
Stan Reference Manual
Version 2.36

Stan Development Team

Table of Contents

Overview 1

I Language 2

1. Character Encoding 4

1.1 Content characters 4

1.2 Comment characters 4

1.3 String literals 4

2. Includes 5

2.1 Recursive includes 6

2.2 Include paths 7

3. Comments 8

3.1 Line-based comments 8

3.2 Bracketed comments 8

4. Whitespace 9

4.1 Whitespace characters 9

4.2 Whitespace neutrality 9

4.3 Whitespace location 9

5. Data Types and Declarations 10

5.1 Overview of data types 10

5.2 Primitive numerical data types 13

5.3 Complex numerical data type 14

5.4 Scalar data types and variable declarations 15

5.5 Vector and matrix data types 20

5.6 Array data types 29

5.7 Tuple data type 34

5.8 Variable types vs. constraints and sizes 36

ii

TABLE OF CONTENTS iii

5.9 Variable declaration 38

5.10 Compound variable declaration and definition 42

5.11 Declaring multiple variables at once 43

6. Expressions 45

6.1 Numeric literals 45

6.2 Variables 46

6.3 Container expressions 49

6.4 Parentheses for grouping 52

6.5 Arithmetic and matrix operations on expressions 53

6.6 Conditional operator 56

6.7 Indexing 58

6.8 Multiple indexing and range indexing 59

6.9 Function application 60

6.10 Type inference 63

6.11 Higher-order functions 67

6.12 Chain rule and derivatives 69

7. Statements 72

7.1 Statement block contexts 72

7.2 Assignment statements 72

7.3 Increment log density 76

7.4 Increment log density with a change of variables
adjustment 78

7.5 Sampling statements 79

7.6 Distribution statements 79

7.7 For loops 89

7.8 Foreach loops 90

7.9 Conditional statements 91

7.10 While statements 92

7.11 Statement blocks and local variable declarations 93

7.12 Break and continue statements 95

7.13 Print statements 97

7.14 Reject statements 100

iv TABLE OF CONTENTS

7.15 Fatal error statements 102

8. Program Blocks 103

8.1 Overview of Stan’s program blocks 103

8.2 Statistical variable taxonomy 107

8.3 Program block: data 109

8.4 Program block: transformed data 110

8.5 Program block: parameters 110

8.6 Program block: transformed parameters 112

8.7 Program block: model 113

8.8 Program block: generated quantities 113

9. User-Defined Functions 115

9.1 Function-definition block 115

9.2 Function names 115

9.3 Calling functions 116

9.4 Argument types and qualifiers 118

9.5 Function bodies 119

9.6 Parameters are constant 121

9.7 Return value 122

9.8 Void Functions as Statements 123

9.9 Declarations 124

10. Constraint Transforms 125

10.1 Limitations due to finite accuracy presentation 125

10.2 Changes of variables 126

10.3 Lower bounded scalar 127

10.4 Upper bounded scalar 128

10.5 Lower and upper bounded scalar 129

10.6 Affinely transformed scalar 130

10.7 Ordered vector 131

10.8 Zero sum vector 132

10.9 Unit simplex 134

10.10 Stochastic Matrix 137

10.11 Unit vector 139

TABLE OF CONTENTS v

10.12 Correlation matrices 140

10.13 Covariance matrices 143

10.14 Cholesky factors of covariance matrices 145

10.15 Cholesky factors of correlation matrices 146

11. Language Syntax 150

11.1 BNF grammars 150

11.2 Tokenizing rules 157

11.3 Extra-grammatical constraints 157

12. Program Execution 160

12.1 Reading and transforming data 160

12.2 Initialization 161

12.3 Sampling 162

12.4 Optimization 164

12.5 Variational inference 164

12.6 Model diagnostics 164

12.7 Output 165

13. Deprecated Features 166

13.1 lkj_cov distribution 166

13.2 Use of _lp functions in transformed parameters 167

13.3 New Keywords 167

13.4 Deprecated Functions 167

14. Removed Features 168

14.1 lp__ variable 168

14.2 Assignment with <- 168

14.3 increment_log_prob statement 168

14.4 get_lp() function 169

14.5 _log density and mass functions 169

14.6 cdf_log and ccdf_log cumulative distribution functions 169

14.7 User-defined function with _log suffix 169

14.8 if_else function 170

14.9 Character # as comment prefix 170

vi TABLE OF CONTENTS

14.10 Postfix brackets array syntax 170

14.11 Nested multiple indexing in assignments 171

14.12 Real values in conditionals 171

II Algorithms 173

15. MCMC Sampling 175

15.1 Hamiltonian Monte Carlo 175

15.2 HMC algorithm parameters 178

15.3 Sampling without parameters 184

15.4 General configuration options 185

15.5 Divergent transitions 187

16. Posterior Analysis 189

16.1 Markov chains 189

16.2 Convergence 190

16.3 Notation for samples, chains, and draws 190

16.4 Effective sample size 195

17. Optimization 200

17.1 General configuration 200

17.2 BFGS and L-BFGS configuration 200

17.3 Writing models for optimization 202

18. Pathfinder 203

18.1 Diagnosing Pathfinder 203

18.2 Using Pathfinder for initializing MCMC 204

19. Variational Inference 205

19.1 Stochastic gradient ascent 205

20. Laplace Approximation 207

21. Diagnostic Mode 208

21.1 Diagnostic mode output 208

21.2 Configuration options 209

TABLE OF CONTENTS vii

21.3 Speed warning and data trimming 209

III Usage 210

22. Reproducibility 212

22.1 Notable changes across versions 213

23. Licenses and Dependencies 214

23.1 Stan license 214

23.2 Boost license 214

23.3 Eigen license 214

23.4 SUNDIALS license 215

23.5 Threaded Building Blocks (TBB) License 215

23.6 Google test license 215

References 216

Overview

This is the official reference manual for Stan’s programming language for coding
probability models, inference algorithms for fitting models and making predictions,
and posterior analysis tools for evaluating the results. This manual applies to all Stan
interfaces.

The first part of the reference manual provides a full specification of the Stan
programming language. The language is responsible for defining a log density
function conditioned on data. Typically, this is a Bayesian posterior, but it may also
be a penalized likelihood function. The second part of the manual specifies the
inference algorithms and posterior inference tools. The third part provides auxiliary
information about the use of Stan.

Copyright and trademark
• Copyright 2011–2024, Stan Development Team and their assignees.

• The Stan name and logo are registered trademarks of NumFOCUS.

Licensing
• Text content: CC-BY ND 4.0 license

• Computer code: BSD 3-clause license

• Logo: Stan logo usage guidelines

1

https://mc-stan.org/
https://creativecommons.org/licenses/by-nd/4.0/legalcode
https://opensource.org/licenses/BSD-3-Clause
https://mc-stan.org/about/logo/

Part I

Language

2

1. Character Encoding

1.1. Content characters
The content of a Stan program must be coded in ASCII. All identifiers must consist
of only ASCII alpha-numeric characters and the underscore character. All arithmetic
operators and punctuation must be coded in ASCII.

Compatibility with Latin-1 and UTF-8
The UTF-8 encoding of Unicode and the Latin-1 (ISO-8859-1) encoding share the
first 128 code points with ASCII and thus cannot be distinguished from ASCII.
That means you can set editors, etc., to use UTF-8 or Latin-1 (or the other Latin-n
variants) without worrying that the content of a Stan program will be destroyed.

1.2. Comment characters
Any bytes on a line after a line-comment sequence (// or #) are ignored up until the
ASCII newline character (\n). They may thus be written in any character encoding
which is convenient.

Any content after a block comment open sequence in ASCII (/*) up to the closing
block comment (*/) is ignored, and thus may also be written in whatever character
set is convenient.

1.3. String literals
The raw byte sequence within a string literal is escaped according to the C++ stan-
dard. In particular, this means that UTF-8 encoded strings are supported, however
they are not tested for invalid byte sequences. A print, reject, or fatal_error
statement should properly display Unicode characters if your terminal supports
the encoding used in the input. In other words, Stan simply preserves any string of
bytes between two double quotes (") when passing to C++. On compliant terminals,
this allows the use of glyphs and other characters from encodings such as UTF-8
that fall outside the ASCII-compatible range.

ASCII is the recommended encoding for maximum portability, because it encodes
the ASCII characters (Unicode code points 0–127) using the same sequence of bytes
as the UTF-8 encoding of Unicode and common ISO-8859 extensions of Latin.

4

2. Includes

Stan allows one file to be included within another file using a syntax similar to
that from C++. For example, suppose the file my-std-normal.stan defines the
standard normal log probability density function (up to an additive constant).

functions {
real my_std_normal_lpdf(vector y) {
return -0.5 * y' * y;

}
}

Suppose we also have a file containing a Stan program with an include statement.

#include my-std-normal.stan
parameters {

real y;
}
model {

y ~ my_std_normal();
}

This Stan program behaves as if the contents of the file my-std-normal.stan re-
place the line with the #include statement, behaving as if a single Stan program
were provided.

functions {
real my_std_normal_lpdf(vector y) {
return -0.5 * y' * y;

}
}
parameters {

real y;
}
model {

y ~ my_std_normal();
}

There are no restrictions on where include statements may be placed within a file or

5

6 CHAPTER 2. INCLUDES

what the contents are of the replaced file.

Space before includes
It is possible to use includes on a line non-initially. For example, the previous
example could’ve included space before the # in the include line:

#include my-std-normal.stan
parameters {
// ...

If there is initial space before an include, it will be discarded.

Comments after includes
It is also possible to include line-based comments after the include. For example,
the previous example can be coded as:

#include my-std-normal.stan // definition of standard normal
parameters {
// ...

Line comments are discarded when the entire line is replaced with the contents of
the included file.

2.1. Recursive includes
Recursive includes will lead to a compiler error. For example, suppose a.stan
contains

#include b.stan

and b.stan contains

#include a.stan

This will result in an error explaining the circular dependency:

Syntax error in './b.stan', line 1, column 0, included from
'./a.stan', line 1, column 0, included from
'./b.stan', line 1, column 0, included from
'a.stan', line 1, column 0, include error:

1: #include a.stan

^

File a.stan recursively included itself.

2.2. INCLUDE PATHS 7

2.2. Include paths
The Stan interfaces may provide a mechanism for specifying a sequence of system
paths in which to search for include files. The file included is the first one that is
found in the sequence.

Slashes in include paths
If there is not a final / or \ in the path, a / will be appended between the path and
the included file name.

3. Comments

Stan supports C++-style line-based and bracketed comments. Comments may be
used anywhere whitespace is allowed in a Stan program.

3.1. Line-based comments
Any characters on a line following two forward slashes (//) is ignored along with
the slashes. These may be used, for example, to document variables,

data {
int<lower=0> N; // number of observations
array[N] real y; // observations

}

3.2. Bracketed comments
For bracketed comments, any text between a forward-slash and asterisk pair (/*)
and an asterisk and forward-slash pair (*/) is ignored.

8

4. Whitespace

4.1. Whitespace characters
The whitespace characters (and their ASCII code points) are the space (0x20), tab
(0x09), carriage return (0x0D), and line feed (0x0A).

4.2. Whitespace neutrality
Stan treats all whitespace characters identically. Specifically, there is no significance
to indentation, to tabs, to carriage returns or line feeds, or to any vertical alignment
of text. Any whitespace character is exchangeable with any other.

Other than for readability, the number of whitespaces is also irrelevant. One or
more whitespace characters of any type are treated identically by the parser.

4.3. Whitespace location
Zero or more whitespace characters may be placed between symbols in a Stan
program. For example, zero or more whitespace characters of any variety may be in-
cluded before and after a binary operation such as a * b, before a statement-ending
semicolon, around parentheses or brackets, before or after commas separating func-
tion arguments, etc.

Identifiers and literals may not be separated by whitespace. Thus it is not legal
to write the number 10000 as 10 000 or to write the identifier normal_lpdf as
normal _ lpdf.

9

5. Data Types and Declarations

This chapter covers the data types for expressions in Stan. Every variable used
in a Stan program must have a declared data type. Only values of that type will
be assignable to the variable (except for temporary states of transformed data
and transformed parameter values). This follows the convention of programming
languages like C++, not the conventions of scripting languages like Python or
statistical languages such as R or BUGS.

The motivation for strong, static typing is threefold.

1. Strong typing forces the programmer’s intent to be declared with the vari-
able, making programs easier to comprehend and hence easier to debug and
maintain.

2. Strong typing allows programming errors relative to the declared intent to
be caught sooner (at compile time) rather than later (at run time). The Stan
compiler (called through an interface such as CmdStan, RStan, or PyStan) will
flag any type errors and indicate the offending expressions quickly when the
program is compiled.

3. Constrained types will catch runtime data, initialization, and intermediate
value errors as soon as they occur rather than allowing them to propagate and
potentially pollute final results.

Strong typing disallows assigning the same variable to objects of different types at
different points in the program or in different invocations of the program.

5.1. Overview of data types
Arguments for built-in and user-defined functions and local variables are required
to be basic data types, meaning an unconstrained scalar, vector, or matrix type, or
an array of such.

Passing arguments to functions in Stan works just like assignment to basic types.
Stan functions are only specified for the basic data types of their arguments, includ-
ing array dimensionality, but not for sizes or constraints. Of course, functions often
check constraints as part of their behavior.

10

5.1. OVERVIEW OF DATA TYPES 11

Primitive types
Stan provides two primitive data types, real for continuous values and int for
integer values. These are both considered scalar types.

Complex types
Stan provides a complex number data type complex, where a complex number
contains both a real and an imaginary component, both of which are of type real.
Complex types are considered scalar types.

Vector and matrix types
Stan provides three real-valued matrix data types, vector for column vectors,
row_vector for row vectors, and matrix for matrices.

Stan also provides three complex-valued matrix data types, complex_vector for
column vectors, complex_row_vector for row vectors, and complex_matrix for
matrices.

Array types
Any type (including the constrained types discussed in the next section) can be
made into an array type by declaring array arguments. For example,

array[10] real x;
array[6, 7] matrix[3, 3] m;
array[12, 8, 15] complex z;

declares x to be a one-dimensional array of size 10 containing real values, declares m
to be a two-dimensional array of size 6× 7 containing values that are 3× 3 matrices,
and declares z to be a 12× 8× 15 array of complex numbers.

Prior to 2.26 Stan models used a different syntax which has since been removed.
See the Removed Features chapter for more details.

Tuple types
For any sequence of types, Stan provides a tuple data type. For example,

tuple(real, array[5] int) xi;

declares xi to be a tuple holding two values, the first of which is of type type real
and the second of which a 5-dimensional array of type int.

Constrained data types
Declarations of variables other than local variables may be provided with con-
straints. These constraints are not part of the underlying data type for a variable,

removals.qmd

12 CHAPTER 5. DATA TYPES AND DECLARATIONS

but determine error checking in the transformed data, transformed parameter, and
generated quantities block, and the transform from unconstrained to constrained
space in the parameters block.

All of the basic data types other than complex may be given lower and upper
bounds using syntax such as

int<lower=1> N;
real<upper=0> log_p;
vector<lower=-1, upper=1>[3] rho;

There are also special data types for structured vectors and matrices. There are
five constrained vector data types, simplex for unit simplexes, unit_vector for
unit-length vectors, sum_to_zero_vector for vectors that sum to zero, ordered for
ordered vectors of scalars, and positive_ordered for vectors of positive ordered
scalars. There are specialized matrix data types corr_matrix and cov_matrix
for correlation matrices (symmetric, positive definite, unit diagonal) and covari-
ance matrices (symmetric, positive definite). The type cholesky_factor_cov is for
Cholesky factors of covariance matrices (lower triangular, positive diagonal, prod-
uct with own transpose is a covariance matrix). The type cholesky_factor_corr
is for Cholesky factors of correlation matrices (lower triangular, positive diagonal,
unit-length rows).

Constraints provide error checking for variables defined in the data, transformed
data, transformed parameters, and generated quantities blocks. Constraints
are critical for variables declared in the parameters block, where they determine the
transformation from constrained variables (those satisfying the declared constraint)
to unconstrained variables (those ranging over all of Rn).

It is worth calling out the most important aspect of constrained data types:

The model must have support (non-zero density, equivalently finite log density) at parameter
values that satisfy the declared constraints.

If this condition is violated with parameter values that satisfy declared constraints
but do not have finite log density, then the samplers and optimizers may have
any of a number of pathologies including just getting stuck, failure to initialize,
excessive Metropolis rejection, or biased draws due to inability to explore the tails
of the distribution.

5.2. PRIMITIVE NUMERICAL DATA TYPES 13

5.2. Primitive numerical data types
Unfortunately, the lovely mathematical abstraction of integers and real numbers is
only partially supported by finite-precision computer arithmetic.

Integers
Stan uses 32-bit (4-byte) integers for all of its integer representations. The maximum
value that can be represented as an integer is 231 − 1; the minimum value is −(231).

When integers overflow, their value is determined by the underlying architecture.
On most, their values wrap, but this cannot be guaranteed. Thus it is up to the
Stan programmer to make sure the integer values in their programs stay in range.
In particular, every intermediate expression must have an integer value that is in
range.

Integer arithmetic works in the expected way for addition, subtraction, and mul-
tiplication, but truncates the result of division (see the Stan Functions Reference
integer-valued arithmetic operators section for more information).

Reals
Stan uses 64-bit (8-byte) floating point representations of real numbers. Stan
roughly1 follows the IEEE 754 standard for floating-point computation. The range
of a 64-bit number is roughly ±21022, which is slightly larger than ±10307. It is a
good idea to stay well away from such extreme values in Stan models as they are
prone to cause overflow.

64-bit floating point representations have roughly 15 decimal digits of accuracy.
But when they are combined, the result often has less accuracy. In some cases, the
difference in accuracy between two operands and their result is large.

There are three special real values used to represent (1) not-a-number value for error
conditions, (2) positive infinity for overflow, and (3) negative infinity for overflow.
The behavior of these special numbers follows standard IEEE 754 behavior.

Not-a-number
The not-a-number value propagates. If an argument to a real-valued function is
not-a-number, it either rejects (an exception in the underlying C++) or returns not-
a-number itself. For boolean-valued comparison operators, if one of the arguments
is not-a-number, the return value is always zero (i.e., false).

1Stan compiles integers to int and reals to double types in C++. Precise details of rounding will
depend on the compiler and hardware architecture on which the code is run.

https://mc-stan.org/docs/functions-reference/integer-valued_basic_functions.html#int-arithmetic
https://mc-stan.org/docs/functions-reference/integer-valued_basic_functions.html#int-arithmetic

14 CHAPTER 5. DATA TYPES AND DECLARATIONS

Infinite values
Positive infinity is greater than all numbers other than itself and not-a-number;
negative infinity is similarly smaller. Adding an infinite value to a finite value
returns the infinite value. Dividing a finite number by an infinite value returns
zero; dividing an infinite number by a finite number returns the infinite number
of appropriate sign. Dividing a finite number by zero returns positive infinity.
Dividing two infinite numbers produces a not-a-number value as does subtracting
two infinite numbers. Some functions are sensitive to infinite values; for example,
the exponential function returns zero if given negative infinity and positive infinity
if given positive infinity. Often the gradients will break down when values are
infinite, making these boundary conditions less useful than they may appear at
first.

Promoting integers to reals
Stan automatically promotes integer values to real values if necessary, but does not
automatically demote real values to integers. For very large integers, this will cause
a rounding error to fewer significant digits in the floating point representation than
in the integer representation.

Unlike in C++, real values are never demoted to integers. Therefore, real values
may only be assigned to real variables. Integer values may be assigned to either
integer variables or real variables. Internally, the integer representation is cast to a
floating-point representation. This operation is not without overhead and should
thus be avoided where possible.

5.3. Complex numerical data type
The complex data type is a scalar, but unlike real and int types, it contains two
components, a real and imaginary component, both of which are of type real.
That is, the real and imaginary components of a complex number are 64-bit, IEEE
754-complaint floating point numbers.

Constructing and accessing complex numbers
Imaginary literals are written in mathematical notation using a numeral followed
by the suffix i. For example, the following example constructs a complex number
2− 1.3i and assigns it to the variable z.

complex z = 2 - 1.3i;
real re = get_real(z); // re has value 2.0
real im = get_imag(z); // im has value -1.3

The getter functions then extract the real and imaginary components of z and assign

5.4. SCALAR DATA TYPES AND VARIABLE DECLARATIONS 15

them to re and im respectively.

The function to_complex constructs a complex number from its real and imaginary
components. The functional form needs to be used whenever the components are
not literal numerals, as in the following example.

vector[K] re;
vector[K] im;
// ...
for (k in 1:K) {
complex z = to_complex(re[k], im[k]);
// ...

}

Promoting real to complex
Expressions of type real may be assigned to variables of type complex. For exam-
ple, the following is a valid sequence of Stan statements.

real x = 5.0;
complex z = x; // get_real(z) == 5.0, get_imag(z) == 0

The real number assigned to a complex number determine’s the complex number’s
real component, with the imaginary component set to zero.

Assignability is transitive, so that expressions of type int may also be assigned to
variables of type complex, as in the following example.

int n = 2;
complex z = n;

Function arguments also support promotion of integer or real typed expressions to
type complex.

5.4. Scalar data types and variable declarations
All variables used in a Stan program must have an explicitly declared data type.
The form of a declaration includes the type and the name of a variable. This section
covers scalar types, namely integer, real, and complex. The next section covers
vector and matrix types, and the following section array types.

Unconstrained integer
Unconstrained integers are declared using the int keyword. For example, the
variable N is declared to be an integer as follows.

16 CHAPTER 5. DATA TYPES AND DECLARATIONS

int N;

Constrained integer
Integer data types may be constrained to allow values only in a specified interval
by providing a lower bound, an upper bound, or both. For instance, to declare N to
be a positive integer, use the following.

int<lower=1> N;

This illustrates that the bounds are inclusive for integers.

To declare an integer variable cond to take only binary values, that is zero or one, a
lower and upper bound must be provided, as in the following example.

int<lower=0, upper=1> cond;

Unconstrained real
Unconstrained real variables are declared using the keyword real. The following
example declares theta to be an unconstrained continuous value.

real theta;

Unconstrained complex
Unconstrained complex numbers are declared using the keyword complex. The
following example declares z to be an unconstrained complex variable.

complex z;

Constrained real
Real variables may be bounded using the same syntax as integers. In theory (that is,
with arbitrary-precision arithmetic), the bounds on real values would be exclusive.
Unfortunately, finite-precision arithmetic rounding errors will often lead to values
on the boundaries, so they are allowed in Stan.

The variable sigma may be declared to be non-negative as follows.

real<lower=0> sigma;

The following declares the variable x to be less than or equal to −1.

real<upper=-1> x;

To ensure rho takes on values between −1 and 1, use the following declaration.

5.4. SCALAR DATA TYPES AND VARIABLE DECLARATIONS 17

real<lower=-1, upper=1> rho;

Infinite constraints
Lower bounds that are negative infinity or upper bounds that are positive in-
finity are ignored. Stan provides constants positive_infinity() and nega-
tive_infinity() which may be used for this purpose, or they may be supplied as
data.

Affinely transformed real
Real variables may be declared on a space that has been transformed using an
affine transformation x 7→ µ + σ ∗ x with offset µ and (positive) multiplier σ, using
a syntax similar to that for bounds. While these transforms do not change the
asymptotic sampling behaviour of the resulting Stan program (in a sense, the model
the program implements), they can be useful for making the sampling process more
efficient by transforming the geometry of the problem to a more natural multiplier
and to a more natural offset for the sampling process, for instance by facilitating a
non-centered parameterisation. While these affine transformation declarations do
not impose a hard constraint on variables, they behave like the bounds constraints
in many ways and could perhaps be viewed as acting as a sort of soft constraint.

The variable x may be declared to have offset 1 as follows.

real<offset=1> x;

Similarly, it can be declared to have multiplier 2 as follows.

real<multiplier=2> x;

Finally, we can combine both declarations to declare a variable with offset 1 and
multiplier 2.

real<offset=1, multiplier=2> x;

As an example, we can give x a normal distribution with non-centered parameteri-
zation as follows.

parameters {
real<offset=mu, multiplier=sigma> x;

}
model {

x ~ normal(mu, sigma);
}

18 CHAPTER 5. DATA TYPES AND DECLARATIONS

Recall that the centered parameterization is achieved with the code

parameters {
real x;

}
model {

x ~ normal(mu, sigma);
}

or equivalently

parameters {
real<offset=0, multiplier=1> x;

}
model {

x ~ normal(mu, sigma);
}

Expressions as bounds and offset/multiplier
Bounds (and offset and multiplier) for integer or real variables may be arbitrary
expressions. The only requirement is that they only include variables that have
been declared (though not necessarily defined) before the declaration. array[N]
row_vector[D] x; If the bounds themselves are parameters, the behind-the-scenes
variable transform accounts for them in the log Jacobian.

For example, it is acceptable to have the following declarations.

data {
real lb;

}
parameters {

real<lower=lb> phi;
}

This declares a real-valued parameter phi to take values greater than the value of
the real-valued data variable lb. Constraints may be arbitrary expressions, but must
be of type int for integer variables and of type real for real variables (including
constraints on vectors, row vectors, and matrices). Variables used in constraints
can be any variable that has been defined at the point the constraint is used. For
instance,

data {
int<lower=1> N;

5.4. SCALAR DATA TYPES AND VARIABLE DECLARATIONS 19

array[N] real y;
}
parameters {

real<lower=min(y), upper=max(y)> phi;
}

This declares a positive integer data variable N, an array y of real-valued data of
length N, and then a parameter ranging between the minimum and maximum value
of y. As shown in the example code, the functions min() and max() may be applied
to containers such as arrays.

