequency functions, whereas
larger values of ρ lead to low-frequency functions. The hyperparameter α is the
marginal standard deviation. It controls the magnitude of the range of the function
represented by the GP. If you were to take the standard deviation of many draws
from the GP f1 prior at a single input x conditional on one value of α one would
recover α.

The only term in the squared exponential covariance function involving the inputs
xi and xj is their vector difference, xi − xj. This produces a process with stationary
covariance in the sense that if an input vector x is translated by a vector ϵ to x + ϵ,
the covariance at any pair of outputs is unchanged, because K(x | θ) = K(x + ϵ | θ).

The summation involved is just the squared Euclidean distance between xi and xj
(i.e., the L2 norm of their difference, xi − xj). This results in support for smooth
functions in the process. The amount of variation in the function is controlled by
the free hyperparameters α, ρ, and σ.

Changing the notion of distance from Euclidean to taxicab distance (i.e., an L1 norm)
changes the support to functions which are continuous but not smooth.

10.2. Simulating from a Gaussian process
It is simplest to start with a Stan model that does nothing more than simulate draws
of functions f from a Gaussian process. In practical terms, the model will draw
values yn = f (xn) for finitely many input points xn.

The Stan model defines the mean and covariance functions in a transformed data
block and then samples outputs y in the model using a multivariate normal distri-
bution. To make the model concrete, the squared exponential covariance function
described in the previous section will be used with hyperparameters set to α2 = 1,
ρ2 = 1, and σ2 = 0.1, and the mean function m is defined to always return the zero
vector, m(x) = 0. Consider the following implementation of a Gaussian process
simulator.

data {
int<lower=1> N;
array[N] real x;

}
transformed data {

matrix[N, N] K;
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vector[N] mu = rep_vector(0, N);
for (i in 1:(N - 1)) {
K[i, i] = 1 + 0.1;
for (j in (i + 1):N) {

K[i, j] = exp(-0.5 * square(x[i] - x[j]));
K[j, i] = K[i, j];

}
}
K[N, N] = 1 + 0.1;

}
parameters {

vector[N] y;
}
model {

y ~ multi_normal(mu, K);
}

The above model can also be written more compactly using the specialized covari-
ance function that implements the exponentiated quadratic kernel.

data {
int<lower=1> N;
array[N] real x;

}
transformed data {

matrix[N, N] K = gp_exp_quad_cov(x, 1.0, 1.0);
vector[N] mu = rep_vector(0, N);
for (n in 1:N) {
K[n, n] = K[n, n] + 0.1;

}
}
parameters {

vector[N] y;
}
model {

y ~ multi_normal(mu, K);
}

The input data are just the vector of inputs x and its size N. Such a model can be
used with values of x evenly spaced over some interval in order to plot sample
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draws of functions from a Gaussian process.

Multivariate inputs
Only the input data needs to change in moving from a univariate model to a
multivariate model.

The only lines that change from the univariate model above are as follows.

data {
int<lower=1> N;
int<lower=1> D;
array[N] vector[D] x;

}
transformed data {

// ...
}

The data are now declared as an array of vectors instead of an array of scalars; the
dimensionality D is also declared.

In the remainder of the chapter, univariate models will be used for simplicity, but
any of the models could be changed to multivariate in the same way as the simple
sampling model. The only extra computational overhead from a multivariate model
is in the distance calculation.

Cholesky factored and transformed implementation
A more efficient implementation of the simulation model can be coded in Stan by
relocating, rescaling and rotating an isotropic standard normal variate. Suppose η
is an an isotropic standard normal variate

η ∼ normal(0, 1),

where 0 is an N-vector of 0 values and 1 is the N × N identity matrix. Let L be the
Cholesky decomposition of K(x | θ), i.e., the lower-triangular matrix L such that
LL⊤ = K(x | θ). Then the transformed variable µ + Lη has the intended target
distribution,

µ + Lη ∼ multivariate normal(µ(x), K(x | θ)).

This transform can be applied directly to Gaussian process simulation.

This model has the same data declarations for N and x, and the same transformed
data definitions of mu and K as the previous model, with the addition of a trans-
formed data variable for the Cholesky decomposition. The parameters change to
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the raw parameters sampled from an isotropic standard normal, and the actual
samples are defined as generated quantities.

// ...
transformed data {

matrix[N, N] L;
// ...
L = cholesky_decompose(K);

}
parameters {

vector[N] eta;
}
model {

eta ~ std_normal();
}
generated quantities {
vector[N] y;
y = mu + L * eta;

}

The Cholesky decomposition is only computed once, after the data are loaded and
the covariance matrix K computed. The isotropic normal distribution for eta is
specified as a vectorized univariate distribution for efficiency; this specifies that
each eta[n] has an independent standard normal distribution. The sampled vector
y is then defined as a generated quantity using a direct encoding of the transform
described above.

10.3. Fitting a Gaussian process
GP with a normal outcome

The full generative model for a GP with a normal outcome, y ∈ RN , with inputs
x ∈ RN , for a finite N:

ρ ∼ InvGamma(5, 5)

α ∼ normal(0, 1)

σ ∼ normal(0, 1)

f ∼ multivariate normal (0, K(x | α, ρ))

yi ∼ normal( fi, σ) ∀i ∈ {1, . . . , N}
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With a normal outcome, it is possible to integrate out the Gaussian process f ,
yielding the more parsimonious model:

ρ ∼ InvGamma(5, 5)

α ∼ normal(0, 1)

σ ∼ normal(0, 1)

y ∼ multivariate normal
(

0, K(x | α, ρ) + INσ2
)

It can be more computationally efficient when dealing with a normal outcome
to integrate out the Gaussian process, because this yields a lower-dimensional
parameter space over which to do inference. We’ll fit both models in Stan. The
former model will be referred to as the latent variable GP, while the latter will be
called the marginal likelihood GP.

The hyperparameters controlling the covariance function of a Gaussian process can
be fit by assigning them priors, like we have in the generative models above, and
then computing the posterior distribution of the hyperparameters given observed
data. The priors on the parameters should be defined based on prior knowledge
of the scale of the output values (α), the scale of the output noise (σ), and the
scale at which distances are measured among inputs (ρ). See the Gaussian process
priors section for more information about how to specify appropriate priors for the
hyperparameters.

The Stan program implementing the marginal likelihood GP is shown below. The
program is similar to the Stan programs that implement the simulation GPs above,
but because we are doing inference on the hyperparameters, we need to calculate
the covariance matrix K in the model block, rather than the transformed data block.

data {
int<lower=1> N;
array[N] real x;
vector[N] y;

}
transformed data {

vector[N] mu = rep_vector(0, N);
}
parameters {

real<lower=0> rho;
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real<lower=0> alpha;
real<lower=0> sigma;

}
model {

matrix[N, N] L_K;
matrix[N, N] K = gp_exp_quad_cov(x, alpha, rho);
real sq_sigma = square(sigma);

// diagonal elements
for (n in 1:N) {
K[n, n] = K[n, n] + sq_sigma;

}

L_K = cholesky_decompose(K);

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
sigma ~ std_normal();

y ~ multi_normal_cholesky(mu, L_K);
}

The data block declares a vector y of observed values y[n] for inputs x[n]. The
transformed data block now only defines the mean vector to be zero. The three
hyperparameters are defined as parameters constrained to be non-negative. The
computation of the covariance matrix K is now in the model block because it in-
volves unknown parameters and thus can’t simply be precomputed as transformed
data. The rest of the model consists of the priors for the hyperparameters and the
multivariate Cholesky-parameterized normal distribution, only now the value y is
known and the covariance matrix K is an unknown dependent on the hyperparame-
ters, allowing us to learn the hyperparameters.

We have used the Cholesky parameterized multivariate normal rather than the stan-
dard parameterization because it allows us to the cholesky_decompose function
which has been optimized for both small and large matrices. When working with
small matrices the differences in computational speed between the two approaches
will not be noticeable, but for larger matrices (N ≳ 100) the Cholesky decomposition
version will be faster.

Hamiltonian Monte Carlo sampling is fast and effective for hyperparameter in-
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ference in this model (Neal 1997). If the posterior is well-concentrated for the
hyperparameters the Stan implementation will fit hyperparameters in models with
a few hundred data points in seconds.

Latent variable GP
We can also explicitly code the latent variable formulation of a GP in Stan. This
will be useful for when the outcome is not normal. We’ll need to add a small
positive term, δ to the diagonal of the covariance matrix in order to ensure that our
covariance matrix remains positive definite.

data {
int<lower=1> N;
array[N] real x;
vector[N] y;

}
transformed data {

real delta = 1e-9;
}
parameters {

real<lower=0> rho;
real<lower=0> alpha;
real<lower=0> sigma;
vector[N] eta;

}
model {

vector[N] f;
{
matrix[N, N] L_K;
matrix[N, N] K = gp_exp_quad_cov(x, alpha, rho);

// diagonal elements
for (n in 1:N) {
K[n, n] = K[n, n] + delta;

}

L_K = cholesky_decompose(K);
f = L_K * eta;

}

rho ~ inv_gamma(5, 5);
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alpha ~ std_normal();
sigma ~ std_normal();
eta ~ std_normal();

y ~ normal(f, sigma);
}

Two differences between the latent variable GP and the marginal likelihood GP
are worth noting. The first is that we have augmented our parameter block with a
new parameter vector of length N called eta. This is used in the model block to
generate a multivariate normal vector called f , corresponding to the latent GP. We
put a normal(0, 1) prior on eta like we did in the Cholesky-parameterized GP in
the simulation section. The second difference is that although we could code the
distribution statement for y with one N-dimensional multivariate normal with an
identity covariance matrix multiplied by σ2, we instead use vectorized univariate
normal distribution, which is equivalent but more efficient to use.

Discrete outcomes with Gaussian processes
Gaussian processes can be generalized the same way as standard linear models by
introducing a link function. This allows them to be used as discrete data models.

Poisson GP
If we want to model count data, we can remove the σ parameter, and use pois-
son_log, which implements a Poisson distribution with log link function, rather
than normal. We can also add an overall mean parameter, a, which will account for
the marginal expected value for y. We do this because we cannot center count data
like we would for normally distributed data.

data {
// ...
array[N] int<lower=0> y;
// ...

}
// ...
parameters {

real<lower=0> rho;
real<lower=0> alpha;
real a;
vector[N] eta;

}
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model {
// ...
rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
a ~ std_normal();
eta ~ std_normal();

y ~ poisson_log(a + f);
}

Logistic Gaussian process regression
For binary classification problems, the observed outputs zn ∈ {0, 1} are binary.
These outputs are modeled using a Gaussian process with (unobserved) outputs yn
through the logistic link,

zn ∼ Bernoulli(logit−1(yn)),

or in other words,
Pr[zn = 1] = logit−1(yn).

We can extend our latent variable GP Stan program to deal with classification
problems. Below a is the bias term, which can help account for imbalanced classes
in the training data:

data {
// ...
array[N] int<lower=0, upper=1> z;
// ...

}
// ...
model {

// ...
y ~ bernoulli_logit(a + f);

}

Automatic relevance determination

If we have multivariate inputs x ∈ RD, the squared exponential covariance function
can be further generalized by fitting a scale parameter ρd for each dimension d,

k(x | α, ρ⃗, σ)i,j = α2 exp

(
−1

2

D

∑
d=1

1
ρ2

d
(xi,d − xj,d)

2

)
+ δi,jσ

2.
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The estimation of ρ was termed “automatic relevance determination” by Neal
(1996a), but this is misleading, because the magnitude of the scale of the posterior for
each ρd is dependent on the scaling of the input data along dimension d. Moreover,
the scale of the parameters ρd measures non-linearity along the d-th dimension,
rather than “relevance” (Piironen and Vehtari 2016).

A priori, the closer ρd is to zero, the more nonlinear the conditional mean in dimen-
sion d is. A posteriori, the actual dependencies between x and y play a role. With
one covariate x1 having a linear effect and another covariate x2 having a nonlinear
effect, it is possible that ρ1 > ρ2 even if the predictive relevance of x1 is higher
(Rasmussen and Williams 2006, 80). The collection of ρd (or 1/ρd) parameters can
also be modeled hierarchically.

The implementation of automatic relevance determination in Stan is straightfor-
ward, though it currently requires the user to directly code the covariance matrix.
We’ll write a function to generate the Cholesky of the covariance matrix called
L_gp_exp_quad_cov_ARD.

functions {
matrix L_gp_exp_quad_cov_ARD(array[] vector x,

real alpha,
vector rho,
real delta) {

int N = size(x);
matrix[N, N] K;
real sq_alpha = square(alpha);
for (i in 1:(N-1)) {
K[i, i] = sq_alpha + delta;
for (j in (i + 1):N) {
K[i, j] = sq_alpha

* exp(-0.5 * dot_self((x[i] - x[j]) ./ rho));
K[j, i] = K[i, j];

}
}
K[N, N] = sq_alpha + delta;
return cholesky_decompose(K);

}
}
data {

int<lower=1> N;
int<lower=1> D;
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array[N] vector[D] x;
vector[N] y;

}
transformed data {

real delta = 1e-9;
}
parameters {

vector<lower=0>[D] rho;
real<lower=0> alpha;
real<lower=0> sigma;
vector[N] eta;

}
model {

vector[N] f;
{
matrix[N, N] L_K = L_gp_exp_quad_cov_ARD(x, alpha, rho, delta);
f = L_K * eta;

}

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
sigma ~ std_normal();
eta ~ std_normal();

y ~ normal(f, sigma);
}

Priors for Gaussian process parameters
Formulating priors for GP hyperparameters requires the analyst to consider the
inherent statistical properties of a GP, the GP’s purpose in the model, and the
numerical issues that may arise in Stan when estimating a GP.

Perhaps most importantly, the parameters ρ and α are weakly identified (Zhang
2004). The ratio of the two parameters is well-identified, but in practice we put
independent priors on the two hyperparameters because these two quantities are
more interpretable than their ratio.

Priors for length-scale
GPs are a flexible class of priors and, as such, can represent a wide spectrum of
functions. For length scales below the minimum spacing of the covariates the
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GP likelihood plateaus. Unless regularized by a prior, this flat likelihood induces
considerable posterior mass at small length scales where the observation variance
drops to zero and the functions supported by the GP begin to exactly interpolate
between the input data. The resulting posterior not only significantly overfits to the
input data, it also becomes hard to accurately sample using Euclidean HMC.

We may wish to put further soft constraints on the length-scale, but these are
dependent on how the GP is used in our statistical model.

If our model consists of only the GP, i.e.:

f ∼ multivariate normal (0, K(x | α, ρ))

yi ∼ normal( fi, σ) ∀i ∈ {1, . . . , N}
x ∈ RN×D, f ∈ RN

we likely don’t need constraints beyond penalizing small length-scales. We’d like to
allow the GP prior to represent both high-frequency and low-frequency functions,
so our prior should put non-negligible mass on both sets of functions. In this
case, an inverse gamma, inv_gamma_lpdf in Stan’s language, will work well as
it has a sharp left tail that puts negligible mass on infinitesimal length-scales, but
a generous right tail, allowing for large length-scales. Inverse gamma priors will
avoid infinitesimal length-scales because the density is zero at zero, so the posterior
for length-scale will be pushed away from zero. An inverse gamma distribution is
one of many zero-avoiding or boundary-avoiding distributions.2.

If we’re using the GP as a component in a larger model that includes an overall
mean and fixed effects for the same variables we’re using as the domain for the GP,
i.e.:

f ∼ multivariate normal
(
0, K(x | α, ρ)

)
yi ∼ normal

(
β0 + xiβ[1:D] + fi, σ

)
∀i ∈ {1, . . . , N}

xT
i , β[1:D] ∈ RD, x ∈ RN×D, f ∈ RN

we’ll likely want to constrain large length-scales as well. A length scale that is
larger than the scale of the data yields a GP posterior that is practically linear (with
respect to the particular covariate) and increasing the length scale has little impact
on the likelihood. This will introduce nonidentifiability in our model, as both the

2A boundary-avoiding prior is just one where the limit of the density is zero at the boundary, the
result of which is estimates that are pushed away from the boundary.
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fixed effects and the GP will explain similar variation. In order to limit the amount
of overlap between the GP and the linear regression, we should use a prior with
a sharper right tail to limit the GP to higher-frequency functions. We can use a
generalized inverse Gaussian distribution:

f (x | a, b, p) =
(a/b)p/2

2Kp

(√
ab
) xp−1 exp

(
− (ax + b/x)/2

)
x, a, b ∈ R+, p ∈ Z

which has an inverse gamma left tail if p ≤ 0 and an inverse Gaussian right tail. This
has not yet been implemented in Stan’s math library, but it is possible to implement
as a user defined function:

functions {
real generalized_inverse_gaussian_lpdf(real x, int p,

real a, real b) {
return p * 0.5 * log(a / b)
- log(2 * modified_bessel_second_kind(p, sqrt(a * b)))
+ (p - 1) * log(x)
- (a * x + b / x) * 0.5;

}
}
data {
// ...

}

If we have high-frequency covariates in our fixed effects, we may wish to further
regularize the GP away from high-frequency functions, which means we’ll need
to penalize smaller length-scales. Luckily, we have a useful way of thinking about
how length-scale affects the frequency of the functions supported the GP. If we were
to repeatedly draw from a zero-mean GP with a length-scale of ρ in a fixed-domain
[0, T], we would get a distribution for the number of times each draw of the GP
crossed the zero axis. The expectation of this random variable, the number of zero
crossings, is T/πρ. You can see that as ρ decreases, the expectation of the number
of upcrossings increases as the GP is representing higher-frequency functions. Thus,
this is a good statistic to keep in mind when setting a lower-bound for our prior on
length-scale in the presence of high-frequency covariates. However, this statistic is
only valid for one-dimensional inputs.
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Priors for marginal standard deviation
The parameter α corresponds to how much of the variation is explained by the
regression function and has a similar role to the prior variance for linear model
weights. This means the prior can be the same as used in linear models, such as a
half-t prior on α.

A half-t or half-Gaussian prior on alpha also has the benefit of putting nontrivial
prior mass around zero. This allows the GP support the zero functions and allows
the possibility that the GP won’t contribute to the conditional mean of the total
output.

Predictive inference with a Gaussian process
Suppose for a given sequence of inputs x that the corresponding outputs y are
observed. Given a new sequence of inputs x̃, the posterior predictive distribution
of their labels is computed by sampling outputs ỹ according to

p (ỹ | x̃, x, y) =
p (ỹ, y | x̃, x)

p(y | x)
∝ p (ỹ, y | x̃, x) .

A direct implementation in Stan defines a model in terms of the joint distribution of
the observed y and unobserved ỹ.

data {
int<lower=1> N1;
array[N1] real x1;
vector[N1] y1;
int<lower=1> N2;
array[N2] real x2;

}
transformed data {

real delta = 1e-9;
int<lower=1> N = N1 + N2;
array[N] real x;
for (n1 in 1:N1) {
x[n1] = x1[n1];

}
for (n2 in 1:N2) {
x[N1 + n2] = x2[n2];

}
}
parameters {
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real<lower=0> rho;
real<lower=0> alpha;
real<lower=0> sigma;
vector[N] eta;

}
transformed parameters {

vector[N] f;
{
matrix[N, N] L_K;
matrix[N, N] K = gp_exp_quad_cov(x, alpha, rho);

// diagonal elements
for (n in 1:N) {

K[n, n] = K[n, n] + delta;
}

L_K = cholesky_decompose(K);
f = L_K * eta;

}
}
model {

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
sigma ~ std_normal();
eta ~ std_normal();

y1 ~ normal(f[1:N1], sigma);
}
generated quantities {

vector[N2] y2;
for (n2 in 1:N2) {
y2[n2] = normal_rng(f[N1 + n2], sigma);

}
}

The input vectors x1 and x2 are declared as data, as is the observed output vector y1.
The unknown output vector y2, which corresponds to input vector x2, is declared
in the generated quantities block and will be sampled when the model is executed.

A transformed data block is used to combine the input vectors x1 and x2 into a
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single vector x.

The model block declares and defines a local variable for the combined output
vector f, which consists of the concatenation of the conditional mean for known
outputs y1 and unknown outputs y2. Thus the combined output vector f is aligned
with the combined input vector x. All that is left is to define the univariate normal
distribution statement for y.

The generated quantities block defines the quantity y2. We generate y2 by randomly
generating N2 values from univariate normals with each mean corresponding to the
appropriate element in f.

Predictive inference in non-Gaussian GPs
We can do predictive inference in non-Gaussian GPs in much the same way as we
do with Gaussian GPs.

Consider the following full model for prediction using logistic Gaussian process
regression.

data {
int<lower=1> N1;
array[N1] real x1;
array[N1] int<lower=0, upper=1> z1;
int<lower=1> N2;
array[N2] real x2;

}
transformed data {

real delta = 1e-9;
int<lower=1> N = N1 + N2;
array[N] real x;
for (n1 in 1:N1) {
x[n1] = x1[n1];

}
for (n2 in 1:N2) {
x[N1 + n2] = x2[n2];

}
}
parameters {

real<lower=0> rho;
real<lower=0> alpha;
real a;
vector[N] eta;
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}
transformed parameters {

vector[N] f;
{
matrix[N, N] L_K;
matrix[N, N] K = gp_exp_quad_cov(x, alpha, rho);

// diagonal elements
for (n in 1:N) {

K[n, n] = K[n, n] + delta;
}

L_K = cholesky_decompose(K);
f = L_K * eta;

}
}
model {

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
a ~ std_normal();
eta ~ std_normal();

z1 ~ bernoulli_logit(a + f[1:N1]);
}
generated quantities {

array[N2] int z2;
for (n2 in 1:N2) {
z2[n2] = bernoulli_logit_rng(a + f[N1 + n2]);

}
}

Analytical form of joint predictive inference
Bayesian predictive inference for Gaussian processes with Gaussian observations
can be sped up by deriving the posterior analytically, then directly sampling from
it.

Jumping straight to the result,

p (ỹ | x̃, y, x) = normal
(

K⊤Σ−1y, Ω − K⊤Σ−1K
)

,
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where Σ = K(x | α, ρ, σ) is the result of applying the covariance function to the
inputs x with observed outputs y, Ω = K(x̃ | α, ρ) is the result of applying the
covariance function to the inputs x̃ for which predictions are to be inferred, and
K is the matrix of covariances between inputs x and x̃, which in the case of the
exponentiated quadratic covariance function would be

K(x | α, ρ)i,j = η2 exp

(
− 1

2ρ2

D

∑
d=1

(
xi,d − x̃j,d

)2
)

.

There is no noise term including σ2 because the indexes of elements in x and x̃ are
never the same.

This Stan code below uses the analytic form of the posterior and provides sampling
of the resulting multivariate normal through the Cholesky decomposition. The
data declaration is the same as for the latent variable example, but we’ve defined
a function called gp_pred_rng which will generate a draw from the posterior
predictive mean conditioned on observed data y1. The code uses a Cholesky
decomposition in triangular solves in order to cut down on the number of matrix-
matrix multiplications when computing the conditional mean and the conditional
covariance of p(ỹ).

functions {
vector gp_pred_rng(array[] real x2,

vector y1,
array[] real x1,
real alpha,
real rho,
real sigma,
real delta) {

int N1 = rows(y1);
int N2 = size(x2);
vector[N2] f2;
{

matrix[N1, N1] L_K;
vector[N1] K_div_y1;
matrix[N1, N2] k_x1_x2;
matrix[N1, N2] v_pred;
vector[N2] f2_mu;
matrix[N2, N2] cov_f2;
matrix[N2, N2] diag_delta;
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matrix[N1, N1] K;
K = gp_exp_quad_cov(x1, alpha, rho);
for (n in 1:N1) {
K[n, n] = K[n, n] + square(sigma);

}
L_K = cholesky_decompose(K);
K_div_y1 = mdivide_left_tri_low(L_K, y1);
K_div_y1 = mdivide_right_tri_low(K_div_y1', L_K)';
k_x1_x2 = gp_exp_quad_cov(x1, x2, alpha, rho);
f2_mu = (k_x1_x2' * K_div_y1);
v_pred = mdivide_left_tri_low(L_K, k_x1_x2);
cov_f2 = gp_exp_quad_cov(x2, alpha, rho) - v_pred' * v_pred;
diag_delta = diag_matrix(rep_vector(delta, N2));

f2 = multi_normal_rng(f2_mu, cov_f2 + diag_delta);
}
return f2;

}
}
data {

int<lower=1> N1;
array[N1] real x1;
vector[N1] y1;
int<lower=1> N2;
array[N2] real x2;

}
transformed data {

vector[N1] mu = rep_vector(0, N1);
real delta = 1e-9;

}
parameters {

real<lower=0> rho;
real<lower=0> alpha;
real<lower=0> sigma;

}
model {

matrix[N1, N1] L_K;
{
matrix[N1, N1] K = gp_exp_quad_cov(x1, alpha, rho);
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real sq_sigma = square(sigma);

// diagonal elements
for (n1 in 1:N1) {
K[n1, n1] = K[n1, n1] + sq_sigma;

}

L_K = cholesky_decompose(K);
}

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
sigma ~ std_normal();

y1 ~ multi_normal_cholesky(mu, L_K);
}
generated quantities {
vector[N2] f2;
vector[N2] y2;

f2 = gp_pred_rng(x2, y1, x1, alpha, rho, sigma, delta);
for (n2 in 1:N2) {
y2[n2] = normal_rng(f2[n2], sigma);

}
}

Multiple-output Gaussian processes

Suppose we have observations yi ∈ RM observed at xi ∈ RK. One can model the
data like so:

yi ∼ multivariate normal
(

f (xi), IMσ2
)

f (x) ∼ GP
(
m(x), K(x | θ, ϕ)

)
K(x | θ) ∈ RM×M, f (x), m(x) ∈ RM

where the K(x, x′ | θ, ϕ)[m,m′ ] entry defines the covariance between fm(x) and
fm′(x′)(x). This construction of Gaussian processes allows us to learn the covariance
between the output dimensions of f (x). If we parameterize our kernel K:

K(x, x′ | θ, ϕ)[m,m′ ] = k
(

x, x′ | θ
)

k
(
m, m′ | ϕ

)
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then our finite dimensional generative model for the above is:

f ∼ matrixnormal
(
m(x), K(x | α, ρ), C(ϕ)

)
yi,m ∼ normal( fi,m, σ)

f ∈ RN×M

where K(x | α, ρ) is the exponentiated quadratic kernel we’ve used throughout this
chapter, and C(ϕ) is a positive-definite matrix, parameterized by some vector ϕ.

The matrix normal distribution has two covariance matrices: K(x | α, ρ) to encode
column covariance, and C(ϕ) to define row covariance. The salient features of the
matrix normal are that the rows of the matrix f are distributed:

f[n,] ∼ multivariate normal
(
m(x)[n,], K(x | α, ρ)[n,n]C(ϕ)

)
and that the columns of the matrix f are distributed:

f[,m] ∼ multivariate normal
(
m(x)[,m], K(x | α, ρ)C(ϕ)[m,m]

)
This also means means that E

[
f T f
]

is equal to trace
(
K(x | α, ρ)

)
× C, whereas

E
[

f f T] is trace(C)× K(x | α, ρ). We can derive this using properties of expectation
and the matrix normal density.

We should set α to 1.0 because the parameter is not identified unless we constrain
trace(C) = 1. Otherwise, we can multiply α by a scalar d and C by 1/d and our
likelihood will not change.

We can generate a random variable f from a matrix normal density in RN×M using
the following algorithm:

ηi,j ∼ normal(0, 1) ∀i, j

f = LK(x|1.0,ρ) η LC(ϕ)
T

f ∼ matrixnormal
(
0, K(x | 1.0, ρ), C(ϕ)

)
η ∈ RN×M

LC(ϕ) = cholesky_decompose
(
C(ϕ)

)
LK(x|1.0,ρ) = cholesky_decompose

(
K(x | 1.0, ρ)

)
This can be implemented in Stan using a latent-variable GP formulation. We’ve
used LKJCorr for C(ϕ), but any positive-definite matrix will do.
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data {
int<lower=1> N;
int<lower=1> D;
array[N] real x;
matrix[N, D] y;

}
transformed data {

real delta = 1e-9;
}
parameters {

real<lower=0> rho;
vector<lower=0>[D] alpha;
real<lower=0> sigma;
cholesky_factor_corr[D] L_Omega;
matrix[N, D] eta;

}
model {

matrix[N, D] f;
{
matrix[N, N] K = gp_exp_quad_cov(x, 1.0, rho);
matrix[N, N] L_K;

// diagonal elements
for (n in 1:N) {

K[n, n] = K[n, n] + delta;
}

L_K = cholesky_decompose(K);
f = L_K * eta

* diag_pre_multiply(alpha, L_Omega)';
}

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
sigma ~ std_normal();
L_Omega ~ lkj_corr_cholesky(3);
to_vector(eta) ~ std_normal();

to_vector(y) ~ normal(to_vector(f), sigma);
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}
generated quantities {
matrix[D, D] Omega;
Omega = L_Omega * L_Omega';

}



11. Directions, Rotations, and Hyperspheres

Directional statistics involve data and/or parameters that are constrained to be
directions. The set of directions forms a sphere, the geometry of which is not
smoothly mappable to that of a Euclidean space because you can move around a
sphere and come back to where you started. This is why it is impossible to make a
map of the globe on a flat piece of paper where all points that are close to each other
on the globe are close to each other on the flat map. The fundamental problem is
easy to visualize in two dimensions, because as you move around a circle, you wind
up back where you started. In other words, 0 degrees and 360 degrees (equivalently,
0 and 2π radians) pick out the same point, and the distance between 359 degrees
and 2 degrees is the same as the distance between 137 and 140 degrees.

Stan supports directional statistics by providing a unit-vector data type, the values
of which determine points on a hypersphere (circle in two dimensions, sphere in
three dimensions).

11.1. Unit vectors
The length of a vector x ∈ RK is given by

∥x∥ =
√

x⊤ x =
√

x2
1 + x2

2 + · · ·+ x2
K.

Unit vectors are defined to be vectors of unit length (i.e., length one).

With a variable declaration such as

unit_vector[K] x;

the value of x will be constrained to be a vector of size K with unit length; the
reference manual chapter on constrained parameter transforms provides precise
definitions.

Warning: An extra term gets added to the log density to ensure the distribution
on unit vectors is proper. This is not a problem in practice, but it may lead to
misunderstandings of the target log density output (lp__ in some interfaces). The
underlying source of the problem is that a unit vector of size K has only K − 1
degrees of freedom. But there is no way to map those K − 1 degrees of freedom
continuously to RN—for example, the circle can’t be mapped continuously to a line

167



168 CHAPTER 11. DIRECTIONS, ROTATIONS, AND HYPERSPHERES

so the limits work out, nor can a sphere be mapped to a plane. A workaround is
needed instead. Stan’s unit vector transform uses K unconstrained variables, then
projects down to the unit hypersphere. Even though the hypersphere is compact,
the result would be an improper distribution. To ensure the unit vector distribution
is proper, each unconstrained variable is given a “Jacobian” adjustment equal
to an independent standard normal distribution. Effectively, each dimension is
drawn standard normal, then they are together projected down to the hypersphere
to produce a unit vector. The result is a proper uniform distribution over the
hypersphere.

11.2. Circles, spheres, and hyperspheres
An n-sphere, written Sn, is defined as the set of (n + 1)-dimensional unit vectors,

Sn =
{

x ∈ Rn+1 : ∥x∥ = 1
}

.

Even though Sn is made up of points in (n + 1) dimensions, it is only an n-
dimensional manifold. For example, S2 is defined as a set of points in R3, but
each such point may be described uniquely by a latitude and longitude. Geometri-
cally, the surface defined by S2 in R3 behaves locally like a plane, i.e., R2. However,
the overall shape of S2 is not like a plane in that it is compact (i.e., there is a maxi-
mum distance between points). If you set off around the globe in a “straight line”
(i.e., a geodesic), you wind up back where you started eventually; that is why the
geodesics on the sphere (S2) are called “great circles,” and why we need to use
some clever representations to do circular or spherical statistics.

Even though Sn−1 behaves locally like Rn−1, there is no way to smoothly map
between them. For example, because latitude and longitude work on a modular
basis (wrapping at 2π radians in natural units), they do not produce a smooth map.

Like a bounded interval (a, b), in geometric terms, a sphere is compact in that the
distance between any two points is bounded.

11.3. Transforming to unconstrained parameters
Stan (inverse) transforms arbitrary points in RK+1 to points in SK using the auxiliary
variable approach of Muller (1959). A point y ∈ RK is transformed to a point
x ∈ SK−1 by

x =
y√
y⊤y

.
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The problem with this mapping is that it’s many to one; any point lying on a vector
out of the origin is projected to the same point on the surface of the sphere. Muller
(1959) introduced an auxiliary variable interpretation of this mapping that provides
the desired properties of uniformity; the reference manual contains the precise
definitions used in the chapter on constrained parameter transforms.

Warning: undefined at zero!
The above mapping from Rn to Sn is not defined at zero. While this point outcome
has measure zero during sampling, and may thus be ignored, it is the default
initialization point and thus unit vector parameters cannot be initialized at zero. A
simple workaround is to initialize from a small interval around zero, which is an
option built into all of the Stan interfaces.

11.4. Unit vectors and rotations
Unit vectors correspond directly to angles and thus to rotations. This is easy to
see in two dimensions, where a point on a circle determines a compass direction,
or equivalently, an angle θ. Given an angle θ, a matrix can be defined, the pre-
multiplication by which rotates a point by an angle of θ. For angle θ (in two
dimensions), the 2 × 2 rotation matrix is defined by

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Given a two-dimensional vector x, Rθ x is the rotation of x (around the origin) by θ
degrees.

Angles from unit vectors
Angles can be calculated from unit vectors. For example, a random variable theta
representing an angle in (−π, π) radians can be declared as a two-dimensional unit
vector then transformed to an angle.

parameters {
unit_vector[2] xy;

}
transformed parameters {

real<lower=-pi(), upper=pi()> theta = atan2(xy[2], xy[1]);
}

If the distribution of (x, y) is uniform over a circle, then the distribution of arctan y
x

is uniform over (−π, π).

It might be tempting to try to just declare theta directly as a parameter with the



170 CHAPTER 11. DIRECTIONS, ROTATIONS, AND HYPERSPHERES

lower and upper bound constraint as given above. The drawback to this approach
is that the values −π and π are at −∞ and ∞ on the unconstrained scale, which can
produce multimodal posterior distributions when the true distribution on the circle
is unimodal.

With a little additional work on the trigonometric front, the same conversion back
to angles may be accomplished in more dimensions.

11.5. Circular representations of days and years
A 24-hour clock naturally represents the progression of time through the day,
moving from midnight to noon and back again in one rotation. A point on a circle
divided into 24 hours is thus a natural representation for the time of day. Similarly,
years cycle through the seasons and return to the season from which they started.

In human affairs, temporal effects often arise by convention. These can be modeled
directly with ad-hoc predictors for holidays and weekends, or with data normaliza-
tion back to natural scales for daylight savings time.



12. Solving Algebraic Equations

Stan provides a built-in mechanism for specifying systems of algebraic equations.
These systems can be solved either with the Newton method, as implemented in the
Kinsol package (Hindmarsh et al. 2005), or with the Powell hybrid method (Powell
1970). The function signatures for Stan’s algebraic solvers are fully described in the
algebraic solver section of the reference manual.

Solving any system of algebraic equations can be translated into a root-finding
problem, that is, given a function f , we wish to find y such that f (y) = 0.

12.1. Example: system of nonlinear algebraic equations
For systems of linear algebraic equations, we recommend solving the system using
matrix division. The algebraic solver becomes handy when we want to solve
nonlinear equations.

As an illustrative example, we consider the following nonlinear system of two
equations with two unknowns:

z1 = y1 − θ1

z2 = y1y2 + θ2

Our goal is to simultaneously solve all equations for y1 and y2, such that the vector
z goes to 0.

12.2. Coding an algebraic system
A system of algebraic equations is coded directly in Stan as a function with a strictly
specified signature. For example, the nonlinear system given above can be coded
using the following function in Stan (see the user-defined functions section for more
information on coding user-defined functions).

vector system(vector y, // unknowns
vector theta, // parameters
data array[] real x_r, // data (real)
array[] int x_i) { // data (integer)

vector[2] z;
z[1] = y[1] - theta[1];
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z[2] = y[1] * y[2] - theta[2];
return z;

}

The function takes the unknowns we wish to solve for in y (a vector), the system
parameters in theta (a vector), the real data in x_r (a real array) and the integer
data in x_i (an integer array). The system function returns the value of the function
(a vector), for which we want to compute the roots. Our example does not use real
or integer data. Nevertheless, these unused arguments must be included in the
system function with exactly the signature above.

The body of the system function here could also be coded using a row vector
constructor and transposition,

return [ y[1] - theta[1],
y[1] * y[2] - theta[2] ]';

As systems get more complicated, naming the intermediate expressions goes a long
way toward readability.

Strict signature
The function defining the system must have exactly these argument types and
return type. This may require passing in zero-length arrays for data or a zero-length
vector for parameters if the system does not involve data or parameters.

12.3. Calling the algebraic solver
Let’s suppose θ = (3, 6). To call the algebraic solver, we need to provide an initial
guess. This varies on a case-by-case basis, but in general a good guess will speed up
the solver and, in pathological cases, even determine whether the solver converges
or not. If the solver does not converge, the Metropolis proposal gets rejected and a
warning message, stating no acceptable solution was found, is issued.

The solver has three tuning parameters to determine convergence: the relative
tolerance, the function tolerance, and the maximum number of steps. Their behavior
is explained in the section about algebraic solvers with control parameters.

The following code returns the solution to our nonlinear algebraic system:

transformed data {
vector[2] y_guess = [1, 1]';
array[0] real x_r;
array[0] int x_i;
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}

transformed parameters {
vector[2] theta = [3, 6]';
vector[2] y;

y = solve_newton(system, y_guess, theta, x_r, x_i);
}

which returns y = (3,−2).

Data versus parameters
The arguments for the real data x_r and the integer data x_i must be expressions
that only involve data or transformed data variables. theta, on the other hand,
must only involve parameters. Note there are no restrictions on the initial guess,
y_guess, which may be a data or a parameter vector.

Length of the algebraic function and of the vector of unknowns
The Jacobian of the solution with respect to the parameters is computed using
the implicit function theorem, which imposes certain restrictions. In particular,
the Jacobian of the algebraic function f with respect to the unknowns x must be
invertible. This requires the Jacobian to be square, meaning f (y) and y have the
same length or, in other words the number of equations in the system is the same as the
number of unknowns.

Pathological solutions
Certain systems may be degenerate, meaning they have multiple solutions. The
algebraic solver will not report these cases, as the algorithm stops once it has found
an acceptable solution. The initial guess will often determine which solution gets
found first. The degeneracy may be broken by putting additional constraints on the
solution. For instance, it might make “physical sense” for a solution to be positive
or negative.

On the other hand, a system may not have a solution (for a given point in the
parameter space). In that case, the solver will not converge to a solution. When the
solver fails to do so, the current Metropolis proposal gets rejected.

12.4. Control parameters for the algebraic solver
The call to the algebraic solver shown previously uses the default control settings.
The _tol variant of the solver function allows three additional parameters, all of
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which must be supplied.

y = solve_newton_tol(system, y_guess, theta, x_r, x_i,
scaling_step, f_tol, max_steps);

For the Newton solver the three control arguments are scaling step, function tol-
erance, and maximum number of steps. For the Powell’s hybrid method the three
control arguments are relative tolerance, function tolerance, and maximum number
of steps. If a Newton step is smaller than the scaling step tolerance, the code breaks,
assuming the solver is no longer making significant progress. If set to 0, this con-
straint is ignored. For Powell’s hybrid method the relative tolerance is the estimated
relative error of the solver and serves to test if a satisfactory solution has been found.
After convergence of the either solver, the proposed solution is plugged into the
algebraic system and its norm is compared to the function tolerance. If the norm is
below the function tolerance, the solution is deemed acceptable. If the solver solver
reaches the maximum number of steps, it stops and returns an error message. If
one of the criteria is not met, the Metropolis proposal gets rejected with a warning
message explaining which criterion was not satisfied.

The default values for the control arguments are respectively scaling_step = 1e-
3 (10−3), rel_tol = 1e-10 (10−10), f_tol = 1e-6 (10−6), and max_steps = 200
(200).

Tolerance
The relative and function tolerances control the accuracy of the solution generated
by the solver. Relative tolerances are relative to the solution value. The function
tolerance is the norm of the algebraic function, once we plug in the proposed
solution. This norm should go to 0 (equivalently, all elements of the vector function
are 0). It helps to think about this geometrically. Ideally the output of the algebraic
function is at the origin; the norm measures deviations from this ideal. As the length
of the return vector increases, a certain function tolerance becomes an increasingly
difficult criterion to meet, given each individual element of the vector contribute to
the norm.

Smaller relative tolerances produce more accurate solutions but require more com-
putational time.

Sensitivity analysis
The tolerances should be set low enough that setting them lower does not change
the statistical properties of posterior samples generated by the Stan program. The
sensitivity can be analysed using importance sampling without need to re-run
MCMC with different tolerances as shown by Timonen et al. (2023).



12.4. CONTROL PARAMETERS FOR THE ALGEBRAIC SOLVER 175

Maximum number of steps
The maximum number of steps can be used to stop a runaway simulation. This
can arise in MCMC when a bad jump is taken, particularly during warmup. If the
limit is hit, the current Metropolis proposal gets rejected. Users will see a warning
message stating the maximum number of steps has been exceeded.



13. Ordinary Differential Equations

Stan provides a number of different methods for solving systems of ordinary differ-
ential equations (ODEs). All of these methods adaptively refine their solutions in
order to satisfy given tolerances, but internally they handle calculations quite a bit
differently.

Because Stan’s algorithms requires gradients of the log density, the ODE solvers
must not only provide the solution to the ODE itself, but also the gradient of the
ODE solution with respect to parameters (the sensitivities). Two fundamentally
different approaches are available in Stan to solve this problem, each having very
different computational cost depending on the number of ODE states N and the
number of parameters M being used:

• A forward sensitivity solver expands the base ODE system with additional ODE
equations for the gradients of the solution. For each parameter, an additional
full set of N sensitivity states are added meaning that the full ODE solved has
N + N · M states.

• An adjoint sensitivity solver starts by solving the base ODE system forward
in time to get the ODE solution and then solves another ODE system (the
adjoint) backward in time to get the gradients. The forward and reverse solves
both have N states each. There is additionally one quadrature problem solved
for every parameter.

The adjoint sensitivity approach scales much better than the forward sensitivity
approach. Whereas the computational cost of the forward approach scales multi-
plicatively in the number of ODE states N and parameters M, the adjoint sensitivity
approach scales linear in states N and parameters M. However, the adjoint problem
is harder to configure and the overhead for small problems actually makes it slower
than solving the full forward sensitivity system. With that in mind, the rest of this
introduction focuses on the forward sensitivity interfaces. For information on the
adjoint sensitivity interface see the Adjoint ODE solver

Two interfaces are provided for each forward sensitivity solver: one with default
tolerances and default max number of steps, and one that allows these controls to
be modified. Choosing tolerances is important for making any of the solvers work
well – the defaults will not work everywhere. The tolerances should be chosen
primarily with consideration to the scales of the solutions, the accuracy needed
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for the solutions, and how the solutions are used in the model. For instance, if a
solution component slowly varies between 3.0 and 5.0 and measurements of the
ODE state are noisy, then perhaps the tolerances do not need to be as tight as for
a situation where the solutions vary between 3.0 and 3.1 and very high precision
measurements of the ODE state are available. It is also often useful to reduce the
absolute tolerance when a component of the solution is expected to approach zero.
For information on choosing tolerances, see the control parameters section.

The advantage of adaptive solvers is that as long as reasonable tolerances are
provided and an ODE solver well-suited to the problem is chosen the technical
details of solving the ODE can be abstracted away. The catch is that it is not always
clear from the outset what reasonable tolerances are or which ODE solver is best
suited to a problem. In addition, as changes are made to an ODE model, the optimal
solver and tolerances may change.

With this in mind, the four forward solvers are rk45, bdf, adams, and ckrk. If no
other information about the ODE is available, start with the rk45 solver. The list
below has information on when each solver is useful.

If there is any uncertainty about which solver is the best, it can be useful to measure
the performance of all the interesting solvers using profile statements. It is difficult
to always know exactly what solver is the best in all situations, but a profile can
provide a quick check.

• rk45: a fourth and fifth order Runge-Kutta method for non-stiff systems
(Dormand and Prince 1980; Ahnert and Mulansky 2011). rk45 is the most
generic solver and should be tried first.

• bdf: a variable-step, variable-order, backward-differentiation formula imple-
mentation for stiff systems (Cohen and Hindmarsh 1996; Serban and Hind-
marsh 2005). bdf is often useful for ODEs modeling chemical reactions.

• adams: a variable-step, variable-order, Adams-Moulton formula implemen-
tation for non-stiff systems (Cohen and Hindmarsh 1996; Serban and Hind-
marsh 2005). The method has order up to 12, hence is commonly used when
high-accuracy is desired for a very smooth solution, such as in modeling
celestial mechanics and orbital dynamics (Montenbruck and Gill 2000).

• ckrk: a fourth and fifth order explicit Runge-Kutta method for non-stiff and
semi-stiff systems (Cash and Karp 1990; Mazzia, Cash, and Soetaert 2012).
The difference between ckrk and rk45 is that ckrk should perform better for
systems that exhibit rapidly varying solutions. Often in those situations the
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derivatives become large or even nearly discontinuous, and ckrk is designed
to address such problems.

For a discussion of stiff ODE systems, see the stiff ODE section. For information on
the adjoint sensitivity interface see the Adjoint ODE solver section. The function
signatures for Stan’s ODE solvers can be found in the function reference manual
section on ODE solvers.

13.1. Notation
An ODE is defined by a set of differential equations, y(t, θ)′ = f (t, y, θ), and initial
conditions, y(t0, θ) = y0. The function f (t, y, θ) is called the system function. The θ
dependence is included in the notation for y(t, θ) and f (t, y, θ) as a reminder that
the solution is a function of any parameters used in the computation.

13.2. Example: simple harmonic oscillator
As an example of a system of ODEs, consider a harmonic oscillator. In a harmonic
oscillator a particle disturbed from equilibrium is pulled back towards its equilib-
rium position by a force proportional to its displacement from equilibrium. The
system here additionally has a friction force proportional to particle speed which
points in the opposite direction of the particle velocity. The system state will be a
pair y = (y1, y2) representing position and speed. The change in the system with
respect to time is given by the following differential equations.1

d
dt

y1 = y2

d
dt

y2 = −y1 − θy2

The state equations implicitly defines the state at future times as a function of an
initial state and the system parameters.

13.3. Coding the ODE system function
The first step in coding an ODE system in Stan is defining the ODE system function.
The system functions require a specific signature so that the solvers know how to
use them properly.

1This example is drawn from the documentation for the Boost Numeric Odeint library (Ahnert and
Mulansky 2011), which Stan uses to implement the rk45 and ckrk solver.
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The first argument to the system function is time, passed as a real; the second
argument to the system function is the system state, passed as a vector, and the
return value from the system function are the current time derivatives of the state
defined as a vector. Additional arguments can be included in the system function
to pass other information into the solve (these will be passed through the function
that starts the ODE integration). These argument can be parameters (in this case, the
friction coefficient), data, or any quantities that are needed to define the differential
equation.

The simple harmonic oscillator can be coded using the following function in Stan
(see the user-defined functions chapter for more information on coding user-defined
functions).

vector sho(real t, // time
vector y, // state
real theta) { // friction parameter

vector[2] dydt;
dydt[1] = y[2];
dydt[2] = -y[1] - theta * y[2];
return dydt;

}

The function takes in a time t (a real), the system state y (a vector), and the
parameter theta (a real). The function returns a vector of time derivatives of the
system state at time t, state y, and parameter theta. The simple harmonic oscillator
coded here does not have time-sensitive equations; that is, t does not show up in
the definition of dydt, however it is still required.

Strict signature
The types in the ODE system function are strict. The first argument is the time
passed as a real, the second argument is the state passed as a vector, and the
return type is a vector. A model that does not have this signature will fail to
compile. The third argument onwards can be any type, granted all the argument
types match the types of the respective arguments in the solver call.

All of these are possible ODE signatures:

vector myode1(real t, vector y, real a0);
vector myode2(real t, vector y, array[] int a0, vector a1);
vector myode3(real t, vector y, matrix a0, array[] real a1, row_vector a2);

but these are not allowed:

user-functions.qmd
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vector myode1(real t, array[] real y, real a0);
// Second argument is not a vector
array[] real myode2(real t, vector y, real a0);
// Return type is not a vector
vector myode3(vector y, real a0);
// First argument is not a real and second is not a vector

13.4. Measurement error models
Noisy observations of the ODE state can be used to estimate the parameters and/or
the initial state of the system.

Simulating noisy measurements
As an example, suppose the simple harmonic oscillator has a parameter value of
θ = 0.15 and an initial state y(t = 0, θ = 0.15) = (1, 0). Assume the system is
measured at 10 time points, t = 1, 2, · · · , 10, where each measurement of y(t, θ) has
independent normal(0, 0.1) error in both dimensions (y1(t, θ) and y2(t, θ)).

The following model can be used to generate data like this:

functions {
vector sho(real t,

vector y,
real theta) {

vector[2] dydt;
dydt[1] = y[2];
dydt[2] = -y[1] - theta * y[2];
return dydt;

}
}
data {

int<lower=1> T;
vector[2] y0;
real t0;
array[T] real ts;
real theta;

}
model {
}
generated quantities {

array[T] vector[2] y_sim = ode_rk45(sho, y0, t0, ts, theta);
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// add measurement error
for (t in 1:T) {
y_sim[t, 1] += normal_rng(0, 0.1);
y_sim[t, 2] += normal_rng(0, 0.1);

}
}

The system parameters theta and initial state y0 are read in as data along with the
initial time t0 and observation times ts. The ODE is solved for the specified times,
and then random measurement errors are added to produce simulated observations
y_sim. Because the system is not stiff, the ode_rk45 solver is used.

This program illustrates the way in which the ODE solver is called in a Stan pro-
gram,

array[T] vector[2] y_sim = ode_rk45(sho, y0, t0, ts, theta);

this returns the solution of the ODE initial value problem defined by system function
sho, initial state y0, initial time t0, and parameter theta at the times ts. The call
explicitly specifies the non-stiff RK45 solver.

The parameter theta is passed unmodified to the ODE system function. If there
were additional arguments that must be passed, they could be appended to the end
of the ode call here. For instance, if the system function took two parameters, θ and
β, the system function definition would look like:

vector sho(real t, vector y, real theta, real beta) { ... }

and the appropriate ODE solver call would be:

ode_rk45(sho, y0, t0, ts, theta, beta);

Any number of additional arguments can be added. They can be any Stan type (as
long as the types match between the ODE system function and the solver call).

Because all none of the input arguments are a function of parameters, the ODE
solver is called in the generated quantities block. The random measurement noise
is added to each of the T outputs with normal_rng.
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Figure 13.1: Typical realization of harmonic oscillator trajectory.

Estimating system parameters and initial state
These ten noisy observations of the state can be used to estimate the friction param-
eter, θ, the initial conditions, y(t0, θ), and the scale of the noise in the problem. The
full Stan model is:
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functions {
vector sho(real t,

vector y,
real theta) {

vector[2] dydt;
dydt[1] = y[2];
dydt[2] = -y[1] - theta * y[2];
return dydt;

}
}
data {

int<lower=1> T;
array[T] vector[2] y;
real t0;
array[T] real ts;

}
parameters {

vector[2] y0;
vector<lower=0>[2] sigma;
real theta;

}
model {

array[T] vector[2] mu = ode_rk45(sho, y0, t0, ts, theta);
sigma ~ normal(0, 2.5);
theta ~ std_normal();
y0 ~ std_normal();
for (t in 1:T) {
y[t] ~ normal(mu[t], sigma);

}
}

Because the solves are now a function of model parameters, the ode_rk45 call is
now made in the model block. There are half-normal priors on the measurement
error scales sigma, and standard normal priors on theta and the initial state vector
y0. The solutions to the ODE are assigned to mu, which is used as the location for
the normal observation model.

As with other regression models, it’s easy to change the noise model to something
with heavier tails (e.g., Student-t distributed), correlation in the state variables (e.g.,
with a multivariate normal distribution), or both heavy tails and correlation in the
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state variables (e.g., with a multivariate Student-t distribution).

13.5. Stiff ODEs
Stiffness is a numerical phenomena that causes some differential equation solvers
difficulty, notably the Runge-Kutta RK45 solver used in the examples earlier. The
phenomena is common in chemical reaction systems, which are often characterized
by having multiple vastly different time-scales. The stiffness of a system can
also vary between different parts of parameter space, and so a typically non-stiff
system may exhibit stiffness occasionally. These sorts of difficulties can occur more
frequently with loose priors or during warmup.

Stan provides a specialized solver for stiff ODEs (Cohen and Hindmarsh 1996;
Serban and Hindmarsh 2005). An ODE system is specified exactly the same way
with a function of exactly the same signature. The only difference is in the call to
the solver the rk45 suffix is replaced with bdf, as in

ode_bdf(sho, y0, t0, ts, theta);

Using the stiff (bdf) solver on a system that is not stiff may be much slower than
using the non-stiff (rk45) solver because each step of the stiff solver takes more
time to compute. On the other hand, attempting to use the non-stiff solver for a stiff
system will cause the timestep to become very small, leading the non-stiff solver
taking more time overall even if each step is easier to compute than for the stiff
solver.

If it is not known for sure that an ODE system is stiff, run the model with both the
rk45 and bdf solvers and see which is faster. If the rk45 solver is faster, then the
problem is probably non-stiff, and then it makes sense to try the adams solver as
well. The adams solver uses higher order methods which can take larger timesteps
than the rk45 solver, though similar to the bdf solver each of these steps is more
expensive to compute.

13.6. Control parameters for ODE solving
For additional control of the solves, both the stiff and non-stiff forward ODE solvers
have function signatures that makes it possible to specify the relative_tolerance,
absolute_tolerance, and max_num_steps parameters. These are the same as the
regular function names but with _tol appended to the end. All three control
arguments must be supplied with this signature (there are no defaults).

array[T] vector[2] y_sim = ode_bdf_tol(sho, y0, t0, ts,
relative_tolerance,
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absolute_tolerance,
max_num_steps,
theta);

relative_tolerance and absolute_tolerance control accuracy the solver tries
to achieve, and max_num_steps specifies the maximum number of steps the solver
will take between output time points before throwing an error.

The control parameters must be data variables – they cannot be parameters or
expressions that depend on parameters, including local variables in any block other
than transformed data and generated quantities. User-defined function arguments
may be qualified as only allowing data arguments using the data qualifier.

For the RK45 and Cash-Karp solvers, the default values for relative and absolute
tolerance are both 10−6 and the maximum number of steps between outputs is one
million. For the BDF and Adams solvers, the relative and absolute tolerances are
10−10 and the maximum number of steps between outputs is one hundred million.

Discontinuous ODE system function
If there are discontinuities in the ODE system function, it is best to integrate the
ODE between the discontinuities, stopping the solver at each one, and restarting it
on the other side.

Nonetheless, the ODE solvers will attempt to integrate over discontinuities they
encounters in the state function. The accuracy of the solution near the discontinuity
may be problematic (requiring many small steps). An example of such a disconti-
nuity is a lag in a pharmacokinetic model, where a concentration is zero for times
0 < t < t′ and then positive for t ≥ t′. In this example example, we would use code
in the system such as

if (t < t_lag) {
return [0, 0]';

} else {
// ... return non-zero vector...

}

In general it is better to integrate up to t_lag in one solve and then integrate from
t_lag onwards in another. Mathematically, the discontinuity can make the problem
ill-defined and the numerical integrator may behave erratically around it.

If the location of the discontinuity cannot be controlled precisely, or there is some
other rapidly change in ODE behavior, it can be useful to tell the ODE solver
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to produce output in the neighborhood. This can help the ODE solver avoid
indiscriminately stepping over an important feature of the solution.

Tolerance
The relative tolerance RTOL and absolute tolerance ATOL control the accuracy of
the numerical solution. Specifically, when solving an ODE with unknowns y =
(y1, . . . , yn)T , at every step the solver controls estimated local error e = (e1, . . . , en)T

through its weighted root-mean-square norm (Serban and Hindmarsh (2005), Hairer,
Nørsett, and Wanner (1993))

√√√√ n

∑
i=1

1
n

e2
i

(RTOL × yi + ATOL)2 < 1

by reducing the stepsize when the inequality is not satisfied.

To understand the roles of the two tolerances it helps to assume y at opposite scales
in the above expression: on one hand the absolute tolerance has little effect when
yi ≫ 1, on the other the relative tolerance can not affect the norm when yi = 0.
Users are strongly encouraged to carefully choose tolerance values according to
the ODE and its application. One can follow Brenan, Campbell, and Petzold (1995)
for a rule of thumb: let m be the number of significant digits required for y, set
RTOL = 10−(m+1), and set ATOL at which y becomes insignificant. Note that
the same weighted root-mean-square norm is used to control nonlinear solver
convergence in bdf and adams solvers, and the same tolerances are used to control
forward sensitivity calculation. See Serban and Hindmarsh (2005) for details.

Maximum number of steps
The maximum number of steps can be used to stop a runaway simulation. This
can arise in when MCMC moves to a part of parameter space very far from where
a differential equation would typically be solved. In particular this can happen
during warmup. With the non-stiff solver, this may happen when the sampler
moves to stiff regions of parameter space, which will requires small step sizes.

13.7. Adjoint ODE solver
The adjoint ODE solver method differs mathematically from the forward ODE
solvers in the way gradients of the ODE solution are obtained. The forward ODE
approach augments the original ODE system with N additional states for each
parameter for which gradients are needed. If there are M parameters for which
sensitivities are required, then the augmented ODE system has a total of N · (M+ 1)
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states. This can result in very large ODE systems through the multiplicative scaling
of the computational effort needed.

In contrast, the adjoint ODE solver integrates forward in time a system of N equa-
tions to compute the ODE solution and then integrates backwards in time another
system of N equations to get the sensitivities. Additionally, for M parameters there
are M additional equations to integrate during the backwards solve. Because of
this the adjoint sensitivity problem scales better in parameters than the forward
sensitivity problem. The adjoint solver in Stan uses CVODES (the same as the bdf
and adams forward sensitivity interfaces).

The solution computed in the forward integration is required during the backward
integration. CVODES uses a checkpointing scheme that saves the forward solver
state regularly. The number of steps between saving checkpoints is configurable in
the interface. These checkpoints are then interpolated during the backward solve
using one of two interpolation schemes.

The solver type (either bdf or adams) can be individually set for both the forward
and backward solves.

The tolerances for each phase of the solve must be specified in the interface. Note
that the absolute tolerance for the forward and backward ODE integration phase
need to be set for each ODE state separately. The harmonic oscillator example call
from above becomes:

array[T] vector[2] y_sim
= ode_adjoint_tol_ctl(sho, y0, t0, ts,

relative_tolerance/9.0, // forward tolerance
rep_vector(absolute_tolerance/9.0, 2), // forward tolerance
relative_tolerance/3.0, // backward tolerance
rep_vector(absolute_tolerance/3.0, 2), // backward tolerance
relative_tolerance, // quadrature tolerance
absolute_tolerance, // quadrature tolerance
max_num_steps,
150, // number of steps between checkpoints
1, // interpolation polynomial: 1=Hermite, 2=polynomial
2, // solver for forward phase: 1=Adams, 2=BDF
2, // solver for backward phase: 1=Adams, 2=BDF
theta);

For a detailed information on each argument please see the Stan function reference
manual.



188 CHAPTER 13. ORDINARY DIFFERENTIAL EQUATIONS

13.8. Solving a system of linear ODEs using a matrix exponential
Linear systems of ODEs can be solved using a matrix exponential. This can be
considerably faster than using one of the ODE solvers.

The solution to d
dt y = ay is y = y0eat, where the constant y0 is determined by

boundary conditions. We can extend this solution to the vector case:

d
dt

y = A y

where y is now a vector of length n and A is an n by n matrix. The solution is then
given by:

y = etA y0

where the matrix exponential is formally defined by the convergent power series:

etA =
∞

∑
n=0

tAn

n!
= I + tA +

t2 A2

2!
+ · · ·

We can apply this technique to the simple harmonic oscillator example, by setting

y =

[
y1
y2

]
A =

[
0 1
−1 −θ

]

The Stan model to simulate noisy observations using a matrix exponential function
is given below.

In general, computing a matrix exponential will be more efficient than using a
numerical solver. We can however only apply this technique to systems of linear
ODEs.

data {
int<lower=1> T;
vector[2] y0;
array[T] real ts;
array[1] real theta;

}
model {
}
generated quantities {
array[T] vector[2] y_sim;
matrix[2, 2] A = [[ 0, 1],
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[-1, -theta[1]]]
for (t in 1:T) {
y_sim[t] = matrix_exp((t - 1) * A) * y0;

}
// add measurement error
for (t in 1:T) {
y_sim[t, 1] += normal_rng(0, 0.1);
y_sim[t, 2] += normal_rng(0, 0.1);

}
}

This Stan program simulates noisy measurements from a simple harmonic oscil-
lator. The system of linear differential equations is coded as a matrix. The system
parameters theta and initial state y0 are read in as data along observation times ts.
The generated quantities block is used to solve the ODE for the specified times and
then add random measurement error, producing observations y_sim. Because the
ODEs are linear, we can use the matrix_exp function to solve the system.



14. Computing One Dimensional Integrals

Definite and indefinite one dimensional integrals can be performed in Stan using
the integrate_1d function

As an example, the normalizing constant of a left-truncated normal distribution is

∫ ∞

a

1√
2πσ2

e−
1
2
(x−µ)2

σ2

To compute this integral in Stan, the integrand must first be defined as a Stan
function (see the Stan Reference Manual chapter on User-Defined Functions for
more information on coding user-defined functions).

real normal_density(real x, // Function argument
real xc, // Complement of function argument

// on the domain (defined later)
array[] real theta, // parameters
array[] real x_r, // data (real)
array[] int x_i) { // data (integer)

real mu = theta[1];
real sigma = theta[2];

return 1 / (sqrt(2 * pi()) * sigma) * exp(-0.5 * ((x - mu) / sigma)ˆ2);
}

This function is expected to return the value of the integrand evaluated at point
x. The argument xc is used in definite integrals to avoid loss of precision near the
limits of integration and is set to NaN when either limit is infinite (see the section
on precision/loss in the chapter on Higher-Order Functions of the Stan Functions
Reference for details on how to use this). The argument theta is used to pass
in arguments of the integral that are a function of the parameters in our model.
The arguments x_r and x_i are used to pass in real and integer arguments of the
integral that are not a function of our parameters.

The function defining the integrand must have exactly the argument types and
return type of normal_density above, though argument naming is not important.
Even if x_r and x_i are unused in the integrand, they must be included in the
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function signature. Even if the integral does not involve some of these, they must
still be supplied some value. The most efficient will be a zero-length array or vector,
which can be created with rep_array(0, 0) and rep_vector(0, 0), respectively. Other
options include an uninitialized variable declared with size 0, which is equivalent
to the above, or any easy value, such as size 1 array created with {0}.

14.1. Calling the integrator
Suppose that our model requires evaluating the lpdf of a left-truncated normal, but
the truncation limit is to be estimated as a parameter. Because the truncation point
is a parameter, we must include the normalization term of the truncated pdf when
computing our model’s log density. Note this is just an example of how to use the
1D integrator. The more efficient way to perform the correct normalization in Stan
is described in the chapter on Truncated or Censored Data of this guide.

Such a model might look like (include the function defined at the beginning of this
chapter to make this code compile):

data {
int N;
array[N] real y;

}

transformed data {
array[0] real x_r;
array[0] int x_i;

}

parameters {
real mu;
real<lower=0.0> sigma;
real left_limit;

}

model {
mu ~ normal(0, 1);
sigma ~ normal(0, 1);
left_limit ~ normal(0, 1);
target += normal_lpdf(y | mu, sigma);
target += log(integrate_1d(normal_density,

left_limit,
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positive_infinity(),
{ mu, sigma }, x_r, x_i));

}

Limits of integration
The limits of integration can be finite or infinite. The infinite limits are made
available via the Stan calls negative_infinity() and positive_infinity().

If both limits are either negative_infinity() or positive_infinity(), the inte-
gral and its gradients are set to zero.

Data vs. parameters
The arguments for the real data x_r and the integer data x_i must be expressions
that only involve data or transformed data variables. theta, on the other hand, can
be a function of data, transformed data, parameters, or transformed parameters.

The endpoints of integration can be data or parameters (and internally the deriva-
tives of the integral with respect to the endpoints are handled with the Leibniz
integral rule).

14.2. Integrator convergence
The integral is performed with the iterative 1D double exponential quadrature
methods implemented in the Boost library (Agrawal et al. 2017). If the nth estimate
of the integral is denoted In and the nth estimate of the norm of the integral is
denoted |I|n, the iteration is terminated when

|In+1 − In|
|I|n+1

< relative tolerance.

The relative_tolerance parameter can be optionally specified as the last ar-
gument to integrate_1d. By default, integrate_1d follows the Boost library
recommendation of setting relative_tolerance to the square root of the machine
epsilon of double precision floating point numbers (about 1e-8). If the Boost inte-
grator is not able to reach the relative tolerance an exception is raised with a message
somehing like “Exception: integrate: error estimate of integral 4.25366e-13 exceeds
the given relative tolerance times norm of integral”. If integrate_1d causes an
exception in transformed parameters block or model block, the result has the same
effect as assigning a −∞ log probability, which causes rejection of the current pro-
posal in MCMC samplers and adjustment of search parameters in optimization.
If integrate_1d causes an exception in generated quantities block, the returned
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output from integrate_1d is NaN. In these cases, a bigger relative_tolerance
value can be specified.

Zero-crossing integrals
Integrals on the (possibly infinite) interval (a, b) that cross zero are split into two
integrals, one from (a, 0) and one from (0, b). This is because the quadrature
methods employed internally can have difficulty near zero.

In this case, each integral is separately integrated to the given rela-
tive_tolerance.

Avoiding precision loss near limits of integration in definite integrals
If care is not taken, the quadrature can suffer from numerical loss of precision near
the endpoints of definite integrals.

For instance, in integrating the pdf of a beta distribution when the values of α and
β are small, most of the probability mass is lumped near zero and one.

The pdf of a beta distribution is proportional to

p(x) ∝ xα−1(1 − x)β−1

Normalizing this distribution requires computing the integral of p(x) from zero to
one. In Stan code, the integrand might look like:

real beta(real x, real xc, array[] real theta, array[] real x_r, array[] int x_i) {
real alpha = theta[1];
real beta = theta[2];

return xˆ(alpha - 1.0) * (1.0 - x)ˆ(beta - 1.0);
}

The issue is that there will be numerical breakdown in the precision of 1.0 - x
as x gets close to one. This is because of the limited precision of double precision
floating numbers. This integral will fail to converge for values of alpha and beta
much less than one.

This is where xc is useful. It is defined, for definite integrals, as a high precision
version of the distance from x to the nearest endpoint — a - x or b - x for a lower
endpoint a and an upper endpoint b. To make use of this for the beta integral, the
integrand can be re-coded:
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real beta(real x, real xc, array[] real theta, array[] real x_r, array[] int x_i) {
real alpha = theta[1];
real beta = theta[2];
real v;

if(x > 0.5) {
v = xˆ(alpha - 1.0) * xcˆ(beta - 1.0);

} else {
v = xˆ(alpha - 1.0) * (1.0 - x)ˆ(beta - 1.0);

}

return v;
}

In this case, as we approach the upper limit of integration a = 1, xc will take on
the value of a − x = 1 − x. This version of the integrand will converge for much
smaller values of alpha and beta than otherwise possible.

Consider another example: let’s say we have a log-normal distribution that is both
shifted away from zero by some amount δ, and truncated at some value b. If we
were interested in calculating the expectation of a variable X distributed in this way,
we would need to calculate∫ b

a
x f (x) dx =

∫ b

δ
x f (x) dx

in the numerator, where f (x) is the probability density function for the shifted
log-normal distribution. This probability density function can be coded in Stan as:

real shift_lognormal_pdf(real x,
real mu,
real sigma,
real delta) {

real p;

p = (1.0 / ((x - delta) * sigma * sqrt(2 * pi()))) *
exp(-1 * (log(x - delta) - mu)ˆ2 / (2 * sigmaˆ2));

return p;
}

Therefore, the function that we want to integrate is:
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real integrand(real x,
real xc,
array[] real theta,
array[] real x_r,
array[] int x_i) {

real numerator;
real p;

real mu = theta[1];
real sigma = theta[2];
real delta = theta[3];
real b = theta[4];

p = shift_lognormal_pdf(x, mu, sigma, delta);

numerator = x * p;

return numerator;
}

What happens here is that, given that the log-normal distribution is shifted by δ,
when we then try to integrate the numerator, our x starts at values just above delta.
This, in turn, causes the x - delta term to be near zero, leading to a breakdown.

We can use xc, and define the integrand as:

real integrand(real x,
real xc,
array[] real theta,
array[] real x_r,
array[] int x_i) {

real numerator;
real p;

real mu = theta[1];
real sigma = theta[2];
real delta = theta[3];
real b = theta[4];

if (x < delta + 1) {
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p = shift_lognormal_pdf(xc, mu, sigma, delta);
} else {
p = shift_lognormal_pdf(x, mu, sigma, delta);

}

numerator = x * p;

return numerator;
}

Why does this work? When our values of x are less than delta + 1 (so, when
they’re near delta, given that our lower bound of integration is equal to δ), we
pass xc as an argument to our shift_lognormal_pdf function. This way, instead
of dealing with x - delta in shift_lognormal_pdf, we are working with xc -
delta which is equal to delta - x - delta, as delta is the lower endpoint in
that case. The delta terms cancel out, and we are left with a high-precision version
of x. We don’t encounter the same problem at the upper limit b so we don’t adjust
the code for that case.

Note, xc is only used for definite integrals. If either the left endpoint is at negative
infinity or the right endpoint is at positive infinity, xc will be NaN.

For zero-crossing definite integrals (see section Zero Crossing) the integrals are
broken into two pieces ((a, 0) and (0, b) for endpoints a < 0 and b > 0) and xc is
a high precision version of the distance to the limits of each of the two integrals
separately. This means xc will be a high precision version of a - x, x, or b - x,
depending on the value of x and the endpoints.



15. Complex Numbers

Stan supports complex scalars, matrices, and vectors as well as real-based ones.

15.1. Working with complex numbers
This section describes the complex scalar type, including how to build complex
numbers, assign them, and use them in arrays and functions.

Constructing and accessing complex numbers
Complex numbers can be constructed using imaginary literals. For example,

complex z = -1.1 + 2.3i;

produces the complex number −1.1+ 2.3i. This only works if the real and imaginary
components are literal numerals. To construct a complex number out of arbitrary
real variables, the to_complex() function may be used. For example, the following
code will work if x and y are parameters, transformed data, or local variables in a
function or model block.

real x = // ...
real y = // ...
complex z = to_complex(x, y);

The real and imaginary parts of the complex number can be accessed with getters
as follows.

real x = get_real(z); // x = -1.1
real y = get_imag(z); // y = 2.3

Complex numbers can be compared using equality (or inequality), but not with
greater than or less than operators. For example, after running the code above, the
following code snippet will print “hello”.

complex a = 3.2 + 2i;
complex b = to_complex(3.2, 2);
if (a == b) print("hello");
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Complex assignment and promotion
Integer- or real-valued expressions may be assigned to complex numbers, with the
corresponding imaginary component set to zero.

complex z1 = 3; // int promoted to 3 + 0i
complex z2 = 3.2; // real promoted to 3.2 + 0.i

Complex arrays
Arrays of complex numbers work as usual and allow the usual curly bracket
constructors.

complex z1; complex z2; complex z3;
// ...
array[3] complex zs = { z1, z2, z3 };
for (z in zs) {
print(z);

}

Complex arrays allow assignment into their elements, with integer or real assigned
values being promoted to complex.

Complex functions
All of the standard complex functions are available, including natural logarithm
log(z), natural exponentiation exp(z), and powers pow(z1, z2), as well as all of
the trig and hyperbolic trigonometric functions and their inverse, such as sin(z),
acos(z), tanh(z) and asinh(z).

Promotion also works for complex-valued function arguments, which may be
passed integer or real values, which will be promoted before the function is evalu-
ated. For example, the following user-defined complex function will accept integer,
real, or complex arguments.

complex times_i(complex z) {
complex i = to_complex(0, 1);
return i * z;

}

For instance, times_i(1) evaluates to the imaginary base i, as does times_i(1.0).

15.2. Complex random variables
The simplest way to model a distribution over a complex random number z = x+ yi
is to consider its real part x and imaginary part y to have a bivariate normal



15.3. COMPLEX MATRICES AND VECTORS 199

distribution. For example, a complex prior can be expressed as follows.

complex z;
vector[2] mu;
cholesky_cov[2] L_Sigma;
// ...
[get_real(z), get_imag(z)]' ~ multi_normal_cholesky(mu, L_Sigma);

For example, if z is data, this can be used to estimate mu and the covariance Cholesky
factor L_Sigma. Alternatively, if z is a parameter, mu and L_Sigma may constants
defining a prior or further parameters defining a hierarchical model.

15.3. Complex matrices and vectors
Stan supports complex matrices, vectors, and row vectors. Variables of these types
are declared with sizes in the same way as their real-based counterparts.

complex_vector[3] v;
complex_row_vector[2] rv;
complex_matrix[3, 2] m;

We can construct vectors and matrices using brackets in the same way as for real-
valued vectors and matrices. For example, given the declaration of rv above, we
could assign it to a constructed row vector.

rv = [2 + 3i, 1.9 - 2.3i];

Complex matrices and vectors support all of the standard arithetmic operations
including negation, addition, subtraction, and multiplication (division involves
a solve, and isn’t a simple arithmetic operation for matrices). They also support
transposition.

Furthermore, it is possible to convert back and forth between arrays and matrices
using the to_array functions.

15.4. Complex linear regression
Complex valued linear regression with complex predictors and regression coeffi-
cients looks just like standard regression. For example, if we take x to be predictors,
y to be an array of outcomes. For example, consider the following complete Stan
program for an intercept and slope.

data {
int<lower=0> N;
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complex_vector[N] x;
complex_vector[N] y;

}
parameters {

complex alpha;
complex beta;

}
model {

complex_vector[N] eps = y - (alpha + beta * x);
eps ~ // ...error distribution...

}

The question remains of how to fill in the error distribution and there are sev-
eral alternatives. We consider only two simple alternatives, and do not consider
penalizing the absolute value of the error.

Independent real and imaginary error
The simplest approach to error in complex regression is to give the real and imagi-
nary parts of eps_n independent independent normal distributions, as follows.

parameters {
// ...
vector[2] sigma;

}
// ...
model {

// ...
get_real(eps) ~ normal(0, sigma[1]);
get_imag(eps) ~ normal(0, sigma[2]);
sigma ~ //...hyperprior...

}

A new error scale vector sigma is introduced, and it should itself get a prior based
on the expected scale of error for the problem.

Dependent complex error
The next simplest approach is to treat the real and imaginary parts of the complex
number as having a multivariate normal prior. This can be done by adding a pa-
rameter for correlation to the above, or just working with a multivariate covariance
matrix, as we do here.
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parameters {
cholesky_factor_corr[2] L_Omega; // correlation matrix
vector[2] sigma; // real, imag error scales
// ...

}
// ...
model {

array[N] vector[2] eps_arr;
for (n in 1:N) {
eps_arr[n] = { to_real(eps[n]), to_imag(eps[n]) };

}
eps_arr ~ multi_normal_cholesky([0, 0]',

diag_pre_multiply(sigma, L_Omega));
L_Omega ~ lkj_cholesky(4); // shrink toward diagonal correlation
sigma ~ // ... hyperprior ...

}

Here, the real and imaginary components of the error get a joint distribution
with correlation and independent scales. The error gets a multivariate normal
distribution with zero mean and a Cholesky factor representation of covariance,
consisting of a scale vector sigma and a Cholesky factor or a correlation matrix,
L_Omega. The prior on the correlations is concentrated loosely around diagonal
covariance, and the prior on the scales is left open. In order to vectorize the call to
multi_normal_cholesky, the vector of complex numbers needs to be converted to
an array of size 2 vectors.



16. Differential-Algebraic Equations

Stan support solving systems of differential-algebraic equations (DAEs) of index 1
(Serban et al. 2021). The solver adaptively refines the solutions in order to satisfy
given tolerances.

One can think a differential-algebraic system of equations as ODEs with additional
algebraic constraints applied to some of the variables. In such a system, the variable
derivatives may not be expressed explicitly with a right-hand-side as in ODEs, but
implicitly constrained.

Similar to ODE solvers, the DAE solvers must not only provide the solution to the
DAE itself, but also the gradient of the DAE solution with respect to parameters (the
sensitivities). Stan’s DAE solver uses the forward sensitivity calculation to expand the
base DAE system with additional DAE equations for the gradients of the solution.
For each parameter, an additional full set of N sensitivity states are added meaning
that the full DAE solved has N + N · M states.

Two interfaces are provided for the forward sensitivity solver: one with default
tolerances and default max number of steps, and one that allows these controls to
be modified. Choosing tolerances is important for making any of the solvers work
well – the defaults will not work everywhere. The tolerances should be chosen
primarily with consideration to the scales of the solutions, the accuracy needed for
the solutions, and how the solutions are used in the model. The same principles in
the control parameters section apply here.

Internally Stan’s DAE solver uses a variable-step, variable-order, backward-
differentiation formula implementation (Cohen and Hindmarsh 1996; Serban and
Hindmarsh 2005).

16.1. Notation
A DAE is defined by a set of expressions for the residuals of differential equations
and algebraic equations r(y′, y, t, θ), and consistent initial conditions y(t0, θ) =
y0, y′(t0, θ) = y′0. The DAE is define by residual function as r(y′, y, t, θ) = 0. The
θ dependence is included in the notation to highlight that the solution y(t) is a
function of any parameters used in the computation.
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16.2. Example: chemical kinetics
As an example of a system of DAEs, consider following chemical kinetics prob-
lem(Robertson 1966). The nondimensionalized DAE consists of two differential
equations and one algebraic constraint. The differential equations describe the
reactions from reactants y1 and y2 to the product y3, and the algebraic equation
describes the mass conservation. (Serban and Hindmarsh 2021).

dy1

dt
+ αy1 − βy2y3 = 0

dy2

dt
− αy1 + βy2y3 + γy2

2 = 0

y1 + y2 + y3 − 1.0 = 0

The state equations implicitly defines the state (y1(t), y2(t), y3(t)) at future times as
a function of an initial state and the system parameters, in this example the reaction
rate coefficients (α, β, γ).

Unlike solving ODEs, solving DAEs requires a consistent initial condition. That is,
one must specify both y(t0) and y′(t0) so that residual function becomes zero at
initial time t0

r(y′(t0), y(t0), t0) = 0

16.3. Index of DAEs
The index along a DAE solution y(t) is the minimum number of differentiations of
some of the components of the system required to solve for y′ uniquely in terms
of y and t, so that the DAE is converted into an ODE for y. Thus an ODE system
is of index 0. The above chemical kinetics DAE is of index 1, as we can perform
differentiation of the third equation followed by introducing the first two equations
in order to obtain the ODE for y3.

Most DAE solvers, including the one in Stan, support only index-1 DAEs. For a
high index DAE problem the user must first convert it to a lower index system. This
often can be done by carrying out differentiations analytically (Ascher and Petzold
1998).

16.4. Coding the DAE system function
The first step in coding an DAE system in Stan is defining the DAE residual function.
The system functions require a specific signature so that the solvers know how to
use them properly.
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The first argument to the residual function is time, passed as a real; the second
argument to the residual function is the system state y, passed as a vector, the third
argument to the residual function is the state derivative y′, also passed as a vector.
The residual function’s return value is a vector of the same size as state and state
derivatives. Additional arguments can be included in the residual function to pass
other information into the solve (these will be passed through the function that
starts the DAE solution). These argument can be parameters (in our example, the
reaction rate coefficient α, β, and γ), data, or any quantities that are needed to define
the DAE.

The above reaction be coded using the following function in Stan (see the user-
defined functions chapter for more information on coding user-defined functions).

vector chem(real t, vector yy, vector yp,
real alpha, real beta, real gamma) {

vector[3] res;
res[1] = yp[1] + alpha * yy[1] - beta * yy[2] * yy[3];
res[2] = yp[2] - alpha * yy[1] + beta * yy[2] * yy[3] + gamma * yy[2] * yy[2];
res[3] = yy[1] + yy[2] + yy[3] - 1.0;
return res;

}
}

The function takes in a time t (a real), the system state yy (a vector), state deriva-
tive yp (a vector), as well as parameter alpha (a real), beta (a real), and gamma
(a real). The function returns a vector of the residuals at time t. The DAE coded
here does not explicitly depend on t, however one still needs to specify t as an
argument.

Strict signature
The types in the DAE residual function are strict. The first argument is the time
passed as a real, the second argument is the state passed as a vector, the third
argument is the state derivative passed as a vector, and the return type is a vector.
A model that does not have this signature will fail to compile. The fourth argument
onwards can be any type, granted all the argument types match the types of the
respective arguments in the solver call.

All of these are possible DAE signatures:

vector my_dae1(real t, vector y, vector yp, real a0);
vector my_dae2(real t, vector y, vector yp, array[] int a0, vector a1);
vector my_dae3(real t, vector y, vector yp, matrix a0, array[] real a1, row_vector a2);

user-functions.qmd
user-functions.qmd
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but these are not allowed:

vector my_dae1(real t, array[] real y, vector yp);
// Second argument is not a vector
array[] real my_dae2(real t, vector y, vector yp);
// Return type is not a vector
vector my_dae3(real t, vector y);
// First argument is not a real and missing the third argument

16.5. Solving DAEs
Stan provides a dae function for solving DAEs, so that the above chemical reaction
equation can be solved in the following code.

data {
int N;
vector[3] yy0;
vector[3] yp0;
real t0;
real alpha;
real beta;
array[N] real ts;
array[N] vector[3] y;

}
parameters {

real gamma;
}
transformed parameters {

vector[3] y_hat[N] = dae(chem, yy0, yp0, t0, ts, alpha, beta, gamma);
}

Since gamma is a parameter, the DAE solver is called in the transformed parameters
block.

16.6. Control parameters for DAE solving
Using dae_tol one can specify the relative_tolerance, absolute_tolerance,
and max_num_steps parameters in order to control the DAE solution.

vector[3] y_hat[N] = dae_tol(chem, yy0, yp0, t0, ts,
relative_tolerance,
absolute_tolerance,
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max_num_steps,
alpha, beta, gamma);

relative_tolerance and absolute_tolerance control accuracy the solver tries
to achieve, and max_num_steps specifies the maximum number of steps the solver
will take between output time points before throwing an error.

The control parameters must be data variables – they cannot be parameters or
expressions that depend on parameters, including local variables in any block other
than transformed data and generated quantities. User-defined function arguments
may be qualified as only allowing data arguments using the data qualifier.

The default value of relative and absolute tolerances are 10−10 and the maximum
number of steps between outputs is one hundred million. We suggest the user
choose the control parameters according to the problem in hand, and resort to the
defaults only when no knowledge of the DAE system or the physics it models is
available.

Maximum number of steps
The maximum number of steps can be used to stop a runaway simulation. This
can arise in when MCMC moves to a part of parameter space very far from where
a differential equation would typically be solved. In particular this can happen
during warmup. With the non-stiff solver, this may happen when the sampler
moves to stiff regions of parameter space, which will requires small step sizes.



17. Survival Models

Survival models apply to animals and plants as well as inanimate objects such as
machine parts or electrical components. Survival models arise when there is an
event of interest for a group of subjects, machine component, or other item that is

• certain to occur after some amount of time,
• but only measured for a fixed period of time, during which the event may not

have occurred for all subjects.

For example, one might wish to estimate the the distribution of time to failure for
solid state drives in a data center, but only measure drives for a two year period,
after which some number will have failed and some will still be in service.

Survival models are often used comparatively, such as comparing time to death
of patients diagnosed with stage one liver cancer under a new treatment and a
standard treatment (pure controls are not allowed when there is an effective existing
treatment for a serious condition). During a two year trial, some patients will die
and others will survive.

Survival models may involve covariates, such as the factory at which a component
is manufactured, the day on which it is manufactured, and the amount of usage it
gets. A clinical trial might be adjusted for the sex and age of a cancer patient or the
hospital at which treatment is received.

Survival models come in two main flavors, parametric and semi-parametric. In
a parametric model, the survival time of a subject is modeled explicitly using a
parametric probability distribution. There is a great deal of flexibility in how the
parametric probability distribution is constructed. The sections below consider
exponential and Weibull distributed survival times.

Rather than explicitly modeling a parametric survival probability, semi-parametric
survival models instead model the relative effect on survival of covariates. The final
sections of this chapter consider the proportional hazards survival model.

17.1. Exponential survival model
The exponential distribution is commonly used in survival models where there
is a constant risk of failure that does not go up the longer a subject survives.
This is because the exponential distribution is memoryless in sense that if T ∼
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exponential(λ) for some rate λ > 0, then

Pr[T > t] = Pr[T > t + t′ | T > t′].

If component survival times are distributed exponentially, it means the distribution
of time to failure is the same no matter how long the item has already survived. This
can be a reasonable assumption for electronic components, but is not a reasonable
model for animal survival.

The exponential survival model has a single parameter for the rate, which assumes
all subjects have the same distribution of failure time (this assumption is relaxed in
the next section by introducing per-subject covariates). With the rate parameteriza-
tion, the expected survival time for a component with survival time represented as
the random variable T is

E[T | λ] =
1
λ

.

The exponential distribution is sometimes parameterized in terms of a scale (i.e.,
inverse rate) β = 1/λ.

The data for a survival model consists of two components. First, there is a vector
t ∈ (0, ∞)N of N observed failure times. Second, there is a censoring time tcens

such that failure times greater than tcens are not observed. The censoring time
assumption imposes a constraint which requires tn < tcens for all n ∈ 1:N. For the
censored subjects, the only thing required in the model is their total count, Ncens

(their covariates are also required for models with covariates).

The model for the observed failure times is exponential, so that for n ∈ 1:N,

tn ∼ exponential(λ).

The model for the censored failure times is also exponential. All that is known of
a censored item is that its failure time is greater than the censoring time, so each
censored item contributes a factor to the likelihood of

Pr[T > tcens] = 1 − FT(tcens),

where FT is the cumulative distribution function (cdf) of survival time T (FX(x) =
Pr[X ≤ x] is standard notation for the cdf of a random variable X). The function
1 − FT(t) is the complementary cumulative distribution function (ccdf), and it is
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used directly to define the likelihood

p(t, tcens, Ncens | λ) =
N

∏
n=1

exponential(tn | λ) ·
Ncens

∏
n=1

exponentialCCDF(tcens | λ)

=
N

∏
n=1

exponential(tn | λ) · exponentialCCDF(tcens | λ)Ncens
.

On the log scale, that’s

log p(t, tcens, Ncens | λ) =
N

∑
n=1

log exponential(tn | λ)

+ Ncens · log exponentialCCDF(tcens | λ).

The model can be completed with a standard lognormal prior on λ,

λ ∼ lognormal(0, 1),

which is reasonable if failure times are in the range of 0.1 to 10 time units, because
that’s roughly the 95% central interval for a variable distributed lognormal(0, 1).
In general, the range of the prior (and likelihood!) should be adjusted with prior
knowledge of expected failure times.

Stan program
The data for a simple survival analysis without covariates can be coded as follows.

data {
int<lower=0> N;
vector[N] t;
int<lower=0> N_cens;
real<lower=0> t_cens;

}

In this program, N is the number of uncensored observations and t contains the
times of the uncensored observations. There are a further N_cens items that are
right censored at time t_cens. Right censoring means that if the time to failure is
greater than

t_cens, it is only observed that the part survived until time t_cens. In the case
where there are no covariates, the model only needs the number of censored items
because they all share the same censoring time.

There is a single rate parameter, the inverse of which is the expected time to failure.
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parameters {
real<lower=0> lambda;

}

The exponential survival model and the prior are coded directly using vectorized
distribution and ccdf statements. This both simplifies the code and makes it more
computationally efficient by sharing computation across instances.

model {
t ~ exponential(lambda);
target += N_cens * exponential_lccdf(t_cens | lambda);

lambda ~ lognormal(0, 1);
}

The likelihood for rate lambda is just the density of exponential distribution for
observed failure time. The Stan code is vectorized, modeling each entry of the
vector t as a having an exponential distribution with rate lambda. This data model
could have been written as

for (n in 1:N) {
t[n] ~ exponential(lambda);

}

The log likelihood contribution given censored items is the number of censored
items times the log complementary cumulative distribution function (lccdf) at the
censoring time of the exponential distribution with rate lambda. The log likelihood
terms arising from the censored events could have been added to the target log
density one at a time,

for (n in 1:N)
target += exponential_lccdf(t_cens | lambda);

to define the same log density, but it is much more efficient computationally to
multiply by a constant than do a handful of sequential additions.

17.2. Weibull survival model
The Weibull distribution is a popular alternative to the exponential distribution in
cases where there is a decreasing probability of survival as a subject gets older. The
Weibull distribution models this by generalizing the exponential distribution to
include a power-law trend.
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The Weibull distribution is parameterized by a shape α > 0 and scale σ > 0. For an
outcome t ≥ 0, the Weibull distribution’s probability density function is

Weibull(t | α, σ) =
α

σ
·
(

t
σ

)α−1
· exp

(
−
(

t
σ

)α)
.

In contrast, recall that the exponential distribution can be expressed using a rate
(inverse scale) parameter β > 0 with probability density function

exponential(t | β) = β · exp(−β · t).

When α = 1, the Weibull distribution reduces to an exponential distribution,

Weibull(t | 1, σ) = exponential
(

t
∣∣∣∣ 1

σ

)
.

In other words, the Weibull is a continuous expansion of the exponential distribu-
tion.

If T ∼ Weibull(α, σ), then the expected survival time is

E[T] = σ · Γ
(

1 +
1
α

)
,

where the Γ function is the continuous completion of the factorial function (i.e.,
Γ(1 + n) = n! for n ∈ N). As α → 0 for a fixed σ or as σ → ∞ for a fixed α, the
expected survival time goes to infinity.

There are three regimes of the Weibull distribution.

• α < 1. A subject is more likely to fail early. When α < 1, the Weibull density
approaches infinity as t → 0.

• α = 1. The Weibull distribution reduces to the exponential distribution, with
a constant rate of failure over time. When α = 1, the Weibull distribution
approaches σ as t → 0.

• α > 1. Subjects are less likely to fail early. When α < 1, the Weibull density
approaches zero as t → 0.

With α ≤ 1, the mode is zero (t = 0), whereas with α > 1, the mode is nonzero
(t > 0).
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Stan program
With Stan, one can just swap the exponential distribution for the Weibull distribution
with the appropriate parameters and the model remains essentially the same. Recall
the exponential model’s parameters and model block.

parameters {
real<lower=0> beta;

}
model {

t ~ exponential(beta);
target += N_cens * exponential_lccdf(t_cens | beta);

beta ~ lognormal(0, 1);
}

The Stan program for the Weibull model just swaps in the Weibull distribution
and complementary cumulative distribution function with shape (alpha) and scale
(sigma) parameters.

parameters {
real<lower=0> alpha;
real<lower=0> sigma;

}
model {

t ~ weibull(alpha, sigma);
target += N_cens * weibull_lccdf(t_cens | alpha, sigma);

alpha ~ lognormal(0, 1);
sigma ~ lognormal(0, 1);

}

As usual, if more is known about expected survival times, alpha and sigma should
be given more informative priors.

17.3. Survival with covariates
Suppose that for each of n ∈ 1:N items observed, both censored and uncensored,
there is a covariate (row) vector xn ∈ RK. For example, a clinical trial may include
the age (or a one-hot encoding of an age group) and the sex of a participant; an
electronic component might include a one-hot encoding of the factory at which it
was manufactured and a covariate for the load under which it has been run.
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Survival with covariates replaces what is essentially a simple regression with only
an intercept λ with a generalized linear model with a log link, where the rate for
item n is

λn = exp(xn · β),

where β ∈ RK is a K-vector of regression coefficients. Thus

tn ∼ exponential(λn).

The censored items have probability

Pr[n-th censored] = exponentialCCDF(tcens | xcens
n · β).

The covariates form an N × K data matrix, x ∈ RN×K. An intercept can be intro-
duced by adding a column of 1 values to x.

A Stan program for the exponential survival model with covariates is as follows. It
relies on the fact that the order of failure times (t and t_cens) corresponds to the
ordering of items in the covariate matrices (x and x_cens).

data {
int<lower=0> N;
vector[N] t;
int<lower=0> N_cens;
real<lower=0> t_cens;
int<lower=0> K;
matrix[N, K] x;
matrix[N_cens, K] x_cens;

}
parameters {

vector[K] gamma;
}
model {

gamma ~ normal(0, 2);

t ~ exponential(exp(x * gamma));
target += exponential_lccdf(t_cens | exp(x_cens * gamma));

}

Both the distribution statement for uncensored times and the log density incre-
ment statement for censored times are vectorized, one in terms of the exponential
distribution and one in terms of the log complementary cumulative distribution
function.
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17.4. Hazard and survival functions
Suppose T is a random variable representing a survival time, with a smooth cumu-
lative distribution function

FT(t) = Pr[T ≤ t],

so that its probability density function is

pT(t) =
d
dt

FT(t).

The survival function S(t) is the probability of surviving until at least time t, which
is just the complementary cumulative distribution function (ccdf) of the survival
random variable T,

S(t) = 1 − FT(t).

The survival function appeared in the Stan model in the previous section as the
likelihood for items that did not fail during the period of the experiment (i.e., the
censored failure times for the items that survived through the trial period).

The hazard function h(t) is the instantaneous risk of not surviving past time t assum-
ing survival until time t, which is given by

h(t) =
pT(t)
S(t)

=
pT(t)

1 − FT(t)
.

The cumulative hazard function H(t) is defined to be the accumulated hazard over
time,

H(t) =
∫ t

0
h(u)du.

The hazard function and survival function are related through the differential
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equation

h(t) = − d
dt

log S(t).

= − 1
S(t)

d
dt

S(t)

=
1

S(t)
d
dt

− (1 − FY(t))

=
1

S(t)
d
dt

(FY(t)− 1)

=
1

S(t)
d
dt

FY(t)

=
pT(t)
S(t)

.

If T ∼ exponential(β) has an exponential distribution, then its hazard function is
constant,

h(t | β) =
pT(t | β)

S(t | β)

=
exponential(t | β)

1 − exponentialCCDF(t | β)

=
β · exp(−β · t)

1 − (1 − exp(−β · t))

=
β · exp(−β · t)

exp(−β · t)

= β.

The exponential distribution is the only distribution of survival times with a con-
stant hazard function.
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If T ∼ Weibull(α, σ), then its hazard function is

h(t | α, σ) =
pT(t | α, σ)

S(t | α, σ)

=
Weibull(t | α, σ

1 − WeibullCCDF(t | α, σ)

=

α
σ ·
( t

σ

)α−1 · exp
(
−
( t

σ

)α
)

1 −
(

1 − exp
(
−
( t

σ

)α
))

=
α

σ
·
(

t
σ

)α−1
.

If α = 1 the hazard is constant over time (which also follows from the fact that the
Weibull distribution reduces to the exponential distribution when α = 1). When
α > 1, the hazard grows as time passes, whereas when α < 1, it decreases as time
passes.

17.5. Proportional hazards model
The exponential model is parametric in that is specifies an explicit parametric form
for the distribution of survival times. Cox (1972) introduced a semi-parametric
survival model specified directly in terms of a hazard function h(t) rather than in
terms of a distribution over survival times. Cox’s model is semi-parametric in that
it does not model the full hazard function, instead modeling only the proportional
differences in hazards among subjects.

Let xn ∈ RK be a (row) vector of covariates for subject n so that the full covariate
data matrix is x ∈ RN×K. In Cox’s model, the hazard function for subject n is
defined conditionally in terms of their covariates xn and the parameter vector
γ ∈ RK as

h(t | xn, β) = h0(t) · exp(xn · γ),

where h0(t) is a shared baseline hazard function and xn · γ = ∑K
k=1 xn,k · βk is a row

vector-vector product.

In the semi-parametric, proportional hazards model, the baseline hazard function
h0(t) is not modeled. This is why it is called “semi-parametric.” Only the factor
exp(xn · γ), which determines how individual n varies by a proportion from the
baseline hazard, is modeled. This is why it’s called “proportional hazards.”
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Cox’s proportional hazards model is not fully generative. There is no way to gen-
erate the times of failure because the baseline hazard function h0(t) is unmodeled;
if the baseline hazard were known, failure times could be generated. Cox’s pro-
portional hazards model is generative for the ordering of failures conditional on a
number of censored items. Proportional hazard models may also include parametric
or non-parametric model for the baseline hazard function1.

Partial likelihood function
Cox’s proportional specification of the hazard function is insufficient to generate
random variates because the baseline hazard function h0(t) is unknown. On the
other hand, the proportional specification is sufficient to generate a partial likelihood
that accounts for the order of the survival times.

The hazard function h(t | xn, β) = h0(t) · exp(xn · β) for subject n represents the
instantaneous probability that subject n fails at time t given that it has survived
until time t. The probability that subject n is the first to fail among N subjects is
thus proportional to subject n’s hazard function,

Pr[n first to fail at time t] ∝ h(t | xn, β).

Normalizing yields

Pr[n first to fail at time t] =
h(t | xn, β)

∑N
n′=1 h(t | xn′ , β)

=
h0(t) · exp(xn · β)

∑N
n′=1 h0(t) · exp(xn′ · β)

=
exp(xn · β)

∑N
n′=1 exp(xn′ · β)

.

Suppose there are N subjects with strictly ordered survival times t1 < t2 < · · · < tN
and covariate (row) vectors x1, . . . , xN . Let tcens be the (right) censoring time and let
Nobs be the largest value of n such that tn ≤ tcens. This means Nobs is the number of
subjects whose failure time was observed. The ordering is for convenient indexing
and does not cause any loss of generality—survival times can simply be sorted into
the necessary order.

With failure times sorted in decreasing order, the partial likelihood for each observed

1Cox mentioned in his seminal paper that modeling the baseline hazard function would improve
statistical efficiency, but he did not do it for computational reasons.
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subject n ∈ 1:Nobs can be expressed as

Pr[n first to fail among n, n + 1, . . . N] =
exp(xn · β)

∑N
n′=n exp(xn′ · β)

.

The group of items for comparison and hence the summation is over all items,
including those with observed and censored failure times.

The partial likelihood, defined in this form by Breslow (1975), is just the product
of the partial likelihoods for the observed subjects (i.e., excluding subjects whose
failure time is censored).

Pr[observed failures ordered 1, . . . , Nobs|x, β] =
Nobs

∏
n=1

exp(xn · β)

∑N
n′=n exp(xn′ · β)

.

On the log scale,

log Pr[obs. fail ordered 1, . . . , Nobs|x, β] =
Nobs

∑
n=1

log

(
exp(xn · β)

∑N
n′=n exp(xn′ · β)

)

= xn · β − log
N

∑
n′=n

exp(xn′ · β)

= xn · β − logSumExpN
n′=n xn′ · β,

where

logSumExpb
n=a xn = log

b

∑
n=a

exp(xn)

is implemented so as to preserve numerical precision.

This likelihood follows the same approach to ranking as that developed by Plackett
(1975) for estimating the probability of the order of the first few finishers in a horse
race.

A simple normal prior on the components of β completes the model,

β ∼ normal(0, 2).

This should be scaled based on knowledge of the predictors.
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Stan program
To simplify the Stan program, the survival times for uncensored events are sorted
into decreasing order (unlike in the mathematical presentation, where they were
sorted into ascending order). The covariates for censored and uncensored observa-
tions are separated into two matrices.

data {
int<lower=0> K; // num covariates

int<lower=0> N; // num uncensored obs
vector[N] t; // event time (non-strict decreasing)
matrix[N, K] x; // covariates for uncensored obs

int N_c; // num censored obs
real<lower=t[N]> t_c; // censoring time
matrix[N_c, K] x_c; // covariates for censored obs

}

The parameters are just the coefficients.

parameters {
vector[K] beta; // slopes (no intercept)

}

The prior is a simple independent centered normal distribution on each element of
the parameter vector, which is vectorized in the Stan code.

model {
beta ~ normal(0, 2);
...

The log likelihood is implemented so as to minimize duplicated effort. The first
order of business is to calculate the linear predictors, which is done separately for
the subjects whose event time is observed and those for which the event time is
censored.

vector[N] log_theta = x * beta;
vector[N_c] log_theta_c = x_c * beta;

These vectors are computed using efficient matrix-vector multiplies. The log of
exponential values of the censored covariates times the coefficients is reused in
the denominator of each factor, which on the log scale, starts with the log sum of
exponentials of the censored items’ linear predictors.
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real log_denom = log_sum_exp(log_theta_c);

Then, for each observed survival time, going backwards from the latest to the earli-
est, the denominator can be incremented (which turns into a log sum of exponentials
on the log scale), and then the target is updated with its likelihood contribution.

for (n in 1:N) {
log_denom = log_sum_exp(log_denom, log_theta[n]);
target += log_theta[n] - log_denom; // log likelihood

}

The running log sum of exponentials is why the list is iterated in reverse order
of survival times. It allows the log denominator to be accumulated one term at a
time. The condition that the survival times are sorted into decreasing order is not
checked. It could be checked very easily in the transformed data block by adding
the following code.

transformed data {
for (n in 2:N) {
if (!(t[n] < t[n - 1])) {
reject("times must be strictly decreasing, but found"

"!(t[", n, "] < t[, ", (n - 1), "])");
}

}
}

Stan model for tied survival times
Technically, for continuous survival times, the probability of two survival times
being identical will be zero. Nevertheless, real data sets often round survival times,
for instance to the nearest day or week in a multi-year clinical trial. The technically
“correct” thing to do in the face of unknown survival times in a range would be to
treat their order as unknown and infer it. But considering all N! permutations for a
set of N subjects with tied survival times is not tractable. As an alternative, Efron
(1977) introduced an approximate partial likelihood with better properties than a
random permutation while not being quite as good as considering all permutations.
Efron’s model averages the contributions as if they truly did occur simultaneously.

In the interest of completeness, here is the Stan code for an implementation of
Efron’s estimator. It uses two user-defined functions. The first calculates how many
different survival times occur in the data.
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functions {
int num_unique_starts(vector t) {
if (size(t) == 0) return 0;
int us = 1;
for (n in 2:size(t)) {
if (t[n] != t[n - 1]) us += 1;

}
return us;

}

This is then used to compute the value J to send into the function that computes
the position in the array of failure times where each new failure time starts, plus
an end point that goes one past the target. This is a standard way in Stan to code
ragged arrays.

array[] int unique_starts(vector t, int J) {
array[J + 1] int starts;
if (J == 0) return starts;
starts[1] = 1;
int pos = 2;
for (n in 2:size(t)) {
if (t[n] != t[n - 1]) {

starts[pos] = n;
pos += 1;

}
}
starts[J + 1] = size(t) + 1;
return starts;

}
}

The data format is exactly the same as for the model in the previous section, but
in this case, the transformed data block is used to cache some precomputations
required for the model, namely the ragged array grouping elements that share the
same survival time.

transformed data {
int<lower=0> J = num_unique_starts(t);
array[J + 1] int<lower=0> starts = unique_starts(t, J);

}
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For each unique survival time j in 1:J, the subjects indexed from starts[j]
to starts[j + 1] - 1 (inclusive) share the same survival time. The number of
elements with survival time j is thus (starts[j + 1] - 1) - starts[j] + 1,
or just starts[j + 1] - starts[j].

The parameters and prior are also the same—just a vector beta of coefficients with
a centered normal prior. Although it starts with the same caching of results for later,
and uses the same accumulator for the denominator, the overall partial likelihood
is much more involved, and depends on the user-defined functions defining the
transformed data variables J and starts.

vector[N] log_theta = x * beta;
vector[N_c] log_theta_c = x_c * beta;
real log_denom_lhs = log_sum_exp(log_theta_c);
for (j in 1:J) {
int start = starts[j];
int end = starts[j + 1] - 1;
int len = end - start + 1;
real log_len = log(len);
real numerator = sum(log_theta[start:end]);
log_denom_lhs = log_sum_exp(log_denom_lhs,

log_sum_exp(log_theta[start:end]));
vector[len] diff;
for (ell in 1:len) {
diff[ell] = log_diff_exp(log_denom_lhs,

log(ell - 1) - log_len
+ log_sum_exp(log_theta[start:end]));

}
target += numerator - sum(diff);

}

The special function log_diff_exp is defined as

logDiffExp(u, v) = log(exp(u)− exp(v)).

Because of how J and starts are constructed, the length len will always be strictly
positive so that the log is well defined.
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18. Floating Point Arithmetic

Computers approximate real values in R using a fixed number of bits. This chapter
explains how this is done and why it is important for writing robust Stan (and other
numerical) programs. The subfield of computer science devoted to studying how
real arithmetic works on computers is called numerical analysis.

18.1. Floating-point representations
Stan’s arithmetic is implemented using double-precision arithmetic. The behavior
of most1 modern computers follows the floating-point arithmetic, IEEE Standard for
Floating-Point Arithmetic (IEEE 754).

Finite values
The double-precision component of the IEEE 754 standard specifies the representa-
tion of real values using a fixed pattern of 64 bits (8 bytes). All values are represented
in base two (i.e., binary). The representation is divided into two signed components:

• significand (53 bits): base value representing significant digits

• exponent (11 bits): power of two multiplied by the base

The value of a finite floating point number is

v = (−1)s × c 2q

Normality
A normal floating-point value does not use any leading zeros in its significand;
subnormal numbers may use leading zeros. Not all I/O systems support subnormal
numbers.

Ranges and extreme values
There are some reserved exponent values so that legal exponent values range
between−(210) + 2 = −1022 and 210 − 1 = 1023. Legal significand values are
between −252 and 252 − 1. Floating point allows the representation of both really
big and really small values. Some extreme values are

• largest normal finite number: ≈ 1.8 × 10308

1The notable exception is Intel’s optimizing compilers under certain optimization settings.
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• largest subnormal finite number: ≈ 2.2 × 10308

• smallest positive normal number: ≈ 2.2 × 10−308

• smallest positive subnormal number: ≈ 4.9 × 10−324

Signed zero
Because of the sign bit, there are two ways to represent zero, often called “positive
zero” and “negative zero”. This distinction is irrelevant in Stan (as it is in R), because
the two values are equal (i.e., 0 == -0 evaluates to true).