A more subtle case involves declarations of parameters or transformed parameters
based on parameters declared previously. For example, the following program will
work as intended.

parameters {
real a;
real<lower=a> b; // enforces a < b

}
transformed parameters {

real c;
real<lower=c> d;
c = a;
d = b;

}

The parameters instance works because all parameters are defined externally before
the block is executed. The transformed parameters case works even though c isn’t
defined at the point it is used, because constraints on transformed parameters are
only validated at the end of the block. Data variables work like parameter variables,
whereas transformed data and generated quantity variables work like transformed
parameter variables.

Declaring optional variables
A variable may be declared with a size that depends on a boolean constant. For
example, consider the definition of alpha in the following program fragment.

data {
int<lower=0, upper=1> include_alpha;
// ...

}

20 CHAPTER 5. DATA TYPES AND DECLARATIONS

parameters {
vector[include_alpha ? N : 0] alpha;
// ...

}

If include_alpha is true, the model will include the vector alpha; if the flag is
false, the model will not include alpha (technically, it will include alpha of size 0,
which means it won’t contain any values and won’t be included in any output).

This technique is not just useful for containers. If the value of N is set to 1, then
the vector alpha will contain a single element and thus alpha[1] behaves like an
optional scalar, the existence of which is controlled by include_alpha.

This coding pattern allows a single Stan program to define different models based on
the data provided as input. This strategy is used extensively in the implementation
of the RStanArm package.

5.5. Vector and matrix data types
Stan provides three types of container objects: arrays, vectors, and matrices. Vectors
and matrices are more limited kinds of data structures than arrays. Vectors are
intrinsically one-dimensional collections of real or complex values, whereas matrices
are intrinsically two dimensional. Vectors, matrices, and arrays are not assignable
to one another, even if their dimensions are identical. A 3× 4 matrix is a different
kind of object in Stan than a 3× 4 array.

The intention of using matrix types is to call out their usage in the code. There are
three situations in Stan where only vectors and matrices may be used,

• matrix arithmetic operations (e.g., matrix multiplication)
• linear algebra functions (e.g., eigenvalues and determinants), and
• multivariate function parameters and outcomes (e.g., multivariate normal

distribution arguments).

Vectors and matrices cannot be typed to return integer values. They are restricted
to real and complex values.

For constructing vectors and matrices in Stan, see Vector, Matrix, and Array Expres-
sions.

Indexing from 1
Vectors and matrices, as well as arrays, are indexed starting from one (1) in Stan.
This follows the convention in statistics and linear algebra as well as their implemen-

https://mc-stan.org/rstanarm

5.5. VECTOR AND MATRIX DATA TYPES 21

tations in the statistical software packages R, MATLAB, BUGS, and JAGS. General
computer programming languages, on the other hand, such as C++ and Python,
index arrays starting from zero.

Vectors
Vectors in Stan are column vectors; see below for information on row vectors. Vec-
tors are declared with a size (i.e., a dimensionality). For example, a 3-dimensional
real vector is declared with the keyword vector, as follows.

vector[3] u;

Vectors may also be declared with constraints, as in the following declaration of a
3-vector of non-negative values.

vector<lower=0>[3] u;

Similarly, they may be declared with a offset and/or multiplier, as in the following
example

vector<offset=42, multiplier=3>[3] u;

Complex vectors
Like real vectors, complex vectors are column vectors and are declared with a
size. For example, a 3-dimensional complex vector is declared with the keyword
complex_vector, as follows.

complex_vector[3] v;

Complex vector declarations do not support any constraints.

Unit simplexes
A unit simplex is a vector with non-negative values whose entries sum to 1. For
instance, [0.2, 0.3, 0.4, 0.1]⊤ is a unit 4-simplex. Unit simplexes are most often used
as parameters in categorical or multinomial distributions, and they are also the
sampled variate in a Dirichlet distribution. Simplexes are declared with their full
dimensionality. For instance, theta is declared to be a unit 5-simplex by

simplex[5] theta;

Unit simplexes are implemented as vectors and may be assigned to other vectors
and vice-versa. Simplex variables, like other constrained variables, are validated to
ensure they contain simplex values; for simplexes, this is only done up to a statically
specified accuracy threshold ϵ to account for errors arising from floating-point
imprecision.

22 CHAPTER 5. DATA TYPES AND DECLARATIONS

In high dimensional problems, simplexes may require smaller step sizes in the
inference algorithms in order to remain stable; this can be achieved through higher
target acceptance rates for samplers and longer warmup periods, tighter tolerances
for optimization with more iterations, and in either case, with less dispersed param-
eter initialization or custom initialization if there are informative priors for some
parameters.

Stochastic Matrices
A stochastic matrix is a matrix where each column or row is a unit simplex, meaning
that each column (row) vector has non-negative values that sum to 1. The following
example is a 3× 4 column-stochastic matrix.

0.2 0.5 0.1 0.3
0.3 0.3 0.6 0.4
0.5 0.2 0.3 0.3


An example of a 3× 4 row-stochastic matrix is the following.

0.2 0.5 0.1 0.2
0.2 0.1 0.6 0.1
0.5 0.2 0.2 0.1


In the examples above, each column (or row) sums to 1, making the matrices valid
column_stochastic_matrix and row_stochastic_matrix types.

Column-stochastic matrices are often used in models where each column represents
a probability distribution across a set of categories such as in multiple multinomial
distributions, factor models, transition matrices in Markov models, or composi-
tional data analysis. They can also be used in situations where you need multiple
simplexes of the same dimensionality.

The column_stochastic_matrix and row_stochastic_matrix types are declared
with row and column sizes. For instance, a matrix theta with 3 rows and 4 columns,
where each column is a 3-simplex, is declared like a matrix with 3 rows and 4
columns.

column_stochastic_matrix[3, 4] theta;

A matrix theta with 3 rows and 4 columns, where each row is a 4-simplex, is
similarly declared as a matrix with 3 rows and 4 columns.

5.5. VECTOR AND MATRIX DATA TYPES 23

row_stochastic_matrix[3, 4] theta;

As with simplexes, column_stochastic_matrix and row_stochastic_matrix
variables are subject to validation, ensuring that each column (row) satisfies the
simplex constraints. This validation accounts for floating-point imprecision, with
checks performed up to a statically specified accuracy threshold ϵ.

Stability Considerations
In high-dimensional settings, column_stochastic_matrix and
row_stochastic_matrix types may require careful tuning of the inference
algorithms. To ensure stability:

• Smaller Step Sizes: In samplers like Hamiltonian Monte Carlo (HMC),
smaller step sizes can help maintain stability, especially in high dimensions.

• Higher Target Acceptance Rates: Setting higher target acceptance rates can
improve the robustness of the sampling process.

• Longer Warmup Periods: Increasing the warmup period allows the sampler
to better explore the parameter space before the actual sampling begins.

• Tighter Optimization Tolerances: For optimization-based inference, tighter
tolerances with more iterations can yield more accurate results.

• Custom Initialization: If prior information about the parameters is available,
custom initialization or less dispersed initialization can lead to more efficient
inference.

Unit vectors

A unit vector is a vector with a norm of one. For instance, [0.5, 0.5, 0.5, 0.5]⊤ is a unit
4-vector. Unit vectors are sometimes used in directional statistics. Unit vectors are
declared with their full dimensionality. For instance, theta is declared to be a unit
5-vector by

unit_vector[5] theta;

Unit vectors are implemented as vectors and may be assigned to other vectors and
vice-versa. Unit vector variables, like other constrained variables, are validated
to ensure that they are indeed unit length; for unit vectors, this is only done up
to a statically specified accuracy threshold ϵ to account for errors arising from
floating-point imprecision.

Vectors that sum to zero
A zero-sum vector is constrained such that the sum of its elements is always 0.
These are sometimes useful for resolving identifiability issues in regression models.

24 CHAPTER 5. DATA TYPES AND DECLARATIONS

While the underlying vector has only N − 1 degrees of freedom, zero sum vectors
are declared with their full dimensionality. For instance, beta is declared to be a
zero-sum 5-vector (4 DoF) by

sum_to_zero_vector[5] beta;

Zero sum vectors are implemented as vectors and may be assigned to other vectors
and vice-versa. Zero sum vector variables, like other constrained variables, are
validated to ensure that they are indeed unit length; for zero sum vectors, this is
only done up to a statically specified accuracy threshold ϵ to account for errors
arising from floating-point imprecision.

Ordered vectors
An ordered vector type in Stan represents a vector whose entries are sorted in
ascending order. For instance, (−1.3, 2.7, 2.71)⊤ is an ordered 3-vector. Ordered
vectors are most often employed as cut points in ordered logistic regression models
(see section).

The variable c is declared as an ordered 5-vector by

ordered[5] c;

After their declaration, ordered vectors, like unit simplexes, may be assigned to
other vectors and other vectors may be assigned to them. Constraints will be
checked after executing the block in which the variables were declared.

Positive, ordered vectors
There is also a positive, ordered vector type which operates similarly to ordered
vectors, but all entries are constrained to be positive. For instance, (2, 3.7, 4, 12.9) is
a positive, ordered 4-vector.

The variable d is declared as a positive, ordered 5-vector by

positive_ordered[5] d;

Like ordered vectors, after their declaration, positive ordered vectors may be as-
signed to other vectors and other vectors may be assigned to them. Constraints will
be checked after executing the block in which the variables were declared.

Row vectors
Row vectors are declared with the keyword row_vector. Like (column) vectors,
they are declared with a size. For example, a 1093-dimensional row vector u would
be declared as

https://mc-stan.org/docs/stan-users-guide/regression.html#ordered-logistic.section

5.5. VECTOR AND MATRIX DATA TYPES 25

row_vector[1093] u;

Constraints are declared as for vectors, as in the following example of a 10-vector
with values between -1 and 1.

row_vector<lower=-1, upper=1>[10] u;

Offset and multiplier are also similar as for the following 3-row-vector with offset
-42 and multiplier 3.

row_vector<offset=-42, multiplier=3>[3] u;

Row vectors may not be assigned to column vectors, nor may column vectors be
assigned to row vectors. If assignments are required, they may be accommodated
through the transposition operator.

Complex row vectors
Complex row vectors are declared with the keyword complex_row_vector and
given a size in basic declarations. For example, a 12-dimensional complex row
vector v would be declared as

complex_row_vector[12] v;

Complex row vectors do not allow constraints.

Matrices
Matrices are declared with the keyword matrix along with a number of rows and
number of columns. For example,

matrix[3, 3] A;
matrix[M, N] B;

declares A to be a 3× 3 matrix and B to be a M×N matrix. For the second declaration
to be well formed, the variables M and N must be declared as integers in either the
data or transformed data block and before the matrix declaration.

Matrices may also be declared with constraints, as in this (3× 4) matrix of non-
positive values.

matrix<upper=0>[3, 4] B;

Similarly, matrices can be declared to have a set offset and/or multiplier, as in this
matrix with multiplier 5.

26 CHAPTER 5. DATA TYPES AND DECLARATIONS

matrix<multiplier=5>[3, 4] B;

Assigning to rows of a matrix
Rows of a matrix can be assigned by indexing the left-hand side of an assignment
statement. For example, this is possible.

matrix[M, N] a;
row_vector[N] b;
// ...
a[1] = b;

This copies the values from row vector b to a[1], which is the first row of the matrix
a. If the number of columns in a is not the same as the size of b, a run-time error is
raised; the number of columns of a is N, which is also the number of columns of b.

Assignment works by copying values in Stan. That means any subsequent assign-
ment to a[1] does not affect b, nor does an assignment to b affect a.

Complex matrices
Complex matrices are declared with the keyword complex_matrix and a number
of rows and columns. For example,

complex_matrix[3, 3] C;

Complex matrices do not allow constraints.

Covariance matrices
Matrix variables may be constrained to represent covariance matrices. A matrix is a
covariance matrix if it is symmetric and positive definite. Like correlation matrices,
covariance matrices only need a single dimension in their declaration. For instance,

cov_matrix[K] Sigma;

declares Sigma to be a K × K covariance matrix, where K is the value of the data
variable K.

Correlation matrices
Matrix variables may be constrained to represent correlation matrices. A matrix is a
correlation matrix if it is symmetric and positive definite, has entries between −1
and 1, and has a unit diagonal. Because correlation matrices are square, only one
dimension needs to be declared. For example,

5.5. VECTOR AND MATRIX DATA TYPES 27

corr_matrix[3] Omega;

declares Omega to be a 3× 3 correlation matrix.

Correlation matrices may be assigned to other matrices, including unconstrained
matrices, if their dimensions match, and vice-versa.

Cholesky factors of covariance matrices
Matrix variables may be constrained to represent the Cholesky factors of a covari-
ance matrix. This is often more convenient or more efficient than representing
covariance matrices directly.

A Cholesky factor L is an M×N lower-triangular matrix (if m < n then L[m, n] = 0)
with a strictly positive diagonal (L[k, k] > 0) and M ≥ N. If L is a Cholesky factor,
then Σ = L L⊤ is a covariance matrix (i.e., it is positive definite). The mapping
between positive definite matrices and their Cholesky factors is bijective—every
covariance matrix has a unique Cholesky factorization.

The typical case of a square Cholesky factor may be declared with a single dimen-
sion,

cholesky_factor_cov[4] L;

Cholesky factors of positive semi-definite matrices
In general, two dimensions may be declared, with the above being equal to
cholesky_factor_cov[4, 4]. The type cholesky_factor_cov[M, N] may be
used for the general M× N case to produce positive semi-definite matrices of rank
M.

Cholesky factors of correlation matrices
Matrix variables may be constrained to represent the Cholesky factors of a correla-
tion matrix.

A Cholesky factor for a correlation matrix L is a K× K lower-triangular matrix with
positive diagonal entries and rows that are of length 1 (i.e., ∑K

n=1 L2
m,n = 1). If L

is a Cholesky factor for a correlation matrix, then L L⊤ is a correlation matrix (i.e.,
symmetric positive definite with a unit diagonal).

To declare the variable L to be a K by K Cholesky factor of a correlation matrix, the
following code may be used.

cholesky_factor_corr[K] L;

28 CHAPTER 5. DATA TYPES AND DECLARATIONS

Assigning constrained variables
Constrained variables of all types may be assigned to other variables of the same
unconstrained type and vice-versa. Matching is interpreted strictly as having the
same basic type and number of array dimensions. Constraints are not considered,
but basic data types are. For instance, a variable declared to be real<lower=0,
upper=1> could be assigned to a variable declared as real and vice-versa. Similarly,
a variable declared as matrix[3, 3] may be assigned to a variable declared as
cov_matrix[3] or cholesky_factor_cov[3], and vice-versa.

Checks are carried out at the end of each relevant block of statements to ensure
constraints are enforced. This includes run-time size checks. The Stan compiler
isn’t able to catch the fact that an attempt may be made to assign a matrix of one
dimensionality to a matrix of mismatching dimensionality.

Promoting real to complex matrixes
Real-valued vectors, row vectors and matrices may be assigned to complex-valued
vectors, row vectors and matrices, respectively. For example, the following is legal.

vector[N] v = ...;
complex_vector[N] u = 2 * v;

Row vectors and matrices work the same way.

Expressions as size declarations
Variables may be declared with sizes given by expressions. Such expressions are
constrained to only contain data or transformed data variables. This ensures that
all sizes are determined once the data is read in and transformed data variables
defined by their statements. For example, the following is legal.

data {
int<lower=0> N_observed, N_missing;
// ...

transformed parameters {
vector[N_observed + N_missing] y;
// ...

Accessing vector and matrix elements
If v is a column vector or row vector, then v[2] is the second element in the vector.
If m is a matrix, then m[2, 3] is the value in the second row and third column.

Providing a matrix with a single index returns the specified row. For instance, if m
is a matrix, then m[2] is the second row. This allows Stan blocks such as

5.6. ARRAY DATA TYPES 29

matrix[M, N] m;
row_vector[N] v;
real x;
// ...
v = m[2];
x = v[3]; // x == m[2][3] == m[2, 3]

The type of m[2] is row_vector because it is the second row of m. Thus it is possible
to write m[2][3] instead of m[2, 3] to access the third element in the second row.
When given a choice, the form m[2, 3] is preferred.

Complex versions work the same way,

complex_matrix[M, N] m = ...;
complex_row_vector[N] u = m[3];
complex_vector[M] v = m[, 2];

Array index style
The form m[2, 3] is more efficient because it does not require the creation and use
of an intermediate expression template for m[2]. In later versions, explicit calls to
m[2][3] may be optimized to be as efficient as m[2, 3] by the Stan compiler.

Size declaration restrictions
An integer expression is used to pick out the sizes of vectors, matrices, and arrays.
For instance, we can declare a vector of size M + N using

vector[M + N] y;

Any integer-denoting expression may be used for the size declaration, providing
all variables involved are either data, transformed data, or local variables. That is,
expressions used for size declarations may not include parameters or transformed
parameters or generated quantities.

5.6. Array data types
Stan supports arrays of arbitrary dimension. The values in an array can be any type,
so that arrays may contain values that are simple reals or integers, vectors, matrices,
or other arrays. Arrays are the only way to store sequences of integers, and some
functions in Stan, such as discrete distributions, require integer arguments.

A two-dimensional array is just an array of arrays, both conceptually and in terms
of current implementation. When an index is supplied to an array, it returns the
value at that index. When more than one index is supplied, this indexing operation

30 CHAPTER 5. DATA TYPES AND DECLARATIONS

is chained. For example, if a is a two-dimensional array, then a[m, n] is just a
convenient shorthand for a[m][n].

Vectors, matrices, and arrays are not assignable to one another, even if their dimen-
sions are identical.

For constructing arrays in Stan, see Vector, Matrix, and Array Expressions.

Declaring array variables
Arrays are declared with the keyword array followed by the dimensions enclosed
in square brackets, the element type, and the name of the variable.

The variable n is declared as an array of five integers as follows.

array[5] int n;

A two-dimensional array of complex values with three rows and four columns is
declared as follows.

array[3, 4] complex a;

A three-dimensional array z of positive reals with five rows, four columns, and two
shelves can be declared as follows.

array[5, 4, 2] real<lower=0> z;

Arrays may also be declared to contain vectors. For example,

array[3] vector[7] mu;

declares mu to be an array of size 3 containing vectors with 7 elements. Arrays may
also contain matrices. The example

array[15, 12] complex_matrix[7, 2] mu;

declares a 15 by 12 array of 7× 2 complex matrices. Any of the constrained types
may also be used in arrays, as in the declaration

array[2, 3, 4] cholesky_factor_cov[5, 6] mu;

of a 2× 3× 4 array of 5× 6 Cholesky factors of covariance matrices.

Accessing array elements and subarrays
If x is a 1-dimensional array of length 5, then x[1] is the first element in the array
and x[5] is the last. For a 3× 4 array y of two dimensions, y[1, 1] is the first
element and y[3, 4] the last element. For a three-dimensional array z, the first

5.6. ARRAY DATA TYPES 31

element is z[1, 1, 1], and so on.

Subarrays of arrays may be accessed by providing fewer than the full number of
indexes. For example, suppose y is a two-dimensional array with three rows and
four columns. Then y[3] is one-dimensional array of length four. This means that
y[3][1] may be used instead of y[3, 1] to access the value of the first column of
the third row of y. The form y[3, 1] is the preferred form (see note in this chapter).

Assigning
Subarrays may be manipulated and assigned just like any other variables. Similar
to the behavior of matrices, Stan allows blocks such as

array[9, 10, 11] real w;
array[10, 11] real x;
array[11] real y;
real z;
// ...
x = w[5];
y = x[4]; // y == w[5][4] == w[5, 4]
z = y[3]; // z == w[5][4][3] == w[5, 4, 3]

Complex-valued arrays work the same way.

Arrays of matrices and vectors
Arrays of vectors and matrices are accessed in the same way as arrays of doubles.
Consider the following vector and scalar declarations.

array[3, 4] vector[5] a;
array[4] vector[5] b;
vector[5] c;
real x;

With these declarations, the following assignments are legal.

b = a[1]; // result is array of vectors
c = a[1, 3]; // result is vector
c = b[3]; // same result as above
x = a[1, 3, 5]; // result is scalar
x = b[3, 5]; // same result as above
x = c[5]; // same result as above

Row vectors and other derived vector types (simplex and ordered) behave the same
way in terms of indexing.

32 CHAPTER 5. DATA TYPES AND DECLARATIONS

Consider the following matrix, vector and scalar declarations.

array[3, 4] matrix[6, 5] d;
array[4] matrix[6, 5] e;
matrix[6, 5] f;
row_vector[5] g;
real x;

With these declarations, the following definitions are legal.

e = d[1]; // result is array of matrices
f = d[1, 3]; // result is matrix
f = e[3]; // same result as above
g = d[1, 3, 2]; // result is row vector
g = e[3, 2]; // same result as above
g = f[2]; // same result as above
x = d[1, 3, 5, 2]; // result is scalar
x = e[3, 5, 2]; // same result as above
x = f[5, 2]; // same result as above
x = g[2]; // same result as above

As shown, the result f[2] of supplying a single index to a matrix is the indexed
row, here row 2 of matrix f.

Partial array assignment
Subarrays of arrays may be assigned by indexing on the left-hand side of an assign-
ment statement. For example, the following is legal.

array[I, J, K] real x;
array[J, K] real y;
array[K] real z;
// ...
x[1] = y;
x[1, 1] = z;

The sizes must match. Here, x[1] is a J by K array, as is y.

Partial array assignment also works for arrays of matrices, vectors, and row vectors.

Mixing array, vector, and matrix types
Arrays, row vectors, column vectors and matrices are not interchangeable in Stan.
Thus a variable of any one of these fundamental types is not assignable to any of
the others, nor may it be used as an argument where the other is required (use as

5.6. ARRAY DATA TYPES 33

arguments follows the assignment rules).

Mixing vectors and arrays
For example, vectors cannot be assigned to arrays or vice-versa.

array[4] real a;
vector[4] b;
row_vector[4] c;
// ...
a = b; // illegal assignment of vector to array
b = a; // illegal assignment of array to vector
a = c; // illegal assignment of row vector to array
c = a; // illegal assignment of array to row vector

Mixing row and column vectors
It is not even legal to assign row vectors to column vectors or vice versa.

vector[4] b;
row_vector[4] c;
// ...
b = c; // illegal assignment of row vector to column vector
c = b; // illegal assignment of column vector to row vector

Mixing matrices and arrays
The same holds for matrices, where 2-dimensional arrays may not be assigned to
matrices or vice-versa.

array[3, 4] real a;
matrix[3, 4] b;
// ...
a = b; // illegal assignment of matrix to array
b = a; // illegal assignment of array to matrix

Mixing matrices and vectors
A 1× N matrix cannot be assigned a row vector or vice versa.

matrix[1, 4] a;
row_vector[4] b;
// ...
a = b; // illegal assignment of row vector to matrix
b = a; // illegal assignment of matrix to row vector

Similarly, an M× 1 matrix may not be assigned to a column vector.

34 CHAPTER 5. DATA TYPES AND DECLARATIONS

matrix[4, 1] a;
vector[4] b;
// ...
a = b; // illegal assignment of column vector to matrix
b = a; // illegal assignment of matrix to column vector

Size declaration restrictions
An integer expression is used to pick out the sizes of arrays. The same restrictions
as for vector and matrix sizes apply, namely that the size is declared with an integer-
denoting expression that does not contain any parameters, transformed parameters,
or generated quantities.

Size zero arrays
If any of an array’s dimensions is size zero, the entire array will be of size zero. That
is, if we declare

array[3, 0] real a;

then the resulting size of a is zero and querying any of its dimensions at run time will
result in the value zero. Declared as above, a[1] will be a size-zero one-dimensional
array. For comparison, declaring

array[0, 3] real b;

also produces an array with an overall size of zero, but in this case, there is no way
to index legally into b, because b[0] is undefined. The array will behave at run
time as if it’s a 0× 0 array. For example, the result of to_matrix(b) will be a 0× 0
matrix, not a 0× 3 matrix.

5.7. Tuple data type
Stan supports tuples of arbitrary size. The values in a tuple can be of arbitrary type,
but the component types must be declared along with the declaration of the tuple.
Tuples can be manipulated as a whole, or their elements may be accessed and set
individually.

Declaring tuple variables
Tuples are declared with the keyword tuple followed by a parenthesized sequence
of types, which determine the types of the respective tuple entries. For example, a
tuple with three elements may be declared as

5.7. TUPLE DATA TYPE 35

tuple(int, vector[3], complex) abc;

Tuples must have at least two entries, so the following declarations are illegal.

tuple() nil; // ILLEGAL
tuple(int) n; // ILLEGAL

Tuples can be assigned as a whole if their elements can be assigned individually.
For example, a can be assigned to b in the following example because int can be
promoted to complex.

tuple(int, real) a;
...
tuple(complex, real) b = a;

Tuple types may have elements which are declared as tuples, such as the following
example.

tuple(int, tuple(real, complex)) x;

In this case, it would probably be simpler to use a 3-tuple type, tuple(int, real,
complex).

Tuples can be declared with constraints anywhere that ordinary variables can (i.e.,
as top-level block variables). That means any context in which it is legal to have a
declaration

real<lower=0> sigma;
real<lower=0, upper=1> theta;

it is legal to have a tuple with constraints such as

tuple(real<lower=0>, real<lower=0, upper=1>) sigma_theta;

Accessing tuple elements
Tuple elements may be accessed directly. For example, with our declaration of abc
from the last section, Stan uses abc.1 for the first element, abc.2 for the second,
and abc.3 for the third. These numbers must be integer literals (i.e., they cannot
be variables), and must be within the size of the number of elements of tuples.
The types of elements are as declared, so that abc.1 is of type int, abc.2 of type
vector[3] and abc.3 of type complex.