Not-a-number values
A specially chosen bit pattern is used for the not-a-number value (often written as
NaN in programming language output, including Stan’s).

Stan provides a value function not_a_number() that returns this special not-a-
number value. It is meant to represent error conditions, not missing values. Usually
when not-a-number is an argument to a function, the result will not-a-number if an
exception (a rejection in Stan) is not raised.

Stan also provides a test function is_nan(x) that returns 1 if x is not-a-number and
0 otherwise.

Not-a-number values propagate under almost all mathematical operations. For
example, all of the built-in binary arithmetic operations (addition, subtraction,
multiplication, division, negation) return not-a-number if any of their arguments are
not-a-number. The built-in functions such as log and exp have the same behavior,
propagating not-a-number values.

Most of Stan’s built-in functions will throw exceptions (i.e., reject) when any of their
arguments is not-a-number.

Comparisons with not-a-number always return false, up to and including com-
parison with itself. That is, not_a_number() == not_a_number() somewhat con-
fusingly returns false. That is why there is a built-in is_nan() function in Stan
(and in C++). The only exception is negation, which remains coherent. This means
not_a_number() != not_a_number() returns true.

Undefined operations often return not-a-number values. For example, sqrt(-1)
will evaluate to not-a-number.

Positive and negative infinity
There are also two special values representing positive infinity (∞) and negative
infinity (−∞). These are not as pathological as not-a-number, but are often used to
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represent error conditions such as overflow and underflow. For example, rather than
raising an error or returning not-a-number, log(0) evaluates to negative infinity.
Exponentiating negative infinity leads back to zero, so that 0 == exp(log(0)).
Nevertheless, this should not be done in Stan because the chain rule used to calculate
the derivatives will attempt illegal operations and return not-a-number.

There are value functions positive_infinity() and negative_infinity() as
well as a test function is_inf().

Positive and negative infinity have the expected comparison behavior, so that
negative_infinty() < 0 evaluates to true (represented with 1 in Stan). Also,
negating positive infinity leads to negative infinity and vice-versa.

Positive infinity added to either itself or a finite value produces positive infinity.
Negative infinity behaves the same way. However, attempts to subtract positive
infinity from itself produce not-a-number, not zero. Similarly, attempts to divide
infinite values results in a not-a-number value.

18.2. Literals: decimal and scientific notation
In programming languages such as Stan, numbers may be represented in standard
decimal (base 10) notation. For example, 2.39 or -1567846.276452. Remember
there is no point in writing more than 16 significant digits as they cannot be repre-
sented. A number may be coded in Stan using scientific notation, which consists of a
signed decimal representation of a base and a signed integer decimal exponent. For
example, 36.29e-3 represents the number 36.29 × 10−3, which is the same number
as is represented by 0.03629.

18.3. Arithmetic precision
The choice of significand provides log10 253 ≈ 15.95 decimal (base 10) digits of
arithmetic precision. This is just the precision of the floating-point representation.
After several operations are chained together, the realized arithmetic precision is
often much lower.

Rounding and probabilities
In practice, the finite amount of arithmetic precision leads to rounding, whereby a
number is represented by the closest floating-point number. For example, with only
16 decimal digits of accuracy,

1 + 1e-20 == 1

The closest floating point number to 1 + 10−20 turns out to be 1 itself. By contrast,
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0 + 1e-20 == 1e-20

This highlights the fact that precision depends on scale. Even though 1 + 1e-20
== 1, we have 1e-20 + 1e-20 == 2e-20, as expected.

Rounding also manifests itself in a lack of transitivity. In particular, it does not
usually hold for three floating point numbers a, b, c that (a + b) + c = a + (b + c).

In statistical applications, problems often manifest in situations where users expect
the usual rules of real-valued arithmetic to hold. Suppose we have a lower trian-
gular matrix L with strictly positive diagonal, so that it is the Cholesky factor of
a positive-definite matrix L L⊤. In practice, rounding and loss of precision may
render the result L L⊤ neither symmetric nor positive definite.

In practice, care must be taken to defend against rounding. For example, symmetry
may be produced by adding L L⊤ with its transpose and dividing by two, or by
copying the lower triangular portion into the upper portion. Positive definiteness
may be maintained by adding a small quantity to the diagonal.

Machine precision and the asymmetry of 0 and 1

The smallest number greater than zero is roughly 0 + 10−323. The largest number
less than one is roughly 1 − 10−15.95. The asymmetry is apparent when considering
the representation of that largest number smaller than one—the exponent is of no
help, and the number is represented as the binary equivalent of 0.9999999999999999.

For this reason, the machine precision is said to be roughly 10−15.95. This constant is
available as machine_precision() in Stan.

Complementary and epsilon functions
Special operations are available to mitigate this problem with numbers rounding
when they get close to one. For example, consider the operation log(1 + x) for
positive x. When x is small (less than 10−16 for double-precision floating point),
the sum in the argument will round to 1 and the result will round to zero. To
allow more granularity, programming languages provide a library function directly
implementing f (x) = log(1 + x). In Stan (as in C++), this operation is written as
log1p(x). Because x itself may be close to zero, the function log1p(x) can take the
logarithm of values very close to one, the results of which are close to zero.

Similarly, the complementary cumulative distribution functions (CCDF), defined
by F∁

Y(y) = 1 − FY(y), where FY is the cumulative distribution function (CDF) for
the random variable Y. This allows values very close to one to be represented in
complementary form.



18.3. ARITHMETIC PRECISION 229

Catastrophic cancellation
Another downside to floating point representations is that subtraction of two num-
bers close to each other results in a loss of precision that depends on how close they
are. This is easy to see in practice. Consider

1.23456789012345

−1.23456789012344

= 0.00000000000001

We start with fifteen decimal places of accuracy in the arguments and are left with a
single decimal place of accuracy in the result.

Catastrophic cancellation arises in statistical computations whenever we calculate
variance for a distribution with small standard deviations relative to its location.
When calculating summary statistics, Stan uses Welford’s algorithm for computing
variances. This avoids catastrophic cancellation and may also be carried out in a
single pass.

Overflow
Even though 1e200 may be represented as a double precision floating point value,
there is no finite value large enough to represent 1e200 * 1e200. The result of
1e200 * 1e200 is said to overflow. The IEEE 754 standard requires the result to be
positive infinity.

Overflow is rarely a problem in statistical computations. If it is, it’s possible to work
on the log scale, just as for underflow as described below.

Underflow and the log scale
When there is no number small enough to represent a result, it is said to underflow.
For instance, 1e-200 may be represented, but 1e-200 * 1e-200 underflows so
that the result is zero.

Underflow is a ubiquitous problem in likelihood calculations, For example, if
p(yn | θ) < 0.1, then

p(y | θ) =
N

∏
n=1

p(yn | θ)

will underflow as soon as N > 350 or so.

To deal with underflow, work on the log scale. Even though p(y | θ) can’t be
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represented, there is no problem representing

log p(y | θ) = log ∏N
n=1 p(yn | θ)

= ∑N
n=1 log p(yn | θ)

This is why all of Stan’s probability functions operate on the log scale.

18.4. Log sum of exponentials
Working on the log scale, multiplication is converted to addition,

log(a · b) = log a + log b.

Thus sequences of multiplication operations can remain on the log scale. But what
about addition? Given log a and log b, how do we get log(a + b)? Working out the
algebra,

log(a + b) = log(exp(log a) + exp(log b)).

Log-sum-exp function
The nested log of sum of exponentials is so common, it has its own name, “log-sum-
exp”,

log-sum-exp(u, v) = log(exp(u) + exp(v)).

so that
log(a + b) = log-sum-exp(log a, log b).

Although it appears this might overflow as soon as exponentiation is introduced,
evaluation does not proceed by evaluating the terms as written. Instead, with a
little algebra, the terms are rearranged into a stable form,

log-sum-exp(u, v) = max(u, v) + log
(

exp(u − max(u, v)) + exp(v − max(u, v))
)
.

Because the terms inside the exponentiations are u − max(u, v) and v − max(u, v),
one will be zero and the other will be negative. Because the operation is symmetric,
it may be assumed without loss of generality that u ≥ v, so that

log-sum-exp(u, v) = u + log
(
1 + exp(v − u)

)
.

Although the inner term may itself be evaluated using the built-in function log1p,
there is only limited gain because exp(v − u) is only near zero when u is much
larger than v, meaning the final result is likely to round to u anyway.



18.5. COMPARING FLOATING-POINT NUMBERS 231

To conclude, when evaluating log(a+ b) given log a and log b, and assuming log a >
log b, return

log(a + b) = log a + log1p
(

exp(log b − log a)
)
.

Applying log-sum-exp to a sequence
The log sum of exponentials function may be generalized to sequences in the
obvious way, so that if v = v1, . . . , vN , then

log-sum-exp(v) = log
N

∑
n=1

exp(vn)

= max(v) + log
N

∑
n=1

exp(vn − max(v)).

The exponent cannot overflow because its argument is either zero or negative. This
form makes it easy to calculate log(u1 + · · ·+ uN) given only log un.

Calculating means with log-sum-exp
An immediate application is to computing the mean of a vector u entirely on the
log scale. That is, given log u and returning log mean(u).

log

(
1
N

N

∑
n=1

un

)
= log

1
N

+ log
N

∑
n=1

exp(log un)

= − log N + log-sum-exp(log u).

where log u = (log u1, . . . , log uN) is understood elementwise.

18.5. Comparing floating-point numbers
Because floating-point representations are inexact, it is rarely a good idea to test
exact inequality. The general recommendation is that rather than testing x == y, an
approximate test may be used given an absolute or relative tolerance.

Given a positive absolute tolerance of epsilon, x can be compared to y using the
conditional

abs(x - y) <= epsilon.

Absolute tolerances work when the scale of x and y and the relevant comparison is
known.

Given a positive relative tolerance of epsilon, a typical comparison is
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2 * abs(x - y) / (abs(x) + abs(y)) <= epsilon.



19. Matrices, Vectors, Arrays, and Tuples

This chapter provides pointers as to how to choose among the various container
types (matrix, vector, array, and tuple) provided by Stan.

19.1. Basic motivation
Stan provides three basic scalar types, int, real, and complex, as well as three
basic linear algebra types, vector, row_vector, and matrix. Stan allows arrays
of any dimensionality, containing any type of element (though that type must be
declared and must be the same for all elements).

This leaves us in the awkward situation of having three one-dimensional containers,
as exemplified by the following declarations.

array[N] real a;
vector[N] a;
row_vector[N] a;

These distinctions matter. Matrix types, like vector and row vector, are required
for linear algebra operations. There is no automatic promotion of arrays to vectors
because the target, row vector or column vector, is ambiguous. Similarly, row
vectors are separated from column vectors because multiplying a row vector by
a column vector produces a scalar, whereas multiplying in the opposite order
produces a matrix.

The following code fragment shows all four ways to declare a two-dimensional
container of size M × N.

array[M, N] real b; // b[m] : array[] real (efficient)
array[M] vector[N] b; // b[m] : vector (efficient)
array[M] row_vector[N] b; // b[m] : row_vector (efficient)
matrix[M, N] b; // b[m] : row_vector (inefficient)

The main differences among these choices involve efficiency for various purposes
and the type of b[m], which is shown in comments to the right of the declarations.
Thus the only way to efficiently iterate over row vectors is to use the third decla-
ration, but if you need linear algebra on matrices, but the only way to use matrix
operations is to use the fourth declaration.

233
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The inefficiencies due to any manual reshaping of containers is usually slight
compared to what else is going on in a Stan program (typically a lot of gradient
calculations).

19.2. Tuple types
Arrays may contain entries of any type, but the types must be the same for all
entries. Matrices and vectors contain either real numbers or complex numbers, but
all the contained types are the same (e.g., if a vector has a single complex typed
entry, all the entries are complex).

With arrays or vectors, we can represent pairs of real numbers or pairs of complex
numbers. For example, a complex_vector[3] holds exactly three complex num-
bers. With arrays and vectors, there is no way to represent a pair consisting of an
integer and a real number.

Tuples provide a way to represent a sequence of values of heterogeneous types.
For example, tuple(int, real) is the type of a pair consisting of an integer and
a real number and tuple(array[5] int, vector[6]) is the type of pairs where
the first element is a five-element array of integers, the second entry is an integer,
and the third is a six-element vector.

Tuple syntax
Tuples are declared using the keyword tuple followed by a sequence of type
declarations in parentheses. Tuples are constructed using only parentheses. The
following example illustrations both declaration and construction.

tuple(int, vector[3]) ny = (5, [3, 2.9, 1.8]');

The elements of a tuple are accessed by position, starting from 1. For example, we
can extract the elements of the tuple above using

int n = ny.1;
vector[3] y = ny.2;

We can also assign into the elements of a tuple.

tuple(int, vector[3], complex) abc;
abc.1 = 5;
abc.2[1] = 3;
abc.2[2] = 2.9;
abc.2[3] = 1.4798;
abc.3 = 2 + 1.9j;
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As the cascaded indexing example shows, the result of abc.1 is an lvalue (i.e.,
something to which values may be assigned), and we can further index into it to
create new lvalues (e.g., abc.2[1] pulls out the first element of the vector value of
the second element of the tuple.)

There are two efficiency considerations for tuples. First, like the other container
types, tuples are passed to functions by constant reference, which means only a
pointer gets passed rather than copying the data. Second, like the array types,
creating a tuple requires copying the data for all of its elements. For example, in the
following code, the matrix is copied, entailing 1000 copies of scalar values.

int a = 5;
matrix[10, 100] b = ...;
tuple(int, matrix[10, 100]) ab = (a, b); // COPIES b
b[1,1] = 10.3; // does NOT change ab

Applications of tuples
Tuples are primarily useful for two things. First, they provide a way to encapsulate
a group of heterogeneous items so that they may be passed as a group. This
lets us define arrays of structures as well as structures of arrays. For example,
array[N] tuple(int, real, vector[5]) is an array of tuples, each of which
has an integer, real, and vector component. Alternatively, we can represent the same
information using a tuple of parallel arrays as tuple(array[N] int, array[N]
real, array[N] vector[5]).

The second use is for function return values. Here, if a function computes two
different things with different types, and the computation shares work, it’s best to
write one function that returns both things. For example, an eigendecomposition
returns a pair consisting of a vector of eigenvalues and a matrix of eigenvectors,
whereas a singular value decomposition returns three matrices of different shapes.
Before introducing tuples in version 2.33, the QR decomposition of matrix A = Q ·R,
where Q is orthonormal and R is upper triangular. In the past, this required two
function calls.

matrix[M, N] A = ...;
matrix[M, M] Q = qr_Q(A);
matrix[M, N] R = qr_R(A);

With tuples, this can be simplified to the following,

tuple(matrix[M, M], matrix[M, N]) QR = qr(A);

with QR.1 being Q and QR.2 giving R.
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19.3. Fixed sizes and indexing out of bounds
Stan’s matrices, vectors, and array variables are sized when they are declared and
may not be dynamically resized. Function arguments do not have sizes, but these
sizes are fixed when the function is called and the container is instantiated. Also,
declarations may be inside loops and thus may change over the course of running a
program, but each time a declaration is visited, it declares a fixed size object.

When an index is provided that is out of bounds, Stan throws a rejection error and
computation on the current log density and gradient evaluation is halted and the
algorithm is left to clean up the error. All of Stan’s containers check the sizes of all
indexes.

19.4. Data type and indexing efficiency
The underlying matrix and linear algebra operations are implemented in terms of
data types from the Eigen C++ library. By having vectors and matrices as basic
types, no conversion is necessary when invoking matrix operations or calling linear
algebra functions.

Arrays, on the other hand, are implemented as instances of the C++
std::vector class (not to be confused with Eigen’s Eigen::Vector class or Stan
vectors). By implementing arrays this way, indexing is efficient because values can
be returned by reference rather than copied by value.

Matrices vs. two-dimensional arrays
In Stan models, there are a few minor efficiency considerations in deciding between
a two-dimensional array and a matrix, which may seem interchangeable at first
glance.

First, matrices use a bit less memory than two-dimensional arrays. This is because
they don’t store a sequence of arrays, but just the data and the two dimensions.

Second, matrices store their data in column-major order. Furthermore, all of the
data in a matrix is guaranteed to be contiguous in memory. This is an important
consideration for optimized code because bringing in data from memory to cache is
much more expensive than performing arithmetic operations with contemporary
CPUs. Arrays, on the other hand, only guarantee that the values of primitive types
are contiguous in memory; otherwise, they hold copies of their values (which are
returned by reference wherever possible).

Third, both data structures are best traversed in the order in which they are stored.
This also helps with memory locality. This is column-major for matrices, so the
following order is appropriate.
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matrix[M, N] a;
//...
for (n in 1:N) {
for (m in 1:M) {
// ... do something with a[m, n] ...

}
}

Arrays, on the other hand, should be traversed in row-major order (i.e., last index
fastest), as in the following example.

array[M, N] real a;
// ...
for (m in 1:M) {
for (n in 1:N) {
// ... do something with a[m, n] ...

}
}

The first use of a[m ,n] should bring a[m] into memory. Overall, traversing
matrices is more efficient than traversing arrays.

This is true even for arrays of matrices. For example, the ideal order in which to
traverse a two-dimensional array of matrices is

array[I, J] matrix[M, N] b;
// ...
for (i in 1:I) {
for (j in 1:J) {
for (n in 1:N) {
for (m in 1:M) {
// ... do something with b[i, j, m, n] ...

}
}

}
}

If a is a matrix, the notation a[m] picks out row m of that matrix. This is a rather
inefficient operation for matrices. If indexing of vectors is needed, it is much better
to declare an array of vectors. That is, this
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array[M] row_vector[N] b;
// ...
for (m in 1:M) {

// ... do something with row vector b[m] ...
}

is much more efficient than the pure matrix version

matrix[M, N] b;
// ...
for (m in 1:M) {

// ... do something with row vector b[m] ...
}

Similarly, indexing an array of column vectors is more efficient than using the col
function to pick out a column of a matrix.

In contrast, whatever can be done as pure matrix algebra will be the fastest. So if I
want to create a row of predictor-coefficient dot-products, it’s more efficient to do
this

matrix[N, k] x; // predictors (aka covariates)
// ...
vector[K] beta; // coeffs
// ...
vector[N] y_hat; // linear prediction
// ...
y_hat = x * beta;

than it is to do this

array[N] row_vector[K] x; // predictors (aka covariates)
// ...
vector[K] beta; // coeffs
// ...
vector[N] y_hat; // linear prediction
// ...
for (n in 1:N) {
y_hat[n] = x[n] * beta;

}
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(Row) vectors vs. one-dimensional arrays
For use purely as a container, there is really nothing to decide among vectors, row
vectors and one-dimensional arrays. The Eigen::Vector template specialization
and the std::vector template class are implemented similarly as containers of
double values (the type real in Stan). Only arrays in Stan are allowed to store
integer values.

19.5. Memory locality
The key to understanding efficiency of matrix and vector representations is memory
locality and reference passing versus copying.

Memory locality
CPUs on computers bring in memory in blocks through layers of caches. Fetching
from memory is much slower than performing arithmetic operations. The only way
to make container operations fast is to respect memory locality and access elements
that are close together in memory sequentially in the program.

Matrices
Matrices are stored internally in column-major order. That is, an M × N matrix
stores its elements in the order

(1, 1), (2, 1), . . . , (M, 1), (1, 2), . . . , (M, 2), . . . , (1, N), . . . , (M, N).

This means that it’s much more efficient to write loops over matrices column by
column, as in the following example.

matrix[M, N] a;
// ...
for (n in 1:N) {
for (m in 1:M) {

// ... do something with a[m, n] ...
}

}

It also follows that pulling a row out of a matrix is not memory local, as it has to
stride over the whole sequence of values. It also requires a copy operation into a
new data structure as it is not stored internally as a unit in a matrix. For sequential
access to row vectors in a matrix, it is much better to use an array of row vectors, as
in the following example.
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array[M] row_vector[N] a;
// ...
for (m in 1:M) {
// ... do something with row vector a[m] ...

}

Even if what is done involves a function call, the row vector a[m] will not have to
be copied.

Arrays
Arrays are stored internally following their data structure. That means a two
dimensional array is stored in row-major order. Thus it is efficient to pull out a
“row” of a two-dimensional array.

array[M, N] real a;
// ...
for (m in 1:M) {
// ... do something with a[m] ...

}

A difference with matrices is that the entries a[m] in the two dimensional array are
not necessarily adjacent in memory, so there are no guarantees on iterating over all
the elements in a two-dimensional array will provide memory locality across the
“rows.”

19.6. Converting among matrix, vector, and array types
There is no automatic conversion among matrices, vectors, and arrays in Stan. But
there are a wide range of conversion functions to convert a matrix into a vector,
or a multi-dimensional array into a one-dimensional array, or convert a vector to
an array. See the section on mixed matrix and array operations in the functions
reference manual for a complete list of conversion operators and the multi-indexing
chapter for some reshaping operations involving multiple indexing and range
indexing.

19.7. Aliasing in Stan containers
Stan expressions are all evaluated before assignment happens, so there is no danger
of so-called aliasing in array, vector, or matrix operations. Contrast the behavior of
the assignments to u and x, which start with the same values.

The loop assigning to u and the compound slicing assigning to x.

multi-indexing.qmd
multi-indexing.qmd
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the following trivial Stan program.

transformed data {
vector[4] x = [ 1, 2, 3, 4 ]';
vector[4] u = [ 1, 2, 3, 4 ]';

for (t in 2:4) {
u[t] = u[t - 1] * 3;

}

x[2:4] = x[1:3] * 3;

print("u = ", u);
print("x = ", x);

}

The output it produces is,

u = [1, 3, 9, 27]
x = [1, 3, 6, 9]

In the loop version assigning to u, the values are updated before being used to define
subsequent values; in the sliced expression assigning to x, the entire right-hand side
is evaluated before assigning to the left-hand side.



20. Multiple Indexing and Range Indexing

Stan allows multiple indexes to be provided for containers (i.e., arrays, vectors,
and matrices) in a single position, using either an array of integer indexes or range
bounds. In many cases, there are functions that provide similar behavior.

Allowing multiple indexes supports inline vectorization of models. For instance,
consider the data model for a varying-slope, varying-intercept hierarchical linear
regression, which could be coded as

for (n in 1:N) {
y[n] ~ normal(alpha[ii[n]] + beta[ii[n]] * x[n], sigma);

}

With multiple indexing, this can be coded in one line, leading to more efficient
vectorized code.

y ~ normal(alpha[ii] + rows_dot_product(beta[ii], x), sigma);

This latter version is faster than the loop version; it is equivalent in speed to the
clunky assignment to a local variable.

{
vector[N] mu;
for (n in 1:N) {
mu[n] = alpha[ii[n]] + beta[ii[n]] * x[n];

}
y ~ normal(mu, sigma);

}

The boost in speed compared to the original version is because the single call to
the normal log density in the distribution statement will be much more memory
efficient than the original version.

20.1. Multiple indexing
The following is the simplest concrete example of multiple indexing with an array
of integers; the ellipses stand for code defining the variables as indicated in the
comments.

242
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array[3] int c;
// ... define: c == (5, 9, 7)
array[4] int idxs;
// ... define: idxs == (3, 3, 1, 2)
array[4] int d;
d = c[idxs]; // result: d == (7, 7, 5, 9)

In general, the multiple indexed expression c[idxs] is defined as follows, assuming
idxs is of size K.

c[idxs] = ( c[idxs[1]], c[idxs[2]], ..., c[idxs[K]] )

Thus c[idxs] is of the same size as idxs, which is K in this example.

Multiple indexing can also be used with multi-dimensional arrays. For example,
consider the following.

array[2, 3] int c;
// ... define: c = ((1, 3, 5), ((7, 11, 13))
array[4] int idxs;
// ... define: idxs = (2, 2, 1, 2)
array[4, 3] int d
d = c[idxs]; // result: d = ((7, 11, 13), (7, 11, 13),

// (1, 3, 5), (7, 11, 13))

That is, putting an index in the first position acts exactly the same way as defined
above. The fact that the values are themselves arrays makes no difference—the
result is still defined by c[idxs][j] == c[idxs[j]].

Multiple indexing may also be used in the second position of a multi-dimensional
array. Continuing the above example, consider a single index in the first position
and a multiple index in the second.

array[4] int e;
e = c[2, idxs]; // result: c[2] = (7, 11, 13)

// result: e = (11, 11, 7, 11)

The single index is applied, the one-dimensional result is determined, then the
multiple index is applied to the result. That is, c[2,idxs] evaluates to the same
value as c[2][idxs].

Multiple indexing can apply to more than one position of a multi-dimensional array.
For instance, consider the following
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array[2, 3] int c;
// ... define: c = ((1, 3, 5), (7, 11, 13))
array[3] int idxs1;
// ... define: idxs1 = (2, 2, 1)
array[2] int idxs2;
// ... define: idxs2 = (1, 3)
array[3, 2] int d;
d = c[idxs1, idxs2]; // result: d = ((7, 13), (7, 13), (1, 5))

With multiple indexes, we no longer have c[idxs1, idxs2] being the same as
c[idxs1][idxs2]. Rather, the entry d[i, j] after executing the above is given by

d[i, j] == c[idxs1, idxs2][i, j] = c[idxs1[i], idxs2[j]]

This example illustrates the operation of multiple indexing in the general case: a
multiple index like idxs1 converts an index i used on the result (here, c[idxs1,
idxs2]) to index idxs1[i] in the variable being indexed (here, c). In contrast, a
single index just returns the value at that index, thus reducing dimensionality by
one in the result.

20.2. Slicing with range indexes
Slicing returns a contiguous slice of a one-dimensional array, a contiguous sub-
block of a two-dimensional array, and so on. Semantically, it is just a special form of
multiple indexing.

Lower and upper bound indexes
For instance, consider supplying an upper and lower bound for an index.

array[7] int c;
// ...
array[4] int d;
d = c[3:6]; // result: d == (c[3], c[4], c[5], c[6])

The range index 3:6 behaves semantically just like the multiple index (3, 4, 5,
6). In terms of implementation, the sliced upper and/or lower bounded indices are
faster and use less memory because they do not explicitly create a multiple index,
but rather use a direct loop. They are also easier to read, so should be preferred
over multiple indexes where applicable.
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Lower or upper bound indexes
It is also possible to supply just a lower bound, or just an upper bound. Writing
c[3:] is just shorthand for c[3:size(c)]. Writing c[:5] is just shorthand for
c[1:5].

Full range indexes
Finally, it is possible to write a range index that covers the entire range of an array,
either by including just the range symbol (:) as the index or leaving the index
position empty. In both cases, c[] and c[:] are equal to c[1:size(c)], which in
turn is just equal to c.

Slicing functions
Stan provides head and tail functions that pull out prefixes or suffixes of vectors,
row vectors, and one-dimensional arrays. In each case, the return type is the same
as the argument type. For example,

vector[M] a = ...;
vector[N] b = head(a, N);

assigns b to be a vector equivalent to the first N elements of the vector a. The
function tail works the same way for suffixes, with

array[M] a = ...;
array[N] b = tail(a, N);

Finally, there is a segment function, which specifies a first element and number of
elements. For example,

array[15] a = ...;
array[3] b = segment(a, 5, 3);

will set b to be equal to { a[5], a[6], a[7] }, so that it starts at element 5 of a
and includes a total of 3 elements.

20.3. Multiple indexing on the left of assignments
Multiple expressions may be used on the left-hand side of an assignment statement,
where they work exactly the same way as on the right-hand side in terms of picking
out entries of a container. For example, consider the following.

array[3] int a;
array[2] int c;
array[2] int idxs;
// ... define: a == (1, 2, 3); c == (5, 9)
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// idxs = (3,2)
a[idxs] = c; // result: a == (1, 9, 5)

The result above can be worked out by noting that the assignment sets a[idxs[1]]
(a[3]) to c[1] (5) and a[idxs[2]] (a[2]) to c[2] (9).

The same principle applies when there are many multiple indexes, as in the follow-
ing example.

array[5, 7] int a;
array[2, 2] int c;
// ...
a[2:3, 5:6] = c; // result: a[2, 5] == c[1, 1]; a[2, 6] == c[1, 2]

// a[3, 5] == c[2, 1]; a[3, 6] == c[2, 2]

As in the one-dimensional case, the right-hand side is written into the slice, block,
or general chunk picked out by the left-hand side.

Usage on the left-hand side allows the full generality of multiple indexing, with
single indexes reducing dimensionality and multiple indexes maintaining dimen-
sionality while rearranging, slicing, or blocking. For example, it is valid to assign to
a segment of a row of an array as follows.

array[10, 13] int a;
array[2] int c;
// ...
a[4, 2:3] = c; // result: a[4, 2] == c[1]; a[4, 3] == c[2]

Assign-by-value and aliasing
Aliasing issues arise when there are references to the same data structure on the
right-hand and left-hand side of an assignment. For example, consider the array a
in the following code fragment.

array[3] int a;
// ... define: a == (5, 6, 7)
a[2:3] = a[1:2];
// ... result: a == (5, 5, 6)

The reason the value of a after the assignment is (5, 5, 6) rather than (5, 5, 5) is that
Stan behaves as if the right-hand side expression is evaluated to a fresh copy. As
another example, consider the following.
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array[3] int a;
array[3] int idxs;
// ... define idxs = (2, 1, 3)
a[idxs] = a;

In this case, it is evident why the right-hand side needs to be copied before the
assignment.

It is tempting (but wrong) to think of the assignment a[2:3] = a[1:2] as exe-
cuting the following assignments.

// ... define: a = (5, 6, 7)
a[2] = a[1]; // result: a = (5, 5, 7)
a[3] = a[2]; // result: a = (5, 5, 5)!

This produces a different result than executing the assignment because a[2]’s value
changes before it is used.

20.4. Multiple indexes with vectors and matrices
Multiple indexes can be supplied to vectors and matrices as well as arrays of vectors
and matrices.

Vectors
Vectors and row vectors behave exactly the same way as arrays with multiple
indexes. If v is a vector, then v[3] is a scalar real value, whereas v[2:4] is a vector
of size 3 containing the elements v[2], v[3], and v[4].

The only subtlety with vectors is in inferring the return type when there are multiple
indexes. For example, consider the following minimal example.

array[3] vector[5] v;
array[7] int idxs;
// ...
vector[7] u;
u = v[2, idxs];

array[7] real w;
w = v[idxs, 2];

The key is understanding that a single index always reduces dimensionality,
whereas a multiple index never does. The dimensions with multiple indexes (and
unindexed dimensions) determine the indexed expression’s type. In the example
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above, because v is an array of vectors, v[2, idxs] reduces the array dimension but
doesn’t reduce the vector dimension, so the result is a vector. In contrast, v[idxs,
2] does not reduce the array dimension, but does reduce the vector dimension (to
a scalar), so the result type for w is an array of reals. In both cases, the size of the
multiple index (here, 7) determines the size of the result.

Matrices
Matrices are a bit trickier because they have two dimensions, but the underlying
principle of type inference is the same—multiple indexes leave dimensions in place,
whereas single indexes reduce them. The following code shows how this works for
multiple indexing of matrices.

matrix[5, 7] m;
// ...
row_vector[3] rv;
rv = m[4, 3:5]; // result is 1 x 3
// ...
vector[4] v;
v = m[2:5, 3]; // result is 3 x 1
// ...
matrix[3, 4] m2;
m2 = m[1:3, 2:5]; // result is 3 x 4

The key is realizing that any position with a multiple index or bounded index
remains in play in the result, whereas any dimension with a single index is replaced
with 1 in the resulting dimensions. Then the type of the result can be read off of the
resulting dimensionality as indicated in the comments above.

Matrices with one multiple index
If matrices receive a single multiple index, the result is a matrix. So if m is a matrix,
so is m[2:4]. In contrast, supplying a single index, m[3], produces a row vector
result. That is, m[3] produces the same result as m[3, ] or m[3, 1:cols(m)].

Arrays of vectors or matrices
With arrays of matrices, vectors, and row vectors, the basic access rules remain ex-
actly the same: single indexes reduce dimensionality and multiple indexes redirect
indexes. For example, consider the following example.

array[5, 7] matrix[3, 4] m;
// ...
array[2] matrix[3, 4] a;
a = m[1, 2:3]; // knock off first array dimension
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a = m[3:4, 5]; // knock off second array dimension

In both assignments, the multiple index knocks off an array dimension, but it’s
different in both cases. In the first case, a[i] == m[1, i + 1], whereas in the
second case, a[i] == m[i + 2, 5].

Continuing the previous example, consider the following.

// ...
vector[2] b;
b = a[1, 3, 2:3, 2];

Here, the two array dimensions are reduced as is the column dimension of the
matrix, leaving only a row dimension index, hence the result is a vector. In this case,
b[j] == a[1, 3, 1 + j, 2].

This last example illustrates an important point: if there is a lower-bounded index,
such as 2:3, with lower bound 2, then the lower bound minus one is added to the
index, as seen in the 1 + j expression above.

Continuing further, consider continuing with the following.

// ...
array[2] row_vector[3] c;
c = a[4:5, 3, 1, 2: ];

Here, the first array dimension is reduced, leaving a single array dimension, and
the row index of the matrix is reduced, leaving a row vector. For indexing, the
values are given by c[i, j] == a[i + 3, 3, 1, j + 1]

Block, row, and column extraction for matrices
Matrix slicing can also be performed using the block function. For example,

matrix[20, 20] a = ...;
matrix[3, 2] b = block(a, 5, 9, 3, 2);

will set b equal to the submatrix of a starting at index [5, 9] and extending 3 rows
and 2 columns. Thus block(a, 5, 9, 3, 2) is equivalent to b[5:7, 9:10].

The sub_col function extracts a slice of a column of a matrix as a vector. For
example,

matrix[10, 10] a = ...;
vector b = sub_col(a, 2, 3, 5);
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will set b equal to the vector a[2:6, 3], taking the element starting at [2, 3], then
extending for a total of 5 rows. The function sub_row works the same way for
extracting a slice of a row as a row vector. For example, sub_row(a, 2, 3, 5) is
equal to the row vector a[2, 3:7], which also starts at position [2, 3] then extends
for a total of 5 columns.

20.5. Matrices with parameters and constants
Suppose you have a 3x3 matrix and know that two entries are zero but the others
are parameters. Such a situation arises in missing data situations and in problems
with fixed structural parameters.

Suppose a 3 × 3 matrix is known to be zero at indexes [1, 2] and [1, 3]. The indexes
for parameters are included in a “melted” data-frame or database format.

transformed data {
array[7, 2] int<lower=1, upper=3> idxs
= { {1, 1},

{2, 1}, {2, 2}, {2, 3},
{3, 1}, {3, 2}, {3, 3} };

// ...

The seven remaining parameters are declared as a vector.

parameters {
vector[7] A_raw;
// ...

}

Then the full matrix A is constructed in the model block as a local variable.

model {
matrix[3, 3] A;
for (i in 1:7) {
A[idxs[i, 1], idxs[i, 2]] = A_raw[i];

}
A[1, 2] = 0;
A[1, 3] = 0;
// ...

}

This may seem like overkill in this setting, but in more general settings, the matrix
size, vector size, and the idxs array will be too large to code directly. Similar
techniques can be used to build up matrices with ad-hoc constraints, such as a
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handful of entries known to be positive.



21. User-Defined Functions

This chapter explains functions from a user perspective with examples; see the
language reference for a full specification. User-defined functions allow compu-
tations to be encapsulated into a single named unit and invoked elsewhere by
name. Similarly, functions allow complex procedures to be broken down into more
understandable components. Writing modular code using descriptively named
functions is easier to understand than a monolithic program, even if the latter is
heavily commented.1

21.1. Basic functions
Here’s an example of a skeletal Stan program with a user-defined relative differ-
ence function employed in the generated quantities block to compute a relative
differences between two parameters.

functions {
real relative_diff(real x, real y) {
real abs_diff;
real avg_scale;
abs_diff = abs(x - y);
avg_scale = (abs(x) + abs(y)) / 2;
return abs_diff / avg_scale;

}
}
// ...
generated quantities {

real rdiff;
rdiff = relative_diff(alpha, beta);

}

The function is named relative_diff, and is declared to have two real-valued
arguments and return a real-valued result. It is used the same way a built-in
function would be used in the generated quantities block.

1The main problem with comments is that they can be misleading, either due to misunderstandings
on the programmer’s part or because the program’s behavior is modified after the comment is written.
The program always behaves the way the code is written, which is why refactoring complex code into
understandable units is preferable to simply adding comments.

252
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User-defined functions block
All functions are defined in their own block, which is labeled functions and
must appear before all other program blocks. The user-defined functions block is
optional.

Function bodies
The body (the part between the curly braces) contains ordinary Stan code, including
local variables. The new function is used in the generated quantities block just as
any of Stan’s built-in functions would be used.

Return statements
Return statements, such as the one on the last line of the definition of rela-
tive_diff above, are only allowed in the bodies of function definitions. Return
statements may appear anywhere in a function, but functions with non-void return
types must end in a return statement.

Reject and error statements
The Stan reject statement provides a mechanism to report errors or problematic
values encountered during program execution. It accepts any number of quoted
string literals or Stan expressions as arguments. This statement is typically embed-
ded in a conditional statement in order to detect bad or illegal outcomes of some
processing step.

If an error is indicative of a problem from which it is not expected to be able to
recover, Stan provides a fatal_error statement.

Catching errors
Rejection is used to flag errors that arise in inputs or in program state. It is far better
to fail early with a localized informative error message than to run into problems
much further downstream (as in rejecting a state or failing to compute a derivative).

The most common errors that are coded is to test that all of the arguments to a
function are legal. The following function takes a square root of its input, so requires
non-negative inputs; it is coded to guard against illegal inputs.

real dbl_sqrt(real x) {
if (!(x >= 0)) {
reject("dblsqrt(x): x must be positive; found x = ", x);

}
return 2 * sqrt(x);

}



254 CHAPTER 21. USER-DEFINED FUNCTIONS

The negation of the positive test is important, because it also catches the case where
x is a not-a-number value. If the condition had been coded as (x < 0) it would not
catch the not-a-number case, though it could be written as (x < 0 || is_nan(x)).
The positive infinite case is allowed through, but could also be checked with the
is_inf(x) function. The square root function does not itself reject, but some
downstream consumer of dbl_sqrt(-2) would be likely to raise an error, at which
point the origin of the illegal input requires detective work. Or even worse, as
Matt Simpson pointed out in the GitHub comments, the function could go into an
infinite loop if it starts with an infinite value and tries to reduce it by arithmetic,
likely consuming all available memory and crashing an interface. Much better to
catch errors early and report on their origin.

The effect of rejection depends on the program block in which the rejection is
executed. In transformed data, rejections cause the program to fail to load. In
transformed parameters or in the model block, rejections cause the current state to
be rejected in the Metropolis sense.2

In generated quantities there is no way to recover and generate the remaining
parameters, so rejections cause subsequent values to be reported as NaNs. Extra
care should be taken in calling functions which may reject in the generated quantities
block.

Type declarations for functions
Function argument and return types for vector and matrix types are not declared
with their sizes, unlike type declarations for variables. Function argument type
declarations may not be declared with constraints, either lower or upper bounds
or structured constraints like forming a simplex or correlation matrix, (as is also
the case for local variables); see the table of types in the reference manual for full
details.

For example, here’s a function to compute the entropy of a categorical distribution
with simplex parameter theta.

real entropy(vector theta) {
return sum(theta .* log(theta));

}

Although theta must be a simplex, only the type vector is used.3

2Just because this makes it possible to code a rejection sampler does not make it a good idea. Rejections
break differentiability and the smooth exploration of the posterior. In Hamiltonian Monte Carlo, it can
cause the sampler to be reduced to a diffusive random walk.

3A range of built-in validation routines is coming to Stan soon! Alternatively, the reject statement

https://mc-stan.org/docs/reference-manual/types.html#variable-declaration
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Upper or lower bounds on values or constrained types are not allowed as return
types or argument types in function declarations.

Array types for function declarations
Array arguments have their own syntax, which follows that used in this manual for
function signatures. For example, a function that operates on a two-dimensional
array to produce a one-dimensional array might be declared as follows.

array[] real baz(array[,] real x);

The notation [ ] is used for one-dimensional arrays (as in the return above), [ , ]
for two-dimensional arrays, [ , , ] for three-dimensional arrays, and so on.

Functions support arrays of any type, including matrix and vector types. As with
other types, no constraints are allowed.

Data-only function arguments
A function argument which is a real-valued type or a container of a real-valued
type, i.e., not an integer type or integer array type, can be qualified using the prefix
qualifier data. The following is an example of a data-only function argument.

real foo(real y, data real mu) {
return -0.5 * (y - mu)ˆ2;

}

This qualifier restricts this argument to being invoked with expressions which
consist only of data variables, transformed data variables, literals, and function
calls. A data-only function argument cannot involve real variables declared in the
parameters, transformed parameters, or model block. Attempts to invoke a function
using an expression which contains parameter, transformed parameters, or model
block variables as a data-only argument will result in an error message from the
parser.

Use of the data qualifier must be consistent between the forward declaration and
the definition of a functions.

This qualifier should be used when writing functions that call the built-in ordinary
differential equation (ODE) solvers, algebraic solvers, or map functions. These
higher-order functions have strictly specified signatures where some arguments of
are data only expressions. (See the ODE solver chapter for more usage details and
the functions reference manual for full definitions.) When writing a function which
calls the ODE or algebraic solver, arguments to that function which are passed

can be used to check constraints on the simplex.

odes.qmd
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into the call to the solver, either directly or indirectly, should have the data prefix
qualifier. This allows for compile-time type checking and increases overall program
understandability.

21.2. Functions as statements
In some cases, it makes sense to have functions that do not return a value. For
example, a routine to print the lower-triangular portion of a matrix can be defined
as follows.

functions {
void pretty_print_tri_lower(matrix x) {
if (rows(x) == 0) {

print("empty matrix");
return;

}
print("rows=", rows(x), " cols=", cols(x));
for (m in 1:rows(x)) {

for (n in 1:m) {
print("[", m, ",", n, "]=", x[m, n]);

}
}

}
}

The special symbol void is used as the return type. This is not a type itself in that
there are no values of type void; it merely indicates the lack of a value. As such,
return statements for void functions are not allowed to have arguments, as in the
return statement in the body of the previous example.

Void functions applied to appropriately typed arguments may be used on their own
as statements. For example, the pretty-print function defined above may be applied
to a covariance matrix being defined in the transformed parameters block.

transformed parameters {
cov_matrix[K] Sigma;
// ... code to set Sigma ...
pretty_print_tri_lower(Sigma);
// ...

}
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21.3. Functions accessing the log probability accumulator
Functions whose names end in _lp are allowed to use sampling statements and
target += statements; other functions are not. Because of this access, their use is
restricted to the transformed parameters and model blocks.

Here is an example of a function to assign standard normal priors to a vector of
coefficients, along with a center and scale, and return the translated and scaled
coefficients; see the reparameterization section for more information on efficient
non-centered parameterizations

functions {
vector center_lp(vector beta_raw, real mu, real sigma) {
beta_raw ~ std_normal();
sigma ~ cauchy(0, 5);
mu ~ cauchy(0, 2.5);
return sigma * beta_raw + mu;

}
// ...

}
parameters {

vector[K] beta_raw;
real mu_beta;
real<lower=0> sigma_beta;
// ...

}
transformed parameters {

vector[K] beta;
// ...
beta = center_lp(beta_raw, mu_beta, sigma_beta);
// ...

}

21.4. Functions implementing change-of-variable adjustments
Functions whose names end in _jacobian can use the jacobian += statement. This
can be used to implement a custom change of variables for arbitrary parameters.

For example, this function recreates the built-in <upper=x> transform on real num-
bers:
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real upper_bound_jacobian(real x, real ub) {
jacobian += x;
return ub - exp(x);

}

It can be used as a replacement for real<lower=ub> as follows:

functions {
// upper_bound_jacobian as above

}
data {

real ub;
}
parameters {

real b_raw;
}
transformed parameters {

real b = upper_bound_jacobian(b_raw, ub);
}
model {

b ~ lognormal(0, 1);
// ...

}

21.5. Functions acting as random number generators
A user-specified function can be declared to act as a (pseudo) random number
generator (PRNG) by giving it a name that ends in _rng. Giving a function a name
that ends in _rng allows it to access built-in functions and user-defined functions
that end in _rng, which includes all the built-in PRNG functions. Only functions
ending in _rng are able access the built-in PRNG functions. The use of functions
ending in _rng must therefore be restricted to transformed data and generated
quantities blocks like other PRNG functions; they may also be used in the bodies of
other user-defined functions ending in _rng.

For example, the following function generates an N × K data matrix, the first
column of which is filled with 1 values for the intercept and the remaining entries
of which have values drawn from a standard normal PRNG.

matrix predictors_rng(int N, int K) {
matrix[N, K] x;
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for (n in 1:N) {
x[n, 1] = 1.0; // intercept
for (k in 2:K) {

x[n, k] = normal_rng(0, 1);
}

}
return x;

}

The following function defines a simulator for regression outcomes based on a data
matrix x, coefficients beta, and noise scale sigma.

vector regression_rng(vector beta, matrix x, real sigma) {
vector[rows(x)] y;
vector[rows(x)] mu;
mu = x * beta;
for (n in 1:rows(x)) {
y[n] = normal_rng(mu[n], sigma);

}
return y;

}

These might be used in a generated quantity block to simulate some fake data from
a fitted regression model as follows.

parameters {
vector[K] beta;
real<lower=0> sigma;
// ...

}
generated quantities {

matrix[N_sim, K] x_sim;
vector[N_sim] y_sim;
x_sim = predictors_rng(N_sim, K);
y_sim = regression_rng(beta, x_sim, sigma);

}

A more sophisticated simulation might fit a multivariate normal to the predictors x
and use the resulting parameters to generate multivariate normal draws for x_sim.
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21.6. User-defined probability functions
Probability functions are distinguished in Stan by names ending in _lpdf for density
functions and _lpmf for mass functions; in both cases, they must have real return
types.

Suppose a model uses several standard normal distributions, for which there is not
a specific overloaded density nor defaults in Stan. So rather than writing out the
location of 0 and scale of 1 for all of them, a new density function may be defined
and reused.

functions {
real unit_normal_lpdf(real y) {
return normal_lpdf(y | 0, 1);

}
}
// ...
model {

alpha ~ unit_normal();
beta ~ unit_normal();
// ...

}

The ability to use the unit_normal function as a density is keyed off its name
ending in _lpdf (names ending in _lpmf for probability mass functions work the
same way).

In general, if foo_lpdf is defined to consume N + 1 arguments, then

y ~ foo(theta1, ..., thetaN);

can be used as shorthand for

target += foo_lpdf(y | theta1, ..., thetaN);

As with the built-in functions, the suffix _lpdf is dropped and the first argument
moves to the left of the tilde symbol (~) in the distribution statement.

Functions ending in _lpmf (for probability mass functions), behave exactly the same
way. The difference is that the first argument of a density function (_lpdf) must be
continuous (not an integer or integer array), whereas the first argument of a mass
function (_lpmf) must be discrete (integer or integer array).
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21.7. Overloading functions
As described in the reference manual function overloading is permitted in Stan,
beginning in version 2.29.

This means multiple functions can be defined with the same name as long as they
accept different numbers or types of arguments. User-defined functions can also
overload Stan library functions.

Warning on usage
Overloading is a powerful productivity tool in programming languages, but it can
also lead to confusion. In particular, it can be unclear at first glance which version of
a function is being called at any particular call site, especially with type promotion
allowed between scalar types. Because of this, it is a programming best practice
that overloaded functions maintain the same meaning across definitions.

For example, consider a function triple which has the following three signatures

real triple(real x);
complex triple(complex x);
array[] real triple(array[] real);

One should expect that all overloads of this function perform the same basic task.
This should lead to definitions of these functions which would satisfy the following
assumptions that someone reading the program would expect

// The function does what it says
triple(3.0) == 9.0
// It is defined reasonably for different types
triple(to_complex(3.0)) == to_complex(triple(3.0))
// A container version of this function works by element
triple({3.0, 4.0})[0] == triple({3.0, 4.0}[0])

Note that none of these properties are enforced by Stan, they are mentioned merely
to warn against uses of overloading which cause confusion.

Function resolution
Stan resolves overloaded functions by the number and type of arguments passed to
the function. This can be subtle when multiple signatures with the same number of
arguments are present.

Consider the following function signatures

https://mc-stan.org/docs/reference-manual/user-functions.html#function-names
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real foo(int a, real b);
real foo(real a, real b);

Given these, the function call foo(1.5, 2.5) is unambiguous - it must resolve to
the second signature. But, the function call foo(1, 1.5) could be valid for either
under Stan’s promotion rules, which allow integers to be promoted to real numbers.

To resolve this, Stan selects the signature which requires the fewest number of
promotions for a given function call. In the above case, this means the call foo(1,
1.5) would select the first signature, because it requires 0 promotions (the second
signature would require 1 promotion).

Furthermore, there must be only one such signature, e.g., the minimum number of
promotions must be a unique minimum. This requirement forbids certain kinds of
overloading. For example, consider the function signatures

real bar(int x, real y);
real bar(real x, int y);

These signatures do not have a unique minimum number of promotions for the call
bar(1, 2). Both signatures require one int to real promotion, and so it cannot be
determined which is correct. Stan will produce a compilation error in this case.

Promotion from integers to complex numbers is considered to be two separate
promotions, first from int to real, then from real to complex. This means that
integer arguments will “prefer” a signature with real types over complex types.

For example, consider the function signatures

real pop(real x);
real pop(complex x);

Stan will select the first signature when pop is called with an integer argument such
as pop(0).

21.8. Documenting functions
Functions will ideally be documented at their interface level. The Stan style guide
for function documentation follows the same format as used by the Doxygen (C++)
and Javadoc (Java) automatic documentation systems. Such specifications indicate
the variables and their types and the return value, prefaced with some descriptive
text.

For example, here’s some documentation for the prediction matrix generator.
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/**
* Return a data matrix of specified size with rows
* corresponding to items and the first column filled
* with the value 1 to represent the intercept and the
* remaining columns randomly filled with unit-normal draws.
*
* @param N Number of rows corresponding to data items
* @param K Number of predictors, counting the intercept, per
* item.
* @return Simulated predictor matrix.
*/

matrix predictors_rng(int N, int K) {
// ...

The comment begins with /**, ends with */, and has an asterisk (*) on each line. It
uses @param followed by the argument’s identifier to document a function argument.
The tag @return is used to indicate the return value. Stan does not (yet) have an
automatic documentation generator like Javadoc or Doxygen, so this just looks like
a big comment starting with /* and ending with */ to the Stan parser.

For functions that raise exceptions, exceptions can be documented using @throws.4

For example,

/** ...
* @param theta
* @throws If any of the entries of theta is negative.
*/

real entropy(vector theta) {
// ...

}

Usually an exception type would be provided, but these are not exposed as part of
the Stan language, so there is no need to document them.

21.9. Summary of function types
Functions may have a void or non-void return type and they may or may not have
one of the special suffixes, _lpdf, _lpmf, _lp, or _rng.

4As of Stan 2.9.0, the only way a user-defined producer will raise an exception is if a function it calls
(including distribution statements) raises an exception via the reject statement.
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Void vs. non-void return
Only functions declared to return void may be used as statements. These are also
the only functions that use return statements with no arguments.

Only functions declared to return non-void values may be used as expressions.
These functions require return statements with arguments of a type that matches
the declared return type.

Suffixed or non-suffixed
Only functions ending in _lpmf or _lpdf and with return type real may be used
as probability functions in distribution statements.

Only functions ending in _lp may access the log probability accumulator through
distribution statements or target += statements. Such functions may only be used
in the transformed parameters or model blocks.

Only functions ending in _rng may access the built-in pseudo-random number
generators. Such functions may only be used in the generated quantities block or
transformed data block, or in the bodies of other user-defined functions ending in
_rng.

21.10. Recursive functions
Stan supports recursive function definitions, which can be useful for some applica-
tions. For instance, consider the matrix power operation, An, which is defined for a
square matrix A and positive integer n by

An =

{
I if n = 0, and
A An−1 if n > 0.

where I is the identity matrix. This definition can be directly translated to a recursive
function definition.

matrix matrix_pow(matrix a, int n) {
if (n == 0) {
return diag_matrix(rep_vector(1, rows(a)));

} else {
return a * matrix_pow(a, n - 1);

}
}

It would be more efficient to not allow the recursion to go all the way to the base
case, adding the following conditional clause.
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else if (n == 1) {
return a;

}

21.11. Truncated random number generation
Generation with inverse CDFs
To generate random numbers, it is often sufficient to invert their cumulative dis-
tribution functions. This is built into many of the random number generators. For
example, to generate a standard logistic variate, first generate a uniform variate
u ∼ uniform(0, 1), then run through the inverse cumulative distribution function,
y = logit(u). If this were not already built in as logistic_rng(0, 1), it could be
coded in Stan directly as

real standard_logistic_rng() {
real u = uniform_rng(0, 1);
real y = logit(u);
return y;

}

Following the same pattern, a standard normal RNG could be coded as

real standard_normal_rng() {
real u = uniform_rng(0, 1);
real y = inv_Phi(u);
return y;

}

that is, y = Φ−1(u), where Φ−1 is the inverse cumulative distribution function for
the standard normal distribution, implemented in the Stan function inv_Phi.

In order to generate non-standard variates of the location-scale variety, the variate
is scaled by the scale parameter and shifted by the location parameter. For example,
to generate normal(µ, σ) variates, it is enough to generate a uniform variate u ∼
uniform(0, 1), then convert it to a standard normal variate, z = Φ(u), where Φ is the
inverse cumulative distribution function for the standard normal, and then, finally,
scale and translate it, y = µ + σ × z. In code,

real my_normal_rng(real mu, real sigma) {
real u = uniform_rng(0, 1);
real z = inv_Phi(u);
real y = mu + sigma * z;
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return y;
}

A robust version of this function would test that the arguments are finite and that
sigma is non-negative, e.g.,

if (is_nan(mu) || is_inf(mu)) {
reject("my_normal_rng: mu must be finite; ",

"found mu = ", mu);
}
if (is_nan(sigma) || is_inf(sigma) || sigma < 0) {
reject("my_normal_rng: sigma must be finite and non-negative; ",

"found sigma = ", sigma);
}

Truncated variate generation
Often truncated uniform variates are needed, as in survival analysis when a time
of death is censored beyond the end of the observations. To generate a truncated
random variate, the cumulative distribution is used to find the truncation point in
the inverse CDF, a uniform variate is generated in range, and then the inverse CDF
translates it back.

Truncating below
For example, the following code generates a Weibull(α, σ) variate truncated below
at a time t,5

real weibull_lb_rng(real alpha, real sigma, real t) {
real p = weibull_cdf(lt | alpha, sigma); // cdf for lb
real u = uniform_rng(p, 1); // unif in bounds
real y = sigma * (-log1m(u))ˆinv(alpha); // inverse cdf
return y;

}

Truncating above and below
If there is a lower bound and upper bound, then the CDF trick is used twice to find
a lower and upper bound. For example, to generate a normal(µ, σ) truncated to a
region (a, b), the following code suffices,

5The original code and impetus for including this in the manual came from the Stan forums post; by
user lcomm, who also explained truncation above and below.

http://discourse.mc-stan.org/t/rng-for-truncated-distributions/3122/7
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real normal_lub_rng(real mu, real sigma, real lb, real ub) {
real p_lb = normal_cdf(lb | mu, sigma);
real p_ub = normal_cdf(ub | mu, sigma);
real u = uniform_rng(p_lb, p_ub);
real y = mu + sigma * inv_Phi(u);
return y;

}

To make this more robust, all variables should be tested for finiteness, sigma should
be tested for positiveness, and lb and ub should be tested to ensure the upper
bound is greater than the lower bound. While it may be tempting to compress
lines, the variable names serve as a kind of chunking of operations and naming for
readability; compare the multiple statement version above with the single statement

return mu + sigma * inv_Phi(uniform_rng(normal_cdf(lb | mu, sigma),
normal_cdf(ub | mu, sigma)));

for readability. The names like p indicate probabilities, and p_lb and p_ub indicate
the probabilities of the bounds. The variable u is clearly named as a uniform variate,
and y is used to denote the variate being generated itself.



22. Custom Probability Functions

Custom distributions may also be implemented directly within Stan’s programming
language. The only thing that is needed is to increment the total log probability.
The rest of the chapter provides examples.

22.1. Examples
Triangle distribution
A simple example is the triangle distribution, whose density is shaped like an
isosceles triangle with corners at specified bounds and height determined by the
constraint that a density integrate to 1. If α ∈ R and β ∈ R are the bounds, with
α < β, then y ∈ (α, β) has a density defined as follows.

triangle(y | α, β) =
2

β − α

(
1 −

∣∣∣∣y − α + β

β − α

∣∣∣∣)

If α = −1, β = 1, and y ∈ (−1, 1), this reduces to

triangle(y | −1, 1) = 1 − |y|.

Consider the following Stan implementation of triangle(−1, 1) for sampling.

parameters {
real<lower=-1, upper=1> y;

}
model {

target += log1m(abs(y));
}

The single scalar parameter y is declared as lying in the interval (-1,1). The
total log probability is incremented with the joint log probability of all parameters,
i.e., log Triangle(y | −1, 1). This value is coded in Stan as log1m(abs(y)). The
function log1m is defined so that log1m(x) has the same value as log(1 − x), but
the computation is faster, more accurate, and more stable.

The constrained type real<lower=-1, upper=1> declared for y is critical for cor-
rect sampling behavior. If the constraint on y is removed from the program, say
by declaring y as having the unconstrained scalar type real, the program would
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compile, but it would produce arithmetic exceptions at run time when the sampler
explored values of y outside of (−1, 1).

Now suppose the log probability function were extended to all of R as follows by
defining the probability to be log(0.0), i.e., −∞, for values outside of (−1, 1).

target += log(fmax(0.0,1 - abs(y)));

With the constraint on y in place, this is just a less efficient, slower, and less arithmeti-
cally stable version of the original program. But if the constraint on y is removed,
the model will compile and run without arithmetic errors, but will not sample
properly.1

Exponential distribution
If Stan didn’t happen to include the exponential distribution, it could be coded
directly using the following assignment statement, where lambda is the inverse
scale and y the sampled variate.

target += log(lambda) - y * lambda;

This encoding will work for any lambda and y; they can be parameters, data, or one
of each, or even local variables.

The assignment statement in the previous paragraph generates C++ code that is
similar to that generated by the following distribution statement.

y ~ exponential(lambda);

There are two notable differences. First, the distribution statement will check the
inputs to make sure both lambda is positive and y is non-negative (which includes
checking that neither is the special not-a-number value).

The second difference is that if lambda is not a parameter, transformed parameter,
or local model variable, the distribution statement is clever enough to drop the
log(lambda) term. This results in the same posterior because Stan only needs the
log probability up to an additive constant. If lambda and y are both constants, the
distribution statement will drop both terms (but still check for out-of-domain errors
on the inputs).

1The problem is the (extremely!) light tails of the triangle distribution. The standard HMC and NUTS
samplers can’t get into the corners of the triangle properly. Because the Stan code declares y to be of type
real<lower=-1, upper=1>, the inverse logit transform is applied to the unconstrained variable and its
log absolute derivative added to the log probability. The resulting distribution on the logit-transformed
y is well behaved.
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Bivariate normal cumulative distribution function
For another example of user-defined functions, consider the following definition
of the bivariate normal cumulative distribution function (CDF) with location zero,
unit variance, and correlation rho. That is, it computes

binormal_cdf(z1, z2, ρ) = Pr[Z1 ≤ z1 and Z2 ≤ z2]

where the random 2-vector Z has the distribution

Z ∼ multivariate normal
([

0
0

]
,
[

1 ρ
ρ 1

])
.

The following Stan program implements this function,

real binormal_cdf(real z1, real z2, real rho) {
if (z1 != 0 || z2 != 0) {
real denom = abs(rho) < 1.0 ? sqrt((1 + rho) * (1 - rho))

: not_a_number();
real a1 = (z2 / z1 - rho) / denom;
real a2 = (z1 / z2 - rho) / denom;
real product = z1 * z2;
real delta = product < 0 || (product == 0 && (z1 + z2) < 0);
return 0.5 * (Phi(z1) + Phi(z2) - delta)

- owens_t(z1, a1) - owens_t(z2, a2);
}
return 0.25 + asin(rho) / (2 * pi());

}



23. Proportionality Constants

When evaluating a likelihood or prior as part of the log density computation
in MCMC, variational inference, or optimization, it is usually only necessary to
compute the functions up to a proportionality constant (or similarly compute log
densities up to an additive constant). In MCMC this comes from the fact that
the distribution being sampled does not need to be normalized (and so it is the
normalization constant that is ignored). Similarly the distribution does not need
normalized to perform variational inference or do optimizations. The advantage of
working with unnormalized distributions is they can make computation quite a bit
cheaper.

There are three different syntaxes to build the model in Stan. The way to select
between them is by determining if the proportionality constants are necessary. If
performance is not a problem, it is always safe to use the normalized densities.

The distribution statement (~) and log density increment statement (target +=)
with _lupdf() use unnormalized densities for x (dropping proportionality con-
stants):

x ~ normal(0, 1);
target += normal_lupdf(x | 0, 1); // the 'u' is for unnormalized

The log density increment statement (target +=) with _lpdf() uses the full nor-
malized density for x (dropping no constants):

target += normal_lpdf(x | 0, 1);

For discrete distributions, the target += syntax is using _lupmf and _lpmf instead:

y ~ bernoulli(0.5);
target += bernoulli_lupmf(y | 0.5);
target += bernoulli_lpmf(y | 0.5);

23.1. Dropping Proportionality Constants
If a density p(θ) can be factored into Kg(θ) where K are all the factors that are a not
a function of θ and g(θ) are all the terms that are a function of θ, then it is said that
g(θ) is proportional to p(θ) up to a constant.
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The advantage of all this is that sometimes K is expensive to compute and if it is not
a function of the distribution that is to be sampled (or optimized or approximated
with variational inference), there is no need to compute it because it will not affect
the results.

Stan takes advantage of the proportionality constant fact with the ~ syntax. Take
for instance the normal data model:

data {
real mu;
real<lower=0.0> sigma;

}
parameters {

real x;
}
model {

x ~ normal(mu, sigma);
}

Syntactically, this is just shorthand for the equivalent model that replaces the ~
syntax with a target += statement and a normal_lupdf function call:

data {
real mu;
real<lower=0.0> sigma;

}
parameters {

real x;
}
model {

target += normal_lupdf(x | mu, sigma)
}

The function normal_lupdf is only guaranteed to return the log density of the
normal distribution up to a proportionality constant density to be sampled. The
proportionality constant itself is not defined. The full log density of the statement
here is:

normal_lpdf(x|µ, σ) = − log
(

σ
√

2π
)
− 1

2

(
x − µ

σ

)2
.
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Now because the density here is only a function of x, the additive terms in the log
density that are not a function of x can be dropped. In this case it is enough to know
only the quadratic term:

normal_lupdf(x|µ, σ) = −1
2

(
x − µ

σ

)2
.

23.2. Keeping Proportionality Constants
In the case that the proportionality constants were needed for a normal log density
the function normal_lpdf can be used. For clarity, if there is ever a situation where
it is unclear if the normalization is necessary, it should always be safe to include it.
Only use the ~ or target += normal_lupdf syntaxes if it is absolutely clear that
the proportionality constants are not necessary.

23.3. User-defined Distributions
When a custom _lpdf or _lpmf function is defined, the compiler will automatically
make available a _lupdf or _lupmf version of the function. It is only possible to
define custom distributions in the normalized form in Stan. Any attempt to define
an unnormalized distribution directly will result in an error.

The difference in the normalized and unnormalized versions of custom probability
functions is how probability functions are treated inside these functions. Any
internal unnormalized probability function call will be replaced with its normalized
equivalent if the normalized version of the parent custom distribution is called.

The following code demonstrates the different behaviors:

functions {
real custom1_lpdf(x) {
return normal_lupdf(x | 0.0, 1.0)

}
real custom2_lpdf(x) {
return normal_lpdf(x | 0.0, 1.0)

}
}
parameters {

real mu;
}
model {

mu ~ custom1(); // Normalization constants dropped
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target += custom1_lupdf(mu); // Normalization constants dropped
target += custom1_lpdf(mu); // Normalization constants kept

mu ~ custom2(); // Normalization constants kept
target += custom2_lupdf(mu); // Normalization constants kept
target += custom2_lpdf(mu); // Normalization constants kept

}

23.4. Limitations on Using _lupdf and _lupmf Functions
To avoid ambiguities in how the normalization constants work, functions ending in
_lupdf and _lupmf can only be used in the model block or user-defined probability
functions (functions ending in _lpdf or _lpmf).



24. Problematic Posteriors

Mathematically speaking, with a proper posterior, one can do Bayesian inference
and that’s that. There is not even a need to require a finite variance or even a
finite mean—all that’s needed is a finite integral. Nevertheless, modeling is a
tricky business and even experienced modelers sometimes code models that lead to
improper priors. Furthermore, some posteriors are mathematically sound, but ill-
behaved in practice. This chapter discusses issues in models that create problematic
posterior inferences, either in general for Bayesian inference or in practice for Stan.

24.1. Collinearity of predictors in regressions
This section discusses problems related to the classical notion of identifiability,
which lead to ridges in the posterior density and wreak havoc with both sampling
and inference.

Examples of collinearity
Redundant intercepts
The first example of collinearity is an artificial example involving redundant inter-
cept parameters.1

Suppose there are observations yn for n ∈ {1, . . . , N}, two intercept parameters λ1
and λ2, a scale parameter σ > 0, and the data model

yn ∼ normal(λ1 + λ2, σ).

For any constant q, the sampling density for y does not change if we add q to λ1
and subtract it from λ2, i.e.,

p(y | λ1, λ2, σ) = p(y | λ1 + q, λ2 − q, σ).

The consequence is that an improper uniform prior p(µ, σ) ∝ 1 leads to an improper
posterior. This impropriety arises because the neighborhoods around λ1 + q, λ2 − q
have the same mass no matter what q is. Therefore, a sampler would need to spend
as much time in the neighborhood of λ1 = 1 000 000 000 and λ2 = −1 000 000 000

1This example was raised by Richard McElreath on the Stan users group in a query about the
difference in behavior between Gibbs sampling as used in BUGS and JAGS and the Hamiltonian Monte
Carlo (HMC) and no-U-turn samplers (NUTS) used by Stan.
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as it does in the neighborhood of λ1 = 0 and λ2 = 0, and so on for ever more
far-ranging values.

The marginal posterior p(λ1, λ2 | y) for this model is thus improper.2

The impropriety shows up visually as a ridge in the posterior density, as illustrated
in the left-hand plot. The ridge for this model is along the line where λ2 = λ1 + c
for some constant c.

Contrast this model with a simple regression with a single intercept parameter µ
and data model

yn ∼ normal(µ, σ).

Even with an improper prior, the posterior is proper as long as there are at least two
data points yn with distinct values.

Ability and difficulty in IRT models
Consider an item-response theory model for students j ∈ 1:J with abilities αj and
test items i ∈ 1:I with difficulties βi. The observed data are an I × J array with
entries yi,j ∈ {0, 1} coded such that yi,j = 1 indicates that student j answered
question i correctly. The sampling distribution for the data is

yi,j ∼ Bernoulli(logit−1(αj − βi)).

For any constant c, the probability of y is unchanged by adding a constant c to all
the abilities and subtracting it from all the difficulties, i.e.,

p(y | α, β) = p(y | α + c, β − c).

This leads to a multivariate version of the ridge displayed by the regression with
two intercepts discussed above.

General collinear regression predictors
The general form of the collinearity problem arises when predictors for a regression
are collinear. For example, consider a linear regression data model

yn ∼ normal(xnβ, σ)

for an N-dimensional observation vector y, an N × K predictor matrix x, and a
K-dimensional coefficient vector β.

2The marginal posterior p(σ | y) for σ is proper here as long as there are at least two distinct data
points.
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Now suppose that column k of the predictor matrix is a multiple of column k′, i.e.,
there is some constant c such that xn,k = c xn,k′ for all n. In this case, the coefficients
βk and βk′ can covary without changing the predictions, so that for any d ̸= 0,

p(y | . . . , βk, . . . , βk′ , . . . , σ) = p(y | . . . , dβk, . . . ,
d
c

βk′ , . . . , σ).

Even if columns of the predictor matrix are not exactly collinear as discussed above,
they cause similar problems for inference if they are nearly collinear.

Multiplicative issues with discrimination in IRT
Consider adding a discrimination parameter δi for each question in an IRT model,
with data model

yi,j ∼ Bernoulli(logit−1(δi(αj − βi))).

For any constant c ̸= 0, multiplying δ by c and dividing α and β by c produces the
same likelihood,

p(y | δ, α, β) = p(y | cδ,
1
c

α,
1
c

β).

If c < 0, this switches the signs of every component in α, β, and δ without changing
the density.

Softmax with K vs. K − 1 parameters
In order to parameterize a K-simplex (i.e., a K-vector with non-negative values that
sum to one), only K − 1 parameters are necessary because the Kth is just one minus
the sum of the first K − 1 parameters, so that if θ is a K-simplex,

θK = 1 −
K−1

∑
k=1

θk.

The softmax function maps a K-vector α of linear predictors to a K-simplex θ =
softmax(α) by defining

θk =
exp(αk)

∑K
k′=1 exp(αk′)

.

The softmax function is many-to-one, which leads to a lack of identifiability of the
unconstrained parameters α. In particular, adding or subtracting a constant from
each αk produces the same simplex θ.

Mitigating the invariances
All of the examples discussed in the previous section allow translation or scaling of
parameters while leaving the data probability density invariant. These problems
can be mitigated in several ways.
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Removing redundant parameters or predictors
In the case of the multiple intercepts, λ1 and λ2, the simplest solution is to remove
the redundant intercept, resulting in a model with a single intercept parameter µ
and sampling distribution yn ∼ normal(µ, σ). The same solution works for solving
the problem with collinearity—just remove one of the columns of the predictor
matrix x.

Pinning parameters
The IRT model without a discrimination parameter can be fixed by pinning one of
its parameters to a fixed value, typically 0. For example, the first student ability
α1 can be fixed to 0. Now all other student ability parameters can be interpreted
as being relative to student 1. Similarly, the difficulty parameters are interpretable
relative to student 1’s ability to answer them.

This solution is not sufficient to deal with the multiplicative invariance introduced
by the question discrimination parameters δi. To solve this problem, one of the
difficulty parameters, say δ1, must also be constrained. Because it’s a multiplicative
and not an additive invariance, it must be constrained to a non-zero value, with
1 being a convenient choice. Now all of the discrimination parameters may be
interpreted relative to item 1’s discrimination.

The many-to-one nature of softmax(α) is typically mitigated by pinning a compo-
nent of α, for instance fixing αK = 0. The resulting mapping is one-to-one from K − 1
unconstrained parameters to a K-simplex. This is roughly how simplex-constrained
parameters are defined in Stan; see the reference manual chapter on constrained
parameter transforms for a precise definition. The Stan code for creating a simplex
from a K − 1-vector can be written as

vector softmax_id(vector alpha) {
vector[num_elements(alpha) + 1] alphac1;
for (k in 1:num_elements(alpha)) {
alphac1[k] = alpha[k];

}
alphac1[num_elements(alphac1)] = 0;
return softmax(alphac1);

}

Adding priors
So far, the models have been discussed as if the priors on the parameters were
improper uniform priors.

A more general Bayesian solution to these invariance problems is to impose proper
priors on the parameters. This approach can be used to solve problems arising from



24.1. COLLINEARITY OF PREDICTORS IN REGRESSIONS 279

either additive or multiplicative invariance.

For example, normal priors on the multiple intercepts,

λ1, λ2 ∼ normal(0, τ),

with a constant scale τ, ensure that the posterior mode is located at a point where
λ1 = λ2, because this minimizes log normal(λ1 | 0, τ) + log normal(λ2 | 0, τ).3

The following plots show the posteriors for two intercept parameterization without
prior, two intercept parameterization with standard normal prior, and one intercept
reparameterization without prior. For all three cases, the posterior is plotted for 100
data points drawn from a standard normal.

The two intercept parameterization leads to an improper prior with a ridge extend-
ing infinitely to the northwest and southeast.

3A Laplace prior (or an L1 regularizer for penalized maximum likelihood estimation) is not sufficient
to remove this additive invariance. It provides shrinkage, but does not in and of itself identify the
parameters because adding a constant to λ1 and subtracting it from λ2 results in the same value for the
prior density.
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Figure 24.1: Two intercepts with improper prior

Adding a standard normal prior for the intercepts results in a proper posterior.
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Figure 24.2: Two intercepts with proper prior

The single intercept parameterization with no prior also has a proper posterior.
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Figure 24.3: Single intercepts with improper prior

The addition of a prior to the two intercepts model is shown in the second plot; the
final plot shows the result of reparameterizing to a single intercept.

An alternative strategy for identifying a K-simplex parameterization θ =
softmax(α) in terms of an unconstrained K-vector α is to place a prior on the
components of α with a fixed location (that is, specifically avoid hierarchical priors
with varying location). Unlike the approaching of pinning αK = 0, the prior-based
approach models the K outcomes symmetrically rather than modeling K − 1 out-
comes relative to the K-th. The pinned parameterization, on the other hand, is
usually more efficient statistically because it does not have the extra degree of (prior
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constrained) wiggle room.

Vague, strongly informative, and weakly informative priors
Care must be used when adding a prior to resolve invariances. If the prior is taken
to be too broad (i.e., too vague), the resolution is in theory only, and samplers will
still struggle.

Ideally, a realistic prior will be formulated based on substantive knowledge of
the problem being modeled. Such a prior can be chosen to have the appropriate
strength based on prior knowledge. A strongly informative prior makes sense if
there is strong prior information.

When there is not strong prior information, a weakly informative prior strikes the
proper balance between controlling computational inference without dominating
the data in the posterior. In most problems, the modeler will have at least some
notion of the expected scale of the estimates and be able to choose a prior for
identification purposes that does not dominate the data, but provides sufficient
computational control on the posterior.

Priors can also be used in the same way to control the additive invariance of
the IRT model. A typical approach is to place a strong prior on student ability
parameters α to control scale simply to control the additive invariance of the basic
IRT model and the multiplicative invariance of the model extended with a item
discrimination parameters; such a prior does not add any prior knowledge to the
problem. Then a prior on item difficulty can be chosen that is either informative or
weakly informative based on prior knowledge of the problem.

24.2. Label switching in mixture models
Where collinearity in regression models can lead to infinitely many posterior max-
ima, swapping components in a mixture model leads to finitely many posterior
maxima.

Mixture models
Consider a normal mixture model with two location parameters µ1 and µ2, a shared
scale σ > 0, a mixture ratio θ ∈ [0, 1], and data model

p(y | θ, µ1, µ2, σ) =
N

∏
n=1

(
θ normal(yn | µ1, σ) + (1 − θ) normal(yn | µ2, σ)

)
.

The issue here is exchangeability of the mixture components, because

p(θ, µ1, µ2, σ | y) = p
(
(1 − θ), µ2, µ1, σ | y

)
.
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The problem is exacerbated as the number of mixture components K grows, as in
clustering models, leading to K! identical posterior maxima.

Convergence monitoring and effective sample size
The analysis of posterior convergence and effective sample size is also difficult for
mixture models. For example, the R̂ convergence statistic reported by Stan and
the computation of effective sample size are both compromised by label switching.
The problem is that the posterior mean, a key ingredient in these computations, is
affected by label switching, resulting in a posterior mean for µ1 that is equal to that
of µ2, and a posterior mean for θ that is always 1/2, no matter what the data are.

Some inferences are invariant
In some sense, the index (or label) of a mixture component is irrelevant. Posterior
predictive inferences can still be carried out without identifying mixture compo-
nents. For example, the log probability of a new observation does not depend on
the identities of the mixture components. The only sound Bayesian inferences in
such models are those that are invariant to label switching. Posterior means for the
parameters are meaningless because they are not invariant to label switching; for
example, the posterior mean for θ in the two component mixture model will always
be 1/2.

Highly multimodal posteriors
Theoretically, this should not present a problem for inference because all of the
integrals involved in posterior predictive inference will be well behaved. The
problem in practice is computation.

Being able to carry out such invariant inferences in practice is an altogether different
matter. It is almost always intractable to find even a single posterior mode, much less
balance the exploration of the neighborhoods of multiple local maxima according
to the probability masses. In Gibbs sampling, it is unlikely for µ1 to move to a new
mode when sampled conditioned on the current values of µ2 and θ. For HMC and
NUTS, the problem is that the sampler gets stuck in one of the two “bowls” around
the modes and cannot gather enough energy from random momentum assignment
to move from one mode to another.

Even with a proper posterior, all known sampling and inference techniques are
notoriously ineffective when the number of modes grows super-exponentially as it
does for mixture models with increasing numbers of components.

Hacks as fixes
Several hacks (i.e., “tricks”) have been suggested and employed to deal with the
problems posed by label switching in practice.
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Parameter ordering constraints
One common strategy is to impose a constraint on the parameters that identifies
the components. For instance, we might consider constraining µ1 < µ2 in the two-
component normal mixture model discussed above. A problem that can arise from
such an approach is when there is substantial probability mass for the opposite
ordering µ1 > µ2. In these cases, the posteriors are affected by the constraint
and true posterior uncertainty in µ1 and µ2 is not captured by the model with
the constraint. In addition, standard approaches to posterior inference for event
probabilities is compromised. For instance, attempting to use M posterior samples
to estimate Pr[µ1 > µ2], will fail, because the estimator

Pr[µ1 > µ2] ≈
M

∑
m=1

I
(

µ
(m)
1 > µ

(m)
2

)
will result in an estimate of 0 because the posterior respects the constraint in the
model.

Initialization around a single mode
Another common approach is to run a single chain or to initialize the parameters
near realistic values.4

This can work better than the hard constraint approach if reasonable initial values
can be found and the labels do not switch within a Markov chain. The result is that
all chains are glued to a neighborhood of a particular mode in the posterior.

24.3. Component collapsing in mixture models
It is possible for two mixture components in a mixture model to collapse to the
same values during sampling or optimization. For example, a mixture of K normals
might devolve to have µi = µj and σi = σj for i ̸= j.

This will typically happen early in sampling due to initialization in MCMC or
optimization or arise from random movement during MCMC. Once the parameters
match for a given draw (m), it can become hard to escape because there can be a
trough of low-density mass between the current parameter values and the ones
without collapsed components.

It may help to use a smaller step size during warmup, a stronger prior on each
mixture component’s membership responsibility. A more extreme measure is to

4Tempering methods may be viewed as automated ways to carry out such a search for modes, though
most MCMC tempering methods continue to search for modes on an ongoing basis; see (Swendsen and
Wang 1986; Neal 1996b).
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include additional mixture components to deal with the possibility that some of
them may collapse.

In general, it is difficult to recover exactly the right K mixture components in a
mixture model as K increases beyond one (yes, even a two-component mixture can
have this problem).

24.4. Posteriors with unbounded densities
In some cases, the posterior density grows without bounds as parameters approach
certain poles or boundaries. In such, there are no posterior modes and numerical
stability issues can arise as sampled parameters approach constraint boundaries.

Mixture models with varying scales
One such example is a binary mixture model with scales varying by component, σ1
and σ2 for locations µ1 and µ2. In this situation, the density grows without bound as
σ1 → 0 and µ1 → yn for some n; that is, one of the mixture components concentrates
all of its mass around a single data item yn.

Beta-binomial models with skewed data and weak priors
Another example of unbounded densities arises with a posterior such as beta(ϕ |
0.5, 0.5), which can arise if seemingly weak beta priors are used for groups that
have no data. This density is unbounded as ϕ → 0 and ϕ → 1. Similarly, a Bernoulli
data model coupled with a “weak” beta prior, leads to a posterior

p(ϕ | y) ∝ beta(ϕ | 0.5, 0.5)×
N

∏
n=1

Bernoulli(yn | ϕ)

= beta
(

ϕ

∣∣∣∣∣ 0.5 +
N

∑
n=1

yn, 0.5 + N −
N

∑
n=1

yn

)
.

If N = 9 and each yn = 1, the posterior is beta(ϕ | 9.5, 0, 5). This posterior is
unbounded as ϕ → 1. Nevertheless, the posterior is proper, and although there is
no posterior mode, the posterior mean is well-defined with a value of exactly 0.95.

Constrained vs. unconstrained scales
Stan does not sample directly on the constrained (0, 1) space for this problem, so
it doesn’t directly deal with unconstrained density values. Rather, the probability
values ϕ are logit-transformed to (−∞, ∞). The boundaries at 0 and 1 are pushed out
to −∞ and ∞ respectively. The Jacobian adjustment that Stan automatically applies
ensures the unconstrained density is proper. The adjustment for the particular case
of (0, 1) is log logit−1(ϕ) + log logit(1 − ϕ).



24.5. POSTERIORS WITH UNBOUNDED PARAMETERS 287

There are two problems that still arise, though. The first is that if the posterior mass
for ϕ is near one of the boundaries, the logit-transformed parameter will have to
sweep out long paths and thus can dominate the U-turn condition imposed by the
no-U-turn sampler (NUTS). The second issue is that the inverse transform from
the unconstrained space to the constrained space can underflow to 0 or overflow
to 1, even when the unconstrained parameter is not infinite. Similar problems
arise for the expectation terms in logistic regression, which is why the logit-scale
parameterizations of the Bernoulli and binomial distributions are more stable.

24.5. Posteriors with unbounded parameters
In some cases, the posterior density will not grow without bound, but parameters
will grow without bound with gradually increasing density values. Like the models
discussed in the previous section that have densities that grow without bound, such
models also have no posterior modes.

Separability in logistic regression
Consider a logistic regression model with N observed outcomes yn ∈ {0, 1}, an
N × K matrix x of predictors, a K-dimensional coefficient vector β, and data model

yn ∼ Bernoulli(logit−1(xnβ)).

Now suppose that column k of the predictor matrix is such that xn,k > 0 if and only
if yn = 1, a condition known as “separability.” In this case, predictive accuracy on
the observed data continue to improve as βk → ∞, because for cases with yn = 1,
xnβ → ∞ and hence logit−1(xnβ) → 1.

With separability, there is no maximum to the likelihood and hence no maximum
likelihood estimate. From the Bayesian perspective, the posterior is improper and
therefore the marginal posterior mean for βk is also not defined. The usual solution
to this problem in Bayesian models is to include a proper prior for β, which ensures
a proper posterior.

24.6. Uniform posteriors
Suppose your model includes a parameter ψ that is defined on [0, 1] and is given
a flat prior uniform(ψ | 0, 1). Now if the data don’t tell us anything about ψ, the
posterior is also uniform(ψ | 0, 1).

Although there is no maximum likelihood estimate for ψ, the posterior is uniform
over a closed interval and hence proper. In the case of a uniform posterior on
[0, 1], the posterior mean for ψ is well-defined with value 1/2. Although there is
no posterior mode, posterior predictive inference may nevertheless do the right
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thing by simply integrating (i.e., averaging) over the predictions for ψ at all points
in [0, 1].

24.7. Sampling difficulties with problematic priors
With an improper posterior, it is theoretically impossible to properly explore the
posterior. However, Gibbs sampling as performed by BUGS and JAGS, although
still unable to properly sample from such an improper posterior, behaves differently
in practice than the Hamiltonian Monte Carlo sampling performed by Stan when
faced with an example such as the two intercept model discussed in the collinearity
section and illustrated in the non-identifiable density plot.

Gibbs sampling
Gibbs sampling, as performed by BUGS and JAGS, may appear to be efficient
and well behaved for this unidentified model, but as discussed in the previous
subsection, will not actually explore the posterior properly.

Consider what happens with initial values λ
(0)
1 , λ

(0)
2 . Gibbs sampling proceeds in

iteration m by drawing

λ
(m)
1 ∼ p(λ1 | λ

(m−1)
2 , σ(m−1), y)

λ
(m)
2 ∼ p(λ2 | λ

(m)
1 , σ(m−1), y)

σ(m) ∼ p(σ | λ
(m)
1 , λ

(m)
2 , y).

Now consider the draw for λ1 (the draw for λ2 is symmetric), which is conjugate in
this model and thus can be done efficiently. In this model, the range from which
the next λ1 can be drawn is highly constrained by the current values of λ2 and σ.
Gibbs will run quickly and provide seemingly reasonable inferences for λ1 + λ2.
But it will not explore the full range of the posterior; it will merely take a slow
random walk from the initial values. This random walk behavior is typical of Gibbs
sampling when posteriors are highly correlated and the primary reason to prefer
Hamiltonian Monte Carlo to Gibbs sampling for models with parameters correlated
in the posterior.

Hamiltonian Monte Carlo sampling
Hamiltonian Monte Carlo (HMC), as performed by Stan, is much more efficient at
exploring posteriors in models where parameters are correlated in the posterior. In
this particular example, the Hamiltonian dynamics (i.e., the motion of a fictitious
particle given random momentum in the field defined by the negative log posterior)
is going to run up and down along the valley defined by the potential energy
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(ridges in log posteriors correspond to valleys in potential energy). In practice,
even with a random momentum for λ1 and λ2, the gradient of the log posterior is
going to adjust for the correlation and the simulation will run λ1 and λ2 in opposite
directions along the valley corresponding to the ridge in the posterior log density.

No-U-turn sampling
Stan’s default no-U-turn sampler (NUTS), is even more efficient at exploring the
posterior (see Hoffman and Gelman 2014). NUTS simulates the motion of the
fictitious particle representing the parameter values until it makes a U-turn, it
will be defeated in most cases, as it will just move down the potential energy
valley indefinitely without making a U-turn. What happens in practice is that
the maximum number of leapfrog steps in the simulation will be hit in many of
the iterations, causing a large number of log probability and gradient evaluations
(1000 if the max tree depth is set to 10, as in the default). Thus sampling will
appear to be slow. This is indicative of an improper posterior, not a bug in the
NUTS algorithm or its implementation. It is simply not possible to sample from an
improper posterior! Thus the behavior of HMC in general and NUTS in particular
should be reassuring in that it will clearly fail in cases of improper posteriors,
resulting in a clean diagnostic of sweeping out large paths in the posterior.

Here are results of Stan runs with default parameters fit to N = 100 data points
generated from yn ∼ normal(0, 1):

Two Scale Parameters, Improper Prior

Inference for Stan model: improper_stan
Warmup took (2.7, 2.6, 2.9, 2.9) seconds, 11 seconds total
Sampling took (3.4, 3.7, 3.6, 3.4) seconds, 14 seconds total

Mean MCSE StdDev 5% 95% N_Eff N_Eff/s R_hat
lp__ -5.3e+01 7.0e-02 8.5e-01 -5.5e+01 -
5.3e+01 150 11 1.0
n_leapfrog__ 1.4e+03 1.7e+01 9.2e+02 3.0e+00 2.0e+03 2987 212 1.0
lambda1 1.3e+03 1.9e+03 2.7e+03 -2.3e+03 6.0e+03 2.1 0.15 5.2
lambda2 -1.3e+03 1.9e+03 2.7e+03 -6.0e+03 2.3e+03 2.1 0.15 5.2
sigma 1.0e+00 8.5e-03 6.2e-02 9.5e-
01 1.2e+00 54 3.9 1.1
mu 1.6e-01 1.9e-03 1.0e-01 -8.3e-03 3.3e-
01 2966 211 1.0

Two Scale Parameters, Weak Prior

Warmup took (0.40, 0.44, 0.40, 0.36) seconds, 1.6 seconds total
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Sampling took (0.47, 0.40, 0.47, 0.39) seconds, 1.7 seconds total

Mean MCSE StdDev 5% 95% N_Eff N_Eff/s R_hat
lp__ -54 4.9e-02 1.3e+00 -5.7e+01 -
53 728 421 1.0
n_leapfrog__ 157 2.8e+00 1.5e+02 3.0e+00 511 3085 1784 1.0
lambda1 0.31 2.8e-01 7.1e+00 -1.2e+01 12 638 369 1.0
lambda2 -0.14 2.8e-01 7.1e+00 -1.2e+01 12 638 369 1.0
sigma 1.0 2.6e-03 8.0e-02 9.2e-01 1.2 939 543 1.0
mu 0.16 1.8e-03 1.0e-01 -8.1e-03 0.33 3289 1902 1.0

One Scale Parameter, Improper Prior

Warmup took (0.011, 0.012, 0.011, 0.011) seconds, 0.044 seconds total
Sampling took (0.017, 0.020, 0.020, 0.019) seconds, 0.077 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ -54 2.5e-02 0.91 -5.5e+01 -53 -
53 1318 17198 1.0
n_leapfrog__ 3.2 2.7e-01 1.7 1.0e+00 3.0 7.0 39 507 1.0
mu 0.17 2.1e-03 0.10 -3.8e-03 0.17 0.33 2408 31417 1.0
sigma 1.0 1.6e-03 0.071 9.3e-01 1.0 1.2 2094 27321 1.0

On the top is the non-identified model with improper uniform priors and data
model yn ∼ normal(λ1 + λ2, σ).

In the middle is the same data model as in top plus priors λk ∼ normal(0, 10).

On the bottom is an identified model with an improper prior, with data model
yn ∼ normal(µ, σ). All models estimate µ at roughly 0.16 with low Monte Carlo
standard error, but a high posterior standard deviation of 0.1; the true value µ = 0
is within the 90% posterior intervals in all three models.

Examples: fits in Stan
To illustrate the issues with sampling from non-identified and only weakly identi-
fied models, we fit three models with increasing degrees of identification of their
parameters. The posteriors for these models is illustrated in the non-identifiable
density plot. The first model is the unidentified model with two location parameters
and no priors discussed in the collinearity section.

data {
int N;
array[N] real y;

}
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parameters {
real lambda1;
real lambda2;
real<lower=0> sigma;

}
transformed parameters {

real mu;
mu = lambda1 + lambda2;

}
model {

y ~ normal(mu, sigma);
}

The second adds priors to the model block for lambda1 and lambda2 to the previous
model.

lambda1 ~ normal(0, 10);
lambda2 ~ normal(0, 10);

The third involves a single location parameter, but no priors.

data {
int N;
array[N] real y;

}
parameters {

real mu;
real<lower=0> sigma;

}
model {

y ~ normal(mu, sigma);
}

All three of the example models were fit in Stan 2.1.0 with default parameters (1000
warmup iterations, 1000 sampling iterations, NUTS sampler with max tree depth of
10). The results are shown in the non-identified fits figure. The key statistics from
these outputs are the following.

• As indicated by R_hat column, all parameters have converged other than λ1
and λ2 in the non-identified model.

• The average number of leapfrog steps is roughly 3 in the identified model, 150
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in the model identified by a weak prior, and 1400 in the non-identified model.

• The number of effective samples per second for µ is roughly 31,000 in the
identified model, 1,900 in the model identified with weakly informative priors,
and 200 in the non-identified model; the results are similar for σ.

• In the non-identified model, the 95% interval for λ1 is (-2300,6000), whereas it
is only (-12,12) in the model identified with weakly informative priors.

• In all three models, the simulated value of µ = 0 and σ = 1 are well within
the posterior 90% intervals.

The first two points, lack of convergence and hitting the maximum number of
leapfrog steps (equivalently maximum tree depth) are indicative of improper pos-
teriors. Thus rather than covering up the problem with poor sampling as may be
done with Gibbs samplers, Hamiltonian Monte Carlo tries to explore the posterior
and its failure is a clear indication that something is amiss in the model.



25. Reparameterization and Change of Vari-
ables

Stan supports a direct encoding of reparameterizations. Stan also supports changes
of variables by directly incrementing the log probability accumulator with the log
Jacobian of the transform.

25.1. Theoretical and practical background
A Bayesian posterior is technically a probability measure, which is a
parameterization-invariant, abstract mathematical object.1

Stan’s modeling language, on the other hand, defines a probability density, which
is a non-unique, parameterization-dependent function in RN → R+. In practice,
this means a given model can be represented different ways in Stan, and different
representations have different computational performances.

As pointed out by Andrew Gelman (2004) in a paper discussing the relation between
parameterizations and Bayesian modeling, a change of parameterization often
carries with it suggestions of how the model might change, because we tend to
use certain natural classes of prior distributions. Thus, it’s not just that we have
a fixed distribution that we want to sample from, with reparameterizations being
computational aids. In addition, once we reparameterize and add prior information,
the model itself typically changes, often in useful ways.

25.2. Reparameterizations
Reparameterizations may be implemented directly using the transformed parame-
ters block or just in the model block.

Beta and Dirichlet priors
The beta and Dirichlet distributions may both be reparameterized from a vector of
counts to use a mean and total count.

Beta distribution
For example, the Beta distribution is parameterized by two positive count parame-
ters α, β > 0. The following example illustrates a hierarchical Stan model with a

1This is in contrast to (penalized) maximum likelihood estimates, which are not parameterization
invariant.

293
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vector of parameters theta are drawn i.i.d. for a Beta distribution whose parameters
are themselves drawn from a hyperprior distribution.

parameters {
real<lower=0> alpha;
real<lower=0> beta;
// ...

}
model {

alpha ~ ...
beta ~ ...
for (n in 1:N) {
theta[n] ~ beta(alpha, beta);

}
// ...

}

It is often more natural to specify hyperpriors in terms of transformed parameters.
In the case of the Beta, the obvious choice for reparameterization is in terms of a
mean parameter

ϕ = α/(α + β)

and total count parameter
λ = α + β.

Following @[GelmanEtAl:2013, Chapter 5] the mean gets a uniform prior and the
count parameter a Pareto prior with p(λ) ∝ λ−2.5.

parameters {
real<lower=0, upper=1> phi;
real<lower=0.1> lambda;
// ...

}
transformed parameters {

real<lower=0> alpha = lambda * phi;
real<lower=0> beta = lambda * (1 - phi);
// ...

}
model {

phi ~ beta(1, 1); // uniform on phi, could drop
lambda ~ pareto(0.1, 1.5);
for (n in 1:N) {
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theta[n] ~ beta(alpha, beta);
}
// ...

}

The new parameters, phi and lambda, are declared in the parameters block and
the parameters for the Beta distribution, alpha and beta, are declared and defined
in the transformed parameters block. And If their values are not of interest, they
could instead be defined as local variables in the model as follows.

model {
real alpha = lambda * phi
real beta = lambda * (1 - phi);
// ...
for (n in 1:N) {
theta[n] ~ beta(alpha, beta);

}
// ...

}

With vectorization, this could be expressed more compactly and efficiently as
follows.

model {
theta ~ beta(lambda * phi, lambda * (1 - phi));
// ...

}

If the variables alpha and beta are of interest, they can be defined in the trans-
formed parameter block and then used in the model.

Jacobians not necessary
Because the transformed parameters are being used, rather than given a distribu-
tion, there is no need to apply a Jacobian adjustment for the transform. For example,
in the beta distribution example, alpha and beta have the correct posterior distri-
bution.

Dirichlet priors
The same thing can be done with a Dirichlet, replacing the mean for the Beta, which
is a probability value, with a simplex. Assume there are K > 0 dimensions being
considered (K = 1 is trivial and K = 2 reduces to the beta distribution case). The
traditional prior is
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parameters {
vector[K] alpha;
array[N] simplex[K] theta;
// ...

}
model {

alpha ~ // ...
for (n in 1:N) {
theta[n] ~ dirichlet(alpha);

}
}

This provides essentially K degrees of freedom, one for each dimension of alpha,
and it is not obvious how to specify a reasonable prior for alpha.

An alternative coding is to use the mean, which is a simplex, and a total count.

parameters {
simplex[K] phi;
real<lower=0> kappa;
array[N] simplex[K] theta;
// ...

}
transformed parameters {

vector[K] alpha = kappa * phi;
// ...

}
model {

phi ~ // ...
kappa ~ // ...
for (n in 1:N) {
theta[n] ~ dirichlet(alpha);

}
// ...

}

Now it is much easier to formulate priors, because phi is the expected value of
theta and kappa (minus K) is the strength of the prior mean measured in number
of prior observations.
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Transforming unconstrained priors: probit and logit
If the variable u has a uniform(0, 1) distribution, then logit(u) is distributed as
logistic(0, 1). This is because inverse logit is the cumulative distribution function
(cdf) for the logistic distribution, so that the logit function itself is the inverse CDF
and thus maps a uniform draw in (0, 1) to a logistically-distributed quantity.

Things work the same way for the probit case: if u has a uniform(0, 1) distribution,
then Φ−1(u) has a normal(0, 1) distribution. The other way around, if v has a
normal(0, 1) distribution, then Φ(v) has a uniform(0, 1) distribution.

In order to use the probit and logistic as priors on variables constrained to (0, 1),
create an unconstrained variable and transform it appropriately. For comparison,
the following Stan program fragment declares a (0, 1)-constrained parameter theta
and gives it a beta prior, then uses it as a parameter in a distribution (here using
foo as a placeholder).

parameters {
real<lower=0, upper=1> theta;
// ...

}
model {

theta ~ beta(a, b);
// ...
y ~ foo(theta);
// ...

}

If the variables a and b are one, then this imposes a uniform distribution theta. If
a and b are both less than one, then the density on theta has a U shape, whereas
if they are both greater than one, the density of theta has an inverted-U or more
bell-like shape.

Roughly the same result can be achieved with unbounded parameters that are
probit or inverse-logit-transformed. For example,

parameters {
real theta_raw;
// ...

}
transformed parameters {

real<lower=0, upper=1> theta = inv_logit(theta_raw);
// ...
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}
model {

theta_raw ~ logistic(mu, sigma);
// ...
y ~ foo(theta);
// ...

}

In this model, an unconstrained parameter theta_raw gets a logistic prior, and then
the transformed parameter theta is defined to be the inverse logit of theta_raw.
In this parameterization, inv_logit(mu) is the mean of the implied prior on theta.
The prior distribution on theta will be flat if sigma is one and mu is zero, and will
be U-shaped if sigma is larger than one and bell shaped if sigma is less than one.

When moving from a variable in (0, 1) to a simplex, the same trick may be performed
using the softmax function, which is a multinomial generalization of the inverse
logit function. First, consider a simplex parameter with a Dirichlet prior.

parameters {
simplex[K] theta;
// ...

}
model {

theta ~ dirichlet(a);
// ...
y ~ foo(theta);

}

Now a is a vector with K rows, but it has the same shape properties as the pair a
and b for a beta; the beta distribution is just the distribution of the first component
of a Dirichlet with parameter vector [ab]⊤. To formulate an unconstrained prior, the
exact same strategy works as for the beta.

parameters {
vector[K] theta_raw;
// ...

}
transformed parameters {

simplex[K] theta = softmax(theta_raw);
// ...

}
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model {
theta_raw ~ multi_normal_cholesky(mu, L_Sigma);

}

The multivariate normal is used for convenience and efficiency with its Cholesky-
factor parameterization. Now the mean is controlled by softmax(mu), but we have
additional control of covariance through L_Sigma at the expense of having on the
order of K2 parameters in the prior rather than order K. If no covariance is desired,
the number of parameters can be reduced back to K using a vectorized normal
distribution as follows.

theta_raw ~ normal(mu, sigma);

where either or both of mu and sigma can be vectors.

25.3. Changes of variables
Changes of variables are applied when the transformation of a parameter is charac-
terized by a distribution. The standard textbook example is the lognormal distri-
bution, which is the distribution of a variable y > 0 whose logarithm log y has a
normal distribution. The distribution is being assigned to log y.

The change of variables requires an adjustment to the probability to account for
the distortion caused by the transform. For this to work, univariate changes of
variables must be monotonic and differentiable everywhere in their support. Multi-
variate changes of variables must be injective and differentiable everywhere in their
support, and they must map RN → RN .

The probability must be scaled by a Jacobian adjustment equal to the absolute de-
terminant of the Jacobian of the transform. In the univariate case, the Jacobian
adjustment is simply the absolute derivative of the transform.

In the case of log normals, if y’s logarithm is normal with mean µ and deviation σ,
then the distribution of y is given by

p(y) = normal(log y | µ, σ)

∣∣∣∣ d
dy

log y
∣∣∣∣ = normal(log y | µ, σ)

1
y

.

Stan works on the log scale to prevent underflow, where

log p(y) = log normal(log y | µ, σ)− log y.

In Stan, the change of variables can be applied in the sampling statement. To
adjust for the curvature, the log probability accumulator is incremented with the
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log absolute derivative of the transform. The lognormal distribution can thus be
implemented directly in Stan as follows.2

parameters {
real<lower=0> y;
// ...

}
model {

log(y) ~ normal(mu, sigma);
target += -log(y);
// ...

}

It is important, as always, to declare appropriate constraints on parameters; here y
is constrained to be positive.

It would be slightly more efficient to define a local variable for the logarithm, as
follows.

model {
real log_y;
log_y = log(y);
log_y ~ normal(mu, sigma);
target += -log_y;
// ...

}

If y were declared as data instead of as a parameter, then the adjustment can be
ignored because the data will be constant and Stan only requires the log probability
up to a constant.

Change of variables vs. transformations
This section illustrates the difference between a change of variables and a simple
variable transformation. A transformation samples a parameter, then transforms it,
whereas a change of variables transforms a parameter, then samples it. Only the
latter requires a Jacobian adjustment.

It does not matter whether the probability function is expressed using a distribution
statement, such as

2This example is for illustrative purposes only; the recommended way to implement the lognormal
distribution in Stan is with the built-in lognormal probability function; see the functions reference
manual for details.
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log(y) ~ normal(mu, sigma);

or as an increment to the log probability function, as in

target += normal_lpdf(log(y) | mu, sigma);

Gamma and inverse gamma distribution
Like the log normal, the inverse gamma distribution is a distribution of variables
whose inverse has a gamma distribution. This section contrasts two approaches,
first with a transform, then with a change of variables.

The transform based approach to defining y_inv to have an inverse gamma distri-
bution can be coded as follows.

parameters {
real<lower=0> y;

}
transformed parameters {

real<lower=0> y_inv;
y_inv = 1 / y;

}
model {

y ~ gamma(2,4);
}

The change-of-variables approach to defining y_inv to have an inverse gamma
distribution can be coded as follows.

parameters {
real<lower=0> y_inv;

}
transformed parameters {

real<lower=0> y;
y = 1 / y_inv; // change variables
jacobian += -2 * log(y_inv); // Jacobian adjustment

}
model {

y ~ gamma(2,4);
}

The Jacobian adjustment is the log of the absolute derivative of the transform, which
in this case is
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log
∣∣∣∣ d
du

(
1
u

)∣∣∣∣ = log
∣∣∣−u−2

∣∣∣ = log u−2 = −2 log u.

Multivariate changes of variables
In the case of a multivariate transform, the log of the absolute determinant of the
Jacobian of the transform must be added to the log probability accumulator. In
Stan, this can be coded as follows in the general case where the Jacobian is not a full
matrix.

parameters {
vector[K] u; // multivariate parameter
// ...

}
transformed parameters {

vector[K] v; // transformed parameter
matrix[K, K] J; // Jacobian matrix of transform
// ... compute v as a function of u ...
// ... compute J[m, n] = d.v[m] / d.u[n] ...
jacobian += log(abs(determinant(J)));
// ...

}
model {

v ~ // ...
// ...

}

If the determinant of the Jacobian is known analytically, it will be more efficient to
apply it directly than to call the determinant function, which is neither efficient nor
particularly stable numerically.

In many cases, the Jacobian matrix will be triangular, so that only the diagonal
elements will be required for the determinant calculation. Triangular Jacobians
arise when each element v[k] of the transformed parameter vector only depends
on elements u[1], . . . , u[k] of the parameter vector. For triangular matrices, the
determinant is the product of the diagonal elements, so the transformed parameters
block of the above model can be simplified and made more efficient by recoding as
follows.

transformed parameters {
// ...
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vector[K] J_diag; // diagonals of Jacobian matrix
// ...
// ... compute J[k, k] = d.v[k] / d.u[k] ...
jacobian += sum(log(J_diag));
// ...

}

25.4. Vectors with varying bounds
Stan allows scalar and non-scalar upper and lower bounds to be declared in the
constraints for a container data type. The transforms are calculated and their
log Jacobians added to the log density accumulator; the Jacobian calculations
are described in detail in the reference manual chapter on constrained parameter
transforms.

Varying lower bounds
For example, suppose there is a vector parameter α with a vector L of lower bounds.
The simplest way to deal with this if L is a constant is to shift a lower-bounded
parameter.

data {
int N;
vector[N] L; // lower bounds
// ...

}
parameters {

vector<lower=L>[N] alpha_raw;
// ...

}

The above is equivalent to manually calculating the vector bounds by the following.

data {
int N;
vector[N] L; // lower bounds
// ...

}
parameters {

vector<lower=0>[N] alpha_raw;
// ...

}
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transformed parameters {
vector[N] alpha = L + alpha_raw;
// ...

}

The Jacobian for adding a constant is one, so its log drops out of the log density.

Even if the lower bound is a parameter rather than data, there is no Jacobian re-
quired, because the transform from (L, αraw) to (L+ αraw, αraw) produces a Jacobian
derivative matrix with a unit determinant.

It’s also possible to implement the transform using an array or vector of parameters
as bounds (with the requirement that the type of the variable must match the bound
type) in the following.

data {
int N;
vector[N] L; // lower bounds
// ...

}
parameters {

vector<lower=0>[N] alpha_raw;
vector<lower=L + alpha_raw>[N] alpha;
// ...

}

This is equivalent to directly transforming an unconstrained parameter and account-
ing for the Jacobian.

data {
int N;
vector[N] L; // lower bounds
// ...

}
parameters {

vector[N] alpha_raw;
// ...

}
transformed parameters {

vector[N] alpha = L + exp(alpha_raw);
jacobian += sum(alpha_raw); // log Jacobian
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// ...
}
model {

// ...
}

The adjustment in the log Jacobian determinant of the transform mapping αraw
to α = L + exp(αraw). The details are simple in this case because the Jacobian is
diagonal; see the reference manual chapter on constrained parameter transforms for
full details. Here L can even be a vector containing parameters that don’t depend on
αraw; if the bounds do depend on αraw then a revised Jacobian needs to be calculated
taking into account the dependencies.

Varying upper and lower bounds
Suppose there are lower and upper bounds that vary by parameter. These can
be applied to shift and rescale a parameter constrained to (0, 1). This is easily
accomplished as the following.

data {
int N;
vector[N] L; // lower bounds
vector[N] U; // upper bounds
// ...

}
parameters {

vector<lower=L, upper=U>[N] alpha;
// ...

}

The same may be accomplished by manually constructing the transform as follows.

data {
int N;
vector[N] L; // lower bounds
vector[N] U; // upper bounds
// ...

}
parameters {

vector<lower=0, upper=1>[N] alpha_raw;
// ...

}
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transformed parameters {
vector[N] alpha = L + (U - L) .* alpha_raw;

}

The expression U - L is multiplied by alpha_raw elementwise to produce a vector
of variables in (0, U − L), then adding L results in a variable ranging between
(L, U).