Assigning tuple elements
Tuple elements can be assigned individually, allowing, e.g.,

36 CHAPTER 5. DATA TYPES AND DECLARATIONS

tuple(int, real) ab;
ab.1 = 123;
ab.2 = 12.9;

As with other assignments, promotions will happen if necessary (of int to real
and of real to complex, along with the corresponding container type promotions).

Unpacking assignment of tuples
For convenience of using values stored in tuples, Stan supports “unpacking” (or
“destructuring”) of tuples in an assignment statement.

Given a tuple t of type tuple(T1, ..., Tn) and a sequence of assignable expres-
sions of types v1, . . . , vn, where each vi has a type which is assignable from type
Ti, individual elements of the tuple may be assigned to the corresponding variables
in the sequence by the statement

(v1, /*...*/, vn) = t;

Note that the above parenthesis are required, unlike in some other languages with
similar features (e.g., Python).

These unpacking assignments can be nested if the tuple on the right hand side
contains nested tuples.

For example, if T is a tuple of type tuple(int, (real, real), complex), then
the program

int i;
real x, y;
complex z;

(i, (x, y), z) = T;

Assigns the result of T.1 to i, the result of T.2.1 to x, the result of T.2.2 to y, and
the result of T.3 to z.

The left hand side must match in size the tuple on the right. Additionally, the same
variable may not appear more than once in the left hand side of an unpacking
assignment.

5.8. Variable types vs. constraints and sizes
The type information associated with a variable only contains the underlying type
and dimensionality of the variable.

5.8. VARIABLE TYPES VS. CONSTRAINTS AND SIZES 37

Type information excludes sizes
The size associated with a given variable is not part of its data type. For example,
declaring a variable using

array[3] real a;

declares the variable a to be an array. The fact that it was declared to have size 3 is
part of its declaration, but not part of its underlying type.

When are sizes checked?
Sizes are determined dynamically (at run time) and thus cannot be type-checked
statically when the program is compiled. As a result, any conformance error on
size will raise a run-time error. For example, trying to assign an array of size 5 to
an array of size 6 will cause a run-time error. Similarly, multiplying an N ×M by a
J × K matrix will raise a run-time error if M ̸= J.

Type information excludes constraints
Like sizes, constraints are not treated as part of a variable’s type in Stan when it
comes to the compile-time check of operations it may participate in. Anywhere Stan
accepts a matrix as an argument, it will syntactically accept a correlation matrix or
covariance matrix or Cholesky factor. Thus a covariance matrix may be assigned to
a matrix and vice-versa.

Similarly, a bounded real may be assigned to an unconstrained real and vice-versa.

When are function argument constraints checked?
For arguments to functions, constraints are sometimes, but not always checked
when the function is called. Exclusions include C++ standard library functions.
All probability functions and cumulative distribution functions check that their
arguments are appropriate at run time as the function is called.

When are declared variable constraints checked?
For data variables, constraints are checked after the variable is read from a data file
or other source. For transformed data variables, the check is done after the state-
ments in the transformed data block have executed. Thus it is legal for intermediate
values of variables to not satisfy declared constraints.

For parameters, constraints are enforced by the transform applied and do not need
to be checked. For transformed parameters, the check is done after the statements
in the transformed parameter block have executed.

For all blocks defining variables (transformed data, transformed parameters, gener-
ated quantities), real values are initialized to NaN and integer values are initialized

38 CHAPTER 5. DATA TYPES AND DECLARATIONS

to the smallest legal integer (i.e., a large absolute value negative number).

For generated quantities, constraints are enforced after the statements in the gener-
ated quantities block have executed.

Type naming notation
In order to refer to data types, it is convenient to have a way to refer to them. The
type naming notation outlined in this section is not part of the Stan programming
language, but rather a convention adopted in this document to enable a concise
description of a type.

Because size information is not part of a data type, data types will be written without
size information. For instance, array[] real is the type of one-dimensional array
of reals and matrix is the type of matrices. The three-dimensional integer array
type is written as array[„] int, indicating the number slots available for indexing.
Similarly, array[,] vector is the type of a two-dimensional array of vectors.

5.9. Variable declaration
Variables in Stan are declared by giving a type and a name. For example

int N;
vector[N] y;
array[5] matrix[3, 4] A;

declares a variable N that is an integer, a variable y that is a vector of length N (the
previously declared variable), and a variable A, which is a length-5 array where
each element is a 3 by 4 matrix.

The size of top-level variables in the parameters, transformed parameters, and
generated quantities must remain constant across all iterations, therefore only
data variables can be used in top-level size declarations.

// illegal and will be flagged by the compiler:
generated quantities {
int N = 10;
array[N] int foo;

Depending on where the variable is declared in the Stan program, it either must or
cannot have size information, and constraints are either optional or not allowed.

// valid block variables, but not locals or function parameters
vector<lower=0>[N] u;

5.9. VARIABLE DECLARATION 39

// valid as a block or local variable, but not a function parameter
array[3] int is;

// function parameters exclude sizes and cannot be constrained
void pretty_print_tri_lower(matrix x) { ... }

Top-level variables can have constraints and must include sizes for their types, as in
the above examples. Local variables, like those defined inside loops or local blocks
cannot be constrained, but still include sizes. Finally, variables declared as function
parameters are not constrained types and exclude sizes.

In the following table, the leftmost column is a list of the unconstrained and undi-
mensioned basic types; these are used as function return types and argument types.
The middle column is of unconstrained types with dimensions; these are used as
local variable types. The variables M and N indicate number of columns and rows,
respectively. The variable K is used for square matrices, i.e., K denotes both the
number of rows and columns. The rightmost column lists the corresponding con-
strained types. An expression of any right-hand column type may be assigned to
its corresponding left-hand column basic type. At runtime, dimensions are checked
for consistency for all variables; containers of any sizes may be assigned to func-
tion arguments. The constrained matrix types cov_matrix[K], corr_matrix[K],
cholesky_factor_cov[K], and cholesky_factor_corr[K] are only assignable to
matrices of dimensions matrix[K, K] types.

Function
Argument
(unsized)

Local
(unconstrained)

Block
(constrained)

int int int
int<lower=L>
int<upper=U>
int<lower=L, upper=U>
int<offset=O>
int<multiplier=M>
int<offset=O, multiplier=M>

real real real
real<lower=L>
real<upper=U>
real<lower=L, upper=U>
real<offset=O>

40 CHAPTER 5. DATA TYPES AND DECLARATIONS

Function
Argument
(unsized)

Local
(unconstrained)

Block
(constrained)

real<multiplier=M>
real<offset=O, multiplier=M>

complex complex complex
vector vector[N] vector[N]

vector[N]<lower=L>
vector[N]<upper=U>
vector[N]<lower=L, upper=U>
vector[N]<offset=O>
vector[N]<multiplier=M>
vector[N]<offset=O,
multiplier=M>
ordered[N]
positive_ordered[N]
simplex[N]
unit_vector[N]
sum_to_zero_vector[N]

row_vector row_vector[N] row_vector[N]
row_vector[N]<lower=L>
row_vector[N]<upper=U>
row_vector[N]<lower=L,
upper=U>
row_vector[N]<offset=O>
row_vector[N]<multiplier=M>
row_vector[N]<offset=O,
multiplier=M>

matrix matrix[M, N] matrix[M, N]
matrix[M, N]<lower=L>
matrix[M, N]<upper=U>
matrix[M, N]<lower=L, upper=U>
|
matrix[M, N]<offset=O>
matrix[M, N]<multiplier=M>
matrix[M, N]<offset=O,
multiplier=M>
column_stochastic_matrix[M, N]
row_stochastic_matrix[M, N]

5.9. VARIABLE DECLARATION 41

Function
Argument
(unsized)

Local
(unconstrained)

Block
(constrained)

matrix[K, K] corr_matrix[K]
matrix[K, K] cov_matrix[K]
matrix[K, K] cholesky_factor_corr[K]
matrix[K, K] cholesky_factor_cov[K]

complex_vector complex_vector[M] complex_vector[M]
complex_row_vectorcomplex_row_vector[N]complex_row_vector[N]
complex_matrix complex_matrix[M,

N]
complex_matrix[M,N]

array[] vector array[M]
vector[N]

array[M] vector[N]

array[M] vector[N]<lower=L>
array[M] vector[N]<upper=U>
array[M] vector[N]<lower=L,
upper=U>
array[M] vector[N]<offset=O>
array[M]
vector[N]<multiplier=M>
array[M] vector[N]<offset=O,
multiplier=M>
array[M] ordered[N]
array[M] positive_ordered[N]
array[M] simplex[N]
array[M] unit_vector[N]
array[M] sum_to_zero_vector[N]

Additional array types follow the same basic template as the final example in the
table and can contain any of the previous types. The unsized version of arrays with
more than one dimension is specified by using commas, e.g. array[,] is a 2-D
array.

For more on how function arguments and return types are declared, consult the
User’s Guide chapter on functions.

https://mc-stan.org/docs/stan-users-guide/user-functions.html#basic-functions.section

42 CHAPTER 5. DATA TYPES AND DECLARATIONS

5.10. Compound variable declaration and definition
Stan allows assignable variables to be declared and defined in a single statement.
Assignable variables are

• local variables, and
• variables declared in the transformed data, transformed parameters, or gener-

ated quantities blocks.

For example, the statement

int N = 5;

declares the variable N to be an integer scalar type and at the same time defines it to
be the value of the expression 5.

Assignment typing
The type of the expression on the right-hand side of the assignment must be
assignable to the type of the variable being declared. For example, it is legal
to have

real sum = 0;

even though 0 is of type int and sum is of type real, because integer-typed scalar
expressions can be assigned to real-valued scalar variables. In all other cases, the
type of the expression on the right-hand side of the assignment must be identical to
the type of the variable being declared.

Variables of any type may have values assigned to them. For example,

matrix[3, 2] a = b;

declares a 3× 2 matrix variable a and assigns a copy of the value of b to the variable
a. The variable b must be of type matrix for the statement to be well formed. For
the code to execute successfully, b must be the same shape as a, but this cannot be
validated until run time. Because a copy is assigned, subsequent changes to a do
not affect b and subsequent changes to b do not affect a.

Right-hand side expressions
The right-hand side may be any expression which has a type which is assignable to
the variable being declared. For example,

matrix[3, 2] a = 0.5 * (b + c);

assigns the matrix variable a to half of the sum of b and c. The only requirement

5.11. DECLARING MULTIPLE VARIABLES AT ONCE 43

on b and c is that the expression b + c be of type matrix. For example, b could be
of type matrix and c of type real, because adding a matrix to a scalar produces a
matrix, and the multiplying by a scalar produces another matrix.

Similarly,

complex z = 2 + 3i;

assigns the the complex number 2 + 3i to the complex scalar z. The right-hand side
expression can be a call to a user defined function, allowing general algorithms
to be applied that might not be otherwise expressible as simple expressions (e.g.,
iterative or recursive algorithms).

Scope within expressions
Any variable that is in scope and any function that is available in the block in which
the compound declaration and definition appears may be used in the expression on
the right-hand side of the compound declaration and definition statement.

5.11. Declaring multiple variables at once
Stan will interpret multiple comma-separated variable names following a single
type as declaring multiple new variables. This is available for all variable declara-
tions in all blocks.

Types for multiple declarations
The code:

real x, y;

is equivalent to

real x;
real y;

As a result, all declarations on the same line must be of the same type.

Combining with other features
The ability to declare multiple variables can be combined with assignments when-
ever a declare-define is valid, as documented in the section introducing compound
declarations and definitions :

real x = 3, y = 5.6;

Constrained data types can also be declared together, so long as the constraint for
each variable is the same:

44 CHAPTER 5. DATA TYPES AND DECLARATIONS

real<lower=0> x, y;

6. Expressions

An expression is the syntactic unit in a Stan program that denotes a value. Every
expression in a well-formed Stan program has a type that is determined statically (at
compile time), based only on the type of its variables and the types of the functions
used in it. If an expressions type cannot be determined statically, the Stan compiler
will report the location of the problem.

This chapter covers the syntax, typing, and usage of the various forms of expressions
in Stan.

6.1. Numeric literals
The simplest form of expression is a literal that denotes a primitive numerical value.

Integer literals
Integer literals represent integers of type int. Integer literals are written in base 10
without any separators. Integer literals may contain a single negative sign. (The
expression --1 is interpreted as the negation of the literal -1.)

The following list contains well-formed integer literals.

0, 1, -1, 256, -127098, 24567898765

Integer literals must have values that fall within the bounds for integer values (see
the section on numerical data types).

Integer literals may not contain decimal points (.). Thus the expressions 1. and
1.0 are of type real and may not be used where a value of type int is required.

Real literals
A number written with a period or with scientific notation is assigned to a the
continuous numeric type real. Real literals are written in base 10 with a period
(.) as a separator and optionally an exponent with optional sign. Examples of
well-formed real literals include the following.

0.0, 1.0, 3.14, -217.9387, 2.7e3, -2E-5, 1.23e+3.

The notation e or E followed by a positive or negative integer denotes a power of
10 to multiply. For instance, 2.7e3 and 2.7e+3 denote 2.7× 103, whereas -2E-5
denotes −2× 10−5.

45

46 CHAPTER 6. EXPRESSIONS

Imaginary literals
A number followed by the character i denotes an imaginary number and is assigned
to the numeric type complex. The number preceding i may be either a real or
integer literal and determines the magnitude of the imaginary number. Examples
of well-formed imaginary literals include the following.

1i, 2i, -325.786i, 1e10i, 2.87e-10i.

Note that the character i by itself is not a well-formed imaginary literal. The unit
imaginary number must be written as 1i.

Complex literals
Stan does not include complex literals directly, but a real or integer literal can be
added to an imaginary literal to derive an expression that behaves like a complex
literal. Examples include the following.

1 + 2i, -3.2e9 + 1e10i

These will be assigned the type complex, which is the result of adding a real or
integer and a complex number. They will also function like literals in the sense that
the C++ compiler is able to reduce them to a single complex constant at compile
time.

6.2. Variables
A variable by itself is a well-formed expression of the same type as the variable.
Variables in Stan consist of ASCII strings containing only the basic lower-case and
upper-case Roman letters, digits, and the underscore (_) character. Variables must
start with a letter (a--z and A--Z) and may not end with two underscores (__).

Examples of legal variable identifiers are as follows.

a, a3, a_3, Sigma, my_cpp_style_variable, myCamelCaseVariable

Unlike in R and BUGS, variable identifiers in Stan may not contain a period charac-
ter.

Reserved names
Stan reserves many strings for internal use and these may not be used as the name
of a variable. An attempt to name a variable after an internal string results in the
stanc translator halting with an error message indicating which reserved name
was used and its location in the model code.

6.2. VARIABLES 47

Model name
The name of the model cannot be used as a variable within the model. This is
usually not a problem because the default in bin/stanc is to append _model to the
name of the file containing the model specification. For example, if the model is
in file foo.stan, it would not be legal to have a variable named foo_model when
using the default model name through bin/stanc. With user-specified model
names, variables cannot match the model.

Reserved words from Stan language
The following list contains reserved words for Stan’s programming language. Not
all of these features are implemented in Stan yet, but the tokens are reserved for
future use.

for, in, while, repeat, until, if, then, else,
true, false, target, struct, typedef, export,
auto, extern, var, static, lower, upper, offset,
multiplier

Variables should not be named after types, either, and thus may not be any of the
following.

int, real, complex, vector, simplex, unit_vector,
sum_to_zero_vector, ordered, positive_ordered,
row_vector, matrix, cholesky_factor_corr,
column_stochastic_matrix,row_stochastic_matrix,
cholesky_factor_cov, corr_matrix, cov_matrix, array

The following built in functions are also reserved and cannot be used as variable
names:

print, reject, profile, fatal_error, target

The following block identifiers are reserved and cannot be used as variable names:

functions, model, data, parameters, quantities,
transformed, generated

Reserved distribution names
Variable names will also conflict with the names of distributions suffixed with
_lpdf, _lpmf, _lcdf, and _lccdf, _cdf, and _ccdf, such as normal_lcdf_log.
No user-defined variable can take a name ending in _lupdf or _lupmf even if a
corresponding _lpdf or _lpmf is not defined.

Using any of these variable names causes the stanc translator to halt and report
the name and location of the variable causing the conflict.

48 CHAPTER 6. EXPRESSIONS

Reserved names backend languages
Stan primarily generates code in C++, which features its own reserved words. It
is legal to name a variable any of the following names, however doing so will
lead to it being renamed _stan_NAME (e.g. _stan_public) behind the scenes (in the
generated C++ code).

alignas, alignof, and, and_eq, asm, bitand, bitor, bool,
case, catch, char, char16_t, char32_t, class, compl, const,
constexpr, const_cast, decltype, default, delete, do,
double, dynamic_cast, enum, explicit, float, friend, goto,
inline, long, mutable, namespace, new, noexcept, not, not_eq,
nullptr, operator, or, or_eq, private, protected, public,
register, reinterpret_cast, short, signed, sizeof,
static_assert, static_cast, switch, template, this, thread_local,
throw, try, typeid, typename, union, unsigned, using, virtual,
volatile, wchar_t, xor, xor_eq, fvar, STAN_MAJOR, STAN_MINOR,
STAN_PATCH, STAN_MATH_MAJOR, STAN_MATH_MINOR, STAN_MATH_PATCH

Legal characters
The legal characters for variable identifiers are given in the following table.

Identifier Characters Table The alphanumeric characters and underscore in base ASCII
are the only legal characters in Stan identifiers.

characters ASCII code points

a -- z 97 – 122
A -- Z 65 – 90
0 -- 9 48 – 57

_ 95

Although not the most expressive character set, ASCII is the most portable and least
prone to corruption through improper character encodings or decodings. Sticking
to this range of ASCII makes Stan compatible with Latin-1 or UTF-8 encodings of
these characters, which are byte-for-byte identical to ASCII.

Comments allow ASCII-compatible encoding
Within comments, Stan can work with any ASCII-compatible character encoding,
such as ASCII itself, UTF-8, or Latin1. It is up to user shells and editors to display
them properly.

6.3. CONTAINER EXPRESSIONS 49

6.3. Container expressions
Expressions for the Stan container objects, namely arrays, vectors, row vectors,
matrices, and tuples, can all be constructed using expressions.

Vector expressions
Square brackets may be wrapped around a sequence of comma separated primitive
expressions to produce a row vector expression. For example, the expression [1,
10, 100] denotes a row vector of three elements with real values 1.0, 10.0, and
100.0. Applying the transpose operator to a row vector expression produces a vector
expression. This syntax provides a way declare and define small vectors a single
line, as follows.

row_vector[2] rv2 = [1, 2];
vector[3] v3 = [3, 4, 5]';

The vector expression values may be compound expressions or variable names,
so it is legal to write [2 * 3, 1 + 4] or [x, y], providing that x and y are
primitive variables.

Matrix expressions
A matrix expression consists of square brackets wrapped around a sequence of
comma separated row vector expressions. This syntax provides a way declare and
define a matrix in a single line, as follows.

matrix[3, 2] m1 = [[1, 2], [3, 4], [5, 6]];

Any expression denoting a row vector can be used in a matrix expression. For
example, the following code is valid:

vector[2] vX = [1, 10]';
row_vector[2] vY = [100, 1000];
matrix[3, 2] m2 = [vX', vY, [1, 2]];

Complex vector and matrix expressions
Complex vector expressions work the same way as real vector expressions. For
example, the following are all legal Stan expressions and assignments.

complex_vector[3] = [1 + 2i, 3 - 1.7i, 0]';
complex_row_vector[2] = [12, -2i];
complex_matrix[2, 3] = [[1 + 2i, 3 - 1.7i, 0],

[3.9 - 1.234i, 176i, 1 + 1i]];

50 CHAPTER 6. EXPRESSIONS

No empty vector or matrix expressions
The empty expression [] is ambiguous and therefore is not allowed and similarly
expressions such as [[]] or [[], []] are not allowed.

Empty vectors and matrices
If needed, it is possible to create an empty vector with

rep_vector(e, 0)

where the first expression e needs to scalar of type real.

If needed, it is possible to create an empty matrix with

rep_matrix(e, 0, 0)

where the first expression e needs to scalar of type real.

Array expressions
Curly braces may be wrapped around a sequence of expressions to produce an array
expression. For example, the expression { 1, 10, 100 } denotes an integer array
of three elements with values 1, 10, and 100. This syntax is particularly convenient
to define small arrays in a single line, as follows.

array[3] int a = { 1, 10, 100 };

The values may be compound expressions, so it is legal to write { 2 * 3, 1 + 4
}. It is also possible to write two dimensional arrays directly, as in the following
example.

array[2, 3] int b = { { 1, 2, 3 }, { 4, 5, 6 } };

This way, b[1] is { 1, 2, 3 } and b[2] is { 4, 5, 6 }.

Whitespace is always interchangeable in Stan, so the above can be laid out as
follows to more clearly indicate the row and column structure of the resulting two
dimensional array.

array[2, 3] int b = { { 1, 2, 3 },
{ 4, 5, 6 } };

Empty arrays
The empty array expression ({ }) is not allowed. See more about restrictions on
array expressions in subsection Restrictions on values.

If needed, it is possible to create an empty array with

6.3. CONTAINER EXPRESSIONS 51

rep_array(e, 0)

where the first expression e determines the type of the array. For exam-
ple, rep_array(0.0, 0) returns an empty real array of type real[], whereas
rep_array({123}, 0) returns an empty two dimensional integer array of type
int[,]. Only the type of the first argument is used, so the integer arrays {123}
and {0} produce equivalent values.

Array expression types
Any type of expression may be used within braces to form an array expression. In
the simplest case, all of the elements will be of the same type and the result will be
an array of elements of that type. For example, the elements of the array can be
vectors, in which case the result is an array of vectors.

vector[3] b;
vector[3] c;
// ...
array[2] vector[3] d = { b, c };

The elements may also be a mixture of int and real typed expressions, in which
case the result is an array of real values.

array[2] real b = { 1, 1.9 };

Tuple expressions and types
Stan uses parentheses around a comma-separated sequence of expressions to con-
struct a tuple. For example, we can construct a 2-tuple as follows.

tuple(int, vector[3]) xy = (42, [1, 2.9, -1.3]');

The expression 42 is of type int and the expression [1, 2.9, -1.3] is of type
row_vector so that [1, 2.9, -1.3]' is of type vector and of size 3. The whole
tuple expression (42, [1, 2.9, -1.3]') thus has a sized type of tuple(int,
vector[3]) and an unsized type (e.g., for a function argument) of tuple(int,
vector).

Stan does not support the Python notation with trailing commas, such as (1, 2,
3,) for a 3-tuple.

Restrictions on values
There are some restrictions on how array expressions may be used that arise from
their types being calculated bottom up and the basic data type and assignment
rules of Stan.

52 CHAPTER 6. EXPRESSIONS

Rectangular array expressions only
Although it is tempting to try to define a ragged array expression, all Stan data
types are rectangular (or boxes or other higher-dimensional generalizations). Thus
the following nested array expression will cause an error when it tries to create a
non-rectangular array.

{ { 1, 2, 3 }, { 4, 5 } } // compile time error: size mismatch

This may appear to be OK, because it is creating a two-dimensional integer array
(array[,] int) out of two one-dimensional array integer arrays (array[] int).
But it is not allowed because the two one-dimensional arrays are not the same size.
If the elements are array expressions, this can be diagnosed at compile time. If one
or both expressions is a variable, then that won’t be caught until runtime.

{ { 1, 2, 3 }, m } // runtime error if m not size 3

No empty array expressions
Because there is no way to infer the type of the result, the empty array expression ({
}) is not allowed. This does not sacrifice expressive power, because a declaration is
sufficient to initialize a zero-element array.

array[0] int a; // a is fully defined as zero element array

No zero-tuples or one-tuples
There is no way to declare or construct a zero-tuple or one-tuple in Stan. Tuples
must be at least two elements long. The expression () does not pick out a zero-
tuple—it is ill formed. Similarly, the expression (1) is of type int rather than a
tuple.

6.4. Parentheses for grouping
Any expression wrapped in parentheses is also an expression. Like in C++, but
unlike in R, only the round parentheses, (and), are allowed. The square brackets
[and] are reserved for array indexing and the curly braces { and } for grouping
statements.

With parentheses it is possible to explicitly group subexpressions with operators.
Without parentheses, the expression 1 + 2 * 3 has a subexpression 2 * 3 and
evaluates to 7. With parentheses, this grouping may be made explicit with the
expression 1 + (2 * 3). More importantly, the expression (1 + 2) * 3 has 1
+ 2 as a subexpression and evaluates to 9.

6.5. ARITHMETIC AND MATRIX OPERATIONS ON EXPRESSIONS 53

6.5. Arithmetic and matrix operations on expressions
For integer and real-valued expressions, Stan supports the basic binary arithmetic
operations of addition (+), subtraction (-), multiplication (*) and division (/) in the
usual ways.

For integer expressions, Stan supports the modulus (%) binary arithmetic operation.
Stan also supports the unary operation of negation for integer and real-valued
expressions. For example, assuming n and m are integer variables and x and y real
variables, the following expressions are legal.
3.0 + 0.14
-15
2 * 3 + 1
(x - y) / 2.0
(n * (n + 1)) / 2
x / n
m % n

The negation, addition, subtraction, and multiplication operations are extended
to matrices, vectors, and row vectors. The transpose operation, written using an
apostrophe (') is also supported for vectors, row vectors, and matrices. Return
types for matrix operations are the smallest types that can be statically guaranteed
to contain the result. The full set of allowable input types and corresponding return
types is detailed in the list of functions.

For example, if y and mu are variables of type vector and Sigma is a variable of
type matrix, then (y - mu)' * Sigma * (y - mu) is a well-formed expression
of type real. The type of the complete expression is inferred working outward
from the subexpressions. The subexpression(s) y - mu are of type vector because
the variables y and mu are of type vector. The transpose of this expression, the
subexpression (y - mu)' is of type row_vector. Multiplication is left associative
and transpose has higher precedence than multiplication, so the above expression
is equivalent to the following fully specified form (((y - mu)') * Sigma) * (y
- mu).