In this case, it is important that L and U are constants, otherwise a Jacobian would
be required when multiplying by U − L.



26. Efficiency Tuning

This chapter provides a grab bag of techniques for optimizing Stan code, includ-
ing vectorization, sufficient statistics, and conjugacy. At a coarse level, efficiency
involves both the amount of time required for a computation and the amount of
memory required. For practical applied statistical modeling, we are mainly con-
cerned with reducing wall time (how long a program takes as measured by a clock
on the wall) and keeping memory requirements within available bounds.

26.1. What is efficiency?
The standard algorithm analyses in computer science measure efficiency asymptoti-
cally as a function of problem size (such as data, number of parameters, etc.) and
typically do not consider constant additive factors like startup times or multiplica-
tive factors like speed of operations. In practice, the constant factors are important;
if run time can be cut in half or more, that’s a huge gain. This chapter focuses
on both the constant factors involved in efficiency (such as using built-in matrix
operations as opposed to naive loops) and on asymptotic efficiency factors (such as
using linear algorithms instead of quadratic algorithms in loops).

26.2. Efficiency for probabilistic models and algorithms
Stan programs express models which are intrinsically statistical in nature. The
algorithms applied to these models may or may not themselves be probabilistic.
For example, given an initial value for parameters (which may itself be given deter-
ministically or generated randomly), Stan’s optimization algorithm (L-BFGS) for
penalized maximum likelihood estimation is purely deterministic. Stan’s sampling
algorithms are based on Markov chain Monte Carlo algorithms, which are prob-
abilistic by nature at every step. Stan’s variational inference algorithm (ADVI) is
probabilistic despite being an optimization algorithm; the randomization lies in a
nested Monte Carlo calculation for an expected gradient.

With probabilistic algorithms, there will be variation in run times (and maybe
memory usage) based on the randomization involved. For example, by starting
too far out in the tail, iterative algorithms underneath the hood, such as the solvers
for ordinary differential equations, may take different numbers of steps. Ideally
this variation will be limited; when there is a lot of variation it can be a sign that
there is a problem with the model’s parameterization in a Stan program or with

307
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initialization.

A well-behaved Stan program will have low variance between runs with different
random initializations and differently seeded random number generators. But
sometimes an algorithm can get stuck in one part of the posterior, typically due to
high curvature. Such sticking almost always indicates the need to reparameterize
the model. Just throwing away Markov chains with apparently poor behavior (slow,
or stuck) can lead to bias in posterior estimates. This problem with getting stuck
can often be overcome by lowering the initial step size to avoid getting stuck during
adaptation and increasing the target acceptance rate in order to target a lower step
size. This is because smaller step sizes allow Stan’s gradient-based algorithms to
better follow the curvature in the density or penalized maximum likelihood being
fit.

26.3. Statistical vs. computational efficiency
There is a difference between pure computational efficiency and statistical efficiency
for Stan programs fit with sampling-based algorithms. Computational efficiency
measures the amount of time or memory required for a given step in a calculation,
such as an evaluation of a log posterior or penalized likelihood.

Statistical efficiency typically involves requiring fewer steps in algorithms by mak-
ing the statistical formulation of a model better behaved. The typical way to do
this is by applying a change of variables (i.e., reparameterization) so that sampling
algorithms mix better or optimization algorithms require less adaptation.

26.4. Model conditioning and curvature
Because Stan’s algorithms rely on step-based gradient-based approximations of the
density (or penalized maximum likelihood) being fitted, posterior curvature not
captured by this first-order approximation plays a central role in determining the
statistical efficiency of Stan’s algorithms.

A second-order approximation to curvature is provided by the Hessian, the matrix
of second derivatives of the log density log p(θ) with respect to the parameter vector
θ, defined as

H(θ) = ∇∇ log p(θ | y),

so that

Hi,j(θ) =
∂2 log p(θ | y)

∂θi ∂θj
.

For pure penalized maximum likelihood problems, the posterior log density
log p(θ | y) is replaced by the penalized likelihood function L(θ) = log p(y |
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θ)− λ(θ).

Condition number and adaptation
A good gauge of how difficult a problem the curvature presents is given by the
condition number of the Hessian matrix H, which is the ratio of the largest to
the smallest eigenvalue of H (assuming the Hessian is positive definite). This
essentially measures the difference between the flattest direction of movement and
the most curved. Typically, the step size of a gradient-based algorithm is bounded
by the most sharply curved direction. With better conditioned log densities or
penalized likelihood functions, it is easier for Stan’s adaptation, especially the
diagonal adaptations that are used as defaults.

Unit scales without correlation
Ideally, all parameters should be programmed so that they have unit scale and
so that posterior correlation is reduced; together, these properties mean that there
is no rotation or scaling required for optimal performance of Stan’s algorithms.
For Hamiltonian Monte Carlo, this implies a unit mass matrix, which requires no
adaptation as it is where the algorithm initializes.

Varying curvature
In all but very simple models (such as multivariate normals), the Hessian will vary
as θ varies (an extreme example is Neal’s funnel, as naturally arises in hierarchical
models with little or no data). The more the curvature varies, the harder it is for all
of the algorithms with fixed adaptation parameters to find adaptations that cover
the entire density well. Many of the variable transforms proposed are aimed at
improving the conditioning of the Hessian and/or making it more consistent across
the relevant portions of the density (or penalized maximum likelihood function)
being fit.

For all of Stan’s algorithms, the curvature along the path from the initial values of
the parameters to the solution is relevant. For penalized maximum likelihood and
variational inference, the solution of the iterative algorithm will be a single point,
so this is all that matters. For sampling, the relevant “solution” is the typical set,
which is the posterior volume where almost all draws from the posterior lies; thus,
the typical set contains almost all of the posterior probability mass.

With sampling, the curvature may vary dramatically between the points on the
path from the initialization point to the typical set and within the typical set. This is
why adaptation needs to run long enough to visit enough points in the typical set to
get a good first-order estimate of the curvature within the typical set. If adaptation
is not run long enough, sampling within the typical set after adaptation will not
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be efficient. We generally recommend at least one hundred iterations after the
typical set is reached (and the first effective draw is ready to be realized). Whether
adaptation has run long enough can be measured by comparing the adaptation
parameters derived from a set of diffuse initial parameter values.

Reparameterizing with a change of variables
Improving statistical efficiency is achieved by reparameterizing the model so that
the same result may be calculated using a density or penalized maximum likelihood
that is better conditioned. Again, see the example of reparameterizing Neal’s funnel
for an example, and also the examples in the change of variables chapter.

One has to be careful in using change-of-variables reparameterizations when using
maximum likelihood estimation, because they can change the result if the Jacobian
term is inadvertently included in the revised likelihood model.

26.5. Well-specified models
Model misspecification, which roughly speaking means using a model that doesn’t
match the data, can be a major source of slow code. This can be seen in cases where
simulated data according to the model runs robustly and efficiently, whereas the
real data for which it was intended runs slowly or may even have convergence
and mixing issues. While some of the techniques recommended in the remaining
sections of this chapter may mitigate the problem, the best remedy is a better model
specification.

Counterintuitively, more complicated models often run faster than simpler models.
One common pattern is with a group of parameters with a wide fixed prior such
as normal(0, 1000)). This can fit slowly due to the mismatch between prior and
posterior (the prior has support for values in the hundreds or even thousands,
whereas the posterior may be concentrated near zero). In such cases, replacing the
fixed prior with a hierarchical prior such as normal(mu, sigma), where mu and
sigma are new parameters with their own hyperpriors, can be beneficial.

26.6. Avoiding validation
Stan validates all of its data structure constraints. For example, consider a trans-
formed parameter defined to be a covariance matrix and then used as a covariance
parameter in the model block.

transformed parameters {
cov_matrix[K] Sigma;
// ...

} // first validation

reparameterization.qmd
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model {
y ~ multi_normal(mu, Sigma); // second validation
// ...

}

Because Sigma is declared to be a covariance matrix, it will be factored at the end
of the transformed parameter block to ensure that it is positive definite. The mul-
tivariate normal log density function also validates that Sigma is positive definite.
This test is expensive, having cubic run time (i.e., O(N3) for N × N matrices), so it
should not be done twice.

The test may be avoided by simply declaring Sigma to be a simple unconstrained
matrix.

transformed parameters {
matrix[K, K] Sigma;
// ...

}
model {

y ~ multi_normal(mu, Sigma); // only validation
}

Now the only validation is carried out by the multivariate normal.

26.7. Reparameterization
Stan’s sampler can be slow in sampling from distributions with difficult posterior
geometries. One way to speed up such models is through reparameterization. In
some cases, reparameterization can dramatically increase effective sample size for
the same number of iterations or even make programs that would not converge
well behaved.

Example: Neal’s funnel
In this section, we discuss a general transform from a centered to a non-centered
parameterization (Papaspiliopoulos, Roberts, and Sköld 2007).1

This reparameterization is helpful when there is not much data, because it separates
the hierarchical parameters and lower-level parameters in the prior.

Neal (2003) defines a distribution that exemplifies the difficulties of sampling from

1This parameterization came to be known on our mailing lists as the “Matt trick” after Matt Hoffman,
who independently came up with it while fitting hierarchical models in Stan.
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some hierarchical models. Neal’s example is fairly extreme, but can be trivially repa-
rameterized in such a way as to make sampling straightforward. Neal’s example
has support for y ∈ R and x ∈ R9 with density

p(y, x) = normal(y | 0, 3)×
9

∏
n=1

normal(xn | 0, exp(y/2)).

The probability contours are shaped like ten-dimensional funnels. The funnel’s
neck is particularly sharp because of the exponential function applied to y. A plot
of the log marginal density of y and the first dimension x1 is shown in the following
plot.

The marginal density of Neal’s funnel for the upper-level variable y and one lower-
level variable x1 (see the text for the formula). The blue region has log density
greater than -8, the yellow region density greater than -16, and the gray background
a density less than -16.
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Figure 26.1: Neal’s funnel density

The funnel can be implemented directly in Stan as follows.

parameters {
real y;
vector[9] x;

}
model {

y ~ normal(0, 3);
x ~ normal(0, exp(y/2));

}

When the model is expressed this way, Stan has trouble sampling from the neck of
the funnel, where y is small and thus x is constrained to be near 0. This is due to
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the fact that the density’s scale changes with y, so that a step size that works well in
the body will be too large for the neck, and a step size that works in the neck will
be inefficient in the body. This can be seen in the following plot.

4000 draws are taken from a run of Stan’s sampler with default settings. Both plots
are restricted to the shown window of x1 and y values; some draws fell outside
of the displayed area as would be expected given the density. The samples are
consistent with the marginal density p(y) = normal(y | 0, 3), which has mean 0 and
standard deviation 3.
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In this particular instance, because the analytic form of the density from which
samples are drawn is known, the model can be converted to the following more
efficient form.

parameters {
real y_raw;
vector[9] x_raw;

}
transformed parameters {

real y;
vector[9] x;

y = 3.0 * y_raw;
x = exp(y/2) * x_raw;

}
model {

y_raw ~ std_normal(); // implies y ~ normal(0, 3)
x_raw ~ std_normal(); // implies x ~ normal(0, exp(y/2))

}

In this second model, the parameters x_raw and y_raw are sampled as independent
standard normals, which is easy for Stan. These are then transformed into samples
from the funnel. In this case, the same transform may be used to define Monte Carlo
samples directly based on independent standard normal samples; Markov chain
Monte Carlo methods are not necessary. If such a reparameterization were used in
Stan code, it is useful to provide a comment indicating what the distribution for the
parameter implies for the distribution of the transformed parameter.

Reparameterizing the Cauchy
Sampling from heavy tailed distributions such as the Cauchy is difficult for Hamil-
tonian Monte Carlo, which operates within a Euclidean geometry.

The practical problem is that tail of the Cauchy requires a relatively large step size
compared to the trunk. With a small step size, the No-U-Turn sampler requires
many steps when starting in the tail of the distribution; with a large step size, there
will be too much rejection in the central portion of the distribution. This problem
may be mitigated by defining the Cauchy-distributed variable as the transform of a
uniformly distributed variable using the Cauchy inverse cumulative distribution
function.

Suppose a random variable of interest X has a Cauchy distribution with location µ
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and scale τ, so that X ∼ Cauchy(µ, τ). The variable X has a cumulative distribution
function FX : R → (0, 1) defined by

FX(x) =
1
π

arctan
(

x − µ

τ

)
+

1
2

.

The inverse of the cumulative distribution function, F−1
X : (0, 1) → R, is thus

F−1
X (y) = µ + τ tan

(
π

(
y − 1

2

))
.

Thus if the random variable Y has a unit uniform distribution, Y ∼ uniform(0, 1),
then F−1

X (Y) has a Cauchy distribution with location µ and scale τ, i.e., F−1
X (Y) ∼

Cauchy(µ, τ).

Consider a Stan program involving a Cauchy-distributed parameter beta.

parameters {
real beta;
// ...

}
model {

beta ~ cauchy(mu, tau);
// ...

}

This declaration of beta as a parameter may be replaced with a transformed param-
eter beta defined in terms of a uniform-distributed parameter beta_unif.

parameters {
real<lower=-pi() / 2, upper=pi() / 2> beta_unif;
// ...

}
transformed parameters {

real beta;
beta = mu + tau * tan(beta_unif); // beta ~ cauchy(mu, tau)

}
model {

beta_unif ~ uniform(-pi() / 2, pi() / 2); // not necessary
// ...

}
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It is more convenient in Stan to transform a uniform variable on (−π/2, π/2)
than one on (0, 1). The Cauchy location and scale parameters, mu and tau, may be
defined as data or may themselves be parameters. The variable beta could also be
defined as a local variable if it does not need to be included in the sampler’s output.

The uniform distribution on beta_unif is defined explicitly in the model block, but
it could be safely removed from the program without changing sampling behavior.
This is because log uniform(βunif | −π/2, π/2) = − log π is a constant and Stan
only needs the total log probability up to an additive constant. Stan will spend
some time checking that that beta_unif is between -pi() / 2 and pi() / 2, but
this condition is guaranteed by the constraints in the declaration of beta_unif.

Reparameterizing a Student-t distribution
One thing that sometimes works when you’re having trouble with the heavy-
tailedness of Student-t distributions is to use the gamma-mixture representation,
which says that you can generate a Student-t distributed variable β,

β ∼ Student-t(ν, 0, 1),

by first generating a gamma-distributed precision (inverse variance) τ according to

τ ∼ Gamma(ν/2, ν/2),

and then generating β from the normal distribution,

β ∼ normal
(

0, τ− 1
2

)
.

Because τ is precision, τ− 1
2 is the scale (standard deviation), which is the parame-

terization used by Stan.

The marginal distribution of β when you integrate out τ is Student-t(ν, 0, 1), i.e.,

Student-t(β | ν, 0, 1) =
∫ ∞

0
normal

(
β
∣∣∣0, τ−0.5

)
× Gamma (τ|ν/2, ν/2) dτ.

To go one step further, instead of defining a β drawn from a normal with precision
τ, define α to be drawn from a unit normal,

α ∼ normal(0, 1)

and rescale by defining
β = α τ− 1

2 .
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Now suppose µ = βx is the product of β with a regression predictor x. Then the
reparameterization µ = ατ− 1

2 x has the same distribution, but in the original, direct
parameterization, β has (potentially) heavy tails, whereas in the second, neither τ
nor α have heavy tails.

To translate into Stan notation, this reparameterization replaces

parameters {
real<lower=0> nu;
real beta;
// ...

}
model {

beta ~ student_t(nu, 0, 1);
// ...

}

with

parameters {
real<lower=0> nu;
real<lower=0> tau;
real alpha;
// ...

}
transformed parameters {

real beta;
beta = alpha / sqrt(tau);
// ...

}
model {

real half_nu;
half_nu = 0.5 * nu;
tau ~ gamma(half_nu, half_nu);
alpha ~ std_normal();
// ...

}

Although set to 0 here, in most cases, the lower bound for the degrees of freedom pa-
rameter nu can be set to 1 or higher; when nu is 1, the result is a Cauchy distribution
with fat tails and as nu approaches infinity, the Student-t distribution approaches a
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normal distribution. Thus the parameter nu characterizes the heaviness of the tails
of the model.

Hierarchical models and the non-centered parameterization
Unfortunately, the usual situation in applied Bayesian modeling involves complex
geometries and interactions that are not known analytically. Nevertheless, the
non-centered parameterization can still be effective for separating parameters.

Centered parameterization
For example, a vectorized hierarchical model might draw a vector of coefficients β
with definitions as follows. The so-called centered parameterization is as follows.

parameters {
real mu_beta;
real<lower=0> sigma_beta;
vector[K] beta;
// ...

}
model {

beta ~ normal(mu_beta, sigma_beta);
// ...

}

Although not shown, a full model will have priors on both mu_beta and
sigma_beta along with data modeled based on these coefficients. For instance, a
standard binary logistic regression with data matrix x and binary outcome vector
y would include a likelihood statement such as form y ~ bernoulli_logit(x *
beta), leading to an analytically intractable posterior.

A hierarchical model such as the above will suffer from the same kind of ineffi-
ciencies as Neal’s funnel, because the values of beta, mu_beta and sigma_beta
are highly correlated in the posterior. The extremity of the correlation depends on
the amount of data, with Neal’s funnel being the extreme with no data. In these
cases, the non-centered parameterization, discussed in the next section, is preferable;
when there is a lot of data, the centered parameterization is more efficient. See
Betancourt and Girolami (2013) for more information on the effects of centering in
hierarchical models fit with Hamiltonian Monte Carlo.

Non-centered parameterization
Sometimes the group-level effects do not constrain the hierarchical distribution
tightly. Examples arise when there are not many groups, or when the inter-group
variation is high. In such cases, hierarchical models can be made much more efficient
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by shifting the data’s correlation with the parameters to the hyperparameters.
Similar to the funnel example, this will be much more efficient in terms of effective
sample size when there is not much data (see Betancourt and Girolami (2013)), and
in more extreme cases will be necessary to achieve convergence.

parameters {
real mu_beta;
real<lower=0> sigma_beta;
vector[K] beta_raw;
// ...

}
transformed parameters {

vector[K] beta;
// implies: beta ~ normal(mu_beta, sigma_beta)
beta = mu_beta + sigma_beta * beta_raw;

}
model {

beta_raw ~ std_normal();
// ...

}

Any priors defined for mu_beta and sigma_beta remain as defined in the original
model.

Alternatively, Stan’s affine transform can be used to decouple sigma and beta:

parameters {
real mu_beta;
real<lower=0> sigma_beta;
vector<offset=mu_beta, multiplier=sigma_beta>[K] beta;
// ...

}
model {

beta ~ normal(mu_beta, sigma_beta);
// ...

}

Reparameterization of hierarchical models is not limited to the normal distribution,
although the normal distribution is the best candidate for doing so. In general,
any distribution of parameters in the location-scale family is a good candidate
for reparameterization. Let β = l + sα where l is a location parameter and s is a

https://mc-stan.org/docs/reference-manual/types.html#affinely-transformed-real


26.7. REPARAMETERIZATION 321

scale parameter. The parameter l need not be the mean, s need not be the standard
deviation, and neither the mean nor the standard deviation need to exist. If α and β
are from the same distributional family but α has location zero and unit scale, while
β has location l and scale s, then that distribution is a location-scale distribution.
Thus, if α were a parameter and β were a transformed parameter, then a prior
distribution from the location-scale family on α with location zero and unit scale
implies a prior distribution on β with location l and scale s. Doing so would reduce
the dependence between α, l, and s.

There are several univariate distributions in the location-scale family, such as the
Student t distribution, including its special cases of the Cauchy distribution (with
one degree of freedom) and the normal distribution (with infinite degrees of free-
dom). As shown above, if α is distributed standard normal, then β is distributed
normal with mean µ = l and standard deviation σ = s. The logistic, the double
exponential, the generalized extreme value distributions, and the stable distribution
are also in the location-scale family.

Also, if z is distributed standard normal, then z2 is distributed chi-squared with
one degree of freedom. By summing the squares of K independent standard nor-
mal variates, one can obtain a single variate that is distributed chi-squared with
K degrees of freedom. However, for large K, the computational gains of this repa-
rameterization may be overwhelmed by the computational cost of specifying K
primitive parameters just to obtain one transformed parameter to use in a model.

Multivariate reparameterizations
The benefits of reparameterization are not limited to univariate distributions. A
parameter with a multivariate normal prior distribution is also an excellent candi-
date for reparameterization. Suppose you intend the prior for β to be multivariate
normal with mean vector µ and covariance matrix Σ. Such a belief is reflected by
the following code.

data {
int<lower=2> K;
vector[K] mu;
cov_matrix[K] Sigma;
// ...

}
parameters {

vector[K] beta;
// ...

}
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model {
beta ~ multi_normal(mu, Sigma);
// ...

}

In this case mu and Sigma are fixed data, but they could be unknown parameters, in
which case their priors would be unaffected by a reparameterization of beta.

If α has the same dimensions as β but the elements of α are independently and
identically distributed standard normal such that β = µ + Lα, where LL⊤ = Σ,
then β is distributed multivariate normal with mean vector µ and covariance matrix
Σ. One choice for L is the Cholesky factor of Σ. Thus, the model above could be
reparameterized as follows.

data {
int<lower=2> K;
vector[K] mu;
cov_matrix[K] Sigma;
// ...

}
transformed data {

matrix[K, K] L;
L = cholesky_decompose(Sigma);

}
parameters {

vector[K] alpha;
// ...

}
transformed parameters {

vector[K] beta;
beta = mu + L * alpha;

}
model {

alpha ~ std_normal();
// implies: beta ~ multi_normal(mu, Sigma)
// ...

}

This reparameterization is more efficient for two reasons. First, it reduces depen-
dence among the elements of alpha and second, it avoids the need to invert Sigma
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every time multi_normal is evaluated.

The Cholesky factor is also useful when a covariance matrix is decomposed into
a correlation matrix that is multiplied from both sides by a diagonal matrix of
standard deviations, where either the standard deviations or the correlations are
unknown parameters. The Cholesky factor of the covariance matrix is equal to the
product of a diagonal matrix of standard deviations and the Cholesky factor of
the correlation matrix. Furthermore, the product of a diagonal matrix of standard
deviations and a vector is equal to the elementwise product between the standard
deviations and that vector. Thus, if for example the correlation matrix Tau were
fixed data but the vector of standard deviations sigma were unknown parameters,
then a reparameterization of beta in terms of alpha could be implemented as
follows.

data {
int<lower=2> K;
vector[K] mu;
corr_matrix[K] Tau;
// ...

}
transformed data {

matrix[K, K] L;
L = cholesky_decompose(Tau);

}
parameters {

vector[K] alpha;
vector<lower=0>[K] sigma;
// ...

}
transformed parameters {

vector[K] beta;
// This equals mu + diag_matrix(sigma) * L * alpha;
beta = mu + sigma .* (L * alpha);

}
model {

sigma ~ cauchy(0, 5);
alpha ~ std_normal();
// implies: beta ~ multi_normal(mu,
// diag_matrix(sigma) * L * L' * diag_matrix(sigma)))
// ...
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}

This reparameterization of a multivariate normal distribution in terms of standard
normal variates can be extended to other multivariate distributions that can be con-
ceptualized as contaminations of the multivariate normal, such as the multivariate
Student t and the skew multivariate normal distribution.

A Wishart distribution can also be reparameterized in terms of standard normal
variates and chi-squared variates. Let L be the Cholesky factor of a K × K positive
definite scale matrix S and let ν be the degrees of freedom. If

A =


√

c1 0 · · · 0

z21
√

c2
. . .

...
...

. . . . . . 0
zK1 · · · zK(K−1)

√
cK

 ,

where each ci is distributed chi-squared with ν − i + 1 degrees of freedom and each
zij is distributed standard normal, then W = LAA⊤L⊤ is distributed Wishart with
scale matrix S = LL⊤ and degrees of freedom ν. Such a reparameterization can be
implemented by the following Stan code:

data {
int<lower=1> N;
int<lower=1> K;
int<lower=K + 2> nu
matrix[K, K] L; // Cholesky factor of scale matrix
vector[K] mu;
matrix[N, K] y;
// ...

}
parameters {

vector<lower=0>[K] c;
vector[0.5 * K * (K - 1)] z;
// ...

}
model {

matrix[K, K] A;
int count = 1;
for (j in 1:(K - 1)) {
for (i in (j + 1):K) {
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A[i, j] = z[count];
count += 1;

}
for (i in 1:(j - 1)) {
A[i, j] = 0.0;

}
A[j, j] = sqrt(c[j]);

}
for (i in 1:(K - 1)) {
A[i, K] = 0;

}
A[K, K] = sqrt(c[K]);

for (i in 1:K) {
c[i] ~ chi_square(nu - i + 1);

}

z ~ std_normal();
// implies: L * A * A' * L' ~ wishart(nu, L * L')
y ~ multi_normal_cholesky(mu, L * A);
// ...

}

This reparameterization is more efficient for three reasons. First, it reduces de-
pendence among the elements of z and second, it avoids the need to invert the
covariance matrix, W every time wishart is evaluated. Third, if W is to be used
with a multivariate normal distribution, you can pass LA to the more efficient
multi_normal_cholesky function, rather than passing W to multi_normal.

If W is distributed Wishart with scale matrix S and degrees of freedom ν, then
W−1 is distributed inverse Wishart with inverse scale matrix S−1 and degrees of
freedom ν. Thus, the previous result can be used to reparameterize the inverse
Wishart distribution. Since W = LAA⊤L⊤, W−1 = L⊤−1

A⊤−1
A−1L−1, where all

four inverses exist, but L−1⊤ = L⊤−1
and A−1⊤ = A⊤−1

. We can slightly modify
the above Stan code for this case:

data {
int<lower=1> K;
int<lower=K + 2> nu
matrix[K, K] L; // Cholesky factor of scale matrix
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// ...
}
transformed data {

matrix[K, K] eye;
matrix[K, K] L_inv;
for (j in 1:K) {
for (i in 1:K) {

eye[i, j] = 0.0;
}
eye[j, j] = 1.0;

}
L_inv = mdivide_left_tri_low(L, eye);

}
parameters {

vector<lower=0>[K] c;
vector[0.5 * K * (K - 1)] z;
// ...

}
model {

matrix[K, K] A;
matrix[K, K] A_inv_L_inv;
int count;
count = 1;
for (j in 1:(K - 1)) {
for (i in (j + 1):K) {
A[i, j] = z[count];
count += 1;

}
for (i in 1:(j - 1)) {

A[i, j] = 0.0;
}
A[j, j] = sqrt(c[j]);

}
for (i in 1:(K - 1)) {
A[i, K] = 0;

}
A[K, K] = sqrt(c[K]);

A_inv_L_inv = mdivide_left_tri_low(A, L_inv);
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for (i in 1:K) {
c[i] ~ chi_square(nu - i + 1);

}

z ~ std_normal(); // implies: crossprod(A_inv_L_inv) ~
// inv_wishart(nu, L_inv' * L_inv)
// ...

}

Another candidate for reparameterization is the Dirichlet distribution with all K
shape parameters equal. Zyczkowski and Sommers (2001) shows that if θi is equal
to the sum of β independent squared standard normal variates and ρi =

θi
∑ θi

, then

the K-vector ρ is distributed Dirichlet with all shape parameters equal to β
2 . In

particular, if β = 2, then ρ is uniformly distributed on the unit simplex. Thus, we
can make ρ be a transformed parameter to reduce dependence, as in:

data {
int<lower=1> beta;
// ...

}
parameters {

array[K] vector[beta] z;
// ...

}
transformed parameters {

simplex[K] rho;
for (k in 1:K) {
rho[k] = dot_self(z[k]); // sum-of-squares

}
rho = rho / sum(rho);

}
model {

for (k in 1:K) {
z[k] ~ std_normal();

}
// implies: rho ~ dirichlet(0.5 * beta * ones)
// ...

}



328 CHAPTER 26. EFFICIENCY TUNING

26.8. Vectorization
Gradient bottleneck
Stan spends the vast majority of its time computing the gradient of the log probabil-
ity function, making gradients the obvious target for optimization. Stan’s gradient
calculations with algorithmic differentiation require a template expression to be
allocated and constructed for each subexpression of a Stan program involving
parameters or transformed parameters.2 This section defines optimization strate-
gies based on vectorizing these subexpressions to reduce the work done during
algorithmic differentiation.

Vectorizing summations
Because of the gradient bottleneck described in the previous section, it is more
efficient to collect a sequence of summands into a vector or array and then apply
the sum() operation than it is to continually increment a variable by assignment
and addition. For example, consider the following code snippet, where foo() is
some operation that depends on n.

for (n in 1:N) {
total += foo(n,...);

}

This code has to create intermediate representations for each of the N summands.

A faster alternative is to copy the values into a vector, then apply the sum() operator,
as in the following refactoring.

{
vector[N] summands;
for (n in 1:N) {
summands[n] = foo(n,...);

}
total = sum(summands);

}

Syntactically, the replacement is a statement block delineated by curly brackets ({,
}), starting with the definition of the local variable summands.

Even though it involves extra work to allocate the summands vector and copy N
values into it, the savings in differentiation more than make up for it. Perhaps

2Stan uses its own arena-based allocation, so allocation and deallocation are faster than with a raw
call to new.
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surprisingly, it will also use substantially less memory overall than incrementing
total within the loop.

Vectorization through matrix operations
The following program directly encodes a linear regression with fixed unit noise
using a two-dimensional array x of predictors, an array y of outcomes, and an array
beta of regression coefficients.

data {
int<lower=1> K;
int<lower=1> N;
array[K, N] real x;
array[N] real y;

}
parameters {

array[K] real beta;
}
model {

for (n in 1:N) {
real gamma = 0;
for (k in 1:K) {
gamma += x[n, k] * beta[k];

}
y[n] ~ normal(gamma, 1);

}
}

The following model computes the same log probability function as the previous
model, even supporting the same input files for data and initialization.

data {
int<lower=1> K;
int<lower=1> N;
array[N] vector[K] x;
array[N] real y;

}
parameters {

vector[K] beta;
}
model {

for (n in 1:N) {
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y[n] ~ normal(dot_product(x[n], beta), 1);
}

}

Although it produces equivalent results, the dot product should not be replaced
with a transpose and multiply, as in

y[n] ~ normal(x[n]' * beta, 1);

The relative inefficiency of the transpose and multiply approach is that the transpo-
sition operator allocates a new vector into which the result of the transposition is
copied. This consumes both time and memory.3

The inefficiency of transposition could itself be mitigated by reordering the product
and pulling the transposition out of the loop, as follows.

// ...
transformed parameters {

row_vector[K] beta_t;
beta_t = beta';

}
model {

for (n in 1:N) {
y[n] ~ normal(beta_t * x[n], 1);

}
}

The problem with transposition could be completely solved by directly encoding
the x as a row vector, as in the following example.

data {
// ...
array[N] row_vector[K] x;
// ...

}
parameters {

vector[K] beta;
}

3Future versions of Stan may remove this inefficiency by more fully exploiting expression templates in-
side the Eigen C++ matrix library. This will require enhancing Eigen to deal with mixed-type arguments,
such as the type double used for constants and the algorithmic differentiation type stan::math::var
used for variables.
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model {
for (n in 1:N) {
y[n] ~ normal(x[n] * beta, 1);

}
}

Declaring the data as a matrix and then computing all the predictors at once using
matrix multiplication is more efficient still, as in the example discussed in the next
section.

Having said all this, the most efficient way to code this model is with direct matrix
multiplication, as in

data {
matrix[N, K] x;
vector[N] y;

}
parameters {

vector[K] beta;
}
model {

y ~ normal(x * beta, 1);
}

In general, encapsulated single operations that do the work of loops will be more
efficient in their encapsulated forms. Rather than performing a sequence of row-
vector/vector multiplications, it is better to encapsulate it as a single matrix/vector
multiplication.

Vectorized probability functions
The final and most efficient version replaces the loops and transformed parameters
by using the vectorized form of the normal probability function, as in the following
example.

data {
int<lower=1> K;
int<lower=1> N;
matrix[N, K] x;
vector[N] y;

}
parameters {
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vector[K] beta;
}
model {

y ~ normal(x * beta, 1);
}

The variables are all declared as either matrix or vector types. The result of the
matrix-vector multiplication x * beta in the model block is a vector of the same
length as y.

The probability function documentation in the function reference manual indicates
which of Stan’s probability functions support vectorization; see the function refer-
ence manual for full details. Vectorized probability functions accept either vector
or scalar inputs for all arguments, with the only restriction being that all vector
arguments are the same dimensionality. In the example above, y is a vector of size
N, x * beta is a vector of size N, and 1 is a scalar.

Reshaping data for vectorization
Sometimes data does not arrive in a shape that is ideal for vectorization, but can
be put into such shape with some munging (either inside Stan’s transformed data
block or outside).

John Hall provided a simple example on the Stan users group. Simplifying notation
a bit, the original model had a sampling statement in a loop, as follows.

for (n in 1:N) {
y[n] ~ normal(mu[ii[n]], sigma);

}

The brute force vectorization would build up a mean vector and then vectorize all
at once.

{
vector[N] mu_ii;
for (n in 1:N) {
mu_ii[n] = mu[ii[n]];

}
y ~ normal(mu_ii, sigma);

}

If there aren’t many levels (values ii[n] can take), then it behooves us to reorganize
the data by group in a case like this. Rather than having a single observation vector
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y, there are K of them. And because Stan doesn’t support ragged arrays, it means K
declarations. For instance, with 5 levels, we have

y_1 ~ normal(mu[1], sigma);
// ...
y_5 ~ normal(mu[5], sigma);

This way, both the mu and sigma parameters are shared. Which way works out to
be more efficient will depend on the shape of the data; if the sizes are small, the
simple vectorization may be faster, but for moderate to large sized groups, the full
expansion should be faster.

26.9. Exploiting sufficient statistics
In some cases, models can be recoded to exploit sufficient statistics in estimation.
This can lead to large efficiency gains compared to an expanded model. This section
provides examples for Bernoulli and normal distributions, but the same approach
can be applied to other members of the exponential family.

Bernoulli sufficient statistics
Consider the following Bernoulli sampling model.

data {
int<lower=0> N;
array[N] int<lower=0, upper=1> y;
real<lower=0> alpha;
real<lower=0> beta;

}
parameters {

real<lower=0, upper=1> theta;
}
model {

theta ~ beta(alpha, beta);
for (n in 1:N) {
y[n] ~ bernoulli(theta);

}
}

In this model, the sum of positive outcomes in y is a sufficient statistic for the chance
of success theta. The model may be recoded using the binomial distribution as
follows.
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theta ~ beta(alpha, beta);
sum(y) ~ binomial(N, theta);

Because truth is represented as one and falsehood as zero, the sum sum(y) of a
binary vector y is equal to the number of positive outcomes out of a total of N trials.

This can be generalized to other discrete cases (one wouldn’t expect continuous
observations to be duplicated if they are random). Suppose there are only K
possible discrete outcomes, z1, . . . , zK, but there are N observations, where N is
much larger than K. If fk is the frequency of outcome zk, then the entire likelihood
with distribution foo can be coded as follows.

for (k in 1:K) {
target += f[k] * foo_lpmf(z[k] | ...);

}

where the ellipses are the parameters of the log probability mass function for
distribution foo (there’s no distribution called “foo”; this is just a placeholder for
any discrete distribution name).

The resulting program looks like a “weighted” regression, but here the weights
f[k] are counts and thus sufficient statistics for the PMF and simply amount to
an alternative, more efficient coding of the same likelihood. For efficiency, the
frequencies f[k] should be counted once in the transformed data block and stored.

The same trick works for combining multiple binomial observations.

Normal sufficient statistics
Consider the following Stan model for fitting a normal distribution to data.

data {
int N;
vector[N] y;

}
parameters {

real mu;
real<lower=0> sigma;

}
model {

y ~ normal(mu, sigma);
}

With the vectorized form used for y, Stan is clever enough to only evaluate
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log(sigma) once, but it still has to evaluate the normal for all of y[1] to y[N],
which involves adding up all the squared differences from the mean and then
dividing by sigma squared.

An equivalent density to the one above (up to normalizing constants that do not
depend on parameters), is given in the following Stan program.

data {
int N;
vector[N] y;

}
transformed data {

real mean_y = mean(y);
real<lower=0> var_y = variance(y);
real nm1_over2 = 0.5 * (N - 1);
real sqrt_N = sqrt(N);

}
parameters {

real mu;
real<lower=0> sigma;

}
model {

mean_y ~ normal(mu, sigma / sqrt_N);
var_y ~ gamma(nm1_over2, nm1_over2 / sigmaˆ2);

}

The data and parameters are the same in this program as in the first. The second
version adds a transformed data block to compute the mean and variance of the
data, which are the sufficient statistics here. These are stored along with two other
useful constants. Then the program can define distributions over the mean and
variance, both of which are scalars here.

The original Stan program and this one define the same model in the sense that they
define the same log density up to a constant additive term that does not depend on
the parameters. The priors on mu and sigma are both improper, but proper priors
could be added as additional statements in the model block without affecting the
sufficiency.

This transform explicitly relies on aggregating the data. Using this trick on parame-
ters leads to more computation than just computing the normal log density, even
before accounting for the non-linear change of variables in the variance.
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Poisson sufficient statistics
The Poisson distribution is the easiest case, because the sum of observations is
sufficient. Specifically, we can replace

y ~ poisson(lambda);

with

sum(y) ~ poisson(size(y) * lambda);

This will work even if y is a parameter vector because no Jacobian adjustment is
required for summation.

26.10. Aggregating common subexpressions
If an expression is calculated once, the value should be saved and reused wherever
possible. That is, rather than using exp(theta) in multiple places, declare a local
variable to store its value and reuse the local variable.

Another case that may not be so obvious is with two multilevel parameters, say
a[ii[n]] + b[jj[n]]. If a and b are small (i.e., do not have many levels), then a
table a_b of their sums can be created, with

matrix[size(a), size(b)] a_b;
for (i in 1:size(a)) {
for (j in 1:size(b)) {
a_b[i, j] = a[i] + b[j];

}
}

Then the sum can be replaced with a_b[ii[n], jj[n]].

26.11. Exploiting conjugacy
Continuing the model from the previous section, the conjugacy of the beta prior
and binomial distribution allow the model to be further optimized to the following
equivalent form.

theta ~ beta(alpha + sum(y), beta + N - sum(y));

To make the model even more efficient, a transformed data variable defined to be
sum(y) could be used in the place of sum(y).
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26.12. Standardizing predictors
Standardizing the data so that all predictors have a zero sample mean and unit
sample variance has the following potential benefits:

• It helps in faster convergence of MCMC chains.
• It makes the model less sensitive to the specifics of the parameterization.
• It aids in the interpretation and comparison of the importance of coefficients

across different predictors.

When there are large differences between the units and scales of the predictors,
standardizing the predictors is especially useful. This section illustrates the principle
for a simple linear regression.

Suppose that y = (y1, . . . , yN) is a vector of N outcomes and x = (x1, . . . , xN) the
corresponding vector of N predictors. A simple linear regression involving an
intercept coefficient α and slope coefficient β can be expressed as

yn = α + βxn + ϵn,

where
ϵn ∼ normal(0, σ).

If x has very large or very small values or if the mean of the values is far away
from 0 (on the scale of the values), then it can be more efficient to standardize the
predictor values xn. First the elements of x are zero-centered by subtracting the
mean, then scaled by dividing by the standard deviation.

The mean of x is given by:

meanx =
1
N

N

∑
n=1

xn

The standard deviation of x is calculated as:

sdx =

(
1
N

N

∑
n=1

(xn − meanx)
2

)1/2

With these, we compute the z, the standardized predictors

zn =
xn − meanx

sdx
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where zn is the standardized value corresponding to xn.

The inverse transform is defined by reversing the two normalization steps, first
rescaling by the same deviation and relocating by the sample mean.

xn = znsdx + meanx

Standardizing the predictors standardizes the scale of the variables, and hence the
scale of the priors.

Consider the following initial model.

data {
int<lower=0> N;
vector[N] y;
vector[N] x;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

// priors
alpha ~ normal(0, 10);
beta ~ normal(0, 10);
sigma ~ normal(0, 5);
// likelihood
y ~ normal(x * beta + alpha, sigma);

}

The data block for the standardized model is identical. The mean and standard
deviation of the data are defined in the transformed data block, along with the
standardized predictors.

data {
int<lower=0> N;
vector[N] y;
vector[N] x;

}
transformed data {
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real mean_x = mean(x);
real sd_x = sd(x);
vector[N] x_std = (x - mean_x) / sd_x;

}
parameters {

real alpha_std;
real beta_std;
real<lower=0> sigma_std;

}
model {

alpha_std ~ normal(0, 10);
beta_std ~ normal(0, 10);
sigma_std ~ normal(0, 5);
y ~ normal(x_std * beta_std + alpha_std, sigma_std);

}

The parameters are renamed to indicate that they aren’t the “natural” parameters.
The transformed data x_std is defined in terms of variables mean_x and sd_x; by
declaring these variables in the transformed data block, they will be available
in all following blocks, and therefore can be used in the generated quantities
block to record the “natural” parameters alpha and beta.

The fairly diffuse priors on the coefficients are the same. These could have been
transformed as well, but here they are left as is, because the scales make sense as
diffuse priors for standardized data.

The original regression
yn = α + βxn + ϵn

has been transformed to a regression on the standardized data variable z,

yn = α′ + β′zn + ϵn.

The likelihood is specified in terms of the standardized parameters. The original
slope β is the standardized slope β′ scaled by the inverse of the standard deviation
of x. The original intercept α is the intercept from the standardized model α′,
corrected for the effect of scaling and centering x. Thus, the formulas to retrieve α
and β from α′ and β′ are:
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β =
β′

σx

α = α′ − β′ µx

σx

These recovered parameter values on the original scales can be calculated within
Stan using a generated quantities block following the model block,

generated quantities {
real beta = beta_std / sd_x;
real alpha = alpha_std - beta_std * mean_x / sd_x;

}

When there are multiple real-valued predictors, i.e., when K is the number of
predictors, x is an N × K matrix, and beta ia K-vector of coefficients, then x *
beta is an N-vector of predictions, one for each of the N data items. When K ≪ N
the QR reparameterization is recommended for linear and generalized linear models
unless there is an informative prior on the location of β.

Standard normal distribution
For many applications on the standard scale, normal distributions with location
zero and scale one will be used. In these cases, it is more efficient to use

y ~ std_normal();

than to use

y ~ normal(0, 1);

because the subtraction of the location and division by the scale cancel, as does
subtracting the log of the scale.

26.13. Using map-reduce
The map-reduce operation, even without multi-core MPI support, can be used to
make programs more scalable and also more efficient. See the map-reduce chapter
for more information on implementing map-reduce operations.

Map-reduce allows greater scalability because only the Jacobian of the mapped
function for each shard is stored. The Jacobian consists of all of the derivatives of
the outputs with respect to the parameters. During execution, the derivatives of

parallelization.qmd
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the shard are evaluated using nested automatic differentiation. As often happens
with modern CPUs, reduced memory overhead leads to increased memory locality
and faster execution. The Jacobians are all computed with local memory and their
outputs stored contiguously in memory.



27. Parallelization

Stan has support for different types of parallelization: multi-threading with Intel
Threading Building Blocks (TBB), multi-processing with Message Passing Interface
(MPI) and manycore processing with OpenCL.

Multi-threading in Stan can be used with two mechanisms: reduce with summation
and rectangular map. The latter can also be used with multi-processing.

The advantages of reduce with summation are:

1. More flexible argument interface, avoiding the packing and unpacking that is
necessary with rectanguar map.

2. Partitions data for parallelization automatically (this is done manually in
rectanguar map).

3. Is easier to use.

The advantages of rectangular map are:

1. Returns a list of vectors, while the reduce summation returns only a scalar.
2. Can be parallelized across multiple cores and multiple computers, while

reduce summation can only parallelized across multiple cores on a single
machine.

The actual speedup gained from using these functions will depend on many details.
It is strongly recommended to only parallelize the computationally most expensive
operations in a Stan program. Oftentimes this is the evaluation of the log likelihood
for the observed data. When it is not clear which parts of the model is the most
computationally expensive, we recommend using profiling, which is available in
Stan 2.26 and newer.

Since only portions of a Stan program will run in parallel, the maximal speedup
one can achieve is capped, a phenomen described by Amdahl’s law.

27.1. Reduce-sum
It is often necessary in probabilistic modeling to compute the sum of a number of
independent function evaluations. This occurs, for instance, when evaluating a
number of conditionally independent terms in a log-likelihood. If g: U -> real is
the function and { x1, x2, ... } is an array of inputs, then that sum looks like:

342

https://en.wikipedia.org/wiki/Amdahl%27s_law
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g(x1) + g(x2) + ...

reduce_sum and reduce_sum_static are tools for parallelizing these calculations.

For efficiency reasons the reduce function doesn’t work with the element-wise
evaluated function g, but instead the partial sum function f: U[] -> real, where
f computes the partial sum corresponding to a slice of the sequence x passed in.
Due to the associativity of the sum reduction it holds that:

g(x1) + g(x2) + g(x3) = f({ x1, x2, x3 })
= f({ x1, x2 }) + f({ x3 })
= f({ x1 }) + f({ x2, x3 })
= f({ x1 }) + f({ x2 }) + f({ x3 })

With the partial sum function f: U[] -> real reduction of a large number of terms
can be evaluated in parallel automatically, since the overall sum can be partitioned
into arbitrary smaller partial sums. The exact partitioning into the partial sums
is not under the control of the user. However, since the exact numerical result
will depend on the order of summation, Stan provides two versions of the reduce
summation facility:

• reduce_sum: Automatically choose partial sums partitioning based on a dy-
namic scheduling algorithm.

• reduce_sum_static: Compute the same sum as reduce_sum, but partition
the input in the same way for given data set (in reduce_sum this partitioning
might change depending on computer load).

grainsize is the one tuning parameter. For reduce_sum, grainsize is a suggested
partial sum size. A grainsize of 1 leaves the partitioning entirely up to the sched-
uler. This should be the default way of using reduce_sum unless time is spent
carefully picking grainsize. For picking a grainsize, see details below.

For reduce_sum_static, grainsize specifies the maximal partial sum size. With
reduce_sum_static it is more important to choose grainsize carefully since it
entirely determines the partitioning of work. See details below.

For efficiency and convenience additional shared arguments can be passed to every
term in the sum. So for the array { x1, x2, ... } and the shared arguments s1,
s2, ...stan the effective sum (with individual terms) looks like:

g(x1, s1, s2, ...) + g(x2, s1, s2, ...) + g(x3, s1, s2, ...) + ...

which can be written equivalently with partial sums to look like:
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f({ x1, x2 }, s1, s2, ...) + f({ x3 }, s1, s2, ...)

where the particular slicing of the x array can change.

Given this, the signatures are:

real reduce_sum(F f, array[] T x, int grainsize, T1 s1, T2 s2, ...)
real reduce_sum_static(F f, array[] T x, int grainsize, T1 s1, T2 s2, ...)

1. f - User defined function that computes partial sums
2. x - Array to slice, each element corresponds to a term in the summation
3. grainsize - Target for size of slices
4. s1, s2, ... - Arguments shared in every term

The user-defined partial sum functions have the signature:

real f(array[] T x_slice, int start, int end, T1 s1, T2 s2, ...)

and take the arguments:

1. x_slice - The subset of x (from reduce_sum / reduce_sum_static) for
which this partial sum is responsible (x_slice = x[start:end])

2. start - An integer specifying the first term in the partial sum
3. end - An integer specifying the last term in the partial sum (inclusive)
4. s1, s2, ... - Arguments shared in every term (passed on without modifi-

cation from the reduce_sum / reduce_sum_static call)

The user-provided function f is expected to compute the partial sum with the
terms start through end of the overall sum. The user function is passed the subset
x[start:end] as x_slice. start and end are passed so that fstan can index any
of the tailing sM arguments as necessary. The trailing sM arguments are passed
without modification to every call of f.

A reduce_sum (or reduce_sum_static) call:

real sum = reduce_sum(f, x, grainsize, s1, s2, ...);

can be replaced by either:

real sum = f(x, 1, size(x), s1, s2, ...);

or the code:

real sum = 0.0;
for(i in 1:size(x)) {
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sum += f({ x[i] }, i, i, s1, s2, ...);
}

Example: logistic regression
Logistic regression is a useful example to clarify both the syntax and semantics of
reduce summation and how it can be used to speed up a typical model. A basic
logistic regression can be coded in Stan as:

data {
int N;
array[N] int y;
vector[N] x;

}
parameters {

vector[2] beta;
}
model {

beta ~ std_normal();
y ~ bernoulli_logit(beta[1] + beta[2] * x);

}

In this model predictions are made about the N outputs y using the covariate x. The
intercept and slope of the linear equation are to be estimated. The key point to
getting this calculation to use reduce summation, is recognizing that the statement:

y ~ bernoulli_logit(beta[1] + beta[2] * x);

can be rewritten (up to a proportionality constant) as:

for(n in 1:N) {
target += bernoulli_logit_lpmf(y[n] | beta[1] + beta[2] * x[n])

}

Now it is clear that the calculation is the sum of a number of conditionally inde-
pendent Bernoulli log probability statements, which is the condition where reduce
summation is useful. To use the reduce summation, a function must be written that
can be used to compute arbitrary partial sums of the total sum. Using the interface
defined in Reduce-Sum, such a function can be written like:

functions {
real partial_sum(array[] int y_slice,

int start, int end,
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vector x,
vector beta) {

return bernoulli_logit_lpmf(y_slice | beta[1] + beta[2] * x[start:end]);
}

}

The likelihood statement in the model can now be written:

target += partial_sum(y, 1, N, x, beta); // Sum terms 1 to N of the likelihood

In this example, y was chosen to be sliced over because there is one term in the
summation per value of y. Technically x would have worked as well. Use whatever
conceptually makes the most sense for a given model, e.g. slice over independent
terms like conditionally independent observations or groups of observations as in
hierarchical models. Because x is a shared argument, it is subset accordingly with
start:end. With this function, reduce summation can be used to automatically
parallelize the likelihood:

int grainsize = 1;
target += reduce_sum(partial_sum, y,

grainsize,
x, beta);

The reduce summation facility automatically breaks the sum into pieces and com-
putes them in parallel. grainsize = 1 specifies that the grainsize should be
estimated automatically. The final model is:

functions {
real partial_sum(array[] int y_slice,

int start, int end,
vector x,
vector beta) {

return bernoulli_logit_lpmf(y_slice | beta[1] + beta[2] * x[start:end]);
}

}
data {

int N;
array[N] int y;
vector[N] x;

}
parameters {
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vector[2] beta;
}
model {

int grainsize = 1;
beta ~ std_normal();
target += reduce_sum(partial_sum, y,

grainsize,
x, beta);

}

Picking the grainsize
The rational for choosing a sensible grainsize is based on balancing the overhead
implied by creating many small tasks versus creating fewer large tasks which limits
the potential parallelism.

In reduce_sum, grainsize is a recommendation on how to partition the work in
the partial sum into smaller pieces. A grainsize of 1 leaves this entirely up to the
internal scheduler and should be chosen if no benchmarking of other grainsizes is
done. Ideally this will be efficient, but there are no guarantees.

In reduce_sum_static, grainsize is an upper limit on the worksize. Work will
be split until all partial sums are just smaller than grainsize (and the split will
happen the same way every time for the same inputs). For the static version it is
more important to select a sensible grainsize.

In order to figure out an optimal grainsize, if there are N terms and M cores, run
a quick test model with grainsize set roughly to N / M. Record the time, cut the
grainsize in half, and run the test again. Repeat this iteratively until the model
runtime begins to increase. This is a suitable grainsize for the model, because this
ensures the calculations can be carried out with the most parallelism without losing
too much efficiency.

For instance, in a model with N=10000 and M = 4, start with grainsize = 2500,
and sequentially try grainsize = 1250, grainsize = 625, etc.

It is important to repeat this process until performance gets worse. It is possible
after many halvings nothing happens, but there might still be a smaller grainsize
that performs better. Even if a sum has many tens of thousands of terms, depending
on the internal calculations, a grainsize of thirty or forty or smaller might be the
best, and it is difficult to predict this behavior. Without doing these halvings until
performance actually gets worse, it is easy to miss this.
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27.2. Map-rect
Map-reduce allows large calculations (e.g., log likelihoods) to be broken into com-
ponents which may be calculated modularly (e.g., data blocks) and combined (e.g.,
by summation and incrementing the target log density).

A map function is a higher-order function that applies an argument function to
every member of some collection, returning a collection of the results. For example,
mapping the square function, f (x) = x2, over the vector [3, 5, 10] produces the
vector [9, 25, 100]. In other words, map applies the square function elementwise.

The output of mapping a sequence is often fed into a reduction. A reduction function
takes an arbitrarily long sequence of inputs and returns a single output. Examples
of reduction functions are summation (with the return being a single value) or
sorting (with the return being a sorted sequence). The combination of mapping and
reducing is so common it has its own name, map-reduce.

Map function
In order to generalize the form of functions and results that are possible and accom-
modate both parameters (which need derivatives) and data values (which don’t),
Stan’s map function operates on more than just a sequence of inputs.

Map function signature
Stan’s map function has the following signature

vector map_rect((vector, vector, array[] real, array[] int):vector f,
vector phi, array[] vector thetas,
data array[,] real x_rs, data array[,] int x_is);

The arrays thetas of parameters, x_rs of real data, and x_is of integer data have
the suffix “s” to indicate they are arrays. These arrays must all be the same size,
as they will be mapped in parallel by the function f. The value of phi is reused in
each mapped operation.