The type of subexpression (y - mu)' * Sigma is inferred to be row_vector, being
the result of multiplying a row vector by a matrix. The whole expression’s type is
thus the type of a row vector multiplied by a (column) vector, which produces a
real value.

Stan provides elementwise matrix multiplication (e.g., a .* b) and division (e.g., a
./ b) operations. These provide a shorthand to replace loops, but are not intrinsi-

54 CHAPTER 6. EXPRESSIONS

cally more efficient than a version programmed with an elementwise calculations
and assignments in a loop. For example, given declarations,

vector[N] a;
vector[N] b;
vector[N] c;

the assignment,

c = a .* b;

produces the same result with roughly the same efficiency as the loop

for (n in 1:N) {
c[n] = a[n] * b[n];

}

Stan supports exponentiation (ˆ) of integer and real-valued expressions. The return
type of exponentiation is always a real-value. For example, assuming n and m are
integer variables and x and y real variables, the following expressions are legal.

3 ˆ 2
3.0 ˆ -2
3.0 ˆ 0.14
x ˆ n
n ˆ x
n ˆ m
x ˆ y

Exponentiation is right associative, so the expression 2 ˆ 3 ˆ 4 is equivalent to
the fully specified form 2 ˆ (3 ˆ 4).

Operator precedence and associativity
The precedence and associativity of operators, as well as built-in syntax such as
array indexing and function application is given in tabular form in the following
table.

Operator Precedence Table Stan’s unary, binary, and ternary operators, with their
precedences, associativities, place in an expression, and a description. The last two lines
list the precedence of function application and array, matrix, and vector indexing. The
operators are listed in order of precedence, from least tightly binding to most tightly
binding. The full set of legal arguments and corresponding result types are provided in
the function documentation for the operators (i.e., operator*(int, int):int indicates

6.5. ARITHMETIC AND MATRIX OPERATIONS ON EXPRESSIONS 55

the application of the multiplication operator to two integers, which returns an integer).
Parentheses may be used to group expressions explicitly rather than relying on precedence
and associativity.

Op. Prec. Assoc. Placement Description

? ~ : 10 right ternary infix conditional
|| 9 left binary infix logical or
&& 8 left binary infix logical and
== 7 left binary infix equality
!= 7 left binary infix inequality
< 6 left binary infix less than
<= 6 left binary infix less than or equal
> 6 left binary infix greater than
>= 6 left binary infix greater than or equal
+ 5 left binary infix addition
- 5 left binary infix subtraction
* 4 left binary infix multiplication
.* 4 left binary infix elementwise multiplication
/ 4 left binary infix (right) division
./ 4 left binary infix elementwise division
% 4 left binary infix modulus
\ 3 left binary infix left division
%/% 3 left binary infix integer division
! 2 n/a unary prefix logical negation
- 2 n/a unary prefix negation
+ 2 n/a unary prefix promotion (no-op in Stan)
ˆ 1 right binary infix exponentiation
.ˆ 1 right binary infix elementwise exponentiation
' 0 n/a unary postfix transposition
() 0 n/a prefix, wrap function application
[] 0 left prefix, wrap array, matrix indexing

Other expression-forming operations, such as function application and subscripting
bind more tightly than any of the arithmetic operations.

The precedence and associativity determine how expressions are interpreted. Be-
cause addition is left associative, the expression a + b + c is interpreted as (a +
b) + c. Similarly, a / b * c is interpreted as (a / b) * c.

56 CHAPTER 6. EXPRESSIONS

Because multiplication has higher precedence than addition, the expression a *
b + c is interpreted as (a * b) + c and the expression a + b * c is interpreted
as a + (b * c). Similarly, 2 * x + 3 * - y is interpreted as (2 * x) + (3 *
(-y)).

Transposition and exponentiation bind more tightly than any other arithmetic or
logical operation. For vectors, row vectors, and matrices, -u' is interpreted as
-(u'), u * v' as u* (v'), and u' * v as (u') * v. For integer and reals, -n ˆ 3
is interpreted as -(n ˆ 3).

6.6. Conditional operator
Conditional operator syntax
The ternary conditional operator is unique in that it takes three arguments and uses
a mixed syntax. If a is an expression of type int and b and c are expressions that
can be converted to one another (e.g., compared with ==), then

a ? b : c

is an expression of the promoted type of b and c. The only promotion allowed in
Stan is integer -> real -> complex; e.g. if one argument is of type int and the other
of type real, the conditional expression as a whole is of type real. In other cases,
the arguments have to be of the same underlying Stan type (i.e., constraints don’t
count, only the shape) and the conditional expression is of that type.

Conditional operator precedence
The conditional operator is the most loosely binding operator, so its arguments
rarely require parentheses for disambiguation. For example,

a > 0 || b < 0 ? c + d : e - f

is equivalent to the explicitly grouped version

(a > 0 || b < 0) ? (c + d) : (e - f)

The latter is easier to read even if the parentheses are not strictly necessary.

Conditional operator associativity
The conditional operator is right associative, so that

a ? b : c ? d : e

parses as if explicitly grouped as

6.6. CONDITIONAL OPERATOR 57

a ? b : (c ? d : e)

Again, the explicitly grouped version is easier to read.

Conditional operator semantics
Stan’s conditional operator works very much like its C++ analogue. The first
argument must be an expression denoting an integer. Typically this is a variable or
a relation operator, as in the variable a in the example above. Then there are two
resulting arguments, the first being the result returned if the condition evaluates to
true (i.e., non-zero) and the second if the condition evaluates to false (i.e., zero). In
the example above, the value b is returned if the condition evaluates to a non-zero
value and c is returned if the condition evaluates to zero.

Lazy evaluation of results
The key property of the conditional operator that makes it so useful in high-
performance computing is that it only evaluates the returned subexpression, not the
alternative expression. In other words, it is not like a typical function that evaluates
its argument expressions eagerly in order to pass their values to the function. As
usual, the saving is mostly in the derivatives that do not get computed rather than
the unnecessary function evaluation itself.

Promotion to parameter
If one return expression is a data value (an expression involving only constants and
variables defined in the data or transformed data block), and the other is not, then
the ternary operator will promote the data value to a parameter value. This can
cause needless work calculating derivatives in some cases and be less efficient than
a full if-then conditional statement. For example,

data {
array[10] real x;
// ...

}
parameters {

array[10] real z;
// ...

}
model {

y ~ normal(cond ? x : z, sigma);
// ...

}

58 CHAPTER 6. EXPRESSIONS

would be more efficiently (if not more transparently) coded as

if (cond) {
y ~ normal(x, sigma);

} else {
y ~ normal(z, sigma);

}

The conditional statement, like the conditional operator, only evaluates one of the
result statements. In this case, the variable x will not be promoted to a parameter
and thus not cause any needless work to be carried out when propagating the chain
rule during derivative calculations.

6.7. Indexing
Stan arrays, matrices, vectors, and row vectors are all accessed using the same
array-like notation. For instance, if x is a variable of type array [] real (a one-
dimensional array of reals) then x[1] is the value of the first element of the array.

Subscripting has higher precedence than any of the arithmetic operations. For
example, alpha * x[1] is equivalent to alpha * (x[1]).

Multiple subscripts may be provided within a single pair of square brackets. If x is
of type array[,] real, a two-dimensional array, then x[2, 501] is of type real.

Accessing subarrays
The subscripting operator also returns subarrays of arrays. For example, if x is of
type array[„] real, then x[2] is of type array[,] real, and x[2, 3] is of type
array[] real. As a result, the expressions x[2, 3] and x[2][3] have the same
meaning.

Accessing matrix rows
If Sigma is a variable of type matrix, then Sigma[1] denotes the first row of Sigma
and has the type row_vector.

Mixing array and vector/matrix indexes
Stan supports mixed indexing of arrays and their vector, row vector or matrix values.
For example, if m is of type matrix[,], a two-dimensional array of matrices, then
m[1] refers to the first row of the array, which is a one-dimensional array of matrices.
More than one index may be used, so that m[1, 2] is of type matrix and denotes
the matrix in the first row and second column of the array. Continuing to add
indices, m[1, 2, 3] is of type row_vector and denotes the third row of the matrix
denoted by m[1, 2]. Finally, m[1, 2, 3, 4] is of type real and denotes the value

6.8. MULTIPLE INDEXING AND RANGE INDEXING 59

in the third row and fourth column of the matrix that is found at the first row and
second column of the array m.

6.8. Multiple indexing and range indexing
In addition to single integer indexes, as described in the language indexing section,
Stan supports multiple indexing. Multiple indexes can be integer arrays of indexes,
lower bounds, upper bounds, lower and upper bounds, or simply shorthand for
all of the indexes. If the upper bound is smaller than the lower bound, the range is
empty (unlike, e.g., in R). The upper bound and lower bound can be expressions
that evaluate to integer. A complete list of index types is given in the following
table.

Indexing Options Table Types of indexes and examples with one-dimensional contain-
ers of size N and an integer array ii of type array [] real size K.

index type example value

integer a[11] value of a at index 11
integer array a[ii] a[ii[1]], . . . , a[ii[K]]
lower bound a[3:] a[3], . . . , a[N]
upper bound a[:5] a[1], . . . , a[5]

range a[2:7] a[2], . . . , a[7]
range a[7:2] []
range a[5-3:5+2] a[2], . . . , a[7]

all a[:] a[1], . . . , a[N]
all a[] a[1], . . . , a[N]

The range indexing with : allows only increasing sequences. Indexing with a
decereasing sequence can be made by creating an integer array in the following
way:

array[6] int ii = reverse(linspaced_int_array(6, 2, 7));

Then a[ii] evaluates to a[7], . . . , a[2].

Multiple index semantics
The fundamental semantic rule for dealing with multiple indexes is the following.
If idxs is a multiple index, then it produces an indexable position in the result. To
evaluate that index position in the result, the index is first passed to the multiple
index, and the resulting index used.

60 CHAPTER 6. EXPRESSIONS

a[idxs, ...][i, ...] = a[idxs[i], ...][...]

On the other hand, if idx is a single index, it reduces the dimensionality of the
output, so that

a[idx, ...] = a[idx][...]

The only issue is what happens with matrices and vectors. Vectors work just like
arrays. Matrices with multiple row indexes and multiple column indexes produce
matrices. Matrices with multiple row indexes and a single column index become
(column) vectors. Matrices with a single row index and multiple column indexes
become row vectors. The types are summarized in the following table.

Matrix Indexing Table Special rules for reducing matrices based on whether the argu-
ment is a single or multiple index. Examples are for a matrix a, with integer single indexes
i and j and integer array multiple indexes is and js. The same typing rules apply for all
multiple indexes.

example row index column index result type

a[i] single n/a row vector
a[is] multiple n/a matrix

a[i, j] single single real
a[i, js] single multiple row vector
a[is, j] multiple single vector
a[is, js] multiple multiple matrix

Evaluation of matrices with multiple indexes is defined to respect the following
distributivity conditions.

m[idxs1, idxs2][i, j] = m[idxs1[i], idxs2[j]]
m[idxs, idx][j] = m[idxs[j], idx]
m[idx, idxs][j] = m[idx, idxs[j]]

Evaluation of arrays of matrices and arrays of vectors or row vectors is defined
recursively, beginning with the array dimensions.

6.9. Function application
Stan provides a range of built in mathematical and statistical functions, which are
documented in the built-in function documentation.

6.9. FUNCTION APPLICATION 61

Expressions in Stan may consist of the name of function followed by a sequence
of zero or more argument expressions. For instance, log(2.0) is the expression of
type real denoting the result of applying the natural logarithm to the value of the
real literal 2.0.

Syntactically, function application has higher precedence than any of the other
operators, so that y + log(x) is interpreted as y + (log(x)).

Type signatures and result type inference
Each function has a type signature which determines the allowable type of its
arguments and its return type. For instance, the function signature for the logarithm
function can be expressed as

real log(real);

and the signature for the lmultiply function is

real lmultiply(real, real);

A function is uniquely determined by its name and its sequence of argument types.
For instance, the following two functions are different functions.

real mean(array [] real);

real mean(vector);

The first applies to a one-dimensional array of real values and the second to a vector.

The identity conditions for functions explicitly forbids having two functions with
the same name and argument types but different return types. This restriction also
makes it possible to infer the type of a function expression compositionally by only
examining the type of its subexpressions.

Constants
Constants in Stan are nothing more than nullary (no-argument) functions. For
instance, the mathematical constants π and e are represented as nullary functions
named pi() and e(). See the Stan Functions Reference built-in constants section
for a list of built-in constants.

Type promotion and function resolution
Because of integer to real type promotion, rules must be established for which
function is called given a sequence of argument types. The scheme employed by
Stan is the same as that used by C++, which resolves a function call to the function
requiring the minimum number of type promotions.

https://mc-stan.org/docs/functions-reference/real-valued_basic_functions.html#built-in-constants

62 CHAPTER 6. EXPRESSIONS

For example, consider a situation in which the following two function signatures
have been registered for foo.

real foo(real, real);
int foo(int, int);

The use of foo in the expression foo(1.0, 1.0) resolves to foo(real, real), and
thus the expression foo(1.0, 1.0) itself is assigned a type of real.

Because integers may be promoted to real values, the expression foo(1, 1) could
potentially match either foo(real, real) or foo(int, int). The former requires
two type promotions and the latter requires none, so foo(1, 1) is resolved to
function foo(int, int) and is thus assigned the type int.

The expression foo(1, 1.0) has argument types (int, real) and thus does not
explicitly match either function signature. By promoting the integer expression 1 to
type real, it is able to match foo(real, real), and hence the type of the function
expression foo(1, 1.0) is real.

In some cases (though not for any built-in Stan functions), a situation may arise in
which the function referred to by an expression remains ambiguous. For example,
consider a situation in which there are exactly two functions named bar with the
following signatures.

real bar(real, int);
real bar(int, real);

With these signatures, the expression bar(1.0, 1) and bar(1, 1.0) resolve to
the first and second of the above functions, respectively. The expression bar(1.0,
1.0) is illegal because real values may not be demoted to integers. The expression
bar(1, 1) is illegal for a different reason. If the first argument is promoted to a real
value, it matches the first signature, whereas if the second argument is promoted to
a real value, it matches the second signature. The problem is that these both require
one promotion, so the function name bar is ambiguous. If there is not a unique
function requiring fewer promotions than all others, as with bar(1, 1) given the
two declarations above, the Stan compiler will flag the expression as illegal.

Random-number generating functions
For most of the distributions supported by Stan, there is a corresponding random-
number generating function. These random number generators are named by the
distribution with the suffix _rng. For example, a univariate normal random number
can be generated by normal_rng(0, 1); only the parameters of the distribution,
here a location (0) and scale (1) are specified because the variate is generated.

6.10. TYPE INFERENCE 63

Random-number generators locations
The use of random-number generating functions is restricted to the transformed
data and generated quantities blocks; attempts to use them elsewhere will result in
a parsing error with a diagnostic message. They may also be used in the bodies of
user-defined functions whose names end in _rng.

This allows the random number generating functions to be used for simulation in
general, and for Bayesian posterior predictive checking in particular.

Posterior predictive checking
Posterior predictive checks typically use the parameters of the model to generate
simulated data (at the individual and optionally at the group level for hierarchical
models), which can then be compared informally using plots and formally by means
of test statistics, to the actual data in order to assess the suitability of the model;
see Chapter 6 of (Gelman et al. 2013) for more information on posterior predictive
checks.

6.10. Type inference
Stan is strongly statically typed, meaning that the implementation type of an ex-
pression can be resolved at compile time.

Implementation types
The primitive implementation types for Stan are

int, real, complex, vector, row_vector, matrix, complex_vector,
complex_row_vector, complex_matrix

Every basic declared type corresponds to a primitive type; the following table shows
the mapping from types to their primitive types.

Primitive Type Table The table shows the variable declaration types of Stan and their
corresponding primitive implementation type. Stan functions, operators, and probability
functions have argument and result types declared in terms of primitive types plus array
dimensionality.

type primitive type

int int
real real
vector vector
simplex vector
unit_vector vector

64 CHAPTER 6. EXPRESSIONS

type primitive type

sum_to_zero_vector vector
ordered vector
positive_ordered vector
row_vector row_vector
matrix matrix
cov_matrix matrix
corr_matrix matrix
cholesky_factor_cov matrix
cholesky_factor_corr matrix
column_stochastic_matrix matrix
row_stochastic_matrix matrix
complex_vector complex_vector
complex_row_vector complex_row_vector
complex_matrix complex_matrix

A full implementation type consists of a primitive implementation type and an
integer array dimensionality greater than or equal to zero. These will be written
to emphasize their array-like nature. For example, array [] real has an array
dimensionality of 1, int an array dimensionality of 0, and array [„] int an array
dimensionality of 3. The implementation type matrix[, ,] has a total of five
dimensions and takes up to five indices, three from the array and two from the
matrix.

Recall that the array dimensions come before the matrix or vector dimensions in
an expression such as the following declaration of a three-dimensional array of
matrices.

array[I, J, K] matrix[M, N] a;

The matrix a is indexed as a[i, j, k, m, n] with the array indices first, followed
by the matrix indices, with a[i, j, k] being a matrix and a[i, j, k, m] being
a row vector.

Type inference rules
Stan’s type inference rules define the implementation type of an expression based
on a background set of variable declarations. The rules work bottom up from
primitive literal and variable expressions to complex expressions.

6.10. TYPE INFERENCE 65

Promotion
There are two basic promotion rules,

1. int types may be promoted to real, and
2. real types may be promoted to complex.

Plus, promotion is transitive, so that

3. if type U can be promoted to type V and type V can be promoted to type T,
then U can be promoted to T.

The first rule means that expressions of type int may be used anywhere an expres-
sion of type real is specified, namely in assignment or function argument passing.
An integer is promoted to real by casting it in the underlying C++ code.

The remaining rules have to do with covariant typing rules, which say that a
container of type U may be promoted to a container of the same shape of type T if U
can be promoted to T. For vector and matrix types, this induces three rules,

4. vector may be promoted to complex_vector,
5. row_vector may be promoted to complex_row_vector
6. matrix may be promoted to complex_matrix.

For array types, there’s a single rule

7. array[...] U may be promoted to array[...] T if U can be promoted to T.

For example, this means array[,] int may be used where array [,] real or
array [,] complex is required; as another example, array[] real may be used
anywhere array[] complex is required.

Tuples have the natural extension of the above rules, applied to all sub-types at
once

8. A tuple(U1, ..., UN) may be promoted to a tuple(T1, ..., TN) if every
Un can be promoted to Tn for n in 1:N

Literals
An integer literal expression such as 42 is of type int. Real literals such as 42.0 are
of type real. Imaginary literals such as -17i are of type complex. the expression 7
- 2i acts like a complex literal, but technically it combines a real literal 7 and an
imaginary literal 2i through subtraction.

Variables
The type of a variable declared locally or in a previous block is determined by its
declaration. The type of a loop variable is int.

66 CHAPTER 6. EXPRESSIONS

There is always a unique declaration for each variable in each scope because Stan
prohibits the redeclaration of an already-declared variables.1

Indexing
If x is an expression of total dimensionality greater than or equal to N, then the type
of expression e[i1, i2, ..., iN] is the same as that of e[i1][i2]...[iN], so it
suffices to define the type of a singly-indexed function. Suppose e is an expression
and i is an expression of primitive type int. Then

• if e is an expression of type array[i1, i2, ..., iN] T and k, i1, . . . , iN
are expressions of type int, then e[k] is an expression of type array[i2,
..., iN] T,

• if e is an expression of type array[i] T with i and k expressions of type int,
then e[k] is of type T,

• if e has implementation type vector or row_vector, dimensionality 0, then
e[i] has implementation type real,

• if e has implementation type matrix, then e[i] has type row_vector,
• if e has implementation type complex_vector or complex_row_vector and

i is an expression of type int, then e[i] is an expression of type complex,
and

• if e has implementation type complex_matrix, and i is an expression of type
int, then e[i] is an expression of type complex_row_vector.

Function application
If f is the name of a function and e1,...,eN are expressions for N ≥ 0, then
f(e1,...,eN) is an expression whose type is determined by the return type in the
function signature for f given e1 through eN. Recall that a function signature is a
declaration of the argument types and the result type.

In looking up functions, binary operators like real * real are defined as opera-
tor*(real, real) in the documentation and index.

In matching a function definition, all of the promotion rules are in play (integers
may be promoted to reals, reals to complex, and containers may be promoted if their
types are promoted). For example, arguments of type int may be promoted to type
real or complex if necessary (see the subsection on type promotion in the function
application section, a real argument will be promoted to complex if necessary, a
vector will be promoted to complex_vector if necessary, and so on.

In general, matrix operations return the lowest inferable type. For example,

1Languages such as C++ and R allow the declaration of a variable of a given name in a narrower
scope to hide (take precedence over for evaluation) a variable defined in a containing scope.

6.11. HIGHER-ORDER FUNCTIONS 67

row_vector * vector returns a value of type real, which is declared in the func-
tion documentation and index as real operator*(row_vector, vector).

6.11. Higher-order functions
There are several expression constructions in Stan that act as higher-order func-
tions.2

The higher-order functions and the signature of their argument functions are listed
in the following pair of tables.

Higher-order Functions Table Higher-order functions in Stan with their argument
function types. The first group of arguments can be a function of parameters or data. The
second group of arguments, consisting of a real and integer array in all cases, must be
expressions involving only data and literals.

function parameter or data args data args
return
type

algebra_solver vector, vector array [] real,
array [] real

vector

algebra_solver_newtonvector, vector array [] real,
array [] real

vector

integrate_1d, real, real, array []
real

array [] real,
array [] real

real

integrate_ode_X, real, array [] real,
array [] real

array [] real,
array [] real

array []
real

map_rect vector, vector array [] real,
array [] real

vector

For example, the integrate_ode_rk45 function can be used to integrate differential
equations in Stan:

functions {
array [] real foo(real t,

array [] real y,
array [] real theta,
array [] real x_r,

2Internally, they are implemented as their own expression types because Stan doesn’t have object-level
functional types (yet).

68 CHAPTER 6. EXPRESSIONS

array [] real x_i) {
// ...

}
}
// ...
int<lower=1> T;
array[2] real y0;
real t0;
array[T] real ts;
array[1] real theta;
array[0] real x_r;
array[0] int x_i;
// ...
array[T, 2] real y_hat = integrate_ode_rk45(foo, y0, t0,

ts, theta, x_r, x_i);

The function argument is foo, the name of the user-defined function; as shown
in the higher-order functions table, integrate_ode_rk45 takes a real array, a real,
three more real arrays, and an integer array as arguments and returns 2D real array.

Variadic Higher-order Functions Table Variadic Higher-order functions in Stan with
their argument function types. The first group of arguments are restricted in type. The
sequence of trailing arguments can be of any length with any types.

function restricted args return type

solve_X vector vector
ode_X, vector, real, array [] real vector[]

reduce_sum array[] T, T1, T2 real

T, T1, and T2 can be any Stan type.

For example, the ode_rk45 function can be used to integrate differential equations
in Stan:

functions {
vector foo(real t, vector y, real theta, vector beta,

array [] real x_i, int index) {
// ...

6.12. CHAIN RULE AND DERIVATIVES 69

}
}
// ...
int<lower=1> T;
vector[2] y0;
real t0;
array[T] real ts;
real theta;
vector[7] beta;
array[10] int x_i;
int index;
// ...
vector[2] y_hat[T] = ode_rk45(foo, y0, t0, ts, theta,

beta, x_i, index);

The function argument is foo, the name of the user-defined function. As shown in
the variadic higher-order functions table, ode_rk45 takes a real, a vector, a real, a
real array, and a sequence of arguments whose types match those at the end of foo
and returns an array of vectors.

Functions passed by reference
The function argument to higher-order functions is always passed as the first
argument. This function argument must be provided as the name of a user-defined
or built-in function. No quotes are necessary.

Data-restricted arguments
Some of the arguments to higher-order functions are restricted to data. This means
they must be expressions containing only data variables, transformed data variables,
or literals; the may contain arbitrary functions applied to data variables or literals,
but must not contain parameters, transformed parameters, or local variables from
any block other than transformed data.

For user-defined functions the qualifier data may be prepended to the type to
restrict the argument to data-only variables.

6.12. Chain rule and derivatives
Derivatives of the log probability function defined by a model are used in several
ways by Stan. The Hamiltonian Monte Carlo samplers, including NUTS, use
gradients to guide updates. The BFGS optimizers also use gradients to guide search
for posterior modes.

70 CHAPTER 6. EXPRESSIONS

Errors due to chain rule
Unlike evaluations in pure mathematics, evaluation of derivatives in Stan is done
by applying the chain rule on an expression-by-expression basis, evaluating using
floating-point arithmetic. As a result, models such as the following are problematic
for inference involving derivatives.

parameters {
real x;

}
model {

x ~ normal(sqrt(x - x), 1);
}

Algebraically, the distribution statement in the model could be reduced to

x ~ normal(0, 1);

and it would seem the model should produce unit normal draws for x. But rather
than canceling, the expression sqrt(x - x) causes a problem for derivatives.
The cause is the mechanistic evaluation of the chain rule,

d
dx
√

x− x = 1
2
√

x−x ×
d

dx (x− x)

= 1
0 × (1− 1)

= ∞× 0

= NaN.

Rather than the x − x canceling out, it introduces a 0 into the numerator and
denominator of the chain-rule evaluation.

The only way to avoid this kind problem is to be careful to do the necessary algebraic
reductions as part of the model and not introduce expressions like sqrt(x - x)
for which the chain rule produces not-a-number values.

Diagnosing problems with derivatives
The best way to diagnose whether something is going wrong with the derivatives
is to use the test-gradient option to the sampler or optimizer inputs; this option is
available in both Stan and RStan (though it may be slow, because it relies on finite
differences to make a comparison to the built-in automatic differentiation).

For example, compiling the above model to an executable sqrt-x-minus-x in
CmdStan, the test can be run as

6.12. CHAIN RULE AND DERIVATIVES 71

> ./sqrt-x-minus-x diagnose test=gradient

which produces

...
TEST GRADIENT MODE

Log probability=-0.393734

param idx value model finite diff error
0 -0.887393 nan 0 nan

Even though finite differences calculates the right gradient of 0, automatic differen-
tiation follows the chain rule and produces a not-a-number output.

7. Statements

The blocks of a Stan program are made up of variable declarations and statements;
see the blocks chapter for details. Unlike programs in BUGS, the declarations and
statements making up a Stan program are executed in the order in which they are
written. Variables must be defined to have some value (as well as declared to have
some type) before they are used — if they do not, the behavior is undefined.

The basis of Stan’s execution is the evaluation of a log probability function (specifi-
cally, a log probability density function) for a given set of (real-valued) parameters.
Log probability functions can be constructed by using distribution statements and
log probability increment statements. Statements may be grouped into sequences
and into for-each loops. In addition, Stan allows local variables to be declared in
blocks and also allows an empty statement consisting only of a semicolon.

7.1. Statement block contexts
The data and parameters blocks do not allow statements of any kind because these
blocks are solely used to declare the data variables for input and the parameter
variables for sampling. All other blocks allow statements. In these blocks, both
variable declarations and statements are allowed. All top-level variables in a block
are considered block variables. See the blocks chapter for more information about
the block structure of Stan programs.

7.2. Assignment statements
An assignment statement consists of a variable (possibly multivariate with indexing
information) and an expression. Executing an assignment statement evaluates the
expression on the right-hand side and assigns it to the (indexed) variable on the
left-hand side. An example of a simple assignment is as follows.
n = 0;

Executing this statement assigns the value of the expression 0, which is the integer
zero, to the variable n. For an assignment to be well formed, the type of the expres-
sion on the right-hand side should be compatible with the type of the (indexed)
variable on the left-hand side. For the above example, because 0 is an expression of
type int, the variable n must be declared as being of type int or of type real. If
the variable is of type real, the integer zero is promoted to a floating-point zero

72

blocks.qmd
blocks.qmd

7.2. ASSIGNMENT STATEMENTS 73

and assigned to the variable. After the assignment statement executes, the variable
n will have the value zero (either as an integer or a floating-point value, depending
on its type).

Syntactically, every assignment statement must be followed by a semicolon. Oth-
erwise, whitespace between the tokens does not matter (the tokens here being
the left-hand-side (indexed) variable, the assignment operator, the right-hand-side
expression and the semicolon).

Because the right-hand side is evaluated first, it is possible to increment a variable
in Stan just as in C++ and other programming languages by writing
n = n + 1;

Such self assignments are not allowed in BUGS, because they induce a cycle into
the directed graphical model.

The left-hand side of an assignment may contain indices for array, matrix, or vector
data structures. For instance, if Sigma is of type matrix, then

Sigma[1, 1] = 1.0;

sets the value in the first column of the first row of Sigma to one.

Assignments to subcomponents of larger multi-variate data structures are supported
by Stan. For example, a is an array of type array[,] real and b is an array of type
array[] real, then the following two statements are both well-formed.

a[3] = b;
b = a[4];

Similarly, if x is a variable declared to have type row_vector and Y is a variable
declared as type matrix, then the following sequence of statements to swap the
first two rows of Y is well formed.

x = Y[1];
Y[1] = Y[2];
Y[2] = x;

Promotion
Stan allows assignment of lower types to higher types, but not vice-versa. That is,
we can assign an expression of type int to an lvalue of type real, and we can assign
an expression of type real to an lvalue of type complex. Furthermore, promotion
is transitive, so that we can assign an expression of type int to an lvalue of type

74 CHAPTER 7. STATEMENTS

complex.

Promotion extends to containers, so that arrays of int can be promoted to arrays of
real during assignment, and arrays of real can be assigned to an lvalue of type
array of complex. Similarly, an expression of type vector may be assigned to an
lvalue of type complex_vector, and similarly for row vectors and matrices.

Lvalue summary
The expressions that are legal left-hand sides of assignment statements are known
as “lvalues.” In Stan, there are three kinds of legal lvalues,

• a variable, or
• a variable with one or more indices, or
• a comma separated list of lvalues surrounded by (and)

To be used as an lvalue, an indexed variable must have at least as many dimensions
as the number of indices provided. An array of real or integer types has as many
dimensions as it is declared for. A matrix has two dimensions and a vector or row
vector one dimension; this also holds for the constrained types, covariance and
correlation matrices and their Cholesky factors and ordered, positive ordered, and
simplex vectors. An array of matrices has two more dimensions than the array and
an array of vectors or row vectors has one more dimension than the array. Note that
the number of indices can be less than the number of dimensions of the variable,
meaning that the right hand side must itself be multidimensional to match the
remaining dimensions.

Multiple indexes
Multiple indexes, as described in the multi-indexing section, are also permitted
on the left-hand side of assignments. Indexing on the left side works exactly as it
does for expressions, with multiple indexes preserving index positions and single
indexes reducing them. The type on the left side must still match the type on the
right side.

Aliasing
All assignment is carried out as if the right-hand side is copied before the assignment.
This resolves any potential aliasing issues arising from he right-hand side changing
in the middle of an assignment statement’s execution.

Compound arithmetic and assignment statement
Stan’s arithmetic operators may be used in compound arithmetic and assignment
operations. For example, consider the following example of compound addition
and assignment.

7.2. ASSIGNMENT STATEMENTS 75

real x = 5;
x += 7; // value of x is now 12

The compound arithmetic and assignment statement above is equivalent to the
following long form.
x = x + 7;

In general, the compound form
x op= y

will be equivalent to
x = x op y;

The compound statement will be legal whenever the long form is legal. This
requires that the operation x op y must itself be well formed and that the result of
the operation be assignable to x. For the expression x to be assignable, it must be an
indexed variable where the variable is defined in the current block. For example,
the following compound addition and assignment statement will increment a single
element of a vector by two.

vector[N] x;
x[3] += 2;

As a further example, consider

matrix[M, M] x;
vector[M] y;
real z;
x *= x; // OK, (x * x) is a matrix
x *= z; // OK, (x * z) is a matrix
x *= y; // BAD, (x * y) is a vector

The supported compound arithmetic and assignment operations are listed in the
compound arithmetic/assignment table; they are also listed in the index prefaced
by operator, e.g., operator+=.

Compound Arithmetic/Assignment Table. Stan allows compound arithmetic and
assignment statements of the forms listed in the table. The compound form is legal whenever
the corresponding long form would be legal and it has the same effect.

76 CHAPTER 7. STATEMENTS

operation compound unfolded

addition x += y x = x + y
subtraction x -= y x = x - y
multiplication x *= y x = x * y
division x /= y x = x / y
elementwise multiplication x .*= y x = x .* y
elementwise division x ./= y x = x ./ y

7.3. Increment log density
The basis of Stan’s execution is the evaluation of a log probability function (specifi-
cally, a log probability density function) for a given set of (real-valued) parameters;
this function returns the log density of the posterior up to an additive constant.
Data and transformed data are fixed before the log density is evaluated. The total
log probability is initialized to zero. Next, any log Jacobian adjustments accrued
by the variable constraints are added to the log density (the Jacobian adjustment
may be skipped for maximum likelihood estimation via optimization). Distribution
statements and log probability increment statements may add to the log density in
the model block. A log probability increment statement directly increments the log
density with the value of an expression as follows.1

target += -0.5 * y * y;

The keyword target here is actually not a variable, and may not be accessed as
such (though see below on how to access the value of target through a special
function).

In this example, the unnormalized log probability of a unit normal variable y is
added to the total log probability. In the general case, the argument can be any
expression.2

An entire Stan model can be implemented this way. For instance, the following
model has a single variable according to a unit normal probability.

1The current notation replaces two previous versions. Originally, a variable lp__ was directly
exposed and manipulated; this is no longer allowed. The original statement syntax for target += u
was increment_log_prob(u), but this form was removed in Stan 2.33

2Writing this model with the expression -0.5 * y * y is more efficient than with the equivalent
expression y * y / -2 because multiplication is more efficient than division; in both cases, the negation
is rolled into the numeric literal (-0.5 and -2). Writing square(y) instead of y * y would be even more
efficient because the derivatives can be precomputed, reducing the memory and number of operations
required for automatic differentiation.

7.3. INCREMENT LOG DENSITY 77

parameters {
real y;

}
model {

target += -0.5 * y * y;
}

This model defines a log probability function

log p(y) = − y2

2
− log Z

where Z is a normalizing constant that does not depend on y. The constant Z is
conventionally written this way because on the linear scale,

p(y) =
1
Z

exp
(
−y2

2

)
.

which is typically written without reference to Z as

p(y) ∝ exp
(
−y2

2

)
.

Stan only requires models to be defined up to a constant that does not depend on
the parameters. This is convenient because often the normalizing constant Z is
either time-consuming to compute or intractable to evaluate.

Built in distributions
The built in distribution functions in Stan are all available in normalized and
unnormalized form. The normalized forms include all of the terms in the log
density, and the unnormalized forms drop terms which are not directly or indirectly
a function of the model parameters.

For instance, the normal_lpdf function returns the log density of a normal distri-
bution:

normal_lpdf(x|µ, σ) = − log
(

σ
√

2π
)
− 1

2

(
x− µ

σ

)2

The normal_lupdf function returns the log density of an unnormalized distribution.
With the unnormalized version of the function, Stan does not define what the nor-
malization constant will be, though usually as many terms as possible are dropped

78 CHAPTER 7. STATEMENTS

to make the calculation fast. Dropping a constant sigma term, normal_lupdf would
be equivalent to:

normal_lupdf(x|µ, σ) = −1
2

(
x− µ

σ

)2

All functions ending in _lpdf have a corresponding _lupdf version which evaluates
and returns the unnormalized density. The same is true for _lpmf and _lupmf.

Relation to compound addition and assignment
The increment log density statement looks syntactically like compound addition
and assignment (see the compound arithmetic/assignment section, it is treated as a
primitive statement because target is not itself a variable. So, even though

target += lp;

is a legal statement, the corresponding long form is not legal.

target = target + lp; // BAD, target is not a variable

Vectorization
The target += ... statement accepts an argument in place of ... for any expres-
sion type, including integers, reals, vectors, row vectors, matrices, and arrays of any
dimensionality, including arrays of vectors and matrices. For container arguments,
their sum will be added to the total log density.

7.4. Increment log density with a change of variables adjustment
A variant of the target += statement described above is the jacobian += state-
ment. This can be used in the transformed parameters block or in functions ending
with _jacobian to mimic the log Jacobian adjustments accrued by built-in variable
transforms.

Similarly to those implemented for the built-in transforms, these Jacobian adjust-
ment may be skipped for maximum likelihood estimation via optimization.

For example, here is a program which recreates the existing <upper=x> transform
on real numbers:

functions {
real upper_bound_jacobian(real x, real ub) {
jacobian += x;
return ub - exp(x);

7.5. SAMPLING STATEMENTS 79

}
}
data {

real ub;
}
parameters {

real b_raw;
}
transformed parameters {

real b = upper_bound_jacobian(b_raw, ub);
}
model {

// use b as if it was declared `real<upper=ub> b;` in parameters
// e.g.
// b ~ lognormal(0, 1);

}

Accessing the log density
To access the accumulated log density up to the current execution point, the function
target() may be used.

7.5. Sampling statements
The term “sampling statement” has been replaced with distribution statement.

7.6. Distribution statements
Stan supports writing probability statements also using distribution statements, for
example

y ~ normal(mu, sigma);
mu ~ normal(0, 10);
sigma ~ normal(0, 1);

The symbol ∼ is called tilde. Due to historical reasons, the distribution statements
used to be called “sampling statements” in Stan, but that term is not recommended
anymore as it is a less accurate description.

In general, we can read ∼ as “is distributed as,” and overall this notation is used as
a shorthand for defining distributions, so that the above example can be written

80 CHAPTER 7. STATEMENTS

also as
p(y|µ, σ) = normal(y|µ, σ)

p(µ) = normal(µ|0, 10)

p(σ) = normal+(σ|0, 1).

A collection of distribution statements define a joint distribution as the product of
component distributions

p(y, µ, σ) = p(y|µ, σ)p(µ)p(σ).

This works even if the model is not constructed generatively. For example, suppose
you include the following code in a Stan model:

a ~ normal(0, 1);
a ~ normal(0, 1);

This is translated to

p(a) = normal(a|0, 1)normal(a|0, 1),

which in this case is normal(a|0, 1/
√

2). One might expect that the above two
lines of code would represent a redundant expression of a normal(a|0, 1) prior,
but, no, each line of code corresponds to an additional term in the target, or log
posterior density. You can think of each line as representing an additional piece of
information.

When the joint distribution is considered as a function of parameters (e.g. µ, σ)
given fixed data, it is proportional to the posterior distribution. In general, the
posterior distribution is not a normalized probability density function—that is, it
will be positive but will not in general integrate to 1—but the proportionality is
sufficient for the Stan algorithms.

Stan always constructs the target function—in Bayesian terms, the log posterior
density function of the parameter vector—by adding terms in the model block.
Equivalently, each ∼ statement corresponds to a multiplicative factor in the unnor-
malized posterior density.

Distribution statements (~) accept only built-in or user-defined distributions on
the right side. The left side of a distribution statement may be data, parameter, or
a complex expression, but the evaluated type needs to match one of the allowed
types of the distribution on the right (see more below).

In Stan, a distribution statement is merely a notational convenience following the
typical notation used to present models in the literature. The above model defined

7.6. DISTRIBUTION STATEMENTS 81

with distribution statements could be expressed as a direct increment on the total
log probability density as

target += normal_lpdf(y | mu, sigma);
target += normal_lpdf(mu | 0, 10);
target += normal_lpdf(sigma | 0, 1);

Stan models can mix distribution statements and log probability increment state-
ments. Although statistical models are usually defined with distributions in the lit-
erature, there are several scenarios in which we may want to code the log likelihood
or parts of it directly, for example, due to computational efficiency (e.g. censored
data model) or coding language limitations (e.g. mixture models in Stan). This is
possible with log probability increment statements. See also the discussion below
about Jacobians.

In general, a distribution statement of the form

y ~ dist(theta1, ..., thetaN);

involving subexpressions y and theta1 through thetaN (including the case where
N is zero) will be well formed if and only if the corresponding log probability
increment statement is well-formed. For densities allowing real y values, the log
probability density function is used,

target += dist_lpdf(y | theta1, ..., thetaN);

For those restricted to integer y values, the log probability mass function is used,

target += dist_lpmf(y | theta1, ..., thetaN);

This will be well formed if and only if dist_lpdf(y | theta1, ..., thetaN)
or dist_lpmf(y | theta1, ..., thetaN) is a well-formed expression of type
real. User defined distributions can be defined in functions block by using function
names ending with _lpdf.

Log probability increment vs. distribution statement
Although both lead to the same inference algorithm behavior in Stan, there is one
critical difference between using the distribution statement, as in

y ~ normal(mu, sigma);

and explicitly incrementing the log probability function, as in

82 CHAPTER 7. STATEMENTS

target += normal_lpdf(y | mu, sigma);

The distribution statement drops all the terms in the log probability function that
are constant, whereas the explicit call to normal_lpdf adds all of the terms in
the definition of the log normal probability function, including all of the constant
normalizing terms. Therefore, the explicit increment form can be used to recreate
the exact log probability values for the model. Otherwise, the distribution statement
form will be faster if any of the input expressions, y, mu, or sigma, involve only
constants, data variables, and transformed data variables. See the section Built in
distributions above discussing _lupdf and _lupmf functions that also drops all the
constant terms.

User-transformed variables
The left-hand side of a distribution statement may be an arbitrary expression (of
compatible type)“. For instance, it is legal syntactically to write

parameters {
real<lower=0> beta;

}
// ...
model {

log(beta) ~ normal(mu, sigma);
}

Unfortunately, this is not enough to properly model beta as having a lognormal
distribution. Whenever a nonlinear transform is applied to a parameter, such as the
logarithm function being applied to beta here, and then used on the left-hand side
of a distribution statement or on the left of a vertical bar in a log pdf function, an
adjustment must be made to account for the differential change in scale and ensure
beta gets the correct distribution. The correction required is to add the log Jacobian
of the transform to the target log density; see the change of variables section for full
definitions. For the case above, the following adjustment will account for the log
transform.3

target += - log(abs(y));

Truncated distributions
Stan supports truncating distributions with lower bounds, upper bounds, or both.

3Because log | d
dy log y| = log |1/y| = − log |y|.

7.6. DISTRIBUTION STATEMENTS 83

Truncating with lower and upper bounds
A probability density function p(x) for a continuous distribution may be truncated
to an interval [a, b] to define a new density p[a,b](x) with support [a, b] by setting

p[a,b](x) =
p(x)∫ b

a p(u) du
.

A probability mass function p(x) for a discrete distribution may be truncated to the
closed interval [a, b] by

p[a,b](x) =
p(x)

∑b
u=a p(u)

.

Truncating with a lower bound
A probability density function p(x) can be truncated to [a, ∞] by defining

p[a,∞](x) =
p(x)∫ ∞

a p(u) du
.

A probability mass function p(x) is truncated to [a, ∞] by defining

p[a,∞](x) =
p(x)

∑a<=u p(u)
.

Truncating with an upper bound
A probability density function p(x) can be truncated to [−∞, b] by defining

p[−∞,b](x) =
p(x)∫ b

−∞ p(u) du
.

A probability mass function p(x) is truncated to [−∞, b] by defining

p[−∞,b](x) =
p(x)

∑u<=b p(u)
.

84 CHAPTER 7. STATEMENTS

Cumulative distribution functions
Given a probability function pX(x) for a random variable X, its cumulative distri-
bution function (cdf) FX(x) is defined to be the probability that X ≤ x,

FX(x) = Pr[X ≤ x].

The upper-case variable X is the random variable whereas the lower-case variable x
is just an ordinary bound variable. For continuous random variables, the definition
of the cdf works out to

FX(x) =
∫ x

−∞
pX(u) du,

For discrete variables, the cdf is defined to include the upper bound given by the
argument,

FX(x) = ∑
u≤x

pX(u).

Complementary cumulative distribution functions
The complementary cumulative distribution function (ccdf) in both the continuous
and discrete cases is given by

FC
X (x) = Pr[X > x] = 1− FX(x).

Unlike the cdf, the ccdf is exclusive of the bound, hence the event X > x rather than
the cdf’s event X ≤ x.

For continuous distributions, the ccdf works out to

FC
X (x) = 1−

∫ x

−∞
pX(u) du =

∫ ∞

x
pX(u) du.

The lower boundary can be included in the integration bounds because it is a single
point on a line and hence has no probability mass. For the discrete case, the lower
bound must be excluded in the summation explicitly by summing over u > x,

FC
X (x) = 1− ∑

u≤x
pX(u) = ∑

u>x
pX(u).

7.6. DISTRIBUTION STATEMENTS 85

Cumulative distribution functions provide the necessary integral calculations to
define truncated distributions. For truncation with lower and upper bounds, the
denominator is defined by∫ b

a
p(u) du = FX(b)− FX(a).

This allows truncated distributions to be defined as

p[a,b](x) =
pX(x)

FX(b)− FX(a)
.

For discrete distributions, a slightly more complicated form is required to explicitly
insert the lower truncation point, which is otherwise excluded from FX(b)− FX(a),

p[a,b](x) =
pX(x)

FX(b)− FX(a) + pX(a)
.

Truncation with lower and upper bounds in Stan
Stan allows probability functions to be truncated. For example, a truncated unit
normal distributions restricted to [−0.5, 2.1] can be coded with the following distri-
bution statement.

y ~ normal(0, 1) T[-0.5, 2.1];

Truncated distributions are translated as an additional term in the accumulated log
density function plus error checking to make sure the variate in the distribution
statement is within the bounds of the truncation.

In general, the truncation bounds and parameters may be parameters or local
variables.

Because the example above involves a continuous distribution, it behaves the same
way as the following more verbose form.

y ~ normal(0, 1);
if (y < -0.5 || y > 2.1) {
target += negative_infinity();

} else {
target += -log_diff_exp(normal_lcdf(2.1 | 0, 1),

normal_lcdf(-0.5 | 0, 1));
}

86 CHAPTER 7. STATEMENTS

Because a Stan program defines a log density function, all calculations are on the log
scale. The function normal_lcdf is the log of the cumulative normal distribution
function and the function log_diff_exp(a, b) is a more arithmetically stable
form of log(exp(a) - exp(b)).

For a discrete distribution, another term is necessary in the denominator to account
for the excluded boundary. The truncated discrete distribution

y ~ poisson(3.7) T[2, 10];

behaves in the same way as the following code.

y ~ poisson(3.7);
if (y < 2 || y > 10) {
target += negative_infinity();

} else {
target += -log_sum_exp(poisson_lpmf(2 | 3.7),

log_diff_exp(poisson_lcdf(10 | 3.7),
poisson_lcdf(2 | 3.7)));

}

Recall that log_sum_exp(a, b) is just the arithmetically stable form of log(exp(a)
+ exp(b)).

Truncation with lower bounds in Stan
For truncating with only a lower bound, the upper limit is left blank.

y ~ normal(0, 1) T[-0.5,];

This truncated distribution statement has the same behavior as the following code.

y ~ normal(0, 1);
if (y < -0.5) {
target += negative_infinity();

} else {
target += -normal_lccdf(-0.5 | 0, 1);

}

The normal_lccdf function is the normal complementary cumulative distribution
function.

As with lower and upper truncation, the discrete case requires a more complicated
denominator to add back in the probability mass for the lower bound. Thus

7.6. DISTRIBUTION STATEMENTS 87

y ~ poisson(3.7) T[2,];

behaves the same way as

y ~ poisson(3.7);
if (y < 2) {
target += negative_infinity();

} else {
target += -log_sum_exp(poisson_lpmf(2 | 3.7),

poisson_lccdf(2 | 3.7));
}

Truncation with upper bounds in Stan
To truncate with only an upper bound, the lower bound is left blank. The upper
truncated distribution statement

y ~ normal(0, 1) T[, 2.1];

produces the same result as the following code.

target += normal_lpdf(y | 0, 1);
if (y > 2.1) {
target += negative_infinity();

} else {
target += -normal_lcdf(2.1 | 0, 1);

}

With only an upper bound, the discrete case does not need a boundary adjustment.
The upper-truncated distribution statement

y ~ poisson(3.7) T[, 10];

behaves the same way as the following code.

y ~ poisson(3.7);
if (y > 10) {
target += negative_infinity();

} else {
target += -poisson_lcdf(10 | 3.7);

}

88 CHAPTER 7. STATEMENTS

Cumulative distributions must be defined
In all cases, the truncation is only well formed if the appropriate log density or
mass function and necessary log cumulative distribution functions are defined.
Not every distribution built into Stan has log cdf and log ccdfs defined, nor will
every user-defined distribution. The discrete probability function documentations
describes the available discrete and continuous cumulative distribution functions;
most univariate distributions have log cdf and log ccdf functions.

Type constraints on bounds
For continuous distributions, truncation points must be expressions of type int or
real. For discrete distributions, truncation points must be expressions of type int.

Variates outside of truncation bounds
For a truncated distribution statement, if the value sampled is not within the bounds
specified by the truncation expression, the result is zero probability and the entire
statement adds −∞ to the total log probability, which in turn results in the sample
being rejected.

Vectorizing truncated distributions
Vectorization of distribution functions with truncation is available if the underlying
distribution, lcdf, and lccdf functions meet the required signatures.

The equivalent code for a vectorized truncation depends on which of the variables
are non-scalars (arrays, vectors, etc.):

1. If the variate y is the only non-scalar, the result is the same as described in the
above sections, but the lcdf/lccdf calculation is multiplied by size(y).

2. If the other arguments to the distribution are non-scalars, then the vectorized
version of the lcdf/lccdf is used. These functions return the sum of their
terms, so no multiplication by the size is needed.

3. The exception to the above is when a non-variate is a vector and both a lower
and upper bound are specified in the truncation. In this case, a for loop is
generated over the elements of the non-scalar arguments. This is required
since the log_diff_exp of two sums is not the same as the sum of the pairwise
log_diff_exp operations.

Note that while a lower-and-upper truncated distribution may generate a for-loop
internally as part of translating the truncation statement, this is still preferable
to manually constructing a loop, since the distribution function itself can still be
evaluated in a vectorized manner.

7.7. FOR LOOPS 89

7.7. For loops
Suppose N is a variable of type int, y is a one-dimensional array of type array[]
real, and mu and sigma are variables of type real. Furthermore, suppose that n
has not been defined as a variable. Then the following is a well-formed for-loop
statement.

for (n in 1:N) {
y[n] ~ normal(mu, sigma);

}

The loop variable is n, the loop bounds are the values in the range 1:N, and the
body is the statement following the loop bounds.

Loop variable typing and scope
The type of the loop variable is int. Unlike in C++ and similarly to R, this variable
must not be declared explicitly.

The bounds in a for loop must be integers. Unlike in R, the loop is always interpreted
as an upward counting loop. The range L:H will cause the loop to execute the loop
with the loop variable taking on all integer values greater than or equal to L and less
than or equal to H. For example, the loop for (n in 2:5) will cause the body of
the for loop to be executed with n equal to 2, 3, 4, and 5, in order. The variable and
bound for (n in 5:2) will not execute anything because there are no integers
greater than or equal to 5 and less than or equal to 2.