The _rect suffix in the name arises because the data structures it takes as arguments
are rectangular. In order to deal with ragged inputs, ragged inputs must be padded
out to rectangular form.

The last two arguments are two dimensional arrays of real and integer data values.
These argument types are marked with the data qualifier to indicate that they must
only contain variables originating in the data or transformed data blocks. This will
allow such data to be pinned to a processor on which it is being processed to reduce
communication overhead.
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The notation (vector, vector, array[] real, array[] int):vector indi-
cates that the function argument f must have the following signature.

vector f(vector phi, vector theta,
data array[] real x_r, data array[] int x_i);

Although f will often return a vector of size one, the built-in flexibility allows
general multivariate functions to be mapped, even raggedly.

Map function semantics
Stan’s map function applies the function f to the shared parameters along with one
element each of the job parameters, real data, and integer data arrays. Each of the
arguments theta, x_r, and x_i must be arrays of the same size. If the arrays are all
size N, the result is defined as follows.

map_rect(f, phi, thetas, xs, ns)
= f(phi, thetas[1], xs[1], ns[1]) . f(phi, thetas[2], xs[2], ns[2])

. ... . f(phi, thetas[N], xs[N], ns[N])

The dot operators in the notation above are meant to indicate concatenation (imple-
mented as append_row in Stan). The output of each application of f is a vector, and
the sequence of N vectors is concatenated together to return a single vector.

Example: logistic regression
An example should help to clarify both the syntax and semantics of the mapping
operation and how it may be combined with reductions built into Stan to provide a
map-reduce implementation.

Unmapped logistic regression
Consider the following simple logistic regression model, which is coded unconven-
tionally to accommodate direct translation to a mapped implementation.

data {
array[12] int y;
array[12] real x;

}
parameters {

vector[2] beta;
}
model {

beta ~ std_normal();
y ~ bernoulli_logit(beta[1] + beta[2] * to_vector(x));

}
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The program is unusual in that it (a) hardcodes the data size, which is not required
by the map function but is just used here for simplicity, (b) represents the predictors
as a real array even though it needs to be used as a vector, and (c) represents the
regression coefficients (intercept and slope) as a vector even though they’re used
individually. The bernoulli_logit distribution is used because the argument is on
the logit scale—it implicitly applies the inverse logit function to map the argument
to a probability.

Mapped logistic regression
The unmapped logistic regression model described in the previous subsection may
be implemented using Stan’s rectangular mapping functionality as follows.

functions {
vector lr(vector beta, vector theta, array[] real x, array[] int y) {
real lp = bernoulli_logit_lpmf(y | beta[1]

+ to_vector(x) * beta[2]);
return [lp]';

}
}
data {

array[12] int y;
array[12] real x;

}
transformed data {

// K = 3 shards
array[3, 4] = { y[1:4], y[5:8], y[9:12] int ys };
array[3, 4] = { x[1:4], x[5:8], x[9:12] real xs };
array[3] vector[0] theta;

}
parameters {

vector[2] beta;
}
model {

beta ~ std_normal();
target += sum(map_rect(lr, beta, theta, xs, ys));

}

The first piece of the code is the actual function to compute the logistic regression.
The argument beta will contain the regression coefficients (intercept and slope),
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as before. The second argument theta of job-specific parameters is not used, but
nevertheless must be present. The modeled data y is passed as an array of integers
and the predictors x as an array of real values. The function body then computes
the log probability mass of y and assigns it to the local variable lp. This variable is
then used in [lp]' to construct a row vector and then transpose it to a vector to
return.

The data are taken in as before. There is an additional transformed data block that
breaks the data up into three shards.1

The value 3 is also hard coded; a more practical program would allow the number
of shards to be controlled. There are three parallel arrays defined here, each of size
three, corresponding to the number of shards. The array ys contains the modeled
data variables; each element of the array ys is an array of size four. The second array
xs is for the predictors, and each element of it is also of size four. These contained
arrays are the same size because the predictors x stand in a one-to-one relationship
with the modeled data y. The final array theta is also of size three; its elements are
empty vectors, because there are no shard-specific parameters.

The parameters and the prior are as before. The likelihood is now coded using
map-reduce. The function lr to compute the log probability mass is mapped over
the data xs and ys, which contain the original predictors and outcomes broken
into shards. The parameters beta are in the first argument because they are shared
across shards. There are no shard-specific parameters, so the array of job-specific
parameters theta contains only empty vectors.

Example: hierarchical logistic regression
Consider a hierarchical model of American presidential voting behavior based on
state of residence.2

Each of the fifty states k ∈ {1, . . . , 50} will have its own slope βk and intercept αk to
model the log odds of voting for the Republican candidate as a function of income.
Suppose there are N voters and with voter n ∈ 1:N being in state s[n] with income
xn. The data model for the vote yn ∈ {0, 1} is

yn ∼ Bernoulli
(

logit−1
(

αs[n] + βs[n] xn

) )
.

1The term “shard” is borrowed from databases, where it refers to a slice of the rows of a database.
That is exactly what it is here if we think of rows of a dataframe. Stan’s shards are more general in that
they need not correspond to rows of a dataframe.

2This example is a simplified form of the model described in (Andrew Gelman and Hill 2007, sec.
14.2)
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The slopes and intercepts get hierarchical priors,

αk ∼ normal(µα, σα)

βk ∼ normal(µβ, σβ)

Unmapped implementation
This model can be coded up in Stan directly as follows.

data {
int<lower=0> K;
int<lower=0> N;
array[N] int<lower=1, upper=K> kk;
vector[N] x;
array[N] int<lower=0, upper=1> y;

}
parameters {

matrix[K, 2] beta;
vector[2] mu;
vector<lower=0>[2] sigma;

}
model {

mu ~ normal(0, 2);
sigma ~ normal(0, 2);
for (i in 1:2) {
beta[ , i] ~ normal(mu[i], sigma[i]);

}
y ~ bernoulli_logit(beta[kk, 1] + beta[kk, 2] .* x);

}

For this model the vector of predictors x is coded as a vector, corresponding to how
it is used in the model. The priors for mu and sigma are vectorized. The priors on
the two components of beta (intercept and slope, respectively) are stored in a K × 2
matrix.

The distribution statement is also vectorized using multi-indexing with index kk
for the states and elementwise multiplication (.*) for the income x. The vectorized
distribution statement works out to the same thing as the following less efficient
looped form.

for (n in 1:N) {
y[n] ~ bernoulli_logit(beta[kk[n], 1] + beta[kk[n], 2] * x[n]);
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}

Mapped implementation
The mapped version of the model will map over the states K. This means the
group-level parameters, real data, and integer-data must be arrays of the same size.

The mapped implementation requires a function to be mapped. In this function
we can’t use distribution statements, but need to accumulate the desired log prior
and log likelihood terms to the return value. The following function evaluates
both the likelihood for the data observed for a group as well as the prior for the
group-specific parameters (the name bernoulli_logit_glm derives from the fact
that it’s a generalized linear model with a Bernoulli data model and logistic link
function).

functions {
vector bl_glm(vector mu_sigma, vector beta,

array[] real x, array[] int y) {
vector[2] mu = mu_sigma[1:2];
vector[2] sigma = mu_sigma[3:4];
real lp = normal_lpdf(beta | mu, sigma);
real ll = bernoulli_logit_lpmf(y | beta[1] + beta[2] * to_vector(x));
return [lp + ll]';

}
}

The shared parameter mu_sigma contains the locations (mu_sigma[1:2]) and scales
(mu_sigma[3:4]) of the priors, which are extracted in the first two lines of the
program. The variable lp is assigned the log density of the prior on beta. The
vector beta is of size two, as are the vectors mu and sigma, so everything lines
up for the vectorization. Next, the variable ll is assigned to the log likelihood
contribution for the group. Here beta[1] is the intercept of the regression and
beta[2] the slope. The predictor array x needs to be converted to a vector allow
the multiplication.

The data block is identical to that of the previous program, but repeated here for
convenience. A transformed data block computes the data structures needed for
the mapping by organizing the data into arrays indexed by group.

data {
int<lower=0> K;
int<lower=0> N;
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array[N] int<lower=1, upper=K> kk;
vector[N] x;
array[N] int<lower=0, upper=1> y;

}
transformed data {

int<lower=0> J = N / K;
array[K, J] real x_r;
array[K, J] int<lower=0, upper=1> x_i;
{
int pos = 1;
for (k in 1:K) {
int end = pos + J - 1;
x_r[k] = to_array_1d(x[pos:end]);
x_i[k] = to_array_1d(y[pos:end]);
pos += J;

}
}

}

The integer J is set to the number of observations per group.3

The real data array x_r holds the predictors and the integer data array x_i holds
the outcomes. The grouped data arrays are constructed by slicing the predictor
vector x (and converting it to an array) and slicing the outcome array y.

Given the transformed data with groupings, the parameters are the same as the
previous program. The model has the same priors for the hyperparameters mu and
sigma, but moves the prior for beta and the likelihood to the mapped function.

parameters {
array[K] vector[2] beta;
vector[2] mu;
vector<lower=0>[2] sigma;

}
model {

mu ~ normal(0, 2);
sigma ~ normal(0, 2);
target += sum(map_rect(bl_glm, append_row(mu, sigma), beta, x_r, x_i));

3This makes the strong assumption that each group has the same number of observations!
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}

The model as written here computes the priors for each group’s parameters along
with the likelihood contribution for the group. An alternative mapping would leave
the prior in the model block and only map the likelihood computation. In a serial
setting this shouldn’t make much of a difference, but with parallelization, there is
reduced communication (the prior’s parameters need not be transmitted) and also
reduced parallelization with the version that leaves the prior in the model block.

Ragged inputs and outputs
The previous examples included rectangular data structures and single outputs.
Despite the name, this is not technically required by map_rect.

Ragged inputs
If each group has a different number of observations, then the rectangular data
structures for predictors and outcomes will need to be padded out to be rectangular.
In addition, the size of the ragged structure will need to be passed as integer data.
This holds for shards with varying numbers of parameters as well as varying
numbers of data points.

Ragged outputs
The output of each mapped function is concatenated in order of inputs to produce
the output of map_rect. When every shard returns a singleton (size one) array, the
result is the same size as the number of shards and is easy to deal with downstream.
If functions return longer arrays, they can still be structured using the to_matrix
function if they are rectangular.

If the outputs are of varying sizes, then there will have to be some way to convert it
back to a usable form based on the input, because there is no way to directly return
sizes or a ragged structure.

27.3. OpenCL
OpenCL (Open Computing Language) is a framework that enables writing pro-
grams that execute across heterogeneous platforms. An OpenCL program can be
run on CPUs and GPUs. In order to run OpenCL programs, an OpenCL runtime be
installed on the target system.

Stan’s OpenCL backend is currently supported in CmdStan and its wrappers. In
order to use it, the model must be compiled with the STAN_OPENCL makefile flag.
Setting this flag means that the Stan-to-C++ translator (stanc3) will be supplied the
--use-opencl flag and that the OpenCL enabled backend (Stan Math functions)



356 CHAPTER 27. PARALLELIZATION

will be enabled.

In Stan, the following distributions can be automatically run in parallel on both
CPUs and GPUs with OpenCL:

• bernoulli_lpmf
• bernoulli_logit_lpmf
• bernoulli_logit_glm_lpmf*
• beta_lpdf
• beta_proportion_lpdf
• binomial_lpmf
• categorical_logit_glm_lpmf*
• cauchy_lpdf
• chi_square_lpdf
• double_exponential_lpdf
• exp_mod_normal_lpdf
• exponential_lpdf
• frechet_lpdf
• gamma_lpdf
• gumbel_lpdf
• inv_chi_square_lpdf
• inv_gamma_lpdf
• logistic_lpdf
• lognormal_lpdf
• neg_binomial_lpmf
• neg_binomial_2_lpmf
• neg_binomial_2_log_lpmf
• neg_binomial_2_log_glm_lpmf*
• normal_lpdf
• normal_id_glm_lpdf*
• ordered_logistic_glm_lpmf*
• pareto_lpdf
• pareto_type_2_lpdf
• poisson_lpmf
• poisson_log_lpmf
• poisson_log_glm_lpmf*
• rayleigh_lpdf
• scaled_inv_chi_square_lpdf
• skew_normal_lpdf
• std_normal_lpdf
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• student_t_lpdf
• uniform_lpdf
• weibull_lpdf

* OpenCL is not used when the covariate argument to the GLM functions is a
row_vector.
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28. Posterior Predictive Sampling

The goal of inference is often posterior prediction, that is evaluating or sampling
from the posterior predictive distribution p(ỹ | y), where y is observed data and ỹ
is yet to be observed data. Often there are unmodeled predictors x and x̃ for the
observed data y and unobserved data ỹ. With predictors, the posterior predictive
density is p(ỹ | x̃, x, y). All of these variables may represent multivariate quantities.

This chapter explains how to sample from the posterior predictive distribution
in Stan, including applications to posterior predictive simulation and calculating
event probabilities. These techniques can be coded in Stan using random number
generation in the generated quantities block. Further, a technique for fitting and per-
forming inference in two stages is presented in a section on stand-alone generated
quantities in Stan

28.1. Posterior predictive distribution
Given a full Bayesian model p(y, θ), the posterior predictive density for new data ỹ
given observed data y is

p(ỹ | y) =
∫

p(ỹ | θ) · p(θ | y)dθ.

The product under the integral reduces to the joint posterior density p(ỹ, θ | y), so
that the integral is simply marginalizing out the parameters θ, leaving the predictive
density p(ỹ | y) of future observations given past observations.

28.2. Computing the posterior predictive distribution
The posterior predictive density (or mass) of a prediction ỹ given observed data y
can be computed using M Monte Carlo draws

θ(m) ∼ p(θ | y)

from the posterior as

p(ỹ | y) ≈ 1
M

M

∑
m=1

p(ỹ | θ(m)).

Computing directly using this formula will lead to underflow in many situations,
but the log posterior predictive density, log p(ỹ | y) may be computed using the

360



28.3. SAMPLING FROM THE POSTERIOR PREDICTIVE DISTRIBUTION 361

stable log sum of exponents function as

log p(ỹ | y) ≈ log
1
M

M

∑
m=1

p(ỹ | θ(m)).

= − log M + log-sum-expM
m=1 log p(ỹ | θ(m)),

where

log-sum-expM
m=1vm = log

M

∑
m=1

exp vm

is used to maintain arithmetic precision. See the section on log sum of exponentials
for more details.

28.3. Sampling from the posterior predictive distribution

Given draws from the posterior θ(m) ∼ p(θ | y), draws from the posterior predictive
ỹ(m) ∼ p(ỹ | y) can be generated by randomly generating from the sampling
distribution with the parameter draw plugged in,

ỹ(m) ∼ p(y | θ(m)).

Randomly drawing ỹ from the data model is critical because there are two forms of
uncertainty in posterior predictive quantities, aleatoric uncertainty and epistemic
uncertainty. Epistemic uncertainty arises because θ is unknown and estimated
based only on a finite sample of data y. Aleatoric uncertainty arises because even a
known value of θ leads to uncertainty about new ỹ as described by the data model
p(ỹ | θ). Both forms of uncertainty show up in the factored form of the posterior
predictive distribution,

p(ỹ | y) =
∫

p(ỹ | θ)︸ ︷︷ ︸
aleatoric
uncertainty

· p(θ | y)︸ ︷︷ ︸
epistemic
uncertainty

dθ.

28.4. Posterior predictive simulation in Stan
Posterior predictive quantities can be coded in Stan using the generated quantities
block.
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Simple Poisson model
For example, consider a simple Poisson model for count data with a rate parameter
λ > 0 having a gamma-distributed prior,

λ ∼ gamma(1, 1).

The N observations y1, . . . , yN are modeled as Poisson distributed,

yn ∼ poisson(λ).

Stan code
The following Stan program defines a variable for ỹ by random number generation
in the generated quantities block.

data {
int<lower=0> N;
array[N] int<lower=0> y;

}
parameters {

real<lower=0> lambda;
}
model {

lambda ~ gamma(1, 1);
y ~ poisson(lambda);

}
generated quantities {
int<lower=0> y_tilde = poisson_rng(lambda);

}

The random draw from the data model for ỹ is coded using Stan’s Poisson random
number generator in the generated quantities block. This accounts for the aleatoric
component of the uncertainty; Stan’s posterior sampler will account for the epis-
temic uncertainty, generating a new ỹ(m) ∼ p(y | λ(m)) for each posterior draw
λ(m) ∼ p(θ | y).

The posterior draws ỹ(m) may be used to estimate the expected value of ỹ or any
of its quantiles or posterior intervals, as well as event probabilities involving ỹ. In
general, E[ f (ỹ, θ) | y] may be evaluated as

E[ f (ỹ, θ) | y] ≈ 1
M

M

∑
m=1

f (ỹ(m), θ(m)),
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which is just the posterior mean of f (ỹ, θ). This quantity is computed by Stan if the
value of f (ỹ, θ) is assigned to a variable in the generated quantities block. That is, if
we have

generated quantities {
real f_val = f(y_tilde, theta);
// ...

}

where the value of f (ỹ, θ) is assigned to variable f_val, then the posterior mean of
f_val will be the expectation E[ f (ỹ, θ) | y].

Analytic posterior and posterior predictive
The gamma distribution is the conjugate prior distribution for the Poisson distribu-
tion, so the posterior density p(λ | y) will also follow a gamma distribution.

Because the posterior follows a gamma distribution and the sampling distribution
is Poisson, the posterior predictive p(ỹ | y) will follow a negative binomial distribu-
tion, because the negative binomial is defined as a compound gamma-Poisson. That
is, y ∼ negative-binomial(α, β) if λ ∼ gamma(α, β) and y ∼ poisson(λ). Rather
than marginalizing out the rate parameter λ analytically as can be done to define the
negative binomial probability mass function, the rate λ(m) ∼ p(λ | y) is sampled
from the posterior and then used to generate a draw of ỹ(m) ∼ p(y | λ(m)).

28.5. Posterior prediction for regressions
Posterior predictive distributions for regressions
Consider a regression with a single predictor xn for the training outcome yn and
x̃n for the test outcome ỹn. Without considering the parametric form of any of the
distributions, the posterior predictive distribution for a general regression in

p(ỹ | x̃, y, x) =
∫

p(ỹ | x, θ) · p(θ | y, x)dθ (28.1)

≈ 1
M

M

∑
m=1

p(ỹ | x̃, θ(m)), (28.2)

where θ(m) ∼ p(θ | x, y).

Stan program
The following program defines a Poisson regression with a single predictor. These
predictors are all coded as data, as are their sizes. Only the observed y values are
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coded as data. The predictive quantities ỹ appear in the generated quantities block,
where they are generated by random number generation.

data {
int<lower=0> N;
vector[N] x;
array[N] int<lower=0> y;
int<lower=0> N_tilde;
vector[N_tilde] x_tilde;

}
parameters {

real alpha;
real beta;

}
model {

y ~ poisson_log(alpha + beta * x);
{ alpha, beta } ~ normal(0, 1);

}
generated quantities {
array[N_tilde] int<lower=0> y_tilde
= poisson_log_rng(alpha + beta * x_tilde);

}

The Poisson distributions in both the model and generated quantities block are
coded using the log rate as a parameter (that’s poisson_log vs. poisson, with the
suffixes defining the scale of the parameter). The regression coefficients, an intercept
alpha and slope beta, are given standard normal priors.

In the model block, the log rate for the Poisson is a linear function of the training
data x, whereas in the generated quantities block it is a function of the test data
x̃. Because the generated quantities block does not affect the posterior draws, the
model fits α and β using only the training data, reserving x̃ to generate ỹ.

The result from running Stan is a predictive sample ỹ(1), . . . ỹ(M) where each ỹ(m) ∼
p(ỹ | x̃, x, y).
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The mean of the posterior predictive distribution is the expected value

E[ỹ | x̃, x, y] =
∫

ỹ · p(ỹ | x̃, θ) · p(θ | x, y)dθ (28.3)

≈ 1
M

M

∑
m=1

ỹ(m), (28.4)

where the ỹ(m) ∼ p(ỹ | x̃, x, y) are drawn from the posterior predictive distribution.
Thus the posterior mean of y_tilde[n] after running Stan is the expected value
of ỹn conditioned on the training data x, y and predictor x̃n. This is the Bayesian
estimate for ỹ with minimum expected squared error. The posterior draws can also
be used to estimate quantiles for the median and any posterior intervals of interest
for ỹ, as well as covariance of the ỹn. The posterior draws ỹ(m) may also be used to
estimate predictive event probabilities, such as Pr[ỹ1 > 0] or Pr[∏Ñ

n=1(ỹn) > 1], as
expectations of indicator functions.

All of this can be carried out by running Stan only a single time to draw a single
sample of M draws,

ỹ(1), . . . , ỹ(M) ∼ p(ỹ | x̃, x, y).

It’s only when moving to cross-validation where multiple runs are required.

28.6. Estimating event probabilities
Event probabilities involving either parameters or predictions or both may be
coded in the generated quantities block. For example, to evaluate Pr[λ > 5 | y]
in the simple Poisson example with only a rate parameter λ, it suffices to define a
generated quantity

generated quantities {
int<lower=0, upper=1> lambda_gt_5 = lambda > 5;
// ...

}

The value of the expression lambda > 5 is 1 if the condition is true and 0 otherwise.
The posterior mean of this parameter is the event probability

Pr[λ > 5 | y] =
∫

I(λ > 5) · p(λ | y)dλ

≈ 1
M

M

∑
m=1

I[λ(m) > 5],
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where each λ(m) ∼ p(λ | y) is distributed according to the posterior. In Stan, this is
recovered as the posterior mean of the parameter lambda_gt_5.

In general, event probabilities may be expressed as expectations of indicator func-
tions. For example,

Pr[λ > 5 | y] = E[I[λ > 5] | y]

=
∫

I(λ > 5) · p(λ | y)dλ

≈ 1
M

M

∑
m=1

I(λ(m) > 5).

The last line above is the posterior mean of the indicator function as coded in Stan.

Event probabilities involving posterior predictive quantities ỹ work exactly the
same way as those for parameters. For example, if ỹn is the prediction for the n-th
unobserved outcome (such as the score of a team in a game or a level of expression
of a protein in a cell), then

Pr[ỹ3 > ỹ7 | x̃, x, y] = E[I[ỹ3 > ỹ7] | x̃, x, y]

=
∫

I(ỹ3 > ỹ7) · p(ỹ | x̃, x, y)dỹ

≈ 1
M

M

∑
m=1

I(ỹ(m)
3 > ỹ(m)

7 ),

where ỹ(m) ∼ p(ỹ | x̃, x, y).

28.7. Stand-alone generated quantities and ongoing prediction
Stan’s sampling algorithms take a Stan program representing a posterior p(θ | y, x)
along with actual data x and y to produce a set of draws θ(1), . . . , θ(M) from the
posterior. Posterior predictive draws ỹ(m) ∼ p(ỹ | x̃, x, y) can be generated by
drawing

ỹ(m) ∼ p(y | x̃, θ(m))

from the data model. Note that drawing ỹ(m) only depends on the new predictors
x̃ and the posterior draws θ(m). Most importantly, neither the original data or the
model density is required.

By saving the posterior draws, predictions for new data items x̃ may be generated
whenever needed. In Stan’s interfaces, this is done by writing a second Stan program
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that inputs the original program’s parameters and the new predictors. For example,
for the linear regression case, the program to take posterior draws declares the data
and parameters, and defines the model.

data {
int<lower=0> N;
vector[N] x;
vector[N] y;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

y ~ normal(alpha + beta * x, sigma);
alpha ~ normal(0, 5);
beta ~ normal(0, 1);
sigma ~ lognormal(0, 0.5);

}

A second program can be used to generate new observations. This follow-on
program need only declare the parameters as they were originally defined. This may
require defining constants in the data block such as sizes and hyperparameters that
are involved in parameter size or constraint declarations. Then additional data is
read in corresponding to predictors for new outcomes that have yet to be observed.
There is no need to repeat the model or unneeded transformed parameters or
generated quantities. The complete follow-on program for prediction just declares
the predictors in the data, the original parameters, and then the predictions in the
generated quantities block.

data {
int<lower=0> N_tilde;
vector[N_tilde] x_tilde;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
generated quantities {
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vector[N_tilde] y_tilde
= normal_rng(alpha + beta * x_tilde, sigma);

}

When running stand-alone generated quantities, the inputs required are the original
draws for the parameters and any predictors corresponding to new predictions,
and the output will be draws for ỹ or derived quantities such as event probabilities.

Any posterior predictive quantities desired may be generated this way. For example,
event probabilities are estimated in the usual way by defining indicator variables in
the generated quantities block.



29. Simulation-Based Calibration

A Bayesian posterior is calibrated if the posterior intervals have appropriate cover-
age. For example, 80% intervals are expected to contain the true parameter 80% of
the time. If data is generated according to a model, Bayesian posterior inference
with respect to that model is calibrated by construction. Simulation-based calibra-
tion (SBC) exploits this property of Bayesian inference to asses the soundness of a
posterior sampler. Roughly, the way it works is by simulating parameters accord-
ing to the prior, then simulating data conditioned on the simulated parameters,
then testing posterior calibration of the inference algorithm over independently
simulated data sets. This chapter follows Talts et al. (2018), which improves on the
original approach developed by Cook, Gelman, and Rubin (2006).

29.1. Bayes is calibrated by construction
Suppose a Bayesian model is given in the form of a prior density p(θ) and sampling
density p(y | θ). Now consider a process that first simulates parameters from the
prior,

θsim ∼ p(θ),

and then simulates data given the parameters,

ysim ∼ p(y | θsim).

By the definition of conditional densities, the simulated data and parameters consti-
tute an independent draw from the model’s joint distribution,

(ysim, θsim) ∼ p(y, θ).

From Bayes’s rule, it follows that for any observed (fixed) data y,

p(θ | y) ∝ p(y, θ).

Therefore, the simulated parameters constitute a draw from the posterior for the
simulated data,

θsim ∼ p(θ | ysim).

Now consider an algorithm that produces a sequence of draws from the posterior
given this simulated data,

θ(1), . . . , θ(M) ∼ p(θ | ysim).

369
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Because θsim is also distributed as a draw from the posterior, the rank statistics of
θsim with respect to θ(1), . . . θ(M) should be uniform.

This is one way to define calibration, because it follows that posterior intervals
will have appropriate coverage (A. Philip Dawid 1982; Gneiting, Balabdaoui, and
Raftery 2007). If the rank of θsim is uniform among the draws θ(1), . . . , θ(M), then
for any 90% interval selected, the probability the true value θsim falls in it will also
be 90%. The same goes for any other posterior interval.

29.2. Simulation-based calibration
Suppose the Bayesian model to test has joint density

p(y, θ) = p(y | θ) · p(θ),

with data y and parameters θ (both are typically multivariate). Simulation-based
calibration works by generating N simulated parameter and data pairs according
to the joint density,

(ysim(1), θsim(1)), . . . , (ysim(N), θsim(N)),∼ p(y, θ).

For each simulated data set ysim(n), use the algorithm to be tested to generate
M posterior draws, which if everything is working properly, will be distributed
marginally as

θ(n,1), . . . , θ(n,M) ∼ p(θ | ysim(n)).

For a simulation n and parameter k, the rank of the simulated parameter among the
posterior draws is

rn,k = rank(θsim(n)
k , (θ(n,1), . . . , θ(n,M)))

=
M

∑
m=1

I[θ(n,m)
k < θ

sim(n)
k ].

That is, the rank is the number of posterior draws θ
(n,m)
k that are less than the

simulated draw θ
sim(n)
k .

If the algorithm generates posterior draws according to the posterior, the ranks
should be uniformly distributed from 0 to M, so that the ranks plus one are uni-
formly distributed from 1 to M + 1,

rn,k + 1 ∼ categorical
(

1
M + 1

, . . . ,
1

M + 1

)
.
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Simulation-based calibration uses this expected behavior to test the calibration of
each parameter of a model on simulated data. Talts et al. (2018) suggest plotting
binned counts of r1:N,k for different parameters k; Cook, Gelman, and Rubin (2006)
automate the process with a hypothesis test for uniformity.

29.3. SBC in Stan
Running simulation-based calibration in Stan will test whether Stan’s sampling
algorithm can sample from the posterior associated with data generated according
to the model. The data simulation and posterior fitting and rank calculation can
all be done within a single Stan program. Then Stan’s posterior sampler has to be
run multiple times. Each run produces a rank for each parameter being assessed
for uniformity. The total set of ranks can then be tested for uniformity.

Example model
For illustration, a very simple model will suffice. Suppose there are two parameters
(µ, σ) with independent priors,

µ ∼ normal(0, 1),

and
σ ∼ lognormal(0, 1).

The data y = y1, . . . , yN is drawn conditionally independently given the parameters,

yn ∼ normal(µ, σ).

The joint prior density is thus

p(µ, σ) = normal(µ | 0, 1) · lognormal(σ | 0, 1),

and the sampling density is

p(y | µ, σ) =
N

∏
n=1

normal(yn | µ, σ).

For example, suppose the following two parameter values are drawn from the prior
in the first simulation,

(µsim(1), σsim(1)) = (1.01, 0.23).

Then data ysim(1) ∼ p(y | µsim(1), σsim(1)) is drawn according to the sampling
distribution. Next, M = 4 draws are taken from the posterior µ(1,m), σ(1,m) ∼
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p(µ, σ | ysim(1)),
m µ(1,m) σ(1,m)

1 1.07 0.33
2 −0.32 0.14
3 −0.99 0.26
4 1.51 0.31

Then the comparisons on which ranks are based look as follows,

m I(µ(1,m) < µsim(1)) I(σ(1,m) < σsim(1))
1 0 0
2 1 1
3 1 0
4 0 0

The ranks are the column sums, r1,1 = 2 and r1,2 = 1. Because the simulated param-
eters are distributed according to the posterior, these ranks should be distributed
uniformly between 0 and M, the number of posterior draws.

Testing a Stan program with simulation-based calibration
To code simulation-based calibration in a Stan program, the transformed data block
can be used to simulate parameters and data from the model. The parameters,
transformed parameters, and model block then define the model over the simulated
data. Then, in the generated quantities block, the program records an indicator for
whether each parameter is less than the simulated value. As shown above, the rank
is then the sum of the simulated indicator variables.

transformed data {
real mu_sim = normal_rng(0, 1);
real<lower=0> sigma_sim = lognormal_rng(0, 1);
int<lower=0> J = 10;
vector[J] y_sim;
for (j in 1:J) {
y_sim[j] = normal_rng(mu_sim, sigma_sim);

}
}
parameters {

real mu;
real<lower=0> sigma;

}
model {
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mu ~ normal(0, 1);
sigma ~ lognormal(0, 1);
y_sim ~ normal(mu, sigma);

}
generated quantities {
array[2] int<lower=0, upper=1> lt_sim

= { mu < mu_sim, sigma < sigma_sim };
}

To avoid confusion with the number of simulated data sets used for simulation-
based calibration, J is used for the number of simulated data points.

The model is implemented twice—once as a data generating process using random
number generators in the transformed data block, then again in the parameters
and model block. This duplication is a blessing and a curse. The curse is that it’s
more work and twice the chance for errors. The blessing is that by implementing
the model twice and comparing results, the chance of there being a mistake in the
model is reduced.

Pseudocode for simulation-based calibration
The entire simulation-based calibration process is as follows, where

• p(theta) is the prior density
• p(y | theta) is the sampling density
• K is the number of parameters
• N is the total number of simulated data sets and fits
• M is the number of posterior draws per simulated data set

SBC(p(theta), p(y | theta), K, N, M)
------------------------------------
for (n in 1:N) {

// simulate parameters and data
theta(sim(n)) ~ p(theta)
y(sim(n)) ~ p(y | theta(sim(n)))

// posterior draws given simulated data
for (m in 1:M) {

theta(n, m) ~ p(theta | y(sim(n)))
}
// calculate rank of sim among posterior draws
for (k in 1:K) {

rank(n, k) = SUM_m I(theta[k](n,m) < theta[k](sim(n)))
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}
}
// test uniformity of each parameter
for (k in 1:K) {

test uniformity of rank(1:N, k)
}

The importance of thinning
The draws from the posterior are assumed to be roughly independent. If they are
not, artifacts may arise in the uniformity tests due to correlation in the posterior
draws. Thus it is best to think the posterior draws down to the point where the
effective sample size is roughly the same as the number of thinned draws. This
may require running the code a few times to judge the number of draws required
to produce a target effective sample size. This operation that can be put into a loop
that doubles the number of iterations until all parameters have an effective sample
size of M, then thinning down to M draws.

29.4. Testing uniformity
A simple, though not very highly powered, χ2-squared test for uniformity can be
formulated by binning the ranks 0 : M into J bins and testing that the bins all have
roughly the expected number of draws in them. Many other tests for uniformity
are possible. For example, Cook, Gelman, and Rubin (2006) transform the ranks
using the inverse cumulative distribution function for the standard normal and
then perform a test for normality. Talts et al. (2018) recommend visual inspection of
the binned plots.

The bins don’t need to be exactly the same size. In general, if bj is the number of
ranks that fall into bin j and ej is the number of ranks expected to fall into bin j
(which will be proportional to its size under uniformity), the test statistic is

X2 =
J

∑
j=1

(bj − ej)
2

ej
.

The terms are approximately square standard normal, so that under the null hy-
pothesis of uniformity,

X2 ∼ chiSquared(J − 1),

with the corresponding p-value given by the complementary cumulative distribu-
tion function (CCDF) of chiSquared(J − 1) applied to X2. Because this test relies on
the binomial being approximately normal, the traditional advice is to make sure the
expected count in each bin is at least five, i.e., ej ≥ 5.
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Indexing to simplify arithmetic
Because there are M + 1 possible ranks, with J bins, it is easiest to have M + 1 be
divisible by J. For instance, if J = 20 and M = 999, then there are 1000 possible
ranks and an expected count in each bin of M+1

J = 50.

Distributing the ranks into bins is another fiddly operation that can be done with
integer arithmetic or the floor operation. Using floor, the following function deter-
mines the bin for a rank,

bin(rn,m, M, J) = 1 +
⌊

rn,m

(M + 1)/J

⌋
.

For example, with M = 999 and J = 20, (M + 1)/J = 50. The lowest rank checks
out,

bin(0, 999, 20) = 1 + ⌊0/50⌋ = 1,

as does the 50th rank,

bin(49, 999, 20) = 1 + ⌊49/50⌋ = 1,

and the 51st is appropriately put in the second bin,

bin(50, 999, 20) = 1 + ⌊50/50⌋ = 2.

The highest rank also checks out, with bin(1000, 999, 20) = 50.

To summarize, the following pseudocode computes the bj values for the χ2 test or
for visualization in a histogram.

Inputs: M draws, J bins, N parameters, ranks r[n, m]
b[1:J] = 0
for (m in 1:M) {
++b[1 + floor(r[n, m] * J / (M + 1))]

}

where the ++b[n] notation is a common form of syntactic sugar for b[n] = b[n]
+ 1.

In general, a great deal of care must be taken in visualizing discrete data because
it’s easy to introduce off-by-one errors and artifacts at the edges because of the
way boundaries are computed by default. That’s why so much attention must be
devoted to indexing and binning.
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29.5. Examples of simulation-based calibration
This section will show what the results look like when the tests pass and then when
they fail. The passing test will compare a normal model and normal data generating
process, whereas the second will compare a normal model with a Student-t data
generating process. The first will produce calibrated posteriors, the second will not.

When things go right
Consider the following simple model for a normal distribution with standard
normal and lognormal priors on the location and scale parameters.

µ ∼ normal(0, 1)

σ ∼ lognormal(0, 1)

y1:10 ∼ normal(µ, σ).

The Stan program for evaluating SBC for this model is

transformed data {
real mu_sim = normal_rng(0, 1);
real<lower=0> sigma_sim = lognormal_rng(0, 1);

int<lower=0> J = 10;
vector[J] y_sim;
for (j in 1:J) {
y_sim[j] = student_t_rng(4, mu_sim, sigma_sim);

}
}
parameters {

real mu;
real<lower=0> sigma;

}
model {

mu ~ normal(0, 1);
sigma ~ lognormal(0, 1);

y_sim ~ normal(mu, sigma);
}
generated quantities {
array[2] int<lower=0, upper=1> I_lt_sim

= { mu < mu_sim, sigma < sigma_sim };
}
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After running this for enough iterations so that the effective sample size is larger
than M, then thinning to M draws (here M = 999), the ranks are computed and
binned, and then plotted.

Figure 29.1: Simulation based calibration plots for location and scale of a normal
model with standard normal prior on the location, standard lognormal prior on the
scale. Both histograms appear uniform, which is consistent with inference being
well calibrated.

When things go wrong
Now consider using a Student-t data generating process with a normal model.
Compare the apparent uniformity of the well specified model with the ill-specified
situation with Student-t generative process and normal model.

When Stan’s sampler goes wrong
The example in the previous sections show hard-coded pathological behavior. The
usual application of SBC is to diagnose problems with a sampler.

This can happen in Stan with well-specified models if the posterior geometry is
too difficult (usually due to extreme stiffness that varies). A simple example is
the eight schools problem, the data for which consists of sample means yj and
standard deviations σj of differences in test score after the same intervention in
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Figure 29.2: Simulation based calibration plots for location and scale of a normal
model with standard normal prior on the location standard lognormal prior on
the scale with mismatched generative model using a Student-t data model with 4
degrees of freedom. The mean histogram appears uniform, but the scale parameter
shows simulated values much smaller than fit values, clearly signaling the lack of
calibration.

J = 8 different schools. Donald B. Rubin (1981) applies a hierarchical model for a
meta-analysis of the results, estimating the mean intervention effect and a varying
effect for each school. With a standard parameterization and weak priors, this
model has very challenging posterior geometry, as shown by Talts et al. (2018); this
section replicates their results.

The meta-analysis model has parameters for a population mean µ and standard
deviation τ > 0 as well as the effect θj of the treatment in each school. The model
has weak normal and half-normal priors for the population-level parameters,

µ ∼ normal(0, 5)

τ ∼ normal+(0, 5).

School level effects are modeled as normal given the population parameters,

θj ∼ normal(µ, τ).
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The data is modeled as in a meta-analysis, given the school effect and sample
standard deviation in the school,

yj ∼ normal(θj, σj).

This model can be coded in Stan with a data-generating process that simulates the
parameters and then simulates data according to the parameters.

transformed data {
real mu_sim = normal_rng(0, 5);
real tau_sim = abs(normal_rng(0, 5));
int<lower=0> J = 8;
array[J] real theta_sim = normal_rng(rep_vector(mu_sim, J), tau_sim);
array[J] real<lower=0> sigma = abs(normal_rng(rep_vector(0, J), 5));
array[J] real y = normal_rng(theta_sim, sigma);

}
parameters {

real mu;
real<lower=0> tau;
array[J] real theta;

}
model {

tau ~ normal(0, 5);
mu ~ normal(0, 5);
theta ~ normal(mu, tau);
y ~ normal(theta, sigma);

}
generated quantities {
int<lower=0, upper=1> mu_lt_sim = mu < mu_sim;
int<lower=0, upper=1> tau_lt_sim = tau < tau_sim;
int<lower=0, upper=1> theta1_lt_sim = theta[1] < theta_sim[1];

}

As usual for simulation-based calibration, the transformed data encodes the data-
generating process using random number generators. Here, the population param-
eters µ and τ are first simulated, then the school-level effects θ, and then finally the
observed data σj and yj. The parameters and model are a direct encoding of the
mathematical presentation using vectorized sampling statements. The generated
quantities block includes indicators for parameter comparisons, saving only θ1
because the schools are exchangeable in the simulation.
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When fitting the model in Stan, multiple warning messages are provided that the
sampler has diverged. The divergence warnings are in Stan’s sampler precisely to
diagnose the sampler’s inability to follow the curvature in the posterior and provide
independent confirmation that Stan’s sampler cannot fit this model as specified.

SBC also diagnoses the problem. Here’s the rank plots for running N = 200
simulations with 1000 warmup iterations and M = 999 draws per simulation used
to compute the ranks.

(a) µ (b) τ (c) θ1

Figure 29.3: Simulation based calibration plots for the eight-schools model with
centered parameterization in Stan. The geometry is too difficult for the NUTS
sampler to handle, as indicated by the plot for θ1 (Figure 29.3c).

Although the population mean and standard deviation µ and τ appear well cali-
brated, θ1 tells a very different story. The simulated values are much smaller than
the values fit from the data. This is because Stan’s no-U-turn sampler is unable to
sample with the model formulated in the centered parameterization—the posterior
geometry has regions of extremely high curvature as τ approaches zero and the θj
become highly constrained. The chapter on reparameterization explains how to
remedy this problem and fit this kind of hierarchical model with Stan.

reparameterization.qmd


30. Posterior and Prior Predictive Checks

Posterior predictive checks are a way of measuring whether a model does a good job
of capturing relevant aspects of the data, such as means, standard deviations, and
quantiles (Donald B. Rubin 1984; Andrew Gelman, Meng, and Stern 1996). Posterior
predictive checking works by simulating new replicated data sets based on the
fitted model parameters and then comparing statistics applied to the replicated
data set with the same statistic applied to the original data set.

Prior predictive checks evaluate the prior the same way. Specifically, they evaluate
what data sets would be consistent with the prior. They will not be calibrated with
actual data, but extreme values help diagnose priors that are either too strong, too
weak, poorly shaped, or poorly located.

Prior and posterior predictive checks are two cases of the general concept of predic-
tive checks, just conditioning on different things (no data and the observed data,
respectively). For hierarchical models, there are intermediate versions, as discussed
in the section on hierarchical models and mixed replication.

30.1. Simulating from the posterior predictive distribution
The posterior predictive distribution is the distribution over new observations given
previous observations. It’s predictive in the sense that it’s predicting behavior on
new data that is not part of the training set. It’s posterior in that everything is
conditioned on observed data y.

The posterior predictive distribution for replications yrep of the original data set y
given model parameters θ is defined by

p(yrep | y) =
∫

p(yrep | θ) · p(θ | y)dθ.

As with other posterior predictive quantities, generating a replicated data set yrep

from the posterior predictive distribution is straightforward using the generated
quantities block. Consider a simple regression model with parameters θ = (α, β, σ).

data {
int<lower=0> N;
vector[N] x;
vector[N] y;

381
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}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

alpha ~ normal(0, 2);
beta ~ normal(0, 1);
sigma ~ normal(0, 1);
y ~ normal(alpha + beta * x, sigma);

}

To generate a replicated data set y_rep for this simple model, the following gener-
ated quantities block suffices.

generated quantities {
array[N] real y_rep = normal_rng(alpha + beta * x, sigma);

}

The vectorized form of the normal random number generator is used with the
original predictors x and the model parameters alpha, beta, and sigma. The
replicated data variable y_rep is declared to be the same size as the original data
y, but instead of a vector type, it is declared to be an array of reals to match the
return type of the function normal_rng. Because the vector and real array types
have the same dimensions and layout, they can be plotted against one another and
otherwise compared during downstream processing.

The posterior predictive sampling for posterior predictive checks is different from
usual posterior predictive sampling discussed in the chapter on posterior predic-
tions in that the original predictors x are used. That is, the posterior predictions are
for the original data.

30.2. Plotting multiples
A standard posterior predictive check would plot a histogram of each replicated
data set along with the original data set and compare them by eye. For this purpose,
only a few replications are needed. These should be taken by thinning a larger
set of replications down to the size needed to ensure rough independence of the
replications.

Here’s a complete example where the model is a simple Poisson with a weakly
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informative exponential prior with a mean of 10 and standard deviation of 10.

data {
int<lower=0> N;
array[N] int<lower=0> y;

}
transformed data {

real<lower=0> mean_y = mean(to_vector(y));
real<lower=0> sd_y = sd(to_vector(y));

}
parameters {

real<lower=0> lambda;
}
model {

y ~ poisson(lambda);
lambda ~ exponential(0.2);

}
generated quantities {

array[N] int<lower=0> y_rep = poisson_rng(rep_array(lambda, N));
real<lower=0> mean_y_rep = mean(to_vector(y_rep));
real<lower=0> sd_y_rep = sd(to_vector(y_rep));
int<lower=0, upper=1> mean_gte = (mean_y_rep >= mean_y);
int<lower=0, upper=1> sd_gte = (sd_y_rep >= sd_y);

}

The generated quantities block creates a variable y_rep for the replicated data,
variables mean_y_rep and sd_y_rep for the statistics of the replicated data, and
indicator variables mean_gte and sd_gte for whether the replicated statistic is
greater than or equal to the statistic applied to the original data.

Now consider generating data y ∼ Poisson(5). The resulting small multiples
plot shows the original data plotted in the upper left and eight different posterior
replications plotted in the remaining boxes.
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Figure 30.1: Posterior predictive checks for Poisson data generating process and
Poisson model.

With a Poisson data-generating process and Poisson model, the posterior replica-
tions look similar to the original data. If it were easy to pick the original data out of
the lineup, there would be a problem.

Now consider generating over-dispersed data y ∼ negative-binomial2(5, 1).
This has the same mean as Poisson(5), namely 5, but a standard deviation of√

5 + 52/1 ≈ 5.5. There is no way to fit this data with the Poisson model, because a
variable distributed as Poisson(λ) has mean λ and standard deviation

√
λ, which

is
√

5 for Poisson(5). Here’s the resulting small multiples plot, again with original
data in the upper left.

Figure 30.2: Posterior predictive checks for negative binomial data generating
process and Poisson model.

This time, the original data stands out in stark contrast to the replicated data sets,
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all of which are clearly more symmetric and lower variance than the original data.
That is, the model’s not appropriately capturing the variance of the data.

30.3. Posterior ‘’p-values’ ’
If a model captures the data well, summary statistics such as sample mean and
standard deviation, should have similar values in the original and replicated data
sets. This can be tested by means of a p-value-like statistic, which here is just the
probability the test statistic s(·) in a replicated data set exceeds that in the original
data,

Pr[s(yrep) ≥ s(y) | y] =
∫

I (s(yrep) ≥ s(y) | y) · p (yrep | y) dyrep.

It is important to note that ‘’p-values’ ’ is in quotes because these statistics are not
classically calibrated, and thus will not in general have a uniform distribution even
when the model is well specified (Bayarri and Berger 2000).

Nevertheless, values of this statistic very close to zero or one are cause for concern
that the model is not fitting the data well. Unlike a visual test, this p-value-like test
is easily automated for bulk model fitting.

To calculate event probabilities in Stan, it suffices to define indicator variables that
take on value 1 if the event occurs and 0 if it does not. The posterior mean is then
the event probability. For efficiency, indicator variables are defined in the generated
quantities block.

generated quantities {
int<lower=0, upper=1> mean_gt;
int<lower=0, upper=1> sd_gt;
{
array[N] real y_rep = normal_rng(alpha + beta * x, sigma);
mean_gt = mean(y_rep) > mean(y);
sd_gt = sd(y_rep) > sd(y);

}
}

The indicator variable mean_gt will have value 1 if the mean of the simulated data
y_rep is greater than or equal to the mean of he original data y. Because the values
of y_rep are not needed for the posterior predictive checks, the program saves
output space by using a local variable for y_rep. The statistics mean(u) and sd(y)
could also be computed in the transformed data block and saved.

For the example in the previous section, where over-dispersed data generated by a
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negative binomial distribution was fit with a simple Poisson model, the following
plot illustrates the posterior p-value calculation for the mean statistic.

Figure 30.3: Histogram of means of replicated data sets; vertical red line at mean of
original data.

The p-value for the mean is just the percentage of replicated data sets whose statistic
is greater than or equal that of the original data. Using a Poisson model for negative
binomial data still fits the mean well, with a posterior p-value of 0.49. In Stan terms,
it is extracted as the posterior mean of the indicator variable mean_gt.

The standard deviation statistic tells a different story.

Figure 30.4: Scatterplot of standard deviations of replicated data sets; the vertical
red line is at standard deviation of original data.

Here, the original data has much higher standard deviation than any of the repli-
cated data sets. The resulting p-value estimated by Stan after a large number of
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iterations is exactly zero (the absolute error bounds are fine, but a lot of iterations
are required to get good relative error bounds on small p-values by sampling). In
other words, there were no posterior draws in which the replicated data set had a
standard deviation greater than or equal to that of the original data set. Clearly, the
model is not capturing the dispersion of the original data. The point of this exercise
isn’t just to figure out that there’s a problem with a model, but to isolate where it
is. Seeing that the data is over-dispersed compared to the Poisson model would be
reason to fit a more general model like the negative binomial or a latent varying
effects (aka random effects) model that can account for the over-dispersion.

Which statistics to test?
Any statistic may be used for the data, but these can be guided by the quantities
of interest in the model itself. Popular choices in addition to mean and standard
deviation are quantiles, such as the median, 5% or 95% quantiles, or even the
maximum or minimum value to test extremes.

Despite the range of choices, test statistics should ideally be ancillary, in the sense
that they should be testing something other than the fit of a parameter. For example,
a simple normal model of a data set will typically fit the mean and variance of the
data quite well as long as the prior doesn’t dominate the posterior. In contrast, a
Poisson model of the same data cannot capture both the mean and the variance of
a data set if they are different, so they bear checking in the Poisson case. As we
saw with the Poisson case, the posterior mean for the single rate parameter was
located near the data mean, not the data variance. Other distributions such as the
lognormal and gamma distribution, have means and variances that are functions of
two or more parameters.

30.4. Prior predictive checks
Prior predictive checks generate data according to the prior in order to asses whether
a prior is appropriate (Gabry et al. 2019). A posterior predictive check generates
replicated data according to the posterior predictive distribution. In contrast, the
prior predictive check generates data according to the prior predictive distribution,

ysim ∼ p(y).

The prior predictive distribution is just like the posterior predictive distribution
with no observed data, so that a prior predictive check is nothing more than the
limiting case of a posterior predictive check with no data.

This is easy to carry out mechanically by simulating parameters

θsim ∼ p(θ)
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according to the priors, then simulating data

ysim ∼ p(y | θsim)

according to the data model given the simulated parameters. The result is a simula-
tion from the joint distribution,

(ysim, θsim) ∼ p(y, θ)

and thus
ysim ∼ p(y)

is a simulation from the prior predictive distribution.

Coding prior predictive checks in Stan
A prior predictive check is coded just like a posterior predictive check. If a posterior
predictive check has already been coded and it’s possible to set the data to be empty,
then no additional coding is necessary. The disadvantage to coding prior predictive
checks as posterior predictive checks with no data is that Markov chain Monte
Carlo will be used to sample the parameters, which is less efficient than taking
independent draws using random number generation.

Prior predictive checks can be coded entirely within the generated quantities block
using random number generation. The resulting draws will be independent. Predic-
tors must be read in from the actual data set—they do not have a generative model
from which to be simulated. For a Poisson regression, prior predictive sampling
can be encoded as the following complete Stan program.

data {
int<lower=0> N;
vector[N] x;

}
generated quantities {
real alpha = normal_rng(0, 1);
real beta = normal_rng(0, 1);
array[N] real y_sim = poisson_log_rng(alpha + beta * x);

}

Running this program using Stan’s fixed-parameter sampler yields draws from the
prior. These may be plotted to consider their appropriateness.

30.5. Example of prior predictive checks
Suppose we have a model for a football (aka soccer) league where there are J
teams. Each team has a scoring rate λj and in each game will be assumed to
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score poisson(λj) points. Yes, this model completely ignores defense. Suppose the
modeler does not want to “put their thumb on the scale” and would rather “let
the data speak for themselves” and so uses a prior with very wide tails, because it
seems uninformative, such as the widely deployed

λj ∼ gamma(ϵ1, ϵ2).

This is not just a manufactured example; The BUGS Book recommends setting
ϵ = (0.5, 0.00001), which corresponds to a Jeffreys prior for a Poisson rate parameter
prior (Lunn et al. 2012, 85).

Suppose the league plays a round-robin tournament wherein every team plays
every other team. The following Stan model generates random team abilities and
the results of such a round-robin tournament, which may be used to perform prior
predictive checks.

data {
int<lower=0> J;
array[2] real<lower=0> epsilon;

}
generated quantities {
array[J] real<lower=0> lambda;
array[J, J] int y;
for (j in 1:J) lambda[j] = gamma_rng(epsilon[1], epsilon[2]);
for (i in 1:J) {
for (j in 1:J) {

y[i, j] = poisson_rng(lambda[i]) - poisson_rng(lambda[j]);
}

}
}

In this simulation, teams play each other twice and play themselves once. This
could be made more realistic by controlling the combinatorics to only generate a
single result for each pair of teams, of which there are ( J

2) =
J·(J−1)

2 .

Using the gamma(0.5, 0.00001) reference prior on team abilities, the following are
the first 20 simulated point differences for the match between the first two teams,
y(1:20)

1,2 .

2597 -26000 5725 22496 1270 1072 4502 -2809 -302 4987
7513 7527 -3268 -12374 3828 -158 -29889 2986 -1392 66
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That’s some pretty highly scoring football games being simulated; all but one has a
score differential greater than 100! In other words, this gamma(0.5, 0.00001) prior
is putting around 95% of its weight on score differentials above 100. Given that
two teams combined rarely score 10 points, this prior is way out of line with prior
knowledge about football matches; it is not only consistent with outcomes that have
never occurred in the history of the sport, it puts most of the prior probability mass
there.

The posterior predictive distribution can be strongly affected by the prior when
there is not much observed data and substantial prior mass is concentrated around
infeasible values (A. Gelman 2006).