The scope of the loop variable is limited to the body of the loop.

Order sensitivity and repeated variables
Unlike in BUGS, Stan allows variables to be reassigned. For example, the variable
theta in the following program is reassigned in each iteration of the loop.

for (n in 1:N) {
theta = inv_logit(alpha + x[n] * beta);
y[n] ~ bernoulli(theta);

}

Such reassignment is not permitted in BUGS. In BUGS, for loops are declarative,
defining plates in directed graphical model notation, which can be thought of as
repeated substructures in the graphical model. Therefore, it is illegal in BUGS or
JAGS to have a for loop that repeatedly reassigns a value to a variable.4

4A programming idiom in BUGS code simulates a local variable by replacing theta in the above
example with theta[n], effectively creating N different variables, theta[1], . . . , theta[N]. Of course,

90 CHAPTER 7. STATEMENTS

In Stan, assignments are executed in the order they are encountered. As a conse-
quence, the following Stan program has a very different interpretation than the
previous one.

for (n in 1:N) {
y[n] ~ bernoulli(theta);
theta = inv_logit(alpha + x[n] * beta);

}

In this program, theta is assigned after it is used in the probability statement. This
presupposes it was defined before the first loop iteration (otherwise behavior is
undefined), and then each loop uses the assignment from the previous iteration.

Stan loops may be used to accumulate values. Thus it is possible to sum the values
of an array directly using code such as the following.

total = 0.0;
for (n in 1:N) {
total = total + x[n];

}

After the for loop is executed, the variable total will hold the sum of the elements
in the array x. This example was purely pedagogical; it is easier and more efficient
to write

total = sum(x);

A variable inside (or outside) a loop may even be reassigned multiple times, as in
the following legal code.

for (n in 1:100) {
y += y * epsilon;
epsilon = 0.5 * epsilon;
y += y * epsilon;

}

7.8. Foreach loops
A second form of for loops allows iteration over elements of containers. If ys is an
expression denoting a container (vector, row vector, matrix, or array) with elements
of type T, then the following is a well-formed foreach statement.

this is not a hack if the value of theta[n] is required for all n.

7.9. CONDITIONAL STATEMENTS 91

for (y in ys) {
// ... do something with y ...

}

The order in which elements of ys are visited is defined for container types as
follows.

• vector, row_vector: elements visited in order, y is of type double

• matrix: elements visited in column-major order, y is of type double

• array[] T: elements visited in order, y is of type T.

Consequently, if ys is a two dimensional array array[,] real, y will be a
one-dimensional array of real values (type array[] real). If ’ysis a matrix,
thenywill be a real value (typereal‘). To loop over all values of a two-
dimensional array using foreach statements would require a doubly-nested loop,

array[2, 3] real yss;
for (ys in yss) {
for (y in ys) {
// ... do something with y ...

}
}

whereas a matrix can be looped over in one foreach statement

matrix[2, 3] yss;
for (y in yss) {

// ... do something with y...
}

In both cases, the loop variable y is of type real. The elements of the matrix
are visited in column-major order (e.g.,y[1, 1],y[2, 1],y[1, 2], ...,y[2,
3]), whereas the elements of the two-dimensional array are visited
in row-major order (e.g.,y[1, 1],y[1, 2],y[1, 3],y[2, 1], ...,y[2, 3]‘).

7.9. Conditional statements
Stan supports full conditional statements using the same if-then-else syntax as C++.
The general format is

if (condition1)
statement1

92 CHAPTER 7. STATEMENTS

else if (condition2)
statement2

// ...
else if (conditionN-1)

statementN-1
else

statementN

There must be a single leading if clause, which may be followed by any number of
else if clauses, all of which may be optionally followed by an else clause. Each
condition must be an integer value, with non-zero values interpreted as true and
the zero value as false.

The entire sequence of if-then-else clauses forms a single conditional statement
for evaluation. The conditions are evaluated in order until one of the conditions
evaluates to a non-zero value, at which point its corresponding statement is executed
and the conditional statement finishes execution. If none of the conditions evaluate
to a non-zero value and there is a final else clause, its statement is executed.

7.10. While statements
Stan supports standard while loops using the same syntax as C++. The general
format is as follows.

while (condition)
body

The condition must be an integer expression and the body can be any statement (or
sequence of statements in curly braces).

Evaluation of a while loop starts by evaluating the condition. If the condition
evaluates to a false (zero) value, the execution of the loop terminates and control
moves to the position after the loop. If the loop’s condition evaluates to a true
(non-zero) value, the body statement is executed, then the whole loop is executed
again. Thus the loop is continually executed as long as the condition evaluates to a
true value.

The rest of the body of a while loop may be skipped using a continue. The loop will
be exited with a break statement. See the section on continue and break statements
for more details.

7.11. STATEMENT BLOCKS AND LOCAL VARIABLE DECLARATIONS 93

7.11. Statement blocks and local variable declarations
Just as parentheses may be used to group expressions, curly brackets may be used
to group a sequence of zero or more statements into a statement block. At the
beginning of each block, local variables may be declared that are scoped over the
rest of the statements in the block.

Blocks in for loops
Blocks are often used to group a sequence of statements together to be used in the
body of a for loop. Because the body of a for loop can be any statement, for loops
with bodies consisting of a single statement can be written as follows.

for (n in 1:N) {
y[n] ~ normal(mu, sigma);

}

To put multiple statements inside the body of a for loop, a block is used, as in the
following example.

for (n in 1:N) {
lambda[n] ~ gamma(alpha, beta);
y[n] ~ poisson(lambda[n]);

}

The open curly bracket ({) is the first character of the block and the close curly
bracket (}) is the last character.

Because whitespace is ignored in Stan, the following program will not compile.

for (n in 1:N)
y[n] ~ normal(mu, sigma);
z[n] ~ normal(mu, sigma); // ERROR!

The problem is that the body of the for loop is taken to be the statement directly
following it, which is y[n] ~ normal(mu, sigma). This leaves the probability
statement for z[n] hanging, as is clear from the following equivalent program.

for (n in 1:N) {
y[n] ~ normal(mu, sigma);

}
z[n] ~ normal(mu, sigma); // ERROR!

Neither of these programs will compile. If the loop variable n was defined before
the for loop, the for-loop declaration will raise an error. If the loop variable n was

94 CHAPTER 7. STATEMENTS

not defined before the for loop, then the use of the expression z[n] will raise an
error.

Local variable declarations
A for loop has a statement as a body. It is often convenient in writing programs to be
able to define a local variable that will be used temporarily and then forgotten. For
instance, the for loop example of repeated assignment should use a local variable
for maximum clarity and efficiency, as in the following example.

for (n in 1:N) {
real theta;
theta = inv_logit(alpha + x[n] * beta);
y[n] ~ bernoulli(theta);

}

The local variable theta is declared here inside the for loop. The scope of a local
variable is just the block in which it is defined. Thus theta is available for use
inside the for loop, but not outside of it. As in other situations, Stan does not allow
variable hiding. So it is illegal to declare a local variable theta if the variable theta
is already defined in the scope of the for loop. For instance, the following is not
legal.

for (m in 1:M) {
real theta;
for (n in 1:N) {
real theta; // ERROR!
theta = inv_logit(alpha + x[m, n] * beta);
y[m, n] ~ bernoulli(theta);

// ...

The compiler will flag the second declaration of theta with a message that it is
already defined.

No constraints on local variables
Local variables may not have constraints on their declaration. The only types that
may be used are listed in the types table under “local”.

Blocks within blocks
A block is itself a statement, so anywhere a sequence of statements is allowed, one
or more of the statements may be a block. For instance, in a for loop, it is legal to
have the following

7.12. BREAK AND CONTINUE STATEMENTS 95

for (m in 1:M) {
{

int n = 2 * m;
sum += n;

}
for (n in 1:N) {
sum += x[m, n];

}
}

The variable declaration int n; is the first element of an embedded block and so
has scope within that block. The for loop defines its own local block implicitly over
the statement following it in which the loop variable is defined. As far as Stan is
concerned, these two uses of n are unrelated.

7.12. Break and continue statements
The one-token statements continue and break may be used within loops to alter
control flow; continue causes the next iteration of the loop to run immediately,
whereas break terminates the loop and causes execution to resume after the loop.
Both control structures must appear in loops. Both break and continue scope to
the most deeply nested loop, but pass through non-loop statements.

Although these control statements may seem undesirable because of their goto-like
behavior, their judicious use can greatly improve readability by reducing the level
of nesting or eliminating bookkeeping inside loops.

Break statements
When a break statement is executed, the most deeply nested loop currently being
executed is ended and execution picks up with the next statement after the loop.
For example, consider the following program:

while (1) {
if (n < 0) {
break;

}
foo(n);
n = n - 1;

}

The while~(1) loop is a “forever” loop, because 1 is the true value, so the test
always succeeds. Within the loop, if the value of n is less than 0, the loop terminates,

96 CHAPTER 7. STATEMENTS

otherwise it executes foo(n) and then decrements n. The statement above does
exactly the same thing as

while (n >= 0) {
foo(n);
n = n - 1;

}

This case is simply illustrative of the behavior; it is not a case where a break
simplifies the loop.

Continue statements
The continue statement ends the current operation of the loop and returns to the
condition at the top of the loop. Such loops are typically used to exclude some
values from calculations. For example, we could use the following loop to sum the
positive values in the array x,

real sum;
sum = 0;
for (n in 1:size(x)) {
if (x[n] <= 0) {
continue;

}
sum += x[n];

}

When the continue statement is executed, control jumps back to the conditional
part of the loop. With while and for loops, this causes control to return to the
conditional of the loop. With for loops, this advances the loop variable, so the the
above program will not go into an infinite loop when faced with an x[n] less than
zero. Thus the above program could be rewritten with deeper nesting by reversing
the conditional,

real sum;
sum = 0;
for (n in 1:size(x)) {
if (x[n] > 0) {
sum += x[n];

}
}

While the latter form may seem more readable in this simple case, the former has

7.13. PRINT STATEMENTS 97

the main line of execution nested one level less deep. Instead, the conditional at
the top finds cases to exclude and doesn’t require the same level of nesting for code
that’s not excluded. When there are several such exclusion conditions, the break or
continue versions tend to be much easier to read.

Breaking and continuing nested loops
If there is a loop nested within a loop, a break or continue statement only breaks
out of the inner loop. So

while (cond1) {
// ...
while (cond2) {
// ...
if (cond3) {

break;
}
// ...

}
// execution continues here after break
// ...

}

If the break is triggered by cond3 being true, execution will continue after the nested
loop.

As with break statements, continue statements go back to the top of the most deeply
nested loop in which the continue appears.

Although break and continue must appear within loops, they may appear in nested
statements within loops, such as within the conditionals shown above or within
nested statements. The break and continue statements jump past any control
structure other than while-loops and for-loops.

7.13. Print statements
Stan provides print statements that can print literal strings and the values of expres-
sions. Print statements accept any number of arguments. Consider the following
for-each statement with a print statement in its body.

for (n in 1:N) { print("loop iteration: ", n); ... }

The print statement will execute every time the body of the loop does. Each time
the loop body is executed, it will print the string “loop iteration:” (with the trailing

98 CHAPTER 7. STATEMENTS

space), followed by the value of the expression n, followed by a new line.

Print content
The text printed by a print statement varies based on its content. A literal (i.e.,
quoted) string in a print statement always prints exactly that string (without the
quotes). Expressions in print statements result in the value of the expression being
printed. But how the value of the expression is formatted will depend on its type.

Printing a simple real or int typed variable always prints the variable’s value.5

For array, vector, and matrix variables, the print format uses brackets. For example,
a 3-vector will print as

[1, 2, 3]

and a 2× 3-matrix as

[[1, 2, 3], [4, 5, 6]]

Complex numbers print as pairs. For example, the pair of statements

complex z = to_complex(1.2, -3.5);
print(z)

will print as (1.2,-3.5), with no space after the comma or within the parentheses.

Printing a more readable version of arrays or matrices can be done with loops. An
example is the print statement in the following transformed data block.

transformed data {
matrix[2, 2] u;
u[1, 1] = 1.0; u[1, 2] = 4.0;
u[2, 1] = 9.0; u[2, 2] = 16.0;
for (n in 1:2) {
print("u[", n, "] = ", u[n]);

}
}

This print statement executes twice, printing the following two lines of output.

u[1] = [1, 4]
u[2] = [9, 16]

5The adjoint component is always zero during execution for the algorithmic differentiation variables
used to implement parameters, transformed parameters, and local variables in the model.

7.13. PRINT STATEMENTS 99

Non-void input
The input type to a print function cannot be void. In particular, it can’t be the result
of a user-defined void function. All other types are allowed as arguments to the
print function.

Print frequency
Printing for a print statement happens every time it is executed. The transformed
data block is executed once per chain, the transformed parameter and model
blocks once per leapfrog step, and the generated quantities block once per
iteration.

String literals
String literals begin and end with a double quote character ("). The characters
between the double quote characters may be any byte sequence, with the exception
of the double quote character.

The Stan interfaces preserve the byte sequences which they receive. The encoding
of these byte sequences as characters and their rendering as glyphs will be handled
by whatever display mechanism is being used to monitor Stan’s output (e.g., a
terminal, a Jupyter notebook, RStudio, etc.). Stan does not enforce a character
encoding for strings, and no attempt is made to validate the bytes as legal ASCII,
UTF-8, etc.

Debug by print
Because Stan is an imperative language, print statements can be very useful for
debugging. They can be used to display the values of variables or expressions
at various points in the execution of a program. They are particularly useful for
spotting problematic not-a-number of infinite values, both of which will be printed.

It is particularly useful to print the value of the target log density accumulator
(through the target() function), as in the following example.

vector[2] y;
y[1] = 1;
print("log density before =", target());
y ~ normal(0,1); // bug! y[2] not defined
print("log density after =", target());

The example has a bug in that y[2] is not defined before the vector y is used in the
distribution statement. By printing the value of the log probability accumulator
before and after each distribution statement, it’s possible to isolate where the log
probability becomes ill-defined (i.e., becomes not-a-number).

100 CHAPTER 7. STATEMENTS

Note that print statements may not always be displayed immediately, but rather at
the end of an operation (e.g., leapfrog step). As such, some issues such as infinite
loops are difficult to debug effectively with this technique.

7.14. Reject statements
The Stan reject statement provides a mechanism to report errors or problematic
values encountered during program execution and either halt processing or reject
iterations.

Like the print statement, the reject statement accepts any number of quoted string
literals or Stan expressions as arguments.

Reject statements are typically embedded in a conditional statement in order to
detect variables in illegal states. For example, the following code handles the case
where a variable x’s value is negative.

if (x < 0) {
reject("x must not be negative; found x=", x);

}

Behavior of reject statements
Reject statements have the same behavior as exceptions thrown by built-in Stan
functions. For example, the normal_lpdf function raises an exception if the input
scale is not positive and finite. The effect of a reject statement depends on the
program block in which the rejection occurs.

In all cases of rejection, the interface accessing the Stan program should print the
arguments to the reject statement.

Rejections in functions
Rejections in user-defined functions are just passed to the calling function or pro-
gram block. Reject statements can be used in functions to validate the function
arguments, allowing user-defined functions to fully emulate built-in function be-
havior. It is better to find out earlier rather than later when there is a problem.

Fatal exception contexts
Rejections are fatal in the transformed data block. This is because if initialization
fails there is no way to recover values, so the algorithm will not begin execution.

Reject statements placed in the transformed data block can be used to validate both
the data and transformed data (if any). This allows more complicated constraints to
be enforced that can be specified with Stan’s constrained variable declarations.

7.14. REJECT STATEMENTS 101

Fatal errors in other blocks may also be signaled by use of the fatal_error state-
ment.

Recoverable rejection contexts
Rejections in the transformed parameters and model blocks are not in and of
themselves instantly fatal. The result has the same effect as assigning a −∞ log
probability, which causes rejection of the current proposal in MCMC samplers and
adjustment of search parameters in optimization.

If the log probability function results in a rejection every time it is called, the con-
taining application (MCMC sampler or optimization) should diagnose this problem
and terminate with an appropriate error message. To aid in diagnosing problems,
the message for each reject statement will be printed as a result of executing it.

Rejection is not for constraints
Rejection should be used for error handling, not defining arbitrary constraints.
Consider the following errorful Stan program.

parameters {
real a;
real<lower=a> b;
real<lower=a, upper=b> theta;
// ...

}
model {

// **wrong** needs explicit truncation
theta ~ normal(0, 1);
// ...

}

This program is wrong because its truncation bounds on theta depend on pa-
rameters, and thus need to be accounted for using an explicit truncation on the
distribution. This is the right way to do it.

theta ~ normal(0, 1) T[a, b];

The conceptual issue is that the prior does not integrate to one over the admissible
parameter space; it integrates to one over all real numbers and integrates to some-
thing less than one over [a, b]; in these simple univariate cases, we can overcome
that with the T[,] notation, which essentially divides by whatever the prior
integrates to over [a, b].

This problem is exactly the same problem as you would get using reject statements

102 CHAPTER 7. STATEMENTS

to enforce complicated inequalities on multivariate functions. In this case, it is
wrong to try to deal with truncation through constraints.

if (theta < a || theta > b) {
reject("theta not in (a, b)");

}
// still **wrong**, needs T[a,b]
theta ~ normal(0, 1);

In this case, the prior integrates to something less than one over the region of the
parameter space where the complicated inequalities are satisfied. But we don’t
generally know what value the prior integrates to, so we can’t increment the log
probability function to compensate.

Even if this adjustment to a proper probability model may seem minor in particular
models where the amount of truncated posterior density is negligible or constant,
we can’t sample from that truncated posterior efficiently. Programs need to use
one-to-one mappings that guarantee the constraints are satisfied and only use reject
statements to raise errors or help with debugging.

7.15. Fatal error statements
The Stan fatal_error statement provides a mechanism to report errors or problem-
atic values encountered during program execution and uniformly halt processing.

Like the print or reject statements, the fatal error statement accepts any number
of quoted string literals or Stan expressions as arguments.

The fatal error may be used to signal an unrecoverable error in blocks where reject
leads to the algorithm attempting to try again, such as the model block.

8. Program Blocks

A Stan program is organized into a sequence of named blocks, the bodies of which
consist of variable declarations, followed in the case of some blocks with statements.

8.1. Overview of Stan’s program blocks
The full set of named program blocks is exemplified in the following skeletal Stan
program.

functions {
// ... function declarations and definitions ...

}
data {

// ... declarations ...
}
transformed data {

// ... declarations ... statements ...
}
parameters {

// ... declarations ...
}
transformed parameters {

// ... declarations ... statements ...
}
model {

// ... declarations ... statements ...
}
generated quantities {

// ... declarations ... statements ...
}

The function-definition block contains user-defined functions. The data block
declares the required data for the model. The transformed data block allows the
definition of constants and transforms of the data. The parameters block declares
the model’s parameters — the unconstrained version of the parameters is what’s
sampled or optimized. The transformed parameters block allows variables to be
defined in terms of data and parameters that may be used later and will be saved.

103

104 CHAPTER 8. PROGRAM BLOCKS

The model block is where the log probability function is defined. The generated
quantities block allows derived quantities based on parameters, data, and optionally
(pseudo) random number generation.

Optionality and ordering
All of the blocks are optional. A consequence of this is that the empty string is
a valid Stan program, although it will trigger a warning message from the Stan
compiler. The Stan program blocks that occur must occur in the order presented in
the skeletal program above. Within each block, both declarations and statements are
optional, subject to the restriction that the declarations come before the statements.

Variable scope
The variables declared in each block have scope over all subsequent statements.
Thus a variable declared in the transformed data block may be used in the model
block. But a variable declared in the generated quantities block may not be used
in any earlier block, including the model block. The exception to this rule is that
variables declared in the model block are always local to the model block and may
not be accessed in the generated quantities block; to make a variable accessible in
the model and generated quantities block, it must be declared as a transformed
parameter.

Variables declared as function parameters have scope only within that function
definition’s body, and may not be assigned to (they are constant).

Function scope
Functions defined in the function block may be used in any appropriate block. Most
functions can be used in any block and applied to a mixture of parameters and data
(including constants or program literals).

Random-number-generating functions are restricted to transformed data and gen-
erated quantities blocks, and within user-defined functions ending in _rng; such
functions are suffixed with _rng. Log-probability modifying functions to blocks
where the log probability accumulator is in scope (transformed parameters and
model); such functions are suffixed with _lp.

Density functions defined in the program may be used in distribution statements.

Automatic variable definitions
The variables declared in the data and parameters block are treated differently
than other variables in that they are automatically defined by the context in which
they are used. This is why there are no statements allowed in the data or parameters
block.

8.1. OVERVIEW OF STAN’S PROGRAM BLOCKS 105

The variables in the data block are read from an external input source such as a
file or a designated R data structure. The variables in the parameters block are
read from the sampler’s current parameter values (either standard HMC or NUTS).
The initial values may be provided through an external input source, which is also
typically a file or a designated R data structure. In each case, the parameters are
instantiated to the values for which the model defines a log probability function.

Transformed variables
The transformed data and transformed parameters block behave similarly to
each other. Both allow new variables to be declared and then defined through a
sequence of statements. Because variables scope over every statement that follows
them, transformed data variables may be defined in terms of the data variables.

Before generating any draws, data variables are read in, then the transformed data
variables are declared and the associated statements executed to define them. This
means the statements in the transformed data block are only ever evaluated once.1

Transformed parameters work the same way, being defined in terms of the pa-
rameters, transformed data, and data variables. The difference is the frequency of
evaluation. Parameters are read in and (inverse) transformed to constrained repre-
sentations on their natural scales once per log probability and gradient evaluation.
This means the inverse transforms and their log absolute Jacobian determinants are
evaluated once per leapfrog step. Transformed parameters are then declared and
their defining statements executed once per leapfrog step.

Generated quantities
The generated quantity variables are defined once per sample after all the leapfrog
steps have been completed. These may be random quantities, so the block must
be rerun even if the Metropolis adjustment of HMC or NUTS rejects the update
proposal.

Variable read, write, and definition summary
A table summarizing the point at which variables are read, written, and defined is
given in the block actions table.

Block Actions Table. The read, write, transform, and evaluate actions and periodicities
listed in the last column correspond to the Stan program blocks in the first column. The
middle column indicates whether the block allows statements. The last row indicates that
parameter initialization requires a read and transform operation applied once per chain.

1If the C++ code is configured for concurrent threads, the data and transformed data blocks can be
executed once and reused for multiple chains.

106 CHAPTER 8. PROGRAM BLOCKS

block statement action / period

data no read / chain
transformed data yes evaluate / chain
parameters no inv. transform, Jacobian / leapfrog

inv. transform, write / sample
transformed parameters yes evaluate / leapfrog

write / sample
model yes evaluate / leapfrog step
generated quantities yes eval / sample

write / sample
(initialization) n/a read, transform / chain

Variable Declaration Table. This table indicates where variables that are not basic data
or parameters should be declared, based on whether it is defined in terms of parameters,
whether it is used in the log probability function defined in the model block, and whether it
is printed. The two lines marked with asterisks (∗) should not be used as there is no need to
print a variable every iteration that does not depend on the value of any parameters.

param depend in target save declare in

+ + + transformed parameters
+ + - model (local)
+ - + generated quantities
+ - - generated quantities (local)
- + + transformed data and generated quantities
- + - transformed data
- - + generated quantities
- - - transformed data (local)

Another way to look at the variables is in terms of their function. To decide which
variable to use, consult the charts in the variable declaration table. The last line has
no corresponding location, as there is no need to print a variable every iteration
that does not depend on parameters.2

The rest of this chapter provides full details on when and how the variables and
statements in each block are executed.

2It is possible to print a variable every iteration that does not depend on parameters—just define it
(or redefine it if it is transformed data) in the generated quantities block.

8.2. STATISTICAL VARIABLE TAXONOMY 107

8.2. Statistical variable taxonomy
Statistical Variable Taxonomy Table. Variables of the kind indicated in the left column
must be declared in one of the blocks declared in the right column.

variable kind declaration block

constants data, transformed data
unmodeled data data, transformed data

modeled data data, transformed data
missing data parameters, transformed parameters

modeled parameters parameters, transformed parameters
unmodeled parameters data, transformed data

derived quantities transformed data, transformed
parameters, generated quantities

loop indices loop statement

Page 366 of (Gelman and Hill 2007) provides a taxonomy of the kinds of variables
used in Bayesian models. The table of kinds of variables contains Gelman and Hill’s
taxonomy along with a missing-data kind along with the corresponding locations
of declarations and definitions in Stan.

Constants can be built into a model as literals, data variables, or as transformed
data variables. If specified as variables, their definition must be included in data
files. If they are specified as transformed data variables, they cannot be used to
specify the sizes of elements in the data block.

The following program illustrates various variables kinds, listing the kind of each
variable next to its declaration.

data {
int<lower=0> N; // unmodeled data
array[N] real y; // modeled data
real mu_mu; // config. unmodeled param
real<lower=0> sigma_mu; // config. unmodeled param

}
transformed data {

real<lower=0> alpha; // const. unmodeled param
real<lower=0> beta; // const. unmodeled param
alpha = 0.1;
beta = 0.1;

108 CHAPTER 8. PROGRAM BLOCKS

}
parameters {

real mu_y; // modeled param
real<lower=0> tau_y; // modeled param

}
transformed parameters {

real<lower=0> sigma_y; // derived quantity (param)
sigma_y = pow(tau_y, -0.5);

}
model {

tau_y ~ gamma(alpha, beta);
mu_y ~ normal(mu_mu, sigma_mu);
for (n in 1:N) {
y[n] ~ normal(mu_y, sigma_y);

}
}
generated quantities {

real variance_y; // derived quantity (transform)
variance_y = sigma_y * sigma_y;

}

In this example, y is an array of modeled data. Although it is specified in the data
block, and thus must have a known value before the program may be run, it is
modeled as if it were generated randomly as described by the model.

The variable N is a typical example of unmodeled data. It is used to indicate a size
that is not part of the model itself.

The other variables declared in the data and transformed data block are examples of
unmodeled parameters, also known as hyperparameters. Unmodeled parameters
are parameters to probability densities that are not themselves modeled proba-
bilistically. In Stan, unmodeled parameters that appear in the data block may be
specified on a per-model execution basis as part of the data read. In the above
model, mu_mu and sigma_mu are configurable unmodeled parameters.

Unmodeled parameters that are hard coded in the model must be declared in
the transformed data block. For example, the unmodeled parameters alpha and
beta are both hard coded to the value 0.1. To allow such variables to be configurable
based on data supplied to the program at run time, they must be declared in the
data block, like the variables mu_mu and sigma_mu.

8.3. PROGRAM BLOCK: DATA 109

This program declares two modeled parameters, mu and tau_y. These are the
location and precision used in the normal model of the values in y. The heart of
the model will be sampling the values of these parameters from their posterior
distribution.

The modeled parameter tau_y is transformed from a precision to a scale parame-
ter and assigned to the variable sigma_y in the transformed parameters block.
Thus the variable sigma_y is considered a derived quantity — its value is entirely
determined by the values of other variables.

The generated quantities block defines a value variance_y, which is defined
as a transform of the scale or deviation parameter sigma_y. It is defined in the
generated quantities block because it is not used in the model. Making it a generated
quantity allows it to be monitored for convergence (being a non-linear transform,
it will have different autocorrelation and hence convergence properties than the
deviation itself).

In later versions of Stan which have random number generators for the distributions,
the generated quantities block will be usable to generate replicated data for
model checking.

Finally, the variable n is used as a loop index in the model block.

8.3. Program block: data
The rest of this chapter will lay out the details of each block in order, starting with
the data block in this section.

Variable reads and transformations
The data block is for the declaration of variables that are read in as data. With
the current model executable, each Markov chain of draws will be executed in a
different process, and each such process will read the data exactly once.3

Data variables are not transformed in any way. The format for data files or data in
memory depends on the interface; see the user’s guides and interface documenta-
tion for PyStan, RStan, and CmdStan for details.

Statements
The data block does not allow statements.

3With multiple threads, or even running chains sequentially in a single thread, data could be read
only once per set of chains. Stan was designed to be thread safe and future versions will provide a
multithreading option for Markov chains.

110 CHAPTER 8. PROGRAM BLOCKS

Variable constraint checking
Each variable’s value is validated against its declaration as it is read. For example,
if a variable sigma is declared as real<lower=0>, then trying to assign it a negative
value will raise an error. As a result, data type errors will be caught as early as
possible. Similarly, attempts to provide data of the wrong size for a compound data
structure will also raise an error.

8.4. Program block: transformed data
The transformed data block is for declaring and defining variables that do not
need to be changed when running the program.

Variable reads and transformations
For the transformed data block, variables are all declared in the variable declara-
tions and defined in the statements. There is no reading from external sources and
no transformations performed.

Variables declared in the data block may be used to declare transformed variables.

Statements
The statements in a transformed data block are used to define (provide values for)
variables declared in the transformed data block. Assignments are only allowed
to variables declared in the transformed data block.

These statements are executed once, in order, right after the data is read into the
data variables. This means they are executed once per chain.

Variables declared in the data block may be used in statements in the transformed
data block.

Restriction on operations in transformed data
The statements in the transformed data block are designed to be executed once
and have a deterministic result. Therefore, log probability is not accumulated and
distribution statements may not be used.

Variable constraint checking
Any constraints on variables declared in the transformed data block are checked
after the statements are executed. If any defined variable violates its constraints,
Stan will halt with a diagnostic error message.

8.5. Program block: parameters
The variables declared in the parameters program block correspond directly to
the variables being sampled by Stan’s samplers (HMC and NUTS). From a user’s

8.5. PROGRAM BLOCK: PARAMETERS 111

perspective, the parameters in the program block are the parameters being sampled
by Stan.

Variables declared as parameters cannot be directly assigned values. So there is no
block of statements in the parameters program block. Variable quantities derived
from parameters may be declared in the transformed parameters or generated
quantities blocks, or may be defined as local variables in any statement blocks
following their declaration.

There is a substantial amount of computation involved for parameter variables in
a Stan program at each leapfrog step within the HMC or NUTS samplers, and a
bit more computation along with writes involved for saving the parameter values
corresponding to a sample.

Constraining inverse transform
Stan’s two samplers, standard Hamiltonian Monte Carlo (HMC) and the adaptive
No-U-Turn sampler (NUTS), are most easily (and often most effectively) imple-
mented over a multivariate probability density that has support on all of Rn. To do
this, the parameters defined in the parameters block must be transformed so they
are unconstrained.

In practice, the samplers keep an unconstrained parameter vector in memory repre-
senting the current state of the sampler. The model defined by the compiled Stan
program defines an (unnormalized) log probability function over the unconstrained
parameters. In order to do this, the log probability function must apply the inverse
transform to the unconstrained parameters to calculate the constrained parameters
defined in Stan’s parameters program block. The log Jacobian of the inverse trans-
form is then added to the accumulated log probability function. This then allows
the Stan model to be defined in terms of the constrained parameters.

In some cases, the number of parameters is reduced in the unconstrained space.
For instance, a K-simplex only requires K − 1 unconstrained parameters, and a
K-correlation matrix only requires (K

2) unconstrained parameters. This means that
the probability function defined by the compiled Stan program may have fewer
parameters than it would appear from looking at the declarations in the parameters
program block.

The probability function on the unconstrained parameters is defined in such a
way that the order of the parameters in the vector corresponds to the order of the
variables defined in the parameters program block. The details of the specific
transformations are provided in the variable transforms chapter.

transforms.qmd

112 CHAPTER 8. PROGRAM BLOCKS

Gradient calculation
Hamiltonian Monte Carlo requires the gradient of the (unnormalized) log probabil-
ity function with respect to the unconstrained parameters to be evaluated during
every leapfrog step. There may be one leapfrog step per sample or hundreds, with
more being required for models with complex posterior distribution geometries.

Gradients are calculated behind the scenes using Stan’s algorithmic differentiation
library. The time to compute the gradient does not depend directly on the number
of parameters, only on the number of subexpressions in the calculation of the log
probability. This includes the expressions added from the transforms’ Jacobians.

The amount of work done by the sampler does depend on the number of uncon-
strained parameters, but this is usually dwarfed by the gradient calculations.

Writing draws
In the basic Stan compiled program, there is a file to which the values of variables
are written for each draw. The constrained versions of the variables are written
in the order they are defined in the parameters block. In order to do this, the
transformed parameter, model, and generated quantities statements must also be
executed.

8.6. Program block: transformed parameters
The transformed parameters program block consists of optional variable declara-
tions followed by statements. After the statements are executed, the constraints on
the transformed parameters are validated. Any variable declared as a transformed
parameter is part of the output produced for draws.

Any variable that is defined wholly in terms of data or transformed data should be
declared and defined in the transformed data block. Defining such quantities in the
transformed parameters block is legal, but much less efficient than defining them
as transformed data.

Constraints are for error checking
Like the constraints on data, the constraints on transformed parameters is meant
to catch programming errors as well as convey programmer intent. They are not
automatically transformed in such a way as to be satisfied. What will happen if a
transformed parameter does not match its constraint is that the current parameter
values will be rejected. This can cause Stan’s algorithms to hang or to devolve to
random walks. It is not intended to be a way to enforce ad hoc constraints in Stan
programs. See the section on reject statements for further discussion of the behavior
of reject statements.

8.7. PROGRAM BLOCK: MODEL 113

8.7. Program block: model
The model program block consists of optional variable declarations followed by
statements. The variables in the model block are local variables and are not written
as part of the output.

Local variables may not be defined with constraints because there is no well-defined
way to have them be both flexible and easy to validate.

The statements in the model block typically define the model. This is the block in
which probability (distribution notation) statements are allowed. These are typically
used when programming in the BUGS idiom to define the probability model.

8.8. Program block: generated quantities
The generated quantities program block is rather different than the other blocks.
Nothing in the generated quantities block affects the sampled parameter values.
The block is executed only after a sample has been generated.

Among the applications of posterior inference that can be coded in the generated
quantities block are

• forward sampling to generate simulated data for model testing,
• generating predictions for new data,
• calculating posterior event probabilities, including multiple comparisons, sign

tests, etc.,
• calculating posterior expectations,
• transforming parameters for reporting,
• applying full Bayesian decision theory,
• calculating log likelihoods, deviances, etc. for model comparison.

Parameter estimates, predictions, statistics, and event probabilities calculated di-
rectly using plug-in estimates. Stan automatically provides full Bayesian inference
by producing draws from the posterior distribution of any calculated event proba-
bilities, predictions, or statistics.

Within the generated quantities block, the values of all other variables declared
in earlier program blocks (other than local variables) are available for use in the
generated quantities block.

It is more efficient to define a variable in the generated quantities block instead of
the transformed parameters block. Therefore, if a quantity does not play a role in
the model, it should be defined in the generated quantities block.

After the generated quantities statements are executed, the constraints on the

114 CHAPTER 8. PROGRAM BLOCKS

declared generated quantity variables are validated.

All variables declared as generated quantities are printed as part of the output.
Variables declared in nested blocks are local variables, not generated quantities, and
thus won’t be printed. For example:

generated quantities {
int a; // added to the output

{
int b; // not added to the output

}
}

9. User-Defined Functions

Stan allows users to define their own functions. The basic syntax is a simplified
version of that used in C and C++. This chapter specifies how functions are declared,
defined, and used in Stan.

9.1. Function-definition block
User-defined functions appear in a special function-definition block before all of
the other program blocks.

functions {
// ... function declarations and definitions ...

}
data {
// ...

Function definitions and declarations may appear in any order. Forward declara-
tions are allowed but not required.

9.2. Function names
The rules for function naming and function-argument naming are the same as for
other variables; see the section on variables for more information on valid identifiers.
For example,

real foo(real mu, real sigma);

declares a function named foo with two argument variables of types real and real.
The arguments are named mu and sigma, but that is not part of the declaration.

Function overloading
Multiple user-defined functions may have the same name if they have different
sequences of argument types. This is known as function overloading.

For example, the following two functions are both defined with the name add_up
real add_up(real a, real b){

return a + b;
}

115

116 CHAPTER 9. USER-DEFINED FUNCTIONS

real add_up(real a, real b, real c){
return a + b + c;

}

The return types of overloaded functions do not need to be the same. One could
define an additional add_up function as follows

int add_up(int a, int b){
return a + b;

}

That being said, functions may not use the same name if their signature only differs
by the return type.

For example, the following is not permitted

// illegal
real baz(int x);
int baz(int x);

Function names used in the Stan standard library may be overloaded by user-
defined functions. Exceptions to this are the reduce_sum family of functions and
ODE integrators, which cannot be overloaded.

9.3. Calling functions
All function arguments are mandatory—there are no default values.

Functions as expressions
Functions with non-void return types are called just like any other built-in func-
tion in Stan—they are applied to appropriately typed arguments to produce an
expression, which has a value when executed.

Functions as statements
Functions with void return types may be applied to arguments and used as state-
ments.qmd. These act like distribution statements or print statements. Such uses are
only appropriate for functions that act through side effects, such as incrementing
the log probability accumulator, printing, or raising exceptions.

Resolving overloads
Overloaded functions alongside type promotion can result in situations where there
are multiple valid interpretations of a function call. Stan requires that there be a
unique signature which minimizes the number of promotions required.

9.3. CALLING FUNCTIONS 117

Consider the following two overloaded functions

real foo(int a, real b);
real foo(real a, int b);

These functions do not have a unique minimum when called with two integer
arguments foo(1,2), and therefore cannot be called as such.

Promotion of integers to complex numbers is considered as two separate promo-
tions, one from int to real and a second from real to complex. Consider the
following functions with real and complex signatures

real bar(real x);
real bar(complex z);

A call bar(5) with an integer argument will be resolved to bar(real) because it
only requires a single promotion, whereas the promotion to a complex number
requires two promotions.

Argument promotion
The rules for calling functions work the same way as assignment as far as promotion
goes. This means that we can promote arguments to the type expected by function
arguments. For example, the following will work.

real foo(real x) { return ... };
...
int a = 5;
real b = foo(a); // a promoted to type real

In addition to promoting int to real, Stan also promotes real to complex, and
by transitivity, int to complex. This also works for containers, so an array of int
may be assigned to an array of real of the same shape. And we can also promote
vector to complex_vector and similarly for row vectors and matrices.

Probability functions in distribution statements
Functions whose name ends in _lpdf or _lpmf (log density and mass functions)
may be used as probability functions and may be used in place of parameterized
distributions on the right side of statements.qmd#distribution-statements.section.

Restrictions on placement
Functions of certain types are restricted on scope of usage. Functions whose names
end in _lp assume access to the log probability accumulator and are only available
in the transformed parameters and model blocks.

118 CHAPTER 9. USER-DEFINED FUNCTIONS

Functions whose name end in _jacobian assume access to the log probability
accumulator may only be used within the transformed parameters block.

Functions whose names end in _rng assume access to the random number generator
and may only be used within the generated quantities block, transformed data block,
and within user-defined functions ending in _rng.

Functions whose names end in _lpdf and _lpmf can be used anywhere. However,
_lupdf and _lupmf functions can only be used in the model block or user-defined
probability functions.

See the section on function bodies for more information on these special types of
function.

9.4. Argument types and qualifiers
Stan’s functions all have declared types for both arguments and returned value. As
with built-in functions, user-defined functions are only declared for base argument
type and dimensionality. This requires a different syntax than for declaring other
variables. The choice of language was made so that return types and argument
types could use the same declaration syntax.

The type void may not be used as an argument type, only a return type for a
function with side effects.

Base variable type declaration
The base variable types are integer, real, complex, vector, row_vector,
and matrix. No lower-bound or upper-bound constraints are allowed (e.g.,
real<lower=0> is illegal). Specialized constrained types are also not allowed (e.g.,
simplex is illegal).

Tuple types of the form tuple(T1, ..., TN) are also allowed, with all of the types
T1 to TN being function argument types (i.e., no constraints and no sizes).

Dimensionality declaration
Arguments and return types may be arrays, and these are indicated with optional
brackets and commas as would be used for indexing. For example, int denotes a sin-
gle integer argument or return, whereas array[] real indicates a one-dimensional
array of reals, array[,] real a two-dimensional array and array[„] real a three-
dimensional array; whitespace is optional, as usual.

The dimensions for vectors and matrices are not included, so that matrix is the type
of a single matrix argument or return type. Thus if a variable is declared as matrix
a, then a has two indexing dimensions, so that a[1] is a row vector and a[1, 1] a

9.5. FUNCTION BODIES 119

real value. Matrices implicitly have two indexing dimensions. The type declaration
matrix[,] b specifies that b is a two-dimensional array of matrices, for a total
of four indexing dimensions, with b[1, 1, 1, 1] picking out a real value.

Dimensionality checks and exceptions
Function argument and return types are not themselves checked for dimensionality.
A matrix of any size may be passed in as a matrix argument. Nevertheless, a user-
defined function might call a function (such as a multivariate normal density) that
itself does dimensionality checks.

Dimensions of function return values will be checked if they’re assigned to a
previously declared variable. They may also be checked if they are used as the
argument to a function.

Any errors raised by calls to functions inside user functions or return type mis-
matches are simply passed on; this typically results in a warning message and
rejection of a proposal during sampling or optimization.

Data-only qualifiers
Some of Stan’s built-in functions, like the differential equation solvers, have argu-
ments that must be data. Such data-only arguments must be expressions involving
only data, transformed data, and generated quantity variables.

In user-defined functions, the qualifier data may be placed before an argument
type declaration to indicate that the argument must be data only. For example,

real foo(data real x) {
return xˆ2;

}

requires the argument x to be data only.

Declaring an argument data only allows type inference to proceed in the body of
the function so that, for example, the variable may be used as a data-only argument
to a built-in function.

9.5. Function bodies
The body of a function is between an open curly brace ({) and close curly brace (}).
The body may contain local variable declarations at the top of the function body’s
block and these scope the same way as local variables used in any other statement
block.

Any user-defined function may be used in the function body regardless of the order

120 CHAPTER 9. USER-DEFINED FUNCTIONS

in which the function definitions appear in the file. Self-recursive and mutually
recursive functions are possible without any additional declarations.

The only restrictions on statements in function bodies are external, and determine
whether the log probability accumulator or random number generators are available;
see the rest of this section for details.

Random number generating functions
Functions that call random number generating functions in their bodies must have
a name that ends in _rng; attempts to use random-number generators in other
functions lead to a compile-time error.

Like other random number generating functions, user-defined functions with names
that end in _rngmay be used only in the generated quantities block and transformed
data block, or within the bodies of user-defined functions ending in _rng. An
attempt to use such a function elsewhere results in a compile-time error.

Log probability access in functions
Functions that include statements.qmd#distribution-statements.section or
statements.qmd#increment-log-prob.section must have a name that ends in _lp.
Attempts to use distribution statements or increment log probability statements in
other functions lead to a compile-time error.

Like the target log density increment statement and distribution statements, user-
defined functions with names that end in _lp may only be used in blocks where the
log probability accumulator is accessible, namely the transformed parameters and
model blocks. An attempt to use such a function elsewhere results in a compile-time
error.

Defining probability functions for distribution statements
Functions whose names end in _lpdf and _lpmf (density and mass functions) can
be used as probability functions in distribution statements. As with the built-in
functions, the first argument will appear on the left of the distribution statement
operator (~) in the distribution statement and the other arguments follow. For
example, suppose a function returning the log of the density of y given parameter
theta allows the use of the distribution statement is defined as follows.

real foo_lpdf(real y, vector theta) { ... }

Note that for function definitions, the comma is used rather than the vertical bar.

For every custom _lpdf and _lpmf defined there is a corresponding _lupdf and
_lupmf defined automatically. The _lupdf and _lupmf versions of the functions

9.6. PARAMETERS ARE CONSTANT 121

cannot be defined directly (to do so will produce an error). The difference in the
_lpdf and _lpmf and the corresponding _lupdf and _lupmf functions is that if any
other unnormalized density functions are used inside the user-defined function, the
_lpdf and _lpmf forms of the user-defined function will change these densities to
be normalized. The _lupdf and _lupmf forms of the user-defined functions will
instead allow other unnormalized density functions to drop additive constants.

The distribution statement shorthand

z ~ foo(phi);

will have the same effect as incrementing the target with the log of the unnormalized
density:

target += foo_lupdf(z | phi);

Other _lupdf and _lupmf functions used in the definition of foo_lpdf will drop
additive constants when foo_lupdf is called and will not drop additive constants
when foo_lpdf is called.

If there are _lupdf and _lupmf functions used inside the following call to foo_lpdf,
they will be forced to normalize (return the equivalent of their _lpdf and _lpmf
forms):

target += foo_lpdf(z | phi);

If there are no _lupdf or _lupmf functions used in the definition of foo_lpdf, then
there will be no difference between a foo_lpdf or foo_lupdf call.

The unnormalized _lupdf and _lupmf functions can only be used in the model
block or in user-defined probability functions (those ending in _lpdf or _lpmf).

The same syntax and shorthand that works for _lpdf also works for log probability
mass functions with suffixes _lpmf.

A function that is going to be accessed as distributions must return the log of the
density or mass function it defines.

9.6. Parameters are constant
Within function definition bodies, the parameters may be used like any other
variable. But the parameters are constant in the sense that they can’t be assigned to
(i.e., can’t appear on the left side of an assignment (=) statement). In other words,
their value remains constant throughout the function body. Attempting to assign a

122 CHAPTER 9. USER-DEFINED FUNCTIONS

value to a function parameter value will raise a compile-time error.1

Local variables may be declared at the top of the function block and scope as usual.

9.7. Return value
Non-void functions must have a return statement that returns an appropriately
typed expression. If the expression in a return statement does not have the same
type as the return type declared for the function, a compile-time error is raised.

Void functions may use return only without an argument, but return statements
are not mandatory.

Return guarantee required
Unlike C++, Stan enforces a syntactic guarantee for non-void functions that ensures
control will leave a non-void function through an appropriately typed return state-
ment or because an exception is raised in the execution of the function. To enforce
this condition, functions must have a return statement as the last statement in their
body. This notion of last is defined recursively in terms of statements that qualify
as bodies for functions. The base case is that

• a return statement qualifies,

and the recursive cases are that

• a sequence of statements qualifies if its last statement qualifies,
• a for loop or while loop qualifies if its body qualifies, and
• a conditional statement qualifies if it has a default else clause and all of its

body statements qualify.

An exception is made for “obviously infinite” loops like while (1), which contain
a return statement and no break statements. The only way to exit such a loop is to
return, so they are considered as returning statements.

These rules disqualify

real foo(real x) {
if (x > 2) {
return 1.0;

} else if (x <= 2) {
return -1.0;

1Despite being declared constant and appearing to have a pass-by-value syntax in Stan, the imple-
mentation of the language passes function arguments by constant reference in C++.

9.8. VOID FUNCTIONS AS STATEMENTS 123

}
}

because there is no default else clause, and disqualify

real foo(real x) {
real y;
y = x;
while (x < 10) {
if (x > 0) {

return x;
}
y = x / 2;

}
}

because the return statement is not the last statement in the while loop. A bogus
dummy return could be placed after the while loop in this case. The rules for returns
allow

real log_fancy(real x) {
if (x < 1e-30) {
return x;

} else if (x < 1e-14) {
return x * x;

} else {
return log(x);

}
}

because there’s a default else clause and each condition body has return as its final
statement.

9.8. Void Functions as Statements
Void functions
A function can be declared without a return value by using void in place of a return
type. Note that the type void may only be used as a return type—arguments may
not be declared to be of type void.

Usage as statement
A void function may be used as a statement.

124 CHAPTER 9. USER-DEFINED FUNCTIONS

Because there is no return, such a usage is only for side effects, such as incrementing
the log probability function, printing, or raising an error.

Special return statements
In a return statement within a void function’s definition, the return keyword is
followed immediately by a semicolon (;) rather than by the expression whose value
is returned.

9.9. Declarations
Stan supports forward declarations, which look like function definitions without
bodies. For example,

real unit_normal_lpdf(real y);

declares a function named unit_normal_lpdf that consumes a single real-valued
input and produces a real-valued output. Declaring a function without a definition
is only really useful when using an extension which supplies the definition in C++
rather than in the Stan code itself. How exactly this can be accomplished will differ
depending on your Stan interface.

A function definition with a body simultaneously declares and defines the named
function, as in

real unit_normal_lpdf(real y) {
return -0.5 * square(y);

}

A function can be declared and (perhaps separately) defined at most once. However,
functions with different argument types are considered distinct even if they have
the same name; see the section on function overloading.

10. Constraint Transforms

To avoid having to deal with constraints while simulating the Hamiltonian dynam-
ics during sampling, every (multivariate) parameter in a Stan model is transformed
to an unconstrained variable behind the scenes by the model compiler. The trans-
form is based on the constraints, if any, in the parameter’s definition. Scalars or the
scalar values in vectors, row vectors or matrices may be constrained with lower
and/or upper bounds. Vectors may alternatively be constrained to be ordered, posi-
tive ordered, or simplexes. Matrices may be constrained to be correlation matrices
or covariance matrices. This chapter provides a definition of the transforms used
for each type of variable. For examples of how to declare and define these variables
in a Stan program, see section Variable declaration.

Stan converts models to C++ classes which define probability functions with sup-
port on all of RK, where K is the number of unconstrained parameters needed to
define the constrained parameters defined in the program. The C++ classes also
include code to transform the parameters from unconstrained to constrained and
apply the appropriate Jacobians.

10.1. Limitations due to finite accuracy presentation
In this section the transformations are described mathematically. There are two
cases where the observed behavior can be different from the exact arithmetic: -
Stan’s arithmetic is implemented using double-precision floating-point arithmetic,
which may cause computation to behave differently than mathematics. For example,
lower bound constraint is defined with logarithm constraint which mathematically
excludes the lower bound, but if the closest floating-point number for the inverse
transformed value is the boundary, then the value is rounded to the boundary. This
may cause unexpected warnings or errors, if in other parts of the code the boundary
value is invalid. For example, we may observe floating-point value 0 for a variance
parameter that has been declared to be larger than 0. See more about Floating point
Arithmetic in Stan user’s guide). - CmdStan stores the output to CSV files with 6
significant digits accuracy by default, but the constraints are checked with 8 decimal
digit accuracy. Due to this, there can be errors if CSV output is further used, for
example, to run generated quantities. For example, simplex constraint requires the
values to sum up to 1, but when writing the values to CSV they are rounded to
6 significant digits and the sum of those rounded values can be smaller or larger

125

../stan-users-guide/floating-point.qmd
../stan-users-guide/floating-point.qmd

126 CHAPTER 10. CONSTRAINT TRANSFORMS

than 1 by more than 8 decimal digits. The solution for CmdStan is to increase
the number of significant digits stored as discussed in CmdStan Command-Line
Interface Overview.

10.2. Changes of variables
The support of a random variable X with density pX(x) is that subset of values for
which it has non-zero density,

supp(X) = {x|pX(x) > 0}.

If f is a total function defined on the support of X, then Y = f (X) is a new random
variable. This section shows how to compute the probability density function of Y
for well-behaved transforms f . The rest of the chapter details the transforms used
by Stan.