Just as with posterior predictive distributions, any statistics of the generated data
may be evaluated. Here, the focus was on score difference between a single pair of
teams, but it could’ve been on maximums, minimums, averages, variances, etc.

In this textbook example, the prior is univariate and directly related to the expected
number of points scored, and could thus be directly inspected for consistency with
prior knowledge about scoring rates in football. There will not be the same kind of
direct connection when the prior and data model distributions are multivariate. In
these more challenging situations, prior predictive checks are an easy way to get
a handle on the implications of a prior in terms of what it says the data is going
to look like; for a more complex application involving spatially heterogeneous air
pollution concentration, see (Gabry et al. 2019).

Prior predictive checks can also be compared with the data, but one should not
expect them to be calibrated in the same way as posterior predictive checks. That
would require guessing the posterior and encoding it in the prior. The goal is make
sure the prior is not so wide that it will pull probability mass away from feasible
values.

30.6. Mixed predictive replication for hierarchical models
Andrew Gelman, Meng, and Stern (1996) discuss the case of mixed replication for
hierarchical models in which the hyperparameters remain fixed, but varying effects
are replicated. This is neither a purely prior nor purely posterior predictive check,
but falls somewhere in between.

For example, consider a simple varying intercept logistic regression, with intercepts
αk for k ∈ 1 : K. Each data item yn ∈ {0, 1} is assumed to correspond to group
kkn ∈ 1 : K. The data model is thus

yn ∼ bernoulli(logit−1(αkk[n])).
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The varying intercepts have a hierarchical normal prior,

αk ∼ normal(µ, σ).

The hyperparameters are themselves given weakly informative priors,

µ ∼ normal(0, 2)

σ ∼ lognormal(0, 1).

Like in a posterior predictive check, the hyperparameters µ and σ are drawn from
the posterior,

µ(m), σ(m) ∼ p(µ, σ | y)

Like in a prior predictive check, replicated values of α are drawn from the hyperpa-
rameters,

α
rep(m)
k ∼ normal(αk | µ(m), σ(m)).

The data items are then each replicated using the replicated intercepts,

yrep(m)
n ∼ bernoulli(logit−1(α

rep(m)
kk[n] )).

Thus the yrep(m) can be seen as a kind of posterior predictive replication of observa-
tions from new groups that were not among the original K groups.

In Stan, mixed predictive replications yrep(m) can be programmed directly.

data {
int<lower=0> K;
int<lower=0> N;
array[N] int<lower=1, upper=K> kk;
array[N] int<lower=0, upper=1> y;

}
parameters {

real mu;
real<lower=0> sigma;
vector<offset=mu, multiplier=sigma>[K] alpha;

}
model {

mu ~ normal(0, 2); // hyperprior
sigma ~ lognormal(0, 1);
alpha ~ normal(mu, sigma); // hierarchical prior
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y ~ bernoulli_logit(alpha[kk]); // data model
}
generated quantities {
// alpha replicated; mu and sigma not replicated
array[K] real alpha_rep
= normal_rng(rep_vector(mu, K), sigma);

array[N] int<lower=0, upper=1> y_rep
= bernoulli_logit_rng(alpha_rep[kk]);

}

30.7. Joint model representation
Following Andrew Gelman, Meng, and Stern (1996), prior, posterior, and mixed
replications may all be defined as posteriors from joint models over parameters and
observed and replicated data.

Posterior predictive model
For example, posterior predictive replication may be formulated using distribution
notation as follows.

θ ∼ p(θ)

y ∼ p(y | θ)

yrep ∼ p(y | θ)

The heavily overloaded distribution notation is meant to indicate that both y and
yrep are drawn from the same distribution, or more formally using capital letters
to distinguish random variables, that the conditional densities pYrep|Θ and pY|Θ are
the same.

The joint density is

p(θ, y, yrep) = p(θ) · p(y | θ) · p(yrep | θ).

This again is assuming that the two distributions for y and yrep are identical.

The variable y is observed, with the predictive simulation yrep and parameter vector
θ not observed. The posterior is p(yrep, θ | y). Given draws from the posterior, the
posterior predictive simulations yrep are retained.
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Prior predictive model
The prior predictive model simply drops the data component of the posterior
predictive model.

θ ∼ p(θ)

yrep ∼ p(y | θ)

This corresponds to the joint density

p(θ, yrep) = p(θ) · p(yrep | θ).

It is typically straightforward to draw θ from the prior and yrep from the data model
given θ efficiently. In cases where it is not, the model may be coded and executed
just as the posterior predictive model, only with no data.

Mixed replication for hierarchical models
The mixed replication corresponds to the model

ϕ ∼ p(ϕ)

α ∼ p(α | ϕ)

y ∼ p(y | α)

αrep ∼ p(α | ϕ)

yrep ∼ p(y | ϕ)

The notation here is meant to indicate that α and αrep have identical distributions,
as do y and yrep.

This corresponds to a joint model

p(ϕ, α, αrep, y, yrep) = p(ϕ) · p(α | ϕ) · p(y | α) · p(αrep | ϕ) · p(yrep | αrep),

where y is the only observed variable, α contains the lower-level parameters and
ϕ the hyperparameters. Note that ϕ is not replicated and instead appears in the
distribution for both α and αrep.

The posterior is p(ϕ, α, αrep, yrep | y). From posterior draws, the posterior predictive
simulations yrep are kept.



31. Held-Out Evaluation and Cross-
Validation

Held-out evaluation involves splitting a data set into two parts, a training data set
and a test data set. The training data is used to estimate the model and the test data
is used for evaluation. Held-out evaluation is commonly used to declare winners in
predictive modeling competitions such as those run by Kaggle.

Cross-validation involves repeated held-out evaluations performed by partitioning
a single data set in different ways. The training/test split can be done either by
randomly selecting the test set, or by partitioning the data set into several equally-
sized subsets and then using each subset in turn as the test data with the other folds
as training data.

Held-out evaluation and cross-validation may involve any kind of predictive statis-
tics, with common choices being the predictive log density on test data, squared
error of parameter estimates, or accuracy in a classification task.

31.1. Evaluating posterior predictive densities
Given training data (x, y) consisting of parallel sequences of predictors and obser-
vations and test data (x̃, ỹ) of the same structure, the posterior predictive density
is

p(ỹ | x̃, x, y) =
∫

p(ỹ | x̃, θ) · p(θ | x, y)dθ,

where θ is the vector of model parameters. This predictive density is the density
of the test observations, conditioned on both the test predictors x̃ and the training
data (x, y).

This integral may be calculated with Monte Carlo methods as usual,

p(ỹ | x̃, x, y) ≈ 1
M

M

∑
m=1

p(ỹ | x̃, θ(m)),

where the θ(m) ∼ p(θ | x, y) are draws from the posterior given only the training
data (x, y).

394

https://kaggle.com
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To avoid underflow in calculations, it will be more stable to compute densities
on the log scale. Taking the logarithm and pushing it through results in a stable
computation,

log p(ỹ | x̃, x, y) ≈ log
1
M

M

∑
m=1

p(ỹ | x̃, θ(m)),

= − log M + log
M

∑
m=1

p(ỹ | x̃, θ(m)),

= − log M + log
M

∑
m=1

exp(log p(ỹ | x̃, θ(m)))

= − log M + log-sum-expM
m=1 log p(ỹ | x̃, θ(m))

where the log sum of exponentials function is defined so as to make the above
equation hold,

log-sum-expM
m=1 µm = log

M

∑
m=1

exp(µm).

The log sum of exponentials function can be implemented so as to avoid underflow
and maintain high arithmetic precision as

log-sum-expM
m=1µm = max(µ) + log

M

∑
m=1

exp(µm − max(µ)).

Pulling the maximum out preserves all of its precision. By subtracting the maximum,
the terms µm − max(µ) ≤ 0, and thus will not overflow.

Stan program
To evaluate the log predictive density of a model, it suffices to implement the log
predictive density of the test data in the generated quantities block. The log sum of
exponentials calculation must be done on the outside of Stan using the posterior
draws of log p(ỹ | x̃, θ(m)).

Here is the code for evaluating the log posterior predictive density in a simple linear
regression of the test data ỹ given predictors x̃ and training data (x, y).

data {
int<lower=0> N;
vector[N] y;
vector[N] x;
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int<lower=0> N_tilde;
vector[N_tilde] x_tilde;
vector[N_tilde] y_tilde;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

y ~ normal(alpha + beta * x, sigma);
}
generated quantities {

real log_p = normal_lpdf(y_tilde | alpha + beta * x_tilde, sigma);
}

Only the training data x and y are used in the model block. The test data y_tilde
and test predictors x_tilde appear in only the generated quantities block. Thus
the program is not cheating by using the test data during training. Although this
model does not do so, it would be fair to use x_tilde in the model block—only the
test observations y_tilde are unknown before they are predicted.

Given M posterior draws from Stan, the sequence log_p[1:M] will be available,
so that the log posterior predictive density of the test data given training data and
predictors is just log_sum_exp(log_p) - log(M).

31.2. Estimation error
Parameter estimates
Estimation is usually considered for unknown parameters. If the data from which
the parameters were estimated came from simulated data, the true value of the
parameters may be known. If θ is the true value and θ̂ the estimate, then error is
just the difference between the prediction and the true value,

err = θ̂ − θ.

If the estimate is larger than the true value, the error is positive, and if it’s smaller,
then error is negative. If an estimator’s unbiased, then expected error is zero. So
typically, absolute error or squared error are used, which will always have positive
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expectations for an imperfect estimator. Absolute error is defined as

abs-err =
∣∣θ̂ − θ

∣∣
and squared error as

sq-err =
(
θ̂ − θ

)2
.

Gneiting and Raftery (2007) provide a thorough overview of such scoring rules and
their properties.

Bayesian posterior means minimize expected square error, whereas posterior me-
dians minimize expected absolute error. Estimates based on modes rather than
probability, such as (penalized) maximum likelihood estimates or maximum a
posterior estimates, do not have these properties.

Predictive estimates
In addition to parameters, other unknown quantities may be estimated, such as
the score of a football match or the effect of a medical treatment given to a subject.
In these cases, square error is defined in the same way. If there are multiple
exchangeable outcomes being estimated, z1, . . . , zN , then it is common to report
mean square error (MSE),

mse =
1
N

N

∑
n=1

(ẑn − zn)
2 .

To put the error back on the scale of the original value, the square root may be
applied, resulting in what is known prosaically as root mean square error (RMSE),

rmse =
√

mean-sq-err.

Predictive estimates in Stan
Consider a simple linear regression model, parameters for the intercept α and slope
β, along with predictors x̃n. The standard Bayesian estimate is the expected value
of ỹ given the predictors and training data,

ˆ̃yn = E[ỹn | x̃n, x, y]

≈ 1
M

M

∑
m=1

ỹ(m)
n

where ỹ(m)
n is drawn from the data model

ỹ(m)
n ∼ p(ỹn | x̃n, α(m), β(m)),
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for parameters α(m) and β(m) drawn from the posterior,

(α(m), β(m)) ∼ p(α, β | x, y).

In the linear regression case, two stages of simplification can be carried out, the
first of which helpfully reduces the variance of the estimator. First, rather than
averaging samples ỹ(m)

n , the same result is obtained by averaging linear predictions,

ˆ̃yn = E [α + β · x̃n | x̃n, x, y]

≈ 1
M

M

∑
m=1

α(m) + β(m) · x̃n.

This is possible because

ỹ(m)
n ∼ normal(ỹn | α(m) + β(m) · x̃n, σ(m)),

and the normal distribution has symmetric error so that the expectation of ỹ(m)
n is the

same as α(m) + β(m) · x̃n. Replacing the sampled quantity ỹ(m)
n with its expectation

is a general variance reduction technique for Monte Carlo estimates known as
Rao-Blackwellization (Rao 1945; Blackwell 1947).

In the linear case, because the predictor is linear in the coefficients, the estimate can
be further simplified to use the estimated coefficients,

ỹ(m)
n ≈ 1

M

M

∑
m=1

(
α(m) + β(m) · x̃n

)

=
1
M

M

∑
m=1

α(m) +
1
M

M

∑
m=1

(β(m) · x̃n)

=
1
M

M

∑
m=1

α(m) +

(
1
M

M

∑
m=1

β(m)

)
· x̃n

= α̂ + β̂ · x̃n.

In Stan, only the first of the two steps (the important variance reduction step) can be
coded in the object model. The linear predictor is defined in the generated quantities
block.
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data {
int<lower=0> N_tilde;
vector[N_tilde] x_tilde;
// ...

}
// ...
generated quantities {
vector[N_tilde] tilde_y = alpha + beta * x_tilde;

}

The posterior mean of tilde_y calculated by Stan is the Bayesian estimate ˆ̃y. The
posterior median may also be calculated and used as an estimate, though square
error and the posterior mean are more commonly reported.

31.3. Cross-validation
Cross-validation involves choosing multiple subsets of a data set as the test set and
using the other data as training. This can be done by partitioning the data and
using each subset in turn as the test set with the remaining subsets as training data.
A partition into ten subsets is common to reduce computational overhead. In the
limit, when the test set is just a single item, the result is known as leave-one-out
(LOO) cross-validation (Vehtari, Gelman, and Gabry 2017).

Partitioning the data and reusing the partitions is very fiddly in the indexes and
may not lead to even divisions of the data. It’s far easier to use random partitions,
which support arbitrarily sized test/training splits and can be easily implemented
in Stan. The drawback is that the variance of the resulting estimate is higher than
with a balanced block partition.

Stan implementation with random folds
For the simple linear regression model, randomized cross-validation can be im-
plemented in a single model. To randomly permute a vector in Stan, the simplest
approach is the following.

functions {
array[] int permutation_rng(int N) {
array[N] int y;
for (n in 1 : N) {

y[n] = n;
}
vector[N] theta = rep_vector(1.0 / N, N);
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for (n in 1 : size(y)) {
int i = categorical_rng(theta);
int temp = y[n];
y[n] = y[i];
y[i] = temp;

}
return y;

}
}

The name of the function must end in _rng because it uses other random functions
internally. This will restrict its usage to the transformed data and generated quanti-
ties block. The code walks through an array of integers exchanging each item with
another randomly chosen item, resulting in a uniformly drawn permutation of the
integers 1:N.1

The transformed data block uses the permutation RNG to generate training data
and test data by taking prefixes and suffixes of the permuted data.

data {
int<lower=0> N;
vector[N] x;
vector[N] y;
int<lower=0, upper=N> N_test;

}
transformed data {

int N_train = N - N_test;
array[N] int permutation = permutation_rng(N);
vector[N_train] x_train = x[permutation[1 : N_train]];
vector[N_train] y_train = y[permutation[1 : N_train]];
vector[N_test] x_test = x[permutation[N_train + 1 : N]];
vector[N_test] y_test = y[permutation[N_train + 1 : N]];

}

Recall that in Stan, permutation[1:N_train] is an array of integers, so that
x[permutation[1 : N_train]] is a vector defined for i in 1:N_train by

1The traditional approach is to walk through a vector and replace each item with a random element
from the remaining elements, which is guaranteed to only move each item once. This was not done here
as it’d require new categorical theta because Stan does not have a uniform discrete RNG built in.
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x[permutation[1 : N_train]][i] = x[permutation[1:N_train][i]]
= x[permutation[i]]

Given the test/train split, the rest of the model is straightforward.

parameters {
real alpha;
real beta;
real<lower=0> sigma;

}
model {

y_train ~ normal(alpha + beta * x_train, sigma);
{ alpha, beta, sigma } ~ normal(0, 1);

}
generated quantities {

vector[N] y_test_hat = normal_rng(alpha + beta * x_test, sigma);
vector[N] err = y_test_sim - y_hat;

}

The prediction y_test_hat is defined in the generated quantities block using the
general form involving all uncertainty. The posterior of this quantity corresponds
to using a posterior mean estimator,

ŷtest = E
[
ytest | xtest, xtrainytrain

]
≈ 1

M

M

∑
m=1

ŷtest(m).

Because the test set is constant and the expectation operator is linear, the posterior
mean of err as defined in the Stan program will be the error of the posterior mean
estimate,

ŷtest − ytest = E
[
ŷtest | xtest, xtrain, ytrain

]
− ytest

= E
[
ŷtest − ytest | xtest, xtrain, ytrain

]
≈ 1

M

M

∑
m=1

ŷtest(m) − ytest,

where
ŷtest(m) ∼ p(y | xtest, xtrain, ytrain).
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This just calculates error; taking absolute value or squaring will compute absolute
error and mean square error. Note that the absolute value and square operation
should not be done within the Stan program because neither is a linear function and
the result of averaging squares is not the same as squaring an average in general.

Because the test set size is chosen for convenience in cross-validation, results should
be presented on a per-item scale, such as average absolute error or root mean square
error, not on the scale of error in the fold being evaluated.

User-defined permutations
It is straightforward to declare the variable permutation in the data block instead of
the transformed data block and read it in as data. This allows an external program
to control the blocking, allowing non-random partitions to be evaluated.

Cross-validation with structured data
Cross-validation must be done with care if the data is inherently structured. For
example, in a simple natural language application, data might be structured by
document. For cross-validation, one needs to cross-validate at the document level,
not at the individual word level. This is related to mixed replication in posterior
predictive checking, where there is a choice to simulate new elements of existing
groups or generate entirely new groups.

Education testing applications are typically grouped by school district, by school,
by classroom, and by demographic features of the individual students or the school
as a whole. Depending on the variables of interest, different structured subsets
should be evaluated. For example, the focus of interest may be on the performance
of entire classrooms, so it would make sense to cross-validate at the class or school
level on classroom performance.

Cross-validation with spatio-temporal data
Often data measurements have spatial or temporal properties. For example, home
energy consumption varies by time of day, day of week, on holidays, by season, and
by ambient temperature (e.g., a hot spell or a cold snap). Cross-validation must be
tailored to the predictive goal. For example, in predicting energy consumption, the
quantity of interest may be the prediction for next week’s energy consumption given
historical data and current weather covariates. This suggests an alternative to cross-
validation, wherein individual weeks are each tested given previous data. This
often allows comparing how well prediction performs with more or less historical
data.
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Approximate cross-validation
Vehtari, Gelman, and Gabry (2017) introduce a method that approximates the
evaluation of leave-one-out cross validation inexpensively using only the data
point log likelihoods from a single model fit. This method is documented and
implemented in the R package loo (Gabry et al. 2019).



32. Poststratification

Stratification is a technique developed for survey sampling in which a population is
partitioned into subgroups (i.e., stratified) and each group (i.e., stratum) is sampled
independently. If the subgroups are more homogeneous (i.e., lower variance) than
the population as a whole, this can reduce variance in the estimate of a quantity of
interest at the population level.

Poststratification is a technique for adjusting a non-representative sample (i.e., a
convenience sample or other observational data) for which there are demographic
predictors characterizing the strata. It is carried out after a model is fit to the
observed data, hence the name poststratification (Little 1993). Poststratification
can be fruitfully combined with regression modeling (or more general parametric
modeling), which provides estimates based on combinations of predictors (or
general parameters) rather than raw counts in each stratum. Multilevel modeling is
useful in determining how much partial pooling to apply in the regressions, leading
to the popularity of the combination of multilevel regression and poststratification
(MRP) (Park, Gelman, and Bafumi 2004).

32.1. Some examples
Earth science
Stratification and poststratification can be applied to many applications beyond
survey sampling (Kennedy and Gelman 2019). For example, large-scale whole-earth
soil-carbon models are fit with parametric models of how soil-carbon depends on
features of an area such as soil composition, flora, fauna, temperature, humidity, etc.
Given a model that predicts soil-carbon concentration given these features, a whole-
earth model can be created by stratifying the earth into a grid of say 10km by 10km
“squares” (they can’t literally be square because the earth’s surface is topologically a
sphere). Each grid area has an estimated makeup of soil type, forestation, climate,
etc. The global level of soil carbon is then estimated using poststratification by
simply summing the expected soil carbon estimated for each square in the grid
(Paustian et al. 1997). Dynamic models can then be constructed by layering a
time-series component, varying the poststratification predictors over time, or both
(Field et al. 1998).

404
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Polling
Suppose a university’s administration would like to estimate the support for a
given proposal among its students. A poll is carried out in which 490 respondents
are undergraduates, 112 are graduate students, and 47 are continuing education
students. Now suppose that support for the issue among the poll respondents is is
25% among undergraduate students (subgroup 1), 40% among graduate students
(subgroup 2), and 80% among continuing education students (subgroup 3). Now
suppose that the student body is made up of 20,000 undergraduates, 5,000 grad-
uate students, and 2,000 continuing education students. It is important that our
subgroups are exclusive and exhaustive, i.e., they form a partition of the population.

The proportion of support in the poll among students in each group provides a
simple maximum likelihood estimate θ∗ = (0.25, 0.5, 0.8) of support in each group
for a simple Bernoulli model where student n’s vote is modeled as

yn ∼ bernoulli(θjj[n]),

where jj[n] ∈ 1 : 3 is the subgroup to which the n-th student belongs.

An estimate of the population prevalence of support for the issue among students
can be constructed by simply multiplying estimated support in each group by the
size of each group. Letting N = (20 000, 5 000, 2 000) be the subgroup sizes, the
poststratified estimate of support in the population ϕ∗ is estimated by

ϕ∗ =

3

∑
j=1

θ∗j · Nj

3

∑
j=1

Nj

.

Plugging in our estimates and population counts yields

ϕ∗ =
0.25 · 20 000 + 0.4 · 5 000 + 0.8 · 2 000

20 000 + 5 000 + 2 000

=
8 600
27 000

≈ 0.32.

32.2. Bayesian poststratification
Considering the same polling data from the previous section in a Bayesian setting,
the uncertainty in the estimation of subgroup support is pushed through predic-
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tive inference in order to get some idea of the uncertainty of estimated support.
Continuing the example of the previous section, the data model remains the same,

yn ∼ bernoulli(θjj[n]),

where jj[n] ∈ 1 : J is the group to which item n belongs and θj is the proportion of
support in group j.

This can be reformulated from a Bernoulli model to a binomial model in the usual
way. Letting Aj be the number of respondents in group j and aj be the number of
positive responses in group j, the data model may be reduced to the form

aj ∼ binomial(Aj, θj).

A simple uniform prior on the proportion of support in each group completes the
model,

θj ∼ beta(1, 1).

A more informative prior could be used if there is prior information available about
support among the student body.

Using sampling, draws θ(m) ∼ p(θ | y) from the posterior may be combined with
the population sizes N to estimate ϕ, the proportion of support in the population,

ϕ(m) =

J

∑
j=1

θ
(m)
j · Nj

J

∑
j=1

Nj

.

The posterior draws for ϕ(m) characterize expected support for the issue in the entire
population. These draws may be used to estimate expected support (the average of
the ϕ(m)), posterior intervals (quantiles of the ϕ(m)), or to plot a histogram.

32.3. Poststratification in Stan
The maximum likelihood and Bayesian estimates can be handled with the same
Stan program. The model of individual votes is collapsed to a binomial, where Aj
is the number of voters from group j, aj is the number of positive responses from
group j, and Nj is the size of group j in the population.
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data {
int<lower=1> J;
array[J] int<lower=0> A;
array[J] int<lower=0> a;
vector<lower=0>[J] N;

}
parameters {

vector<lower=0, upper=1>[J] theta;
}
model {

a ~ binomial(A, theta);
}
generated quantities {t
real<lower=0, upper=1> phi = dot(N, theta) / sum(N);

}

The binomial distribution statement is vectorized, and implicitly generates the joint
likelihood for the J terms. The prior is implicitly uniform on (0, 1), the support of θ.
The summation is computed using a dot product and the sum function, which is
why N was declared as a vector rather than as an array of integers.

32.4. Regression and poststratification
In applications to polling, there are often numerous demographic features like age,
gender, income, education, state of residence, etc. If each of these demographic
features induces a partition on the population, then their product also induces a
partition on the population. Often sources such as the census have matching (or at
least matchable) demographic data; otherwise it must be estimated.

The problem facing poststratification by demographic feature is that the number of
strata increases exponentially as a function of the number of features. For instance,
4 age brackets, 2 sexes, 5 income brackets, and 50 states of residence leads to
5 · 2 · 5 · 50 = 2000 strata. Adding another 5-way distinction, say for education level,
leads to 10,000 strata. A simple model like the one in the previous section that takes
an independent parameter θj for support in each stratum is unworkable in that
many groups will have zero respondents and almost all groups will have very few
respondents.

A practical approach to overcoming the problem of low data size per stratum is
to use a regression model. Each demographic feature will require a regression
coefficient for each of its subgroups, but now the parameters add to rather than
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multiply the total number of parameters. For example, with 4 age brackets, 2 sexes,
5 income brackets, and 50 states of residence, there are only 4 + 2 + 5 + 50 = 61
regression coefficients to estimate. Now suppose that item n has demographic
features agen ∈ 1 : 5, sexn ∈ 1 : 2, incomen ∈ 1 : 5, and staten ∈ 1 : 50. A logistic
regression may be formulated as

yn ∼ bernoulli(logit−1(α + βage[n] + γsex[n] + δincome[n] + ϵstate[n])),

where age[n] is the age of the n-th respondent, sex[n] is their sex, income[n] their
income and state[n] their state of residence. These coefficients can be assigned
priors, resulting in a Bayesian regression model.

To poststratify the results, the population size for each combination of predictors
must still be known. Then the population estimate is constructed as

5

∑
i=1

2

∑
j=1

5

∑
k=1

50

∑
m=1

logit−1(α + βi + γj + δk + ηm) · popi,j,k,m,

where popi,j,k,m is the size of the subpopulation with age i, sex j, income level k, and
state of residence m.

As formulated, it should be clear that any kind of prediction could be used as a basis
for poststratification. For example, a Gaussian process or neural network could be
used to produce a non-parametric model of outcomes y given predictors x.

32.5. Multilevel regression and poststratification
With large numbers of demographic features, each cell may have very few items in
it with which to estimate regression coefficients. For example, even in a national-
level poll of 10,000 respondents, if they are divided by the 50 states, that’s only 200
respondents per state on average. When data sizes are small, parameter estimation
can be stabilized and sharpened by providing hierarchical priors. With hierarchical
priors, the data determines the amount of partial pooling among the groups. The
only drawback is that if the number of groups is small, it can be hard to fit these
models without strong hyperpriors.

The model introduced in the previous section had the data model

yn ∼ bernoulli(logit−1(α + βage[n] + γsex[n] + δincome[n] + ϵstate[n])).

The overall intercept can be given a broad fixed prior,

α ∼ normal(0, 5).
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The other regression parameters can be given hierarchical priors,

β1:4 ∼ normal(0, σβ)

γ1:2 ∼ normal(0, σγ)

δ1:5 ∼ normal(0, σδ)

ϵ1:50 ∼ normal(0, σϵ).

The hyperparameters for scale of variation within a group can be given simple
standard hyperpriors,

σβ, σγ, σδ, σϵ ∼ normal(0, 1).

The scales of these fixed hyperpriors need to be determined on a problem-by-
problem basis, though ideally they will be close to standard (mean zero, unit
variance).

Dealing with small partitions and non-identifiability
The multilevel structure of the models used for multilevel regression and post-
stratification consist of a sum of intercepts that vary by demographic feature. This
immediately introduces non-identifiability. A constant added to each state coeffi-
cient and subtracted from each age coefficient leads to exactly the same likelihood.

This is non-identifiability that is only mitigated by the (hierarchical) priors. When
demographic partitions are small, as they are with several categories in the example,
it can be more computationally tractable to enforce a sum-to-zero constraint on the
coefficients. Other values than zero will by necessity be absorbed into the intercept,
which is why it typically gets a broader prior even with standardized data. With
a sum to zero constraint, coefficients for binary features will be negations of each
other. For example, because there are only two sex categories, γ2 = −γ1.

To implement sum-to-zero constraints,

parameters {
vector[K - 1] alpha_raw;

// ...
}
transformed parameters {

vector<multiplier=sigma_alpha>[K] alpha
= append_row(alpha_raw, -sum(alpha_raw));

// ...
}
model {
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alpha ~ normal(0, sigma_alpha);
}

This prior is hard to interpret in that there are K normal distributions, but only K -
1 free parameters. An alternative is to put the prior only on alpha_raw, but that is
also difficult to interpret.

Soft constraints can be more computationally tractable. They are also simpler to
implement.

parameters {
vector<multiplier=alpha>[K] alpha;

// ...
}
model {

alpha ~ normal(0, sigma_alpha);
sum(alpha) ~ normal(0, 0.001);

}

This leaves the regular prior, but adds a second prior that concentrates the sum near
zero. The scale of the second prior will need to be established on a problem and
data-set specific basis so that it doesn’t shrink the estimates beyond the shrinkage
of the hierarchical scale parameters.

Note that in the hierarchical model, the values of the coefficients when there are
only two coefficients should be the same absolute value but opposite signs. Any
other difference could be combined into the overall intercept α. Even with a wide
prior on the intercept, the hyperprior on σγ may not be strong enough to enforce
that, leading to a weak form non-identifiability in the posterior. Enforcing a (hard
or soft) sum-to-zero constraint can help mitigate non-identifiability. Whatever prior
is chosen, prior predictive checks can help diagnose problems with it.

None of this work to manage identifiability in multilevel regressions has anything
to do with the poststratification; it’s just required to fit a large multilevel regression
with multiple discrete categories. Having multiple intercepts always leads to weak
non-identifiability, even with the priors on the intercepts all centered at zero.

32.6. Coding MRP in Stan
Multilevel regression and poststratification can be coded directly in Stan. To code
the non-centered parameterization for each coefficient, which will be required for
sampling efficiency, the multiplier transform is used on each of the parameters.
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The combination of

vector<multiplier=s>[K] a;
// ...
a ~ normal(0, s);

implements a non-centered parameterization for a; a centered parameterization
would drop the multiplier specification. The prior scale s is being centered here.
The prior location is fixed to zero in multilevel regressions because there is an
overall intercept; introducing a location parameters in the prior would introduce
non-identifiability with the overall intercept. The centered parameterization drops
the multiplier.

Here is the full Stan model, which performs poststratification in the generated
quantities using population sizes made available through data variable P.

data {
int<lower=0> N;
array[N] int<lower=1, upper=4> age;
array[N] int<lower=1, upper=5> income;
array[N] int<lower=1, upper=50> state;
array[N] int<lower=0> y;
array[4, 5, 50] int<lower=0> P;

}
parameters {

real alpha;
real<lower=0> sigma_beta;
vector<multiplier=sigma_beta>[4] beta;
real<lower=0> sigma_gamma;
vector<multiplier=sigma_gamma>[5] gamma;
real<lower=0> sigma_delta;
vector<multiplier=sigma_delta>[50] delta;

}
model {

y ~ bernoulli_logit(alpha + beta[age] + gamma[income] + delta[state]);
alpha ~ normal(0, 2);
beta ~ normal(0, sigma_beta);
gamma ~ normal(0, sigma_gamma);
delta ~ normal(0, sigma_delta);
{ sigma_beta, sigma_gamma, sigma_delta } ~ normal(0, 1);

}
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generated quantities {
real expect_pos = 0;
int total = 0;
for (b in 1:4) {
for (c in 1:5) {
for (d in 1:50) {
total += P[b, c, d];
expect_pos

+= P[b, c, d]
* inv_logit(alpha + beta[b] + gamma[c] + delta[d]);

}
}

}
real<lower=0, upper=1> phi = expect_pos / total;

}

Unlike in posterior predictive inference aimed at uncertainty, there is no need to
introduce binomial sampling uncertainty into the estimate of expected positive
votes. Instead, generated quantities are computed as expectations. In general, it is
more efficient to work in expectation if possible (the Rao-Blackwell theorem says
it’s at least as efficient to work in expectation, but in practice, it can be much much
more efficient, especially for discrete quantities).

Binomial coding
In some cases, it can be more efficient to break the data down by group. Suppose
there are 4 × 5 × 2 × 50 = 2000 groups. The data can be broken down into a
size-2000 array, with entries corresponding to total vote counts in that group

int<lower=0> G;
array[G] int<lower=1, upper=4> age;
array[G] int<lower=1, upper=5> income;
array[G] int<lower=1, upper=50> state;

Then the number of positive votes and the number of total votes are collected into
two parallel arrays indexed by group.

array[G] int<lower=0> pos_votes;
array[G] int<lower=0> total_votes;

Finally, the data model is converted to binomial.
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pos_votes ~ binomial_logit(total_votes,
alpha + beta[age] + ...);

The predictors look the same because of the way the age and other data items are
coded.

Coding binary groups
In this first model, sex is not included as a predictor. With only two categories, it
needs to be modeled separately, because it is not feasible to build a hierarchical
model with only two cases. A sex predictor is straightforward to add to the data
block; it takes on values 1 or 2 for each of the N data points.

array[N] int<lower=1, upper=2> sex;

Then add a single regression coefficient as a parameter,

real epsilon;

In the log odds calculation, introduce a new term

[epsilon, -epsilon][sex]';

That is, the data model will now look like

y ~ bernoulli_logit(alpha + beta[age] + gamma[income] + delta[state]
+ [epsilon, -epsilon][sex]');

For data point n, the expression [epsilon, -epsilon][sex] takes on value [ep-
silon, -epsilon][sex][n], which with Stan’s multi-indexing reduces to [ep-
silon, -epsilon][sex[n]]. This term evaluates to epsilon if sex[n] is 1 and to
-epsilon if sex[n] is 2. The result is effectively a sum-to-zero constraint on two
sex coefficients. The ' at the end transposes [epsilon, -epsilon][sex] which is
a row_vector into a vector that can be added to the other variables.

Finally, a prior is needed for the coefficient in the model block,

epsilon ~ normal(0, 2);

As with other priors in multilevel models, the posterior for epsilon should be
investigated to make sure it is not unrealistically wide.

32.7. Adding group-level predictors
If there are group-level predictors, such as average income in a state, or vote share
in a previous election, these may be used as predictors in the regression. They
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will not pose an obstacle to poststratification because they are at the group level.
For example, suppose the average income level in the state is available as the data
variable

array[50] real<lower=0> income;

then a regression coefficient psi can be added for the effect of average state income,

real psi;

with a fixed prior,

psi ~ normal(0, 2);

This prior assumes the income predictor has been standardized. Finally, a term is
added to the regression for the fixed predictor,

y ~ bernoulli_logit(alpha + beta[age] + ... + delta[state]
+ income[state] * psi);

And finally, the formula in the generated quantities block is also updated,
expect_pos

+= P[b, c, d]
* inv_logit(alpha + beta[b] + gamma[c] + delta[d]

+ income[d] * psi);

Here d is the loop variable looping over states. This ensures that the poststratifica-
tion formula matches the model formula.



33. Decision Analysis

Statistical decision analysis is about making decisions under uncertainty. In order
to make decisions, outcomes must have some notion of “utility” associated with
them. The so-called “Bayes optimal” decision is the one that maximizes expected
utility (or equivalently, minimizes expected loss). This chapter shows how Stan can
be used to simultaneously estimate the distribution of outcomes based on decisions
and compute the required expected utilities.

33.1. Outline of decision analysis
Following Andrew Gelman et al. (2013), Bayesian decision analysis can be factored
into the following four steps.

1. Define a set X of possible outcomes and a set D of possible decisions.

2. Define a probability distribution of outcomes conditional on decisions through
a conditional density function p(x | d) for x ∈ X and d ∈ D.

3. Define a utility function U : X → R mapping outcomes to their utility.

4. Choose action d∗ ∈ D with highest expected utility,

d∗ = arg maxd E[U(x) | d].

The outcomes should represent as much information as possible that is relevant to
utility. In Bayesian decision analysis, the distribution of outcomes will typically be
a posterior predictive distribution conditioned on observed data. There is a large
literature in psychology and economics related to defining utility functions. For
example, the utility of money is usually assumed to be strictly concave rather than
linear (i.e., the marginal utility of getting another unit of money decreases the more
money one has).

33.2. Example decision analysis
This section outlines a very simple decision analysis for a commuter deciding among
modes of transportation to get to work: walk, bike share, public transportation, or
cab. Suppose the commuter has been taking various modes of transportation for
the previous year and the transportation conditions and costs have not changed

415
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during that time. Over the year, such a commuter might accumulate two hundred
observations of the time it takes to get to work given a choice of commute mode.

Step 1. Define decisions and outcomes
A decision consists of the choice of commute mode and the outcome is a time and
cost. More formally,

• the set of decisions is D = 1 : 4, corresponding to the commute types walking,
bicycling, public transportation, and cab, respectively, and

• the set of outcomes X = R × R+ contains pairs of numbers x = (c, t) consist-
ing of a cost c and time t ≥ 0.

Step 2. Define density of outcome conditioned on decision
The density required is p(x | d), where d ∈ D is a decision and x = (c, t) ∈ X is
an outcome. Being a statistical decision problem, this density will the a posterior
predictive distribution conditioned on previously observed outcome and decision
pairs, based on a parameter model with parameters θ,

p(x | d, xobs, dobs) =
∫

p(x | d, θ) · p(θ | xobs, dobs)dθ.

The observed data for a year of commutes consists of choice of the chosen commute
mode dobs

n and observed costs and times xobs
n = (cobs

n , tobs
n ) for n ∈ 1 : 200.

For simplicity, commute time tn for trip n will be modeled as lognormal for a given
choice of transportation dn ∈ 1 : 4,

tn ∼ lognormal(µd[n], σd[n]).

To understand the notation, dn, also written d[n], is the mode of transportation used
for trip n. For example if trip n was by bicycle, then tn ∼ lognormal(µ2, σ2), where
µ2 and σ2 are the lognormal parameters for bicycling.

Simple fixed priors are used for each mode of transportation k ∈ 1 : 4,

µk ∼ normal(0, 5)

σk ∼ lognormal(0, 1).

These priors are consistent with a broad range of commute times; in a more realistic
model each commute mode would have its own prior based on knowledge of the
city and the time of day would be used as a covariate; here the commutes are taken
to be exchangeable.
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Cost is usually a constant function for public transportation, walking, and bicycling.
Nevertheless, for simplicity, all costs will be modeled as lognormal,

cn ∼ lognormal(νd[n], τd[n]).

Again, the priors are fixed for the modes of transportation,

νk ∼ normal(0, 5)

τk ∼ lognormal(0, 1).

A more realistic approach would model cost conditional on time, because the cost
of a cab depends on route chosen and the time it takes.

The full set of parameters that are marginalized in the posterior predictive distribu-
tion is

θ = (µ1:4, σ1:4, ν1:4, τ1:4).

Step 3. Define the utility function
For the sake of concreteness, the utility function will be assumed to be a simple
function of cost and time. Further suppose the commuter values their commute
time at $25 per hour and has a utility function that is linear in the commute cost
and time. Then the utility function may be defined as

U(c, t) = −(c + 25 · t)

The sign is negative because high cost is undesirable. A better utility function might
have a step function or increasing costs for being late, different costs for different
modes of transportation because of their comfort and environmental impact, and
non-linearity of utility in cost.

Step 4. Maximize expected utility
At this point, all that is left is to calculate expected utility for each decision and
choose the optimum. If the decisions consist of a small set of discrete choices,
expected utility can be easily coded in Stan. The utility function is coded as a
function, the observed data is coded as data, the model parameters coded as
parameters, and the model block itself coded to follow the sampling distributions
of each parameter.

functions {
real U(real c, real t) {
return -(c + 25 * t);
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}
}
data {

int<lower=0> N;
array[N] int<lower=1, upper=4> d;
array[N] real c;
array[N] real<lower=0> t;

}
parameters {

vector[4] mu;
vector<lower=0>[4] sigma;
array[4] real nu;
array[4] real<lower=0> tau;

}
model {

mu ~ normal(0, 1);
sigma ~ lognormal(0, 0.25);
nu ~ normal(0, 20);
tau ~ lognormal(0, 0.25);
t ~ lognormal(mu[d], sigma[d]);
c ~ lognormal(nu[d], tau[d]);

}
generated quantities {
array[4] real util;
for (k in 1:4) {
util[k] = U(lognormal_rng(nu[k], tau[k]),

lognormal_rng(mu[k], sigma[k]));
}

}

The generated quantities block defines an array variable util where util[k],
which will hold the utility derived from a random commute for choice k generated
according to the model parameters for that choice. This randomness is required to
appropriately characterize the posterior predictive distribution of utility.

For simplicity in this initial formulation, all four commute options have their costs
estimated, even though cost is fixed for three of the options. To deal with the fact
that some costs are fixed, the costs would have to be hardcoded or read in as data,
nu and tau would be declared as univariate, and the RNG for cost would only be
employed when k == 4.
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Defining the utility function for pairs of vectors would allow the random number
generation in the generated quantities block to be vectorized.

All that is left is to run Stan. The posterior mean for util[k] is the expected utility,
which written out with full conditioning, is

E
[
U(x) | d = k, dobs, xobs

]
=

∫
U(x) · p(x | d = k, θ) · p(θ | dobs, xobs)dθ

≈ 1
M

M

∑
m=1

U(x(m)),

where
x(m) ∼ p(x | d = k, θ(m))

and
θ(m) ∼ p(θ | dobs, xobs).

In terms of Stan’s execution, the random generation of x(m) is carried out with
the lognormal_rng operations after θ(m) is drawn from the model posterior. The
average is then calculated after multiple chains are run and combined.

It only remains to make the decision k with highest expected utility, which will
correspond to the choice with the highest posterior mean for util[k]. This can be
read off of the mean column of the Stan’s summary statistics or accessed program-
matically through Stan’s interfaces.

33.3. Continuous choices
Many choices, such as how much to invest for retirement or how long to spend
at the gym are not discrete, but continuous. In these cases, the continuous choice
can be coded as data in the Stan program. Then the expected utilities may be
calculated. In other words, Stan can be used as a function from a choice to expected
utilities. Then an external optimizer can call that function. This optimization can be
difficult without gradient information. Gradients could be supplied by automatic
differentiation, but Stan is not currently instrumented to calculate those derivatives.



34. The Bootstrap and Bagging

The bootstrap is a technique for approximately sampling from the error distribution
for an estimator. Thus it can be used as a Monte Carlo method to estimate standard
errors and confidence intervals for point estimates (Efron and Tibshirani 1986; 1994).
It works by subsampling the original data and computing sample estimates from
the subsample. Like other Monte Carlo methods, the bootstrap is plug-and-play,
allowing great flexibility in both model choice and estimator.

Bagging is a technique for combining bootstrapped estimators for model criticism
and more robust inference (Breiman 1996; Huggins and Miller 2019).

34.1. The bootstrap
Estimators
An estimator is nothing more than a function mapping a data set to one or more
numbers, which are called “estimates”. For example, the mean function maps a
data set y1,...,N to a number by

mean(y) =
1
N

N

∑
n=1

yn,

and hence meets the definition of an estimator. Given the likelihood function

p(y | µ) =
N

∏
n=1

normal(yn | µ, 1),

the mean is the maximum likelihood estimator,

mean(y) = arg maxµ p(y | µ, 1)

A Bayesian approach to point estimation would be to add a prior and use the
posterior mean or median as an estimator. Alternatively, a penalty function could
be added to the likelihood so that optimization produces a penalized maximum
likelihood estimate. With any of these approaches, the estimator is just a function
from data to a number.

In analyzing estimators, the data set is being modeled as a random variable. It
is assumed that the observed data is just one of many possible random samples
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of data that may have been produced. If the data is modeled a random variable,
then the estimator applied to the data is also a random variable. The simulations
being done for the bootstrap are attempts to randomly sample replicated data sets
and compute the random properties of the estimators using standard Monte Carlo
methods.

The bootstrap in pseudocode
The bootstrap works by applying an estimator to replicated data sets. These repli-
cates are created by subsampling the original data with replacement. The sample
quantiles may then be used to estimate standard errors and confidence intervals.

The following pseudocode estimates 95% confidence intervals and standard errors
for a generic estimate θ̂ that is a function of data y.

for (m in 1:M) {
y_rep[m] <- sample_uniform(y)
theta_hat[m] <- estimate_theta(y_rep[m])

}
std_error = sd(theta_hat)
conf_95pct = [ quantile(theta_hat, 0.025),

quantile(theta_hat, 0.975) ]

The sample_uniform function works by independently assigning each element of
y_rep an element of y drawn uniformly at random. This produces a sample with
replacement. That is, some elements of y may show up more than once in y_rep and
some may not appear at all.

34.2. Coding the bootstrap in Stan
The bootstrap procedure can be coded quite generally in Stan models. The following
code illustrates a Stan model coding the likelihood for a simple linear regression.
There is a parallel vector x of predictors in addition to outcomes y. To allow a
single program to fit both the original data and random subsamples, the variable
resample is set to 1 to resample and 0 to use the original data.

data {
int<lower=0> N;
vector[N] x;
vector[N] y;
int<lower=0, upper=1> resample;

}
transformed data {



422 CHAPTER 34. THE BOOTSTRAP AND BAGGING

simplex[N] uniform = rep_vector(1.0 / N, N);
array[N] int<lower=1, upper=N> boot_idxs;
for (n in 1:N) {
boot_idxs[n] = resample ? categorical_rng(uniform) : n;

}
}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

y[boot_idxs] ~ normal(alpha + beta * x[boot_idxs], sigma);
}

The model accepts data in the usual form for a linear regression as a number of
observations N with a size N vector x of predictors and a size N vector of outcomes.
The transformed data block generates a set of indexes into the data that is the same
size as the data. This is done by independently sampling each entry of boot_idxs
from 1:N, using a discrete uniform distribution coded as a categorical random
number generator with an equal chance for each outcome. If resampling is not done,
the array boot_idxs is defined to be the sequence 1:N, because x == x[1:N] and
y = y[1:N].

For example, when resample == 1, if N = 4, the value of boot_idxs might be {2,
1, 1, 3}, resulting in a bootstrap sample {y[2], y[1], y[1], y[3]} with the
first element repeated twice and the fourth element not sampled at all.

The parameters are the usual regression coefficients for the intercept alpha,
slope beta, and error scale sigma. The model uses the bootstrap index
variable boot_idx to index the predictors as x[boot_idx] and outcomes as
y[boot_idx]. This generates a new size-N vector whose entries are defined by
x[boot_idx][n] = x[boot_idx[n]] and similarly for y. For example, if N = 4
and boot_idxs = {2, 1, 1, 3}, then x[boot_idxs] = [x[2], x[1], x[1],
x[3]]' and y[boot_idxs] = [y[2], y[1], y[1], y[3]]'. The predictor and
outcome vectors remain aligned, with both elements of the pair x[1] and y[1]
repeated twice.

With the model defined this way, if resample is 1, the model is fit to a bootstrap
subsample of the data. If resample is 0, the model is fit to the original data as given.
By running the bootstrap fit multiple times, confidence intervals can be generated
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from quantiles of the results.

34.3. Error statistics from the bootstrap
Running the model multiple times produces a Monte Carlo sample of estimates
from multiple alternative data sets subsampled from the original data set. The error
distribution is just the distribution of the bootstrap estimates minus the estimate for
the original data set.

To estimate standard errors and confidence intervals for maximum likelihood esti-
mates the Stan program is executed multiple times using optimization (which turns
off Jacobian adjustments for constraints and finds maximum likelihood estimates).
On the order of one hundred replicates is typically enough to get a good sense of
standard error; more will be needed to accurate estimate the boundaries of a 95%
confidence interval. On the other hand, given that there is inherent variance due to
sampling the original data y, it is usually not worth calculating bootstrap estimates
to high precision.

Standard errors
Here’s the result of calculating standard errors for the linear regression model above
with N = 50 data points, α = 1.2, β = −0.5, and σ = 1.5. With a total of M = 100
bootstrap samples, there are 100 estimates of α, 100 of β, and 100 of σ. These are
then treated like Monte Carlo draws. For example, the sample standard deviation of
the draws for α provide the bootstrap estimate of the standard error in the estimate
for α. Here’s what it looks like for the above model with M = 100

parameter estimate std err
--------- -------- -------

alpha 1.359 0.218
beta -0.610 0.204

sigma 1.537 0.142

With the data set fixed, these estimates of standard error will display some Monte
Carlo error. For example, here are the standard error estimates from five more runs
holding the data the same, but allowing the subsampling to vary within Stan:

parameter estimate std err
--------- -------- -------

alpha 1.359 0.206
alpha 1.359 0.240
alpha 1.359 0.234
alpha 1.359 0.249
alpha 1.359 0.227
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Increasing M will reduce Monte Carlo error, but this is not usually worth the extra
computation time as there is so much other uncertainty due to the original data
sample y.

Confidence intervals
As usual with Monte Carlo methods, confidence intervals are estimated using
quantiles of the draws. That is, if there are M = 1000 estimates of α̂ in different
subsamples, the 2.5% quantile and 97.5% quantile pick out the boundaries of the
95% confidence interval around the estimate for the actual data set y. To get accurate
97.5% quantile estimates requires a much larger number of Monte Carlo simulations
(roughly twenty times as large as needed for the median).

34.4. Bagging
When bootstrapping is carried through inference it is known as bootstrap aggrega-
tion, or bagging, in the machine-learning literature (Breiman 1996). In the simplest
case, this involves bootstrapping the original data, fitting a model to each boot-
strapped data set, then averaging the predictions. For instance, rather than using
an estimate σ̂ from the original data set, bootstrapped data sets yboot(1), . . . , yboot(N)

are generated. Each is used to generate an estimate σ̂boot(n). The final estimate is

σ̂ =
1
N

N

∑
n=1

σ̂boot(n).

The same would be done to estimate a predictive quantity ỹ for as yet unseen data.

ˆ̃y =
1
N

N

∑
n=1

ˆ̃yboot(n).

For discrete parameters, voting is used to select the outcome.

One way of viewing bagging is as a classical attempt to get something like averaging
over parameter estimation uncertainty.

34.5. Bayesian bootstrap and bagging
A Bayesian estimator may be analyzed with the bootstrap in exactly the same way
as a (penalized) maximum likelihood estimate. For example, the posterior mean
and posterior median are two different Bayesian estimators. The bootstrap may
be used estimate standard errors and confidence intervals, just as for any other
estimator.

(Huggins and Miller 2019) use the bootstrap to assess model calibration and fitting
in a Bayesian framework and further suggest using bagged estimators as a guard
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against model misspecification. Bagged posteriors will typically have wider poste-
rior intervals than those fit with just the original data, showing that the method is
not a pure Bayesian approach to updating, and indicating it would not be calibrated
if the model were well specified. The hope is that it can guard against over-certainty
in a poorly specified model.
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35. Using the Stan Compiler

Stan is used in most of our interfaces through the Stan compiler stanc. Since
version 2.22, the Stan compiler has been implemented in OCaml and is referred to
as stanc3. The binary name is still simply stanc, so this document uses both stanc
and stanc3 interchangeably.

35.1. Command-line options for stanc3
The stanc3 compiler has the following command-line syntax:

> stanc (options) <model_file>

where <model_file> is a path to either a Stan model file ending in suffix .stan or
a Stan functions file which ends in .stanfunctions.

The stanc3 options are:

• --help - Displays the complete list of stanc3 options, then exits.

• --version - Display stanc version number

• --info - Print information about the model, such as the type information for
variables and the list of used distributions.

• --name=<model_name> - Specify the name of the class used for the implemen-
tation of the Stan model in the generated C++ code.

• --o=<file_name> - Specify a path to an output file for generated C++ code
(default = .hpp) or auto-formatting output (default: no file/print to stdout)

• --allow-undefined - Do not throw a parser error if there is a function in the
Stan program that is declared but not defined in the functions block.

• --include_paths=<dir1,...dirN> - Takes a comma-separated list of direc-
tories that may contain a file in an #include directive.

• --use-opencl - If set, will use additional Stan OpenCL features enabled in
the Stan-to-C++ compiler.

• --auto-format - Pretty prints the program to the console. See more on auto
formatting.

428

https://mc-stan.org/users/interfaces/
https://github.com/stan-dev/stanc3
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• --canonicalize - Make changes to the program before pretty-printing by
specifying options in a comma separated list. Options are ‘deprecations’,
‘parentheses’, ‘braces’, ‘includes’.

• --max-line-length=<number> - Set the column number at which formatting
with --auto-format attempts to split lines. The default value is 78, which
results in most lines being shorter than 80 characters.

• --print-canonical - Synonymous with --auto-format --
canonicalize=[all options].

• --print-cpp - If set, output the generated C++ Stan model class to stdout.

• --standalone-functions - If set, only generate the code for the functions
defined in the file. This is the default behavior for .stanfunctions files.

• --O0 (Default) Do not apply optimizations to the Stan code.

• --O1 Apply level 1 compiler optimizations (only basic optimizations).

• --Oexperimental WARNING: This is currently an experimental feature whose
components are not thoroughly tested and may not improve a programs performance!
Allow the compiler to apply all optimizations to the Stan code.

• --O WARNING: This is currently an experimental feature whose components are
not thoroughly tested and may not improve a programs performance! Same as --
Oexperimental. Allow the compiler to apply all optimizations to the Stan
code.

• --warn-uninitialized - Emit warnings about uninitialized variables to
stderr. Currently an experimental feature.

• --warn-pedantic - Emit warnings in Pedantic mode which warns of poten-
tial issues in the meaning of your program.

The compiler also provides a number of debug options which are primarily of
interest to stanc3 developers; use the --help option to see the full set.

35.2. Understanding stanc3 errors and warnings
During model compilation, stanc can produce a variety of errors (issues that prevent
the model from being compiled) and warnings (non-fatal issues that should still be
considered).
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Warnings
Even without the optional --warn-pedantic and --warn-uninitialized com-
mand line flags, both of which enable additional warnings, stanc can still produce
warnings about your program. In particular, warnings will be produced in two
situations

1. A completely blank Stan program will produce the following warning mes-
sage

Warning: Empty file 'empty.stan' detected;
this is a valid stan model but likely unintended!

2. The use of any deprecated features will lead to warnings which will look as
follows

Warning in 'deprecated.stan', line 2, column 0: Comments beginning with # are
deprecated and this syntax will be removed in Stan 2.32.0. Use // to
begin line comments; this can be done automatically using stanc
--auto-format

A single Stan program can produce many warnings during compilation.

Errors
Errors differ from warnings in their severity and format. In particular, errors are
fatal and stop compilation, so at most one error is displayed per run of stanc.

There are five kinds of errors emitted by stanc3

1. File errors occur when the file passed to stanc is either missing or cannot be
opened (i.e. has permissions issues). They look like

Error: file 'notfound.stan' not found or cannot be opened

2. Syntactic errors occur whenever a program violates the Stan language’s syntax
requirements. There are three kinds of errors within syntax errors; “lexing”
errors mean that the input was unable to be read properly on the character
level, “include” errors which occur when the #include directive fails, and
“parsing” errors which result when the structure of the program is incorrect.

• The lexing errors occur due to the use of invalid characters in a program.
For example, a lexing error due to the use of $ in a variable name will
look like the following.

Syntax error in 'char.stan', line 2, column 6, lexing error:
-------------------------------------------------
1: data {

https://mc-stan.org/docs/reference-manual/deprecations.html
https://mc-stan.org/docs/reference-manual/syntax.html
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2: int $ome_variable;
^

3: }
-------------------------------------------------
Invalid character found.

• When an include directive is used, it can lead to errors if the included
file is not found, or if a file includes itself (including a recursive loop of
includes, such as A -> B -> A).

Syntax error in './incl.stan', line 1, column 0, included from
'./incl.stan', line 1, column 0, included from
'incl.stan', line 1, column 0, include error:
-------------------------------------------------
1: #include <incl.stan>

^
-------------------------------------------------
File incl.stan recursively included itself.

• It is much more common to see parsing errors, which tend to have more
in-depth explanations of the error found. For example, if a user forgets to
put a size on a type like vector, as in the following, this raises a parsing
(structural) error in the compiler.

Syntax error in vec.stan', line 3, column 10 to column 11, parsing error:
-------------------------------------------------
1: data {
2: int<lower=0> N;
3: vector x;

^
4: }

-------------------------------------------------
"[" expression "]" expected for vector size.

3. Semantic errors (also known as type errors) occur when a program is struc-
tured correctly but features an error in the type rules imposed by the language.
An example of this is assigning a real value to a variable defined as an integer.

Semantic error in 'type.stan', line 2, column 3 to column 15:
-------------------------------------------------
1: transformed data {
2: int x = 1.5;

^
3: }

-------------------------------------------------

https://mc-stan.org/docs/reference-manual/syntax.html#extra-grammatical-constraints
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Ill-typed arguments supplied to assignment operator =: lhs has
type int and rhs has type real

4. The compiler will raise an error for use of any removed features for at least
one version following their removal. The deprecation warnings mentioned
above eventually turn into this kind of error to prompt the user to update
their model. After the version of removal, these errors will be converted to
one of the other types listed here, depending on the feature.

5. Finally, the compiler can raise an internal error. These are caused by bugs in
the compiler, not your model, and we would appreciate it if you report them
on the stanc3 repo with the error message provided. These errors usually say
something like “This should never happen,” and we apologize if they do.

35.3. Pedantic mode
Pedantic mode is a compilation option built into Stanc3 that warns you about
potential issues in your Stan program.

For example, consider the following program.

data {
int N;
array[N] real x;

}
parameters {

real sigma;
}
model {

real mu;
x ~ normal(mu, sigma);

}

When pedantic mode is turned on, the compiler will produce the following warn-
ings.

Warning:
The parameter sigma has no priors.

Warning at 'ped-mode-ex1.stan', line 10, column 14 to column 16:
The variable mu may not have been assigned a value before its use.

Warning at 'ped-mode-ex1.stan', line 10, column 18 to column 23:
A normal distribution is given parameter sigma as a scale parameter
(argument 2), but sigma was not constrained to be strictly positive.

https://mc-stan.org/docs/reference-manual/removals.html
https://github.com/stan-dev/stanc3/issues
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Here are the kinds of issues that pedantic mode will find (which are described in
more detail in following sections):

• Distribution usages issues. Distribution arguments don’t match the distribution
specification, or some specific distribution is used in an inadvisable way.

• Unused parameter. A parameter is defined but doesn’t contribute to target.
• Large or small constant in a distribution. Very large or very small constants are

used as distribution arguments.
• Control flow depends on a parameter. Branching control flow (like if/else) de-

pends on a parameter value .
• Parameter has multiple tildes. A parameter is on the left-hand side of multiple

tildes.
• Parameter has zero or multiple priors. A parameter has zero or more than one

prior distribution.
• Variable is used before assignment. A variable is used before being assigned a

value.
• Strict or nonsensical parameter bounds. A parameter is given questionable

bounds.
• Nonlinear transformations. When the left-hand side of a tilde statement (or first

argument of a log probability function) contains a nonlinear transform which
may require a Jacobian change of variables adjustment.

Some important limitations of pedantic mode are listed at the end of this chapter.

Distribution argument and variate constraint issues
When an argument to a built-in distribution certainly does not match that distri-
bution’s specification in the Stan Functions Reference, a warning is thrown. This
primarily checks if any distribution argument’s bounds at declaration, compile-time
value, or subtype at declaration (e.g. simplex) is incompatible with the domain of
the distribution. x

For example, consider the following program.

parameters {
real unb_p;
real<lower=0> pos_p;

}
model {

1 ~ poisson(unb_p);
1 ~ poisson(pos_p);

}

https://mc-stan.org/docs/functions-reference/index.html
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The parameter of poisson should be strictly positive, but unb_p is not constrained
to be positive.

Pedantic mode produces the following warning.

Warning at 'ex-dist-args.stan', line 6, column 14 to column 19:
A poisson distribution is given parameter unb_p as a rate parameter
(argument 1), but unb_p was not constrained to be strictly positive.

Special-case distribution issues
Pedantic mode checks for some specific uses of distributions that may indicate a
statistical mistake:

Uniform distributions
Any use of uniform distribution generates a warning, except when the variate
parameter’s declared upper and lower bounds exactly match the uniform distribu-
tion bounds. In general, assigning a parameter a uniform distribution can create
non-differentiable boundary conditions and is not recommended.

For example, consider the following program.

parameters {
real a;
real<lower=0, upper=1> b;

}
model {

a ~ uniform(0, 1);
b ~ uniform(0, 1);

}

a is assigned a uniform distribution that doesn’t match its constraints.

Pedantic mode produces the following warning.

Warning at 'uniform-warn.stan', line 6, column 2 to column 20:
Parameter a is given a uniform distribution. The uniform distribution is
not recommended, for two reasons: (a) Except when there are logical or
physical constraints, it is very unusual for you to be sure that a
parameter will fall inside a specified range, and (b) The infinite gradient
induced by a uniform density can cause difficulties for Stan's sampling
algorithm. As a consequence, we recommend soft constraints rather than hard
constraints; for example, instead of giving an elasticity parameter a
uniform(0, 1) distribution, try normal(0.5, 0.5).
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(Inverse-) Gamma distributions
Gamma distributions are sometimes used as an attempt to assign an improper
prior to a parameter. Pedantic mode gives a warning when the Gamma arguments
indicate that this may be the case.

lkj_corr distribution
Any use of the lkj_corr distribution generates a warning that suggests using the
Cholesky variant instead. See the LKJ correlation distribution section of the Stan
Functions Reference for details.

Unused parameters
A warning is generated when a parameter is declared but does not have any effect
on the program. This is determined by checking whether the value of the target
variable depends in any way on each of the parameters.

For example, consider the following program.

parameters {
real a;
real b;

}
model {

a ~ normal(1, 1);
}

a participates in the density function but b does not.

Pedantic mode produces the following warning.

Warning:
The parameter b was declared but was not used in the density calculation.

Large or small constants in a distribution
When numbers with magnitude less than 0.1 or greater than 10 are used as argu-
ments to a distribution, it indicates that some parameter is not scaled to unit value,
so a warning is thrown. See the efficiency tuning section of the Stan User’s guide
for a discussion of scaling parameters.

For example, consider the following program.

parameters {
real x;
real y;

}

https://mc-stan.org/docs/functions-reference/correlation_matrix_distributions.html#lkj-correlation
https://mc-stan.org/docs/stan-users-guide/efficiency-tuning.html#standardizing-predictors-and-outputs
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model {
x ~ normal(-100, 100);
y ~ normal(0, 1);

}

The constants -100 and 100 suggest that x is not unit scaled.

Pedantic mode produces the following warning.

Warning at 'constants-warn.stan', line 6, column 14 to column 17:
Argument -100 suggests there may be parameters that are not unit scale;
consider rescaling with a multiplier (see manual section 22.12).

Warning at 'constants-warn.stan', line 6, column 19 to column 22:
Argument 100 suggests there may be parameters that are not unit scale;
consider rescaling with a multiplier (see manual section 22.12).

Control flow depends on a parameter
Control flow statements, such as if, for and while should not depend on param-
eters or functions of parameters to determine their branching conditions. This
is likely to introduce a discontinuity into the density function. Pedantic mode
generates a warning when any branching condition may depend on a parameter
value.

For example, consider the following program.

parameters {
real a;

}
model {

// x depends on parameter a
real x = a * a;

int m;

// the if-then-else depends on x which depends on a
if(x > 0) {
//now m depends on x which depends on a
m = 1;

} else {
m = 2;

}
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// for loop depends on m -> x -> a
for (i in 0:m) {
a ~ normal(i, 1);

}
}

The if and for statements are control flow that depend (indirectly) on the value of
the parameter m.

Pedantic mode produces the following warning.

Warning at 'param-dep-cf-warn.stan', line 11, column 2 to line 16, column 3:
A control flow statement depends on parameter(s): a.

Warning at 'param-dep-cf-warn.stan', line 19, column 2 to line 21, column 3:
A control flow statement depends on parameter(s): a.

Parameters with multiple tildes
A warning is generated when a parameter is found on the left-hand side of more
than one ~ statements (or an equivalent target += conditional density statement).
This pattern is not inherently an issue, but it is unusual and may indicate a mistake.

Pedantic mode only searches for repeated statements, it will not for example gener-
ate a warning when a ~ statement is executed repeatedly inside of a loop.

For example, consider the following program.

data {
real x;

}
parameters {

real a;
real b;

}
model {

a ~ normal(0, 1);
a ~ normal(x, 1);

b ~ normal(1, 1);
}

Pedantic mode produces the following warning.

Warning at 'multi-tildes.stan', line 9, column 2 to column 19:
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The parameter a is on the left-hand side of more than one tildes
statement.

Parameters with zero or multiple priors
A warning is generated when a parameter appears to have greater than or less than
one prior distribution factor.

This analysis depends on a factor graph representation of a Stan program. A factor F
that depends on a parameter P is called a prior factor for P if there is no path in the
factor graph from F to any data variable except through P.

One limitation of this approach is that the compiler cannot distinguish between
modeled data variables and other convenient uses of data variables such as data
sizes or hyperparameters. This warning assumes that all data variables (except for
int variables) are modeled data, which may cause extra warnings.

For example, consider the following program.

data {
real x;

}
parameters {

real a;
real b;
real c;
real d;

}
model
{

a ~ normal(0, 1); // this is a prior
x ~ normal(a, 1); // this is not a prior, since data is involved

b ~ normal(x, 1); // this is also not a prior, since data is involved

// this is not a prior for c, since data is involved through b
// but it is a prior for b, since the data is only involved through b
c ~ normal(b, 1);

//these are multiple priors:
d ~ normal(0, 1);
1 ~ normal(d, 1);

}

https://en.wikipedia.org/wiki/Factor_graph
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One prior is found for a and for b, while c only has a factor that touches a data
variable and d has multiple priors.

Pedantic mode produces the following warning.

Warning:
The parameter c has no priors.

Warning:
The parameter d has 2 priors.

Variables used before assignment
A warning is generated when any variable is used before it has been assigned a
value.

For example, consider the following program.

transformed data {
real x;
if (1 > 2) {
x = 1;

} else {
print("oops");

}
print(x);

}

Since x is only assigned in one of the branches of the if statement, it might get to
print(x) without having been assigned to.

Pedantic mode produces the following warning.

Warning at 'uninit-warn.stan', line 7, column 8 to column 9:
The variable x may not have been assigned a value before its use.

Strict or nonsensical parameter bounds
Except when there are logical or physical constraints, it is very unusual for you to
be sure that a parameter will fall inside a specified range. A warning is generated
for all parameters declared with the bounds <lower=.., upper=..> except for
<lower=0, upper=1> or <lower=-1, upper=1>.

In addition, a warning is generated when a parameter bound is found to have
lower >= upper.

For example, consider the following program.
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parameters {
real<lower=0, upper=1> a;
real<lower=-1, upper=1> b;
real<lower=-2, upper=1012> c;

}
model {

c ~ normal(b, a);
}

Pedantic mode produces the following warning.

Warning:
Your Stan program has a parameter c with a lower and upper bound in its
declaration. These hard constraints are not recommended, for two reasons:
(a) Except when there are logical or physical constraints, it is very
unusual for you to be sure that a parameter will fall inside a specified
range, and (b) The infinite gradient induced by a hard constraint can cause
difficulties for Stan's sampling algorithm. As a consequence, we recommend
soft constraints rather than hard constraints; for example, instead of
constraining an elasticity parameter to fall between 0, and 1, leave it
unconstrained and give it a normal(0.5, 0.5) prior distribution.

Nonlinear transformations
When a parameter is transformed in a non-linear fashion, an adjustment must be
applied to account for distortion caused by the transform. This is discussed in depth
in the Changes of variables section.

This portion of pedantic mode tries to detect instances where such an adjustment
would be necessary and remind the user.

For example, consider the following program.

parameters {
real y;

}
model {

log(y) ~ normal(0,1);
}

Pedantic mode produces the following warning.

Warning:
Left-hand side of distribution statement (~) may contain a non-linear

reparameterization.qmd


35.4. AUTOMATIC UPDATING AND FORMATTING OF STAN PROGRAMS441

transform of a parameter or local variable. If it does, you need
to include a target += statement with the log absolute determinant
of the Jacobian of the transform. You could also consider defining
a transformed parameter and using jacobian += in the transformed
parameters block.

Pedantic mode limitations
• Constant values are sometimes uncomputable

Pedantic mode attempts to evaluate expressions down to literal values so that
they can be used to generate warnings. For example, in the code normal(x,
1 - 2), the expression 1 - 2 will be evaluated to -1, which is not a valid
variance argument so a warning is generated. However, this strategy is
limited; it is often impossible to fully evaluate expressions in finite time.

• Container types

Currently, indexed variables are not handled intelligently, so they are treated
as monolithic variables. Each analysis treats indexed variables conservatively
(erring toward generating fewer warnings).

• Data variables

The declaration information for data variables is currently not considered, so
using data as incompatible arguments to distributions may not generate the
appropriate warnings.

• Control flow dependent on parameters in nested functions

If a parameter is passed as an argument to a user-defined function within
another user-defined function, and then some control flow depends on that
argument, the appropriate warning will not be thrown.

35.4. Automatic updating and formatting of Stan programs
In addition to compiling Stan programs, stanc3 features several flags which can be
used to format Stan programs and update them to the most recent Stan syntax by
removing any deprecation features which can be automatically replaced.

These flags work for both .stan model files and .stanfunctions function files.
They can be combined with --o to redirect the formatted output to a new file.

Automatic formatting
Invoking stanc --auto-format <model_file> will print a version of your model
which has been re-formatted. The goal is to have this automatic formatting stay as

https://mc-stan.org/docs/reference-manual/deprecations.html
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close as possible to the Stan Program Style Guide. This means spacing, indentation,
and line length are all regularized. Some deprecated features, like the use of # for
line comments, are replaced, but the goal is mainly to preserve the program while
formatting it.

By default, this will try to split lines at or before column 78. This number can be
changed using --max-line-length.

Canonicalizing
In addition to automatic formatting, stanc can also “canonicalize” programs by
updating deprecated syntax, removing unnecessary parenthesis, and adding braces
around bodies of if statements and for and while loops.

This can be done by using stanc --auto-format --canonicalize=... where
... is a comma-separated list of options. Currently these options are:

• deprecations

Removes deprecated syntax such as replacing deprecated functions with their
drop-in replacements.

• parentheses

Removes unnecessary extra parentheses, such as converting y = ((x-1)) to
y = x - 1

• braces

Places braces around all blocks. For example, the following statement

if (cond)
//result

will be formatted as

if (cond) {
//result

}

and similarly for both kinds of loops containing a single statement.

• includes

This will pretty-print code from other files included with #include as part
of the program. This was the default behavior prior to Stan 2.29. When not

style-guide.qmd
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enabled, the pretty-printer output will include the same #include directives
as the input program.

Invoking stanc --print-canonical <model_file> is
synonymous with running stanc --auto-format --
canonicalize=deprecations,braces,parentheses,includes

Known issues
The formatting and canonicalizing features of stanc3 are still under development.
The following are some known issues one should be aware of before using either:

• Oddly placed comments

If your Stan program features comments in unexpected places, such as inside
an expression, they may be moved in the process of formatting. Moved com-
ments are prefixed with the string ˆˆˆ: to indicate they originally appeared
higher in the program.

We hope to improve this functionality in future versions. For now, this can
usually be avoided by manually moving the comment outside of an expres-
sion, either by placing it on its own line or following a separator such as a
comma or keyword.

• Failure to recreate strange #include structure

Printing without include inlining (--canonicalize=includes) can fail when
includes were used in atypical locations, such as in the middle of statements.
We recommend either printing with inlining enabled or reconsidering the use
of includes in this way.

35.5. Optimization
The stanc3 compiler can optimize the code of Stan model during compilation. The
optimized model code behaves the same as unoptimized code, but it may be faster,
more memory efficient, or more numerically stable.

This section introduces the available optimization options and describes their effect.

To print out a representation of the optimized Stan program, use the stanc3
command-line flag --debug-optimized-mir-pretty. To print an analogous rep-
resentation of the Stan program prior to optimization, use the flag --debug-
transformed-mir-pretty.
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Optimization levels
To turn optimizations on, the user specifies the desired optimization level. The level
specifies the set of optimizations to use. The chosen optimizations are used in a
specific order, with some of them applied repeatedly.

Optimization levels are specified by the numbers 0 and 1 and the ‘experimental’
tag:

• O0 No optimizations are applied.
• O1 Optimizations that are simple, do not dramatically change the program,

and are unlikely to noticeably slow down compile times are applied.
• Oexperimental All optimizations are applied. Some of these are not thorougly

tested and may not always improve a programs performance.

O0 is the default setting.

The levels include these optimizations:

• O0 includes no optimizations.
• O1 includes:

– Dead code elimination
– Copy propagation
– Constant propagation
– Partial evaluation
– Function inlining
– Matrix memory layout optimization

• Oexperimental includes optimizations specified by O1 and also:
– Automatic-differentiation level optimization
– One step loop unrolling
– Expression propagation
– Lazy code motion
– Static loop unrolling

In addition, Oexperimental will apply more repetitions of the optimizations, which
may increase compile times.

O1 Optimizations
Dead code elimination
Dead code is code that does not affect the behavior of the program. Code is not dead
if it affects target, the value of any outside-observable variable like transformed pa-
rameters or generated quantities, or side effects such as print statements. Removing
dead code can speed up a program by avoiding unnecessary computations.
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Example Stan program:

model {
int i;
i = 5;
for (j in 1:10);
if (0) {
print("Dead code");

} else {
print("Hi!");

}
}

Compiler representation of program before dead code elimination (simplified from
the output of --debug-transformed-mir-pretty):

log_prob {
int i = 5;
for(j in 1:10) {
;

}
if(0) {
FnPrint__("Dead code");

} else {
FnPrint__("Hi!");

}
}

Compiler representation of program after dead code elimination (simplified from
the output of --debug-optimized-mir-pretty):

log_prob {
int i;
FnPrint__("Hi!");

}

Constant propagation
Constant propagation replaces uses of a variable which is known to have a constant
value C with that constant C. This removes the overhead of looking up the variable,
and also makes many other optimizations possible (such as static loop unrolling
and partial evaluation).

Example Stan program:
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transformed data {
int n = 100;
int a[n];
for (i in 1:n) {
a[i] = i;

}
}

Compiler representation of program before constant propagation (simplified from
the output of --debug-transformed-mir-pretty):

prepare_data {
data int n = 100;
data array[int, n] a;
for(i in 1:n) {
a[i] = i;

}
}

Compiler representation of program after constant propagation (simplified from
the output of --debug-optimized-mir-pretty):

prepare_data {
data int n = 100;
data array[int, 100] a;
for(i in 1:100) {
a[i] = i;

}
}

Copy propagation
Copy propagation is similar to expression propagation, but only propagates vari-
ables rather than arbitrary expressions. This can reduce the complexity of the code
for other optimizations such as expression propagation.

Example Stan program:

model {
int i = 1;
int j = i;
int k = i + j;

}

Compiler representation of program before copy propagation (simplified from the
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output of --debug-transformed-mir-pretty):

log_prob {
int i = 1;
int j = i;
int k = (i + j);

}

Compiler representation of program after copy propagation (simplified from the
output of --debug-optimized-mir-pretty):

log_prob {
int i = 1;
int j = i;
int k = (i + i);

}

Partial evaluation
Partial evaluation searches for expressions that we can replace with a faster, sim-
pler, more memory efficient, or more numerically stable expression with the same
meaning.

Example Stan program:

model {
real a = 1 + 1;
real b = log(1 - a);
real c = a + b * 5;

}

Compiler representation of program before partial evaluation (simplified from the
output of --debug-transformed-mir-pretty):

log_prob {
real a = (1 + 1);
real b = log((1 - a));
real c = (a + (b * 5));

}

Compiler representation of program after partial evaluation (simplified from the
output of --debug-optimized-mir-pretty):

log_prob {
real a = 2;
real b = log1m(a);
real c = fma(b, 5, a);
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}

Function inlining
Function inlining replaces each function call to each user-defined function f with
the body of f. It does this by copying the function body to the call site and doing
appropriately renaming the argument variables. This optimization can speed
up a program by avoiding the overhead of a function call and providing more
opportunities for further optimizations (such as partial evaluation).

Example Stan program:

functions {
int incr(int x) {
int y = 1;
return x + y;

}
}
transformed data {

int a = 2;
int b = incr(a);

}

Compiler representation of program before function inlining (simplified from the
output of --debug-transformed-mir-pretty):

functions {
int incr(int x) {
int y = 1;
return (x + y);

}
}

prepare_data {
data int a = 2;
data int b = incr(a);

}

Compiler representation of program after function inlining (simplified from the
output of --debug-optimized-mir-pretty):

prepare_data {
data int a;
a = 2;
data int b;
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data int inline_sym1__;
data int inline_sym3__;
inline_sym3__ = 0;
for(inline_sym4__ in 1:1) {
int inline_sym2__;
inline_sym2__ = 1;
inline_sym3__ = 1;
inline_sym1__ = (a + inline_sym2__);
break;

}
b = inline_sym1__;

}

In this code, the for loop and break is used to simulate the behavior of a return
statement. The value to be returned is held in inline_sym1__. The flag variable
inline_sym3__ indicates whether a return has occurred and is necessary to handle
return statements nested inside loops within the function body.

Matrix memory layout optimization
Matrices and vector variables which require automatic-differentiation (AD) in Stan
can be represented in two different forms.

The first (and default) representation is the “Array of Structs” (AoS) or “Matrix
of vars” (matvar) layout. A “var” is the term used in the Stan implementation of
autodiff for a single real. It is represented as a structure containing it’s value and its
adjoint. The AoS representation constructs matrices and vectors by simply using
those structures as the elements of the matrix internally. This is flexible and very
general, but many operations want to deal with the values or the adjoints as blocks,
requiring expensive memory access patterns.

The second representation is the “Struct of Arrays” (SoA) or “Var of matrices”
(varmat) layout. Rather than a matrix containing tiny structures of one value
and one adjoint each, this representation uses a single structure which contains
separately a matrix of values and a matrix of adjoints. Some operations, like iterating
over elements or assigning to specific indices, become more expensive, but many
matrix operations like multiplications become much faster in this representation.

More general reading on AoS vs SoA can be found on Wikipedia

This optimization pass attempts to identify which matrix or vector variables in
the Stan program are candidates for using the SoA representation. The conditions
change over time, but broadly speaking:

• Any Stan Math Library functions the matrix is passed to must be able to

https://en.wikipedia.org/wiki/AoS_and_SoA
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support it.
• The matrix should not be accessed/assigned elementwise in a loop.

The debug flag --debug-mem-patterns will list each variable and whether it is
using the AoS representation or the SoA representation.

0experimental Optimizations
Automatic-differentiation level optimization
Stan variables can have two auto-differentiation (AD) levels: AD or non-AD. AD
variables carry gradient information with them, which allows Stan to calculate the
log-density gradient, but they also have more overhead than non-AD variables. It
is therefore inefficient for a variable to be AD unnecessarily. AD-level optimization
sets every variable to be a floating point type unless its gradient is necessary.

Example Stan program:

data {
real y;

}
model {

real x = y + 1;
}

Compiler representation of program before AD-level optimization (simplified
from the output of --debug-transformed-mir-pretty):

input_vars {
real y;

}

log_prob {
real x = (y + 1);

}

Compiler representation of program after AD-level optimization (simplified from
the output of --debug-optimized-mir-pretty):

input_vars {
real y;

}

log_prob {
data real x = (y + 1);

}
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One step loop unrolling
One step loop unrolling is similar to static loop unrolling. However, this opti-
mization only ‘unrolls’ the first loop iteration, and can therefore work even when
the total number of iterations is not predictable. This can speed up a program by
providing more opportunities for further optimizations such as partial evaluation
and lazy code motion.

Example Stan program:

data {
int n;

}
transformed data {

int x = 0;
for (i in 1:n) {
x += i;

}
}

Compiler representation of program before one step static loop unrolling (simpli-
fied from the output of --debug-transformed-mir-pretty):

prepare_data {
data int n = FnReadData__("n")[1];
data int x = 0;
for(i in 1:n) {
x = (x + i);

}
}

Compiler representation of program after one step static loop unrolling (simplified
from the output of --debug-optimized-mir-pretty):

prepare_data {
data int n = FnReadData__("n")[1];
int x = 0;
if((n >= 1)) {
x = (x + 1);
for(i in (1 + 1):n) {
x = (x + i);

}
}

}



452 CHAPTER 35. USING THE STAN COMPILER

Expression propagation
Constant propagation replaces the uses of a variable which is known to have
a constant value E with that constant E. This often results in recalculating the
expression, but provides more opportunities for further optimizations such as
partial evaluation. Expression propagation is always followed by lazy code motion
to avoid unnecessarily recomputing expressions.

Example Stan program:

data {
int m;

}
transformed data {

int n = m+1;
int a[n];
for (i in 1:n-1) {
a[i] = i;

}
}

Compiler representation of program before expression propagation (simplified
from the output of --debug-transformed-mir-pretty):

prepare_data {
data int m = FnReadData__("m")[1];
data int n = (m + 1);
data array[int, n] a;
for(i in 1:(n - 1)) {
a[i] = i;

}
}

Compiler representation of program after expression propagation (simplified from
the output of --debug-optimized-mir-pretty):

prepare_data {
data int m = FnReadData__("m")[1];
data int n = (m + 1);
data array[int, (m + 1)] a;
for(i in 1:((m + 1) - 1)) {
a[i] = i;

}
}
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Lazy code motion
Lazy code motion rearranges the statements and expressions in a program with the
goals of:

• Avoiding computing expressions more than once, and
• Computing expressions as late as possible (to minimize the strain on the

working memory set).

To accomplish these goals, lazy code motion will perform optimizations such as:

• Moving a repeatedly calculated expression to its own variable (also referred
to as common-subexpression elimination)

• Moving an expression outside of a loop if it does not need to be in the loop
(also referred to as loop-invariant code motion)

Lazy code motion can make some programs significantly more efficient by avoiding
redundant or early computations.

As currently implemented in the compiler, it may move items between blocks in
a way that actually increases overall computation. Improving this is an ongoing
project.

Example Stan program:

model {
real x;
real y;
real z;

for (i in 1:10) {
x = sqrt(10);
y = sqrt(i);

}
z = sqrt(10);

}

Compiler representation of program before lazy code motion (simplified from the
output of --debug-transformed-mir-pretty):

log_prob {
real x;
real y;
real z;
for(i in 1:10) {
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x = sqrt(10);
y = sqrt(i);

}
z = sqrt(10);

}

Compiler representation of program after lazy code motion (simplified from the
output of --debug-optimized-mir-pretty):

log_prob {
data real lcm_sym4__;
data real lcm_sym3__;
real x;
real y;
lcm_sym4__ = sqrt(10);
real z;
for(i in 1:10) {
x = lcm_sym4__;
y = sqrt(i);

}
z = lcm_sym4__;

}

Static loop unrolling
Static loop unrolling takes a loop with a predictable number of iterations X and
replaces it by writing out the loop body X times. The loop index in each repeat is
replaced with the appropriate constant. This optimization can speed up a program
by avoiding the overhead of a loop and providing more opportunities for further
optimizations (such as partial evaluation).

Example Stan program:

transformed data {
int x = 0;
for (i in 1:4) {
x += i;

}
}

Compiler representation of program before static loop unrolling (simplified from
the output of --debug-transformed-mir-pretty):

prepare_data {
data int x = 0;
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for(i in 1:4) {
x = (x + i);

}
}

Compiler representation of program after static loop unrolling (simplified from
the output of --debug-optimized-mir-pretty):

prepare_data {
data int x;
x = 0;
x = (x + 1);
x = (x + 2);
x = (x + 3);
x = (x + 4);

}



36. Stan Program Style Guide

This chapter describes the preferred style for laying out Stan models. These are
not rules of the language, but simply recommendations for laying out programs
in a text editor. Although these recommendations may seem arbitrary, they are
similar to those of many teams for many programming languages. Like rules for
typesetting text, the goal is to achieve readability without wasting white space
either vertically or horizontally. This is the style used in the Stan documentation,
and should align with the auto-formatting ability of stanc3.

36.1. Choose a consistent style
The most important point of style is consistency. Consistent coding style makes it
easier to read not only a single program, but multiple programs. So when departing
from this style guide, the number one recommendation is to do so consistently.

36.2. Line length
Line lengths should not exceed 80 characters.1

This is a typical recommendation for many programming language style guides
because it makes it easier to lay out text edit windows side by side and to view the
code on the web without wrapping, easier to view diffs from version control, etc.
About the only thing that is sacrificed is laying out expressions on a single line.

36.3. File extensions
The recommended file extension for Stan model files is .stan. Files which contain
only function definitions (intended for use with #include) should be given the
.stanfunctions extension. A .stanfunctions file only includes the function def-
inition and does not require the functions{} block wrapped around the function.
A simple example of usage where the function is defined and saved in the file
foo.stanfunctions:

real foo(real x, real y) {
return sqrt(x * log(y));

}

1Even 80 characters may be too many for rendering in print; for instance, in this manual, the number
of code characters that fit on a line is about 65.

456
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The function foo can be accessed in the Stan program by including the path to the
foo.stanfunctions file as:

functions {
#include foo.stanfunctions;

}
// ...body...

For Stan data dump files, the recommended extension is .R, or more informatively,
.data.R. For JSON output, the recommended extension is .json.

36.4. Variable naming
The recommended variable naming is to follow C/C++ naming conventions, in
which variables are lowercase, with the underscore character (_) used as a separator.
Thus it is preferred to use sigma_y, rather than the run together sigmay, camel-case
sigmaY, or capitalized camel-case SigmaY. An exception is often made for terms
appearing in mathematical expressions with standard names, like A for a matrix.

Another exception to the lowercasing recommendation, which follows the C/C++
conventions, is for size constants, for which the recommended form is a single
uppercase letter. The reason for this is that it allows the loop variables to match. So
loops over the indices of an M × N matrix a would look as follows.

for (m in 1:M) {
for (n in 1:N) {

a[m, n] = ...
}

}

36.5. Local variable scope
Declaring local variables in the block in which they are used aids in understanding
programs because it cuts down on the amount of text scanning or memory required
to reunite the declaration and definition.

The following Stan program corresponds to a direct translation of a BUGS model,
which uses a different element of mu in each iteration.

model {
array[N] real mu;
for (n in 1:N) {
mu[n] = alpha * x[n] + beta;
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y[n] ~ normal(mu[n],sigma);
}

}

Because variables can be reused in Stan and because they should be declared locally
for clarity, this model should be recoded as follows.

model {
for (n in 1:N) {
real mu;
mu = alpha * x[n] + beta;
y[n] ~ normal(mu,sigma);

}
}

The local variable can be eliminated altogether, as follows.

model {
for (n in 1:N) {
y[n] ~ normal(alpha * x[n] + beta, sigma);

}
}

There is unlikely to be any measurable efficiency difference between the last two
implementations, but both should be a bit more efficient than the BUGS translation.

Scope of compound structures with componentwise assignment
In the case of local variables for compound structures, such as arrays, vectors, or
matrices, if they are built up component by component rather than in large chunks,
it can be more efficient to declare a local variable for the structure outside of the
block in which it is used. This allows it to be allocated once and then reused.

model {
vector[K] mu;
for (n in 1:N) {
for (k in 1:K) {

mu[k] = // ...
}
y[n] ~ multi_normal(mu,Sigma);

}

In this case, the vector mu will be allocated outside of both loops, and used a total of
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N times.

36.6. Parentheses and brackets
Braces for single-statement blocks
Single-statement blocks can be rendered in several ways. The preferred style is fully
bracketed with the statement appearing on its own line, as follows.

for (n in 1:N) {
y[n] ~ normal(mu,1);

}

The use of loops and conditionals without brackets can be dangerous. For instance,
consider this program.

for (n in 1:N)
z[n] ~ normal(nu,1);
y[n] ~ normal(mu,1);

Because Stan ignores whitespace and the parser completes a statement as eagerly
as possible (just as in C++), the previous program is equivalent to the following
program.

for (n in 1:N) {
z[n] ~ normal(nu,1);

}
y[n] ~ normal(mu,1);

Therefore, one should prefer to use braces. The only exception is when nesting
if-else clauses, where the else branch contains exactly one conditional. Then, it is
preferred to place the following if on the same line, as in the following.

if (x) {
// ...

} else if (y) {
// ...

} else {
// ...

}

Parentheses in nested operator expressions
The preferred style for operators minimizes parentheses. This reduces clutter
in code that can actually make it harder to read expressions. For example, the
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expression a + b * c is preferred to the equivalent a + (b * c) or (a + (b *
c)). The operator precedences and associativities follow those of pretty much every
programming language including Fortran, C++, R, and Python; full details are
provided in the reference manual.

Similarly, comparison operators can usually be written with minimal bracketing,
with the form y[n] > 0 || x[n] != 0 preferred to the bracketed form (y[n] >
0) || (x[n] != 0).

No open brackets on own line
Vertical space is valuable as it controls how much of a program you can see. The
preferred Stan style is with the opening brace appearing at the end of a line.

for (n in 1:N) {
y[n] ~ normal(mu,1);

}

This also goes for parameters blocks, transformed data blocks, which should look
as follows.

transformed parameters {
real sigma;
// ...

}

The exception to this rule is local blocks which only exist for scoping reasons. The
opening brace of these blocks is not associated with any control flow or block
structure, so it should appear on its own line.

36.7. Conditionals
While Stan supports the full C++-style conditional syntax, allowing real or integer
values to act as conditions, real values should be avoided. For a real-valued x, one
should use

if (x != 0) { ...

in place of

if (x) { ...

Beyond stylistic choices, one should be careful using real values in a conditional
expression, as direct comparison can have unexpected results due to numerical
accuracy.
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36.8. Functions
Functions are laid out the same way as in languages such as Java and C++. For
example,

real foo(real x, real y) {
return sqrt(x * log(y));

}

The return type is flush left, the parentheses for the arguments are adjacent to the
arguments and function name, and there is a space after the comma for arguments
after the first. The open curly brace for the body is on the same line as the function
name, following the layout of loops and conditionals. The body itself is indented;
here we use two spaces. The close curly brace appears on its own line.

If function names or argument lists are long, they can be written as

matrix
function_to_do_some_hairy_algebra(matrix thingamabob,

vector doohickey2) {
// ...body...

}

The function starts a new line, under the type. The arguments are aligned under
each other.

Function documentation should follow the Javadoc and Doxygen styles. Here’s an
example repeated from the documenting functions section.

/**
* Return a data matrix of specified size with rows
* corresponding to items and the first column filled
* with the value 1 to represent the intercept and the
* remaining columns randomly filled with unit-normal draws.
*
* @param N Number of rows correspond to data items
* @param K Number of predictors, counting the intercept, per
* item.
* @return Simulated predictor matrix.
*/

matrix predictors_rng(int N, int K) {
// ...

}
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The open comment is /**, asterisks are aligned below the first asterisk of the open
comment, and the end comment */ is also aligned on the asterisk. The tags @param
and @return are used to label function arguments (i.e., parameters) and return
values.

36.9. White space
Stan allows spaces between elements of a program. The white space characters
allowed in Stan programs include the space (ASCII 0x20), line feed (ASCII 0x0A),
carriage return (0x0D), and tab (0x09). Stan treats all whitespace characters in-
terchangeably, with any sequence of whitespace characters being syntactically
equivalent to a single space character. Nevertheless, effective use of whitespace is
the key to good program layout.

Line breaks between statements and declarations
Each statement of a program should appear on its own line. Declaring multiple
variables of the same type can be accomplished in a single statement with the syntax

real mu, sigma;

No tabs
Stan programs should not contain tab characters. Using tabs to layout a program
is highly unportable because the number of spaces represented by a single tab
character varies depending on which program is doing the rendering and how it is
configured.

Two-character indents
Stan has standardized on two space characters of indentation, which is the standard
convention for C/C++ code.

Space between if, { and condition
Use a space after ifs. For instance, use if (x < y) {..., not if(x < y){ ....

No space for function calls
There should not be space between a function name and the arguments it applies to.
For instance, use normal(0, 1), not normal (0,1).

Spaces around operators
There should be spaces around binary operators. For instance, use y[1] = x, not
y[1]=x, use (x + y) * z not (x+y)*z.

Unary operators are written without a space, such as in -x, !y.
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No spaces in type constraints
Another exception to the above rule is when the assignment operator (=) is used
inside a type constraint, such as

real<lower=0> x;

Spaces should still be used in arithmetic and following commas, as in

real<lower=0, upper=a * x + b> x;

Breaking expressions across lines
Sometimes expressions are too long to fit on a single line. In that case, the recom-
mended form is to break before an operator,2 aligning the operator to a term above
to indicate scoping. For example, use the following form

vector[J] p_distance = Phi((distance_tolerance - overshot)
./ ((x + overshot) * sigma_distance))

- Phi((-overshot)
./ ((x + overshot) * sigma_distance));

Here, the elementwise division operator (./) is aligned to clearly signal the division
is occurring inside the parethenesis, while the subtraction indicates it is between
the function applications (Phi).

For functions with multiple arguments, break after a comma and line the next
argument up underneath as follows.

y[n] ~ normal(alpha + beta * x + gamma * y,
pow(tau,-0.5));

Spaces after commas
Commas should always be followed by spaces, including in function arguments,
sequence literals, between variable declarations, etc.

For example,

normal(alpha * x[n] + beta, sigma);

is preferred over

2This is the usual convention in both typesetting and other programming languages. Neither R nor
BUGS allows breaks before an operator because they allow newlines to signal the end of an expression
or statement.
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normal(alpha * x[n] + beta,sigma);

Unix newlines
Wherever possible, Stan programs should use a single line feed character to separate
lines. All of the Stan developers (so far, at least) work on Unix-like operating systems
and using a standard newline makes the programs easier for us to read and share.

Platform specificity of newlines
Newlines are signaled in Unix-like operating systems such as Linux and Mac OS
X with a single line-feed (LF) character (ASCII code point 0x0A). Newlines are
signaled in Windows using two characters, a carriage return (CR) character (ASCII
code point 0x0D) followed by a line-feed (LF) character.



37. Transitioning from BUGS

From the outside, Stan and BUGS1 are similar—they use statistically-themed mod-
eling languages (which are similar but with some differences; see below), they can
be called from R, running some specified number of chains to some specified length,
producing posterior simulations that can be assessed using standard convergence
diagnostics. This is not a coincidence: in designing Stan: we wanted to keep many
of the useful features of Bugs.

37.1. Some differences in how BUGS and Stan work
BUGS is interpreted, Stan is compiled
Stan is compiled in two steps, first a model is translated to templated C++ and then
to a platform-specific executable. Stan, unlike BUGS, allows the user to directly
program in C++, but we do not describe how to do this in this Stan manual (see the
getting started with C++ section of https://mc-stan.org for more information on
using Stan directly from C++).

BUGS performs MCMC updating one scalar parameter at a time, Stan uses HMC
which moves in the entire space of all the parameters at each step
BUGS performs MCMC updating one scalar parameter at a time, (with some ex-
ceptions such as JAGS’s implementation of regression and generalized linear mod-
els and some conjugate multivariate parameters), using conditional distributions
(Gibbs sampling) where possible and otherwise using adaptive rejection sampling,
slice sampling, and Metropolis jumping. BUGS figures out the dependence struc-
ture of the joint distribution as specified in its modeling language and uses this
information to compute only what it needs at each step. Stan moves in the entire
space of all the parameters using Hamiltonian Monte Carlo (more precisely, the
no-U-turn sampler), thus avoiding some difficulties that occur with one-dimension-
at-a-time sampling in high dimensions but at the cost of requiring the computation
of the entire log density at each step.

Differences in tuning during warmup
BUGS tunes its adaptive jumping (if necessary) during its warmup phase (tradition-
ally referred to as “burn-in”). Stan uses its warmup phase to tune the no-U-turn

1Except where otherwise noted, we use “BUGS” to refer to WinBUGS, OpenBUGS, and JAGS,
indiscriminately.
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sampler (NUTS).

The Stan language is directly executable, the BUGS modeling language is not
The BUGS modeling language is not directly executable. Rather, BUGS parses its
model to determine the posterior density and then decides on a sampling scheme.
In contrast, the statements in a Stan model are directly executable: they translate
exactly into C++ code that is used to compute the log posterior density (which in
turn is used to compute the gradient).

Differences in statement order
In BUGS, statements are executed according to the directed graphical model so that
variables are always defined when needed. A side effect of the direct execution of
Stan’s modeling language is that statements execute in the order in which they are
written. For instance, the following Stan program, which sets mu before using it to
sample y:

mu = a + b * x;
y ~ normal(mu, sigma);

translates to the following C++ code:

mu = a + b * x;
target += normal_lpdf(y | mu, sigma);

Contrast this with the following Stan program:

y ~ normal(mu, sigma);
mu = a + b * x;

This program is well formed, but is almost certainly a coding error, because it
attempts to use mu before it is set. The direct translation to C++ code highlights the
potential error of using mu in the first statement:

target += normal_lpdf(y | mu, sigma);
mu = a + b * x;

To trap these kinds of errors, variables are initialized to the special not-a-number
(NaN) value. If NaN is passed to a log probability function, it will raise a domain
exception, which will in turn be reported by the sampler. The sampler will reject
the sample out of hand as if it had zero probability.
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Stan computes the gradient of the log density, BUGS computes the log density
but not its gradient
Stan uses its own C++ algorithmic differentiation packages to compute the gradient
of the log density (up to a proportion). Gradients are required during the Hamilto-
nian dynamics simulations within the leapfrog algorithm of the Hamiltonian Monte
Carlo and NUTS samplers.

Both BUGS and Stan are semi-automatic
Both BUGS and Stan are semi-automatic in that they run by themselves with no
outside tuning required. Nevertheless, the user needs to pick the number of chains
and number of iterations per chain. We usually pick 4 chains and start with 10
iterations per chain (to make sure there are no major bugs and to approximately
check the timing), then go to 100, 1000, or more iterations as necessary. Compared
to Gibbs or Metropolis, Hamiltonian Monte Carlo can take longer per iteration (as
it typically takes many “leapfrog steps” within each iteration), but the iterations
typically have lower autocorrelation. So Stan might work fine with 1000 iterations
in an example where BUGS would require 100,000 for good mixing. We recommend
monitoring potential scale reduction statistics (R̂) and the effective sample size to
judge when to stop (stopping when R̂ values do not counter-indicate convergence
and when enough effective samples have been collected).

Licensing
WinBUGS is closed source. OpenBUGS and JAGS are both licensed under the Gnu
Public License (GPL), otherwise known as copyleft due to the restrictions it places
on derivative works. Stan is licensed under the much more liberal new BSD license.

Interfaces
Like WinBUGS, OpenBUGS and JAGS, Stan can be run directly from the com-
mand line or through common analytics platforms like R, Python, Julia, MATLAB,
Mathematica, and the command line.

Platforms
Like OpenBUGS and JAGS, Stan can be run on Linux, Mac, and Windows platforms.

37.2. Some differences in the modeling languages
The BUGS modeling language follows an R-like syntax in which line breaks are
meaningful. Stan follows the rules of C, in which line breaks are equivalent to
spaces, and each statement ends in a semicolon. For example:
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y ~ normal(mu, sigma);

and

for (i in 1:n) y[i] ~ normal(mu, sigma);

Or, equivalently (recall that a line break is just another form of whitespace),

for (i in 1:n)
y[i] ~ normal(mu, sigma);

and also equivalently,

for (i in 1:n) {
y[i] ~ normal(mu, sigma);

}

There’s a semicolon after the model statement but not after the brackets indicating
the body of the for loop.

In Stan, variables can have names constructed using letters, numbers, and the
underscore (_) symbol, but nothing else (and a variable name cannot begin with a
number). BUGS variables can also include the dot, or period (.) symbol.

In Stan, the second argument to the “normal” function is the standard deviation
(i.e., the scale), not the variance (as in Bayesian Data Analysis) and not the inverse-
variance (i.e., precision) (as in BUGS). Thus a normal with mean 1 and standard
deviation 2 is normal(1,2), not normal(1,4) or normal(1,0.25).

Similarly, the second argument to the “multivariate normal” function is the covari-
ance matrix and not the inverse covariance matrix (i.e., the precision matrix) (as in
BUGS). The same is true for the “multivariate student” distribution.

The distributions have slightly different names:

BUGS Stan

dnorm normal
dbinom binomial
dpois poisson

. . . . . .

Stan, unlike BUGS, allows intermediate quantities, in the form of local variables,
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to be reassigned. For example, the following is legal and meaningful (if possibly
inefficient) Stan code.

{
total = 0;
for (i in 1:n) {
theta[i] ~ normal(total, sigma);
total = total + theta[i];

}
}

In BUGS, the above model would not be legal because the variable total is defined
more than once. But in Stan, the loop is executed in order, so total is overwritten
in each step.

Stan uses explicit declarations. Variables are declared with base type integer or real,
and vectors, matrices, and arrays have specified dimensions. When variables are
bounded, we give that information also. For data and transformed parameters, the
bounds are used for error checking. For parameters, the constraints are critical to
sampling as they determine the geometry over which the Hamiltonian is simulated.

In Stan, variables can be declared as data, transformed data, parameters, trans-
formed parameters, or generated quantities. They can also be declared as local
variables within blocks. For more information, see the part of this manual devoted
to the Stan programming language and examine at the example models.

Stan allows all sorts of tricks with vector and matrix operations which can make
Stan models more compact. For example, arguments to probability functions may
be vectorized,2 allowing

for (i in 1:n) {
y[i] ~ normal(mu[i], sigma[i]);

}

to be expressed more compactly as

y ~ normal(mu, sigma);

The vectorized form is also more efficient because Stan can unfold the computation
of the chain rule during algorithmic differentiation.

Stan also allows for arrays of vectors and matrices. For example, in a hierarchical

2Most distributions have been vectorized, but currently the truncated versions may not exist.
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model might have a vector of K parameters for each of J groups; this can be declared
using

array[J] vector[K] theta;

Then theta[j] is an expression denoting a K-vector and may be used in the code
just like any other vector variable.

An alternative encoding would be with a two-dimensional array, as in

array[J, K] real theta;

The vector version can have some advantages, both in convenience and in compu-
tational speed for some operations.

A third encoding would use a matrix:

matrix[J, K] theta;

but in this case, theta[j] is a row vector, not a vector, and accessing it as a vector
is less efficient than with an array of vectors. The transposition operator, as in
theta[j]', may be used to convert the row vector theta[j] to a (column) vector.
Column vector and row vector types are not interchangeable everywhere in Stan;
see the function signature declarations in the programming language section of this
manual.

Stan supports general conditional statements using a standard if-else syntax. For
example, a zero-inflated (or -deflated) Poisson mixture model is defined using the
if-else syntax as described in the zero inflation section.

Stan supports general while loops using a standard syntax. While loops give Stan
full Turing equivalent computational power. They are useful for defining iterative
functions with complex termination conditions. As an illustration of their syntax,
the for-loop

model {
// ...
for (n in 1:N) {

// ... do something with n ....
}

}

may be recoded using the following while loop.
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model {
int n;
// ...
n = 1;
while (n <= N) {

// ... do something with n ...
n = n + 1;

}
}

37.3. Some differences in the statistical models that are allowed
Stan does not yet support declaration of discrete parameters. Discrete data variables
are supported. Inference is supported for discrete parameters as described in the
mixture and latent discrete parameters chapters of the manual.

Stan has some distributions on covariance matrices that do not exist in BUGS,
including a uniform distribution over correlation matrices which may be rescaled,
and the priors based on C-vines defined in Lewandowski, Kurowicka, and Joe
(2009). In particular, the Lewandowski et al. prior allows the correlation matrix to
be shrunk toward the unit matrix while the scales are given independent priors.

In BUGS you need to define all variables. In Stan, if you declare but don’t define
a parameter it implicitly has a flat prior (on the scale in which the parameter is
defined). For example, if you have a parameter p declared as

real<lower=0, upper=1> p;

and then have no distribution statement for p in the model block, then you are
implicitly assigning a uniform [0, 1] prior on p.

On the other hand, if you have a parameter theta declared with

real theta;

and have no distribution statement for theta in the model block, then you are
implicitly assigning an improper uniform prior on (−∞, ∞) to theta.

BUGS models are always proper (being constructed as a product of proper marginal
and conditional densities). Stan models can be improper. Here is the simplest
improper Stan model:
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parameters {
real theta;

}
model { }

Although parameters in Stan models may have improper priors, we do not want
improper posterior distributions, as we are trying to use these distributions for
Bayesian inference. There is no general way to check if a posterior distribution is
improper. But if all the priors are proper, the posterior will be proper also.

Each statement in a Stan model is directly translated into the C++ code for comput-
ing the log posterior. Thus, for example, the following pair of statements is legal in
a Stan model:

y ~ normal(0,1);
y ~ normal(2,3);

The second line here does not simply overwrite the first; rather, both statements
contribute to the density function that is evaluated. The above two lines have the
effect of including the product, normal(y | 0, 1) ∗ normal(y | 2, 3), into the density
function.

For a perhaps more confusing example, consider the following two lines in a Stan
model:

x ~ normal(0.8 * y, sigma);
y ~ normal(0.8 * x, sigma);

At first, this might look like a joint normal distribution with a correlation of 0.8. But
it is not. The above are not interpreted as conditional entities; rather, they are factors
in the joint density. Multiplying them gives, normal(x | 0.8y, σ)× normal(y | 0.8x, σ),
which is what it is (you can work out the algebra) but it is not the joint distribution
where the conditionals have regressions with slope 0.8.

With censoring and truncation, Stan uses the censored-data or truncated-data
likelihood—this is not always done in BUGS. All of the approaches to censor-
ing and truncation discussed in Andrew Gelman et al. (2013) and Andrew Gelman
and Hill (2007) may be implemented in Stan directly as written.

Stan, like BUGS, can benefit from human intervention in the form of reparameteri-
zation.
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37.4. Some differences when running from R
Stan can be set up from within R using two lines of code. Follow the instructions for
running Stan from R on the Stan web site. You don’t need to separately download
Stan and RStan. Installing RStan will automatically set up Stan.

In practice we typically run the same Stan model repeatedly. If you pass RStan
the result of a previously fitted model the model will not need be recompiled. An
example is given on the running Stan from R pages available from the Stan web
site.

When you run Stan, it saves various conditions including starting values, some
control variables for the tuning and running of the no-U-turn sampler, and the
initial random seed. You can specify these values in the Stan call and thus achieve
exact replication if desired. (This can be useful for debugging.)

When running BUGS from R, you need to send exactly the data that the model
needs. When running RStan, you can include extra data, which can be helpful when
playing around with models. For example, if you remove a variable x from the
model, you can keep it in the data sent from R, thus allowing you to quickly alter
the Stan model without having to also change the calling information in your R
script.

As in R2WinBUGS and R2jags, after running the Stan model, you can quickly
summarize using plot() and print(). You can access the simulations themselves
using various extractor functions, as described in the RStan documentation.

Various information about the sampler, such as number of leapfrog steps, log
probability, and step size, is available through extractor functions. These can be
useful for understanding what is going wrong when the algorithm is slow to
converge.

37.5. The Stan community
Stan, like WinBUGS, OpenBUGS, and JAGS, has an active community, which you
can access via the user’s mailing list and the developer’s mailing list; see the Stan
web site for information on subscribing and posting and to look at archives.

https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
https://mc-stan.org
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