Univariate changes of variables
Suppose X is one dimensional and f : supp(X) → R is a one-to-one, monotonic
function with a differentiable inverse f−1. Then the density of Y is given by

pY(y) = pX(f−1(y))
∣∣∣∣ d

dy
f−1(y)

∣∣∣∣ .

The absolute derivative of the inverse transform measures how the scale of the
transformed variable changes with respect to the underlying variable.

Multivariate changes of variables
The multivariate generalization of an absolute derivative is a Jacobian, or more
fully the absolute value of the determinant of the Jacobian matrix of the transform.
The Jacobian matrix measures the change of each output variable relative to every
input variable and the absolute determinant uses that to determine the differential
change in volume at a given point in the parameter space.

Suppose X is a K-dimensional random variable with probability density function
pX(x). A new random variable Y = f (X) may be defined by transforming X with
a suitably well-behaved function f . It suffices for what follows to note that if f is
one-to-one and its inverse f−1 has a well-defined Jacobian, then the density of Y is

pY(y) = pX(f−1(y))
∣∣∣det J f−1(y)

∣∣∣ ,

../cmdstan-guide/command_line_options.qmd
../cmdstan-guide/command_line_options.qmd

10.3. LOWER BOUNDED SCALAR 127

where det is the matrix determinant operation and J f−1(y) is the Jacobian matrix of
f−1 evaluated at y. Taking x = f−1(y), the Jacobian matrix is defined by

J f−1(y) =


∂x1

∂y1
· · · ∂x1

∂yK
...

...
...

∂xK
∂y1

· · · ∂xK
∂yK

 .

If the Jacobian matrix is triangular, the determinant reduces to the product of the
diagonal entries,

det J f−1(y) =
K

∏
k=1

∂xk
∂yk

.

Triangular matrices naturally arise in situations where the variables are ordered,
for instance by dimension, and each variable’s transformed value depends on
the previous variable’s transformed values. Diagonal matrices, a simple form of
triangular matrix, arise if each transformed variable only depends on a single
untransformed variable.

10.3. Lower bounded scalar
Stan uses a logarithmic transform for lower and upper bounds.

Lower bound transform
If a variable X is declared to have lower bound a, it is transformed to an unbounded
variable Y, where

Y = log(X− a).

Lower bound inverse transform
The inverse of the lower-bound transform maps an unbounded variable Y to a
variable X that is bounded below by a by

X = exp(Y) + a.

128 CHAPTER 10. CONSTRAINT TRANSFORMS

Absolute derivative of the lower bound inverse transform
The absolute derivative of the inverse transform is

∣∣∣∣ d
dy

(exp(y) + a)
∣∣∣∣ = exp(y).

Therefore, given the density pX of X, the density of Y is

pY(y) = pX(exp(y) + a) · exp(y).

10.4. Upper bounded scalar
Stan uses a negated logarithmic transform for upper bounds.

Upper bound transform
If a variable X is declared to have an upper bound b, it is transformed to the
unbounded variable Y by

Y = log(b− X).

Upper bound inverse transform
The inverse of the upper bound transform converts the unbounded variable Y to
the variable X bounded above by b through

X = b− exp(Y).

Absolute derivative of the upper bound inverse transform
The absolute derivative of the inverse of the upper bound transform is

∣∣∣∣ d
dy

(b− exp(y))
∣∣∣∣ = exp(y).

Therefore, the density of the unconstrained variable Y is defined in terms of the
density of the variable X with an upper bound of b by

pY(y) = pX(b− exp(y)) · exp(y).

10.5. LOWER AND UPPER BOUNDED SCALAR 129

10.5. Lower and upper bounded scalar
For lower and upper-bounded variables, Stan uses a scaled and translated log-odds
transform.

Log odds and the logistic sigmoid
The log-odds function is defined for u ∈ (0, 1) by

logit(u) = log
u

1− u
.

The inverse of the log odds function is the logistic sigmoid, defined for v ∈ (−∞, ∞)
by

logit−1(v) =
1

1 + exp(−v)
.

The derivative of the logistic sigmoid is

d
dy

logit−1(y) = logit−1(y) ·
(

1− logit−1(y)
)

.

Lower and upper bounds transform
For variables constrained to be in the open interval (a, b), Stan uses a scaled and
translated log-odds transform. If variable X is declared to have lower bound a and
upper bound b, then it is transformed to a new variable Y, where

Y = logit
(

X− a
b− a

)
.

Lower and upper bounds inverse transform
The inverse of this transform is

X = a + (b− a) · logit−1(Y).

Absolute derivative of the lower and upper bounds inverse transform
The absolute derivative of the inverse transform is given by

130 CHAPTER 10. CONSTRAINT TRANSFORMS

∣∣∣∣ d
dy

(
a + (b− a) · logit−1(y)

)∣∣∣∣ = (b− a) · logit−1(y) ·
(

1− logit−1(y)
)

.

Therefore, the density of the transformed variable Y is

pY(y) = pX

(
a + (b− a) · logit−1(y)

)
· (b− a) · logit−1(y) ·

(
1− logit−1(y)

)
.

Despite the apparent complexity of this expression, most of the terms are repeated
and thus only need to be evaluated once. Most importantly, logit−1(y) only needs
to be evaluated once, so there is only one call to exp(−y).

10.6. Affinely transformed scalar
Stan uses an affine transform to be able to specify parameters with a given offset
and multiplier.

Affine transform
For variables with expected offset µ and/or (positive) multiplier σ, Stan uses an
affine transform. Such a variable X is transformed to a new variable Y, where

Y =
X− µ

σ
.

The default value for the offset µ is 0 and for the multiplier σ is 1 in case not both
are specified.

Affine inverse transform
The inverse of this transform is

X = µ + σ ·Y.

Absolute derivative of the affine inverse transform
The absolute derivative of the affine inverse transform is

∣∣∣∣ d
dy

(µ + σ · y)
∣∣∣∣ = σ.

Therefore, the density of the transformed variable Y is

10.7. ORDERED VECTOR 131

pY(y) = pX(µ + σ · y) · σ.

For an example of how to code this in Stan, see section Affinely Transformed Real.

10.7. Ordered vector
For some modeling tasks, a vector-valued random variable X is required with
support on ordered sequences. One example is the set of cut points in ordered
logistic regression.

In constraint terms, an ordered K-vector x ∈ RK satisfies

xk < xk+1

for k ∈ {1, . . . , K− 1}.

Ordered transform

Stan’s transform follows the constraint directly. It maps an increasing vector x ∈ RK

to an unconstrained vector y ∈ RK by setting

yk =

{
x1 if k = 1, and
log (xk − xk−1) if 1 < k ≤ K.

Ordered inverse transform

The inverse transform for an unconstrained y ∈ RK to an ordered sequence x ∈ RK

is defined by the recursion

xk =

{
y1 if k = 1, and
xk−1 + exp(yk) if 1 < k ≤ K.

xk can also be expressed iteratively as

xk = y1 +
k

∑
k′=2

exp(yk′).

132 CHAPTER 10. CONSTRAINT TRANSFORMS

Absolute Jacobian determinant of the ordered inverse transform

The Jacobian of the inverse transform f−1 is lower triangular, with diagonal ele-
ments for 1 ≤ k ≤ K of

Jk,k =

{
1 if k = 1, and
exp(yk) if 1 < k ≤ K.

Because J is triangular, the absolute Jacobian determinant is

|det J | =
∣∣∣∣∣ K

∏
k=1

Jk,k

∣∣∣∣∣ =
K

∏
k=2

exp(yk).

Putting this all together, if pX is the density of X, then the transformed variable Y
has density pY given by

pY(y) = pX(f−1(y))
K

∏
k=2

exp(yk).

10.8. Zero sum vector
Vectors that are constrained to sum to zero are useful for, among other things,
additive varying effects, such as varying slopes or intercepts in a regression model
(e.g., for income deciles).

A zero sum K-vector x ∈ RK satisfies the constraint

K

∑
k=1

xk = 0.

For the transform, Stan uses the first part of an isometric log ratio transform; see
(Egozcue et al. 2003) for the basic definitions and Chapter 3 of (Filzmoser, Hron,
and Templ 2018) for the pivot coordinate version used here. Stan uses the isometric
log ratio transform because it results in equal variances of the the constrained sum
to zero vector see, e.g.,(Seyboldt 2024). Simpler alternatives, such as setting the final
element to the negative sum of the first elements, do not result in equal variances.
The N − 1 unconstrained parameters are independent, however, the sum-to-zero
constraint induces a negative correlation across the constrained vector values.

10.8. ZERO SUM VECTOR 133

Zero sum transform

The (unconstraining) transform is defined iteratively. Given an x ∈ RN+1 that
sums to zero (i.e., ∑N+1

n=1 xn = 0), the transform proceeds as follows to produce an
unconstrained y ∈ RN .

The transform is initialized by setting

SN = 0

and

yN = −xN+1 ·
√

1 +
1
N

.

The for each n from N − 1 down to 1, let

wn+1 =
yn+1√

(n + 1) · (n + 2)
,

Sn = Sn+1 + wn+1,

and

yn = (Sn − xn+1) ·
√

n · (n + 1)
n

.

Zero sum inverse transform
The inverse (constraining) transform follows the isometric logratio tranform. It
maps an unconstrained vector y ∈ RN to a zero-sum vector x ∈ RN+1 such that

N+1

∑
n=1

xn = 0.

The values are defined inductively, starting with

x1 =
N

∑
n=1

yn√
n · (n + 1)

and then setting

xn+1 =
N

∑
i=n+1

√
yi√

i · (i + 1)
− n · yn√

n · (n + 1)
.

for n ∈ 1:N.

134 CHAPTER 10. CONSTRAINT TRANSFORMS

The definition is such that
N+1

∑
n=1

xn = 0

by construction, because each of the terms added to xn is then subtracted from xn+1
the number of times it shows up in earlier terms.

Absolute Jacobian determinant of the zero sum inverse transform
The inverse transform is a linear operation, leading to a constant Jacobian determi-
nant which is therefore not included.

10.9. Unit simplex
Variables constrained to the unit simplex show up in multivariate discrete models
as both parameters (categorical and multinomial) and as variates generated by their
priors (Dirichlet and multivariate logistic).

The unit K-simplex is the set of points x ∈ RK such that for 1 ≤ k ≤ K,

xk > 0,

and

K

∑
k=1

xk = 1.

An alternative definition is to take the convex closure of the vertices. For instance,
in 2-dimensions, the simplex vertices are the extreme values (0, 1), and (1, 0) and
the unit 2-simplex is the line connecting these two points; values such as (0.3, 0.7)
and (0.99, 0.01) lie on the line. In 3-dimensions, the basis is (0, 0, 1), (0, 1, 0) and
(1, 0, 0) and the unit 3-simplex is the boundary and interior of the triangle with
these vertices. Points in the 3-simplex include (0.5, 0.5, 0), (0.2, 0.7, 0.1) and all other
triplets of non-negative values summing to 1.

As these examples illustrate, the simplex always picks out a subspace of K − 1
dimensions from RK. Therefore a point x in the K-simplex is fully determined by
its first K− 1 elements x1, x2, . . . , xK−1, with

xK = 1−
K−1

∑
k=1

xk.

10.9. UNIT SIMPLEX 135

Unit simplex inverse transform
Stan’s unit simplex inverse transform may be understood using the following
stick-breaking metaphor.1

1. Take a stick of unit length (i.e., length 1).
2. Break a piece off and label it as x1, and set it aside, keeping what’s left.
3. Next, break a piece off what’s left, label it x2, and set it aside, keeping what’s

left.
4. Continue breaking off pieces of what’s left, labeling them, and setting them

aside for pieces x3, . . . , xK−1.
5. Label what’s left xK.

The resulting vector x = [x1, . . . , xK]
⊤ is a unit simplex because each piece has

non-negative length and the sum of the stick lengths is one by construction.

This full inverse mapping requires the breaks to be represented as the fraction in
(0, 1) of the original stick that is broken off. These break ratios are themselves
derived from unconstrained values in (−∞, ∞) using the inverse logit transform as
described above for unidimensional variables with lower and upper bounds.

More formally, an intermediate vector z ∈ RK−1, whose coordinates zk represent
the proportion of the stick broken off in step k, is defined elementwise for 1 ≤ k < K
by

zk = logit−1
(

yk + log
(

1
K− k

))
.

The logit term log
(

1
K−k

)
(i.e., logit

(
1

K−k+1

)
) in the above definition adjusts the

transform so that a zero vector y is mapped to the simplex x = (1/K, . . . , 1/K). For
instance, if y1 = 0, then z1 = 1/K; if y2 = 0, then z2 = 1/(K− 1); and if yK−1 = 0,
then zK−1 = 1/2.

The break proportions z are applied to determine the stick sizes and resulting value
of xk for 1 ≤ k < K by

xk =

(
1−

k−1

∑
k′=1

xk′

)
zk.

1For an alternative derivation of the same transform using hyperspherical coordinates, see (Betancourt
2010).

136 CHAPTER 10. CONSTRAINT TRANSFORMS

The summation term represents the length of the original stick left at stage k. This
is multiplied by the break proportion zk to yield xk. Only K − 1 unconstrained
parameters are required, with the last dimension’s value xK set to the length of the
remaining piece of the original stick,

xK = 1−
K−1

∑
k=1

xk.

Absolute Jacobian determinant of the unit-simplex inverse transform

The Jacobian J of the inverse transform f−1 is lower-triangular, with diagonal
entries

Jk,k =
∂xk
∂yk

=
∂xk
∂zk

∂zk
∂yk

,

where

∂zk
∂yk

=
∂

∂yk
logit−1

(
yk + log

(
1

K− k

))
= zk(1− zk),

and

∂xk
∂zk

=

(
1−

k−1

∑
k′=1

xk′

)
.

This definition is recursive, defining xk in terms of x1, . . . , xk−1.

Because the Jacobian J of f−1 is lower triangular and positive, its absolute determi-
nant reduces to

|det J | =
K−1

∏
k=1

Jk,k =
K−1

∏
k=1

zk (1− zk)

(
1−

k−1

∑
k′=1

xk′

)
.

Thus the transformed variable Y = f (X) has a density given by

pY(y) = pX(f−1(y))
K−1

∏
k=1

zk (1− zk)

(
1−

k−1

∑
k′=1

xk′

)
.

10.10. STOCHASTIC MATRIX 137

Even though it is expressed in terms of intermediate values zk, this expression still
looks more complex than it is. The exponential function need only be evaluated
once for each unconstrained parameter yk; everything else is just basic arithmetic
that can be computed incrementally along with the transform.

Unit simplex transform
The transform Y = f (X) can be derived by reversing the stages of the inverse trans-
form. Working backwards, given the break proportions z, y is defined elementwise
by

yk = logit(zk)− log
(

1
K− k

)
.

The break proportions zk are defined to be the ratio of xk to the length of stick left
after the first k− 1 pieces have been broken off,

zk =
xk

1−∑k−1
k′=1 xk′

.

10.10. Stochastic Matrix
The column_stochastic_matrix[N, M] and row_stochastic_matrix[N, M]
type in Stan represents an N ×M matrix where each column (row) is a unit sim-
plex of dimension N. In other words, each column (row) of the matrix is a vector
constrained to have non-negative entries that sum to one.

Definition of a Stochastic Matrix

A column stochastic matrix X ∈ RN×M is defined such that each column is a
simplex. For column m (where 1 ≤ m ≤ M):

Xn,m ≥ 0 for 1 ≤ n ≤ N,

and

N

∑
n=1

Xn,m = 1.

A row stochastic matrix is any matrix whose transpose is a column stochastic matrix
(i.e. the rows of the matrix are simplexes)

138 CHAPTER 10. CONSTRAINT TRANSFORMS

Xn,m ≥ 0 for 1 ≤ n ≤ N,

and

N

∑
m=1

Xn,m = 1.

This definition ensures that each column (row) of the matrix X lies on the N − 1
dimensional unit simplex, similar to the simplex[N] type, but extended across
multiple columns(rows).

Inverse Transform for Stochastic Matrix
For the column and row stochastic matrices the inverse transform is the same as
simplex, but applied to each column (row).

Absolute Jacobian Determinant for the Inverse Transform
The Jacobian determinant of the inverse transform for each column m in the matrix
is given by the product of the diagonal entries Jn,m of the lower-triangular Jacobian
matrix. This determinant is calculated as:

|det Jm| =
N−1

∏
n=1

(
zn,m(1− zn,m)

(
1−

n−1

∑
n′=1

Xn′ ,m

))
.

Thus, the overall Jacobian determinant for the entire column_stochastic_matrix
and row_stochastic_matrix is the product of the determinants for each column
(row):

|det J| =
M

∏
m=1
|det Jm| .

Transform for Stochastic Matrix
For the column and row stochastic matrices the transform is the same as simplex,
but applied to each column (row).

10.11. UNIT VECTOR 139

10.11. Unit vector
An n-dimensional vector x ∈ Rn is said to be a unit vector if it has unit Euclidean
length, so that

∥x∥ =
√

x⊤ x =
√

x2
1 + x2

2 + · · ·+ x2
n = 1 .

Unit vector inverse transform

Stan divides an unconstrained vector y ∈ Rn by its norm, ∥y∥ =
√

y⊤y, to obtain a
unit vector x,

x =
y
∥y∥ .

To generate a unit vector, Stan generates points at random in Rn with independent
unit normal distributions, which are then standardized by dividing by their Eu-
clidean length. Muller (1959) showed this generates points uniformly at random on
Sn−1. That is, if we draw yn ∼ Normal(0, 1) for n ∈ 1:n, then x = y

∥y∥ has a uniform

distribution over Sn−1. This allows us to use an n-dimensional basis for Sn−1 that
preserves local neighborhoods in that points that are close to each other in Rn map
to points near each other in Sn−1. The mapping is not perfectly distance preserving,
because there are points arbitrarily far away from each other in Rn that map to
identical points in Sn−1.

Warning: undefined at zero!
The above mapping from Rn to Sn is not defined at zero. While this point outcome
has measure zero during sampling, and may thus be ignored, it is the default
initialization point and thus unit vector parameters cannot be initialized at zero. A
simple workaround is to initialize from a very small interval around zero, which is
an option built into all of the Stan interfaces.

Absolute Jacobian determinant of the unit vector inverse transform
The Jacobian matrix relating the input vector y to the output vector x is singular
because x⊤x = 1 for any non-zero input vector y. Thus, there technically is no

unique transformation from x to y. To circumvent this issue, let r =
√

y⊤y so that
y = rx. The transformation from (r, x−n) to y is well-defined but r is arbitrary,
so we set r = 1. In this case, the determinant of the Jacobian is proportional to
e−

1
2 y⊤y, which is the kernel of a standard multivariate normal distribution with n

independent dimensions.

140 CHAPTER 10. CONSTRAINT TRANSFORMS

10.12. Correlation matrices
A K× K correlation matrix x must be symmetric, so that

xk,k′ = xk′ ,k

for all k, k′ ∈ {1, . . . , K}, it must have a unit diagonal, so that

xk,k = 1

for all k ∈ {1, . . . , K}, and it must be positive definite, so that for every non-zero
K-vector a,

a⊤xa > 0.

The number of free parameters required to specify a K× K correlation matrix is (K
2).

There is more than one way to map from (K
2) unconstrained parameters to a K×

K correlation matrix. Stan implements the Lewandowski-Kurowicka-Joe (LKJ)
transform Lewandowski, Kurowicka, and Joe (2009).

Correlation matrix inverse transform

It is easiest to specify the inverse, going from its (K
2) parameter basis to a correlation

matrix. The basis will actually be broken down into two steps. To start, suppose y
is a vector containing (K

2) unconstrained values. These are first transformed via the
bijective function tanh : R→ (−1, 1)

tanh y =
exp(2y)− 1
exp(2y) + 1

.

Then, define a K×K matrix z, the upper triangular values of which are filled by row
with the transformed values, and the diagonal entries are set to one. For example,
in the 4× 4 case, there are (4

2) values arranged as

z =


1 tanh y1 tanh y2 tanh y4
0 1 tanh y3 tanh y5
0 0 1 tanh y6
0 0 0 1

 .

10.12. CORRELATION MATRICES 141

Lewandowski, Kurowicka and Joe (LKJ) show how to bijectively map the array z to
a correlation matrix x. The entry zi,j for i < j is interpreted as the canonical partial
correlation (CPC) between i and j, which is the correlation between i’s residuals and
j’s residuals when both i and j are regressed on all variables i′ such that i′ < i. In
the case of i = 1, there are no earlier variables, so z1,j is just the Pearson correlation
between i and j.

In Stan, the LKJ transform is reformulated in terms of a Cholesky factor w of the
final correlation matrix, defined for 1 ≤ i, j ≤ K by

wi,j =



0 if i > j,
1 if 1 = i = j,

∏i−1
i′=1

(
1− z2

i′, j

)1/2
if 1 < i = j,

zi,j if 1 = i < j, and

zi,j ∏i−1
i′=1

(
1− z2

i′, j

)1/2
if 1 < i < j.

This does not require as much computation per matrix entry as it may appear;
calculating the rows in terms of earlier rows yields the more manageable expression

wi,j =


0 if i > j,
1 if 1 = i = j,

zi,j if 1 = i < j, and
zi,j

zi−1,j
wi−1,j

(
1− z2

i−1,j

)1/2
if 1 < i ≤ j.

Given the upper-triangular Cholesky factor w, the final correlation matrix is

x = w⊤w.

Lewandowski, Kurowicka, and Joe (2009) show that the determinant of the correla-
tion matrix can be defined in terms of the canonical partial correlations as

det x =
K−1

∏
i=1

K

∏
j=i+1

(1− z2
i,j) = ∏

1≤i<j≤K
(1− z2

i,j),

142 CHAPTER 10. CONSTRAINT TRANSFORMS

Absolute Jacobian determinant of the correlation matrix inverse transform
From the inverse of equation 11 in (Lewandowski, Kurowicka, and Joe 2009), the
absolute Jacobian determinant is

√√√√K−1

∏
i=1

K

∏
j=i+1

(
1− z2

i,j

)K−i−1
×

K−1

∏
i=1

K

∏
j=i+1

∂zi,j

∂yi,j

Correlation matrix transform
The correlation transform is defined by reversing the steps of the inverse transform
defined in the previous section.

Starting with a correlation matrix x, the first step is to find the unique upper
triangular w such that x = ww⊤. Because x is positive definite, this can be done by
applying the Cholesky decomposition,

w = chol(x).

The next step from the Cholesky factor w back to the array z of canonical partial
correlations (CPCs) is simplified by the ordering of the elements in the definition of
w, which when inverted yields

zi,j =


0 if i ≤ j,

wi,j if 1 = i < j, and

wi,j ∏i−1
i′=1

(
1− z2

i′,j

)−1/2
if 1 < i < j.

The final stage of the transform reverses the hyperbolic tangent transform, which is
defined by

y = tanh−1 z =
1
2

log
(

1 + z
1− z

)
.

The inverse hyperbolic tangent function, tanh−1, is also called the Fisher transfor-
mation.

10.13. COVARIANCE MATRICES 143

10.13. Covariance matrices
A K× K matrix is a covariance matrix if it is symmetric and positive definite (see
the previous section for definitions). It requires K + (K

2) free parameters to specify a
K× K covariance matrix.

Covariance matrix transform
Stan’s covariance transform is based on a Cholesky decomposition composed with
a log transform of the positive-constrained diagonal elements.2

If x is a covariance matrix (i.e., a symmetric, positive definite matrix), then there is
a unique lower-triangular matrix z = chol(x) with positive diagonal entries, called
a Cholesky factor, such that

x = z z⊤.

The off-diagonal entries of the Cholesky factor z are unconstrained, but the diagonal
entries zk,k must be positive for 1 ≤ k ≤ K.

To complete the transform, the diagonal is log-transformed to produce a fully
unconstrained lower-triangular matrix y defined by

ym,n =


0 if m < n,

log zm,m if m = n, and
zm,n if m > n.

Covariance matrix inverse transform
The inverse transform reverses the two steps of the transform. Given an uncon-
strained lower-triangular K×K matrix y, the first step is to recover the intermediate
matrix z by reversing the log transform,

2An alternative to the transform in this section, which can be coded directly in Stan, is to parameterize
a covariance matrix as a scaled correlation matrix. An arbitrary K × K covariance matrix Σ can be
expressed in terms of a K-vector σ and correlation matrix Ω as

Σ = diag(σ)×Ω× diag(σ),

so that each entry is just a deviation-scaled correlation,

Σm,n = σm × σn ×Ωm,n.

144 CHAPTER 10. CONSTRAINT TRANSFORMS

zm,n =


0 if m < n,

exp(ym,m) if m = n, and
ym,n if m > n.

The covariance matrix x is recovered from its Cholesky factor z by taking

x = z z⊤.

Absolute Jacobian determinant of the covariance matrix inverse transform
The Jacobian is the product of the Jacobians of the exponential transform from the
unconstrained lower-triangular matrix y to matrix z with positive diagonals and
the product transform from the Cholesky factor z to x.

The transform from unconstrained y to Cholesky factor z has a diagonal Jacobian
matrix, the absolute determinant of which is thus

K

∏
k=1

∂

∂yk,k

exp(yk,k) =
K

∏
k=1

exp(yk,k) =
K

∏
k=1

zk,k.

The Jacobian matrix of the second transform from the Cholesky factor z to the
covariance matrix x is also triangular, with diagonal entries corresponding to pairs
(m, n) with m ≥ n, defined by

∂

∂zm,n

(
z z⊤

)
m,n

=
∂

∂zm,n

(
K

∑
k=1

zm,k zn,k

)
=

{
2 zn,n if m = n and
zn,n if m > n.

The absolute Jacobian determinant of the second transform is thus

2K
K

∏
m=1

m

∏
n=1

zn,n =
K

∏
n=1

K

∏
m=n

zn,n = 2K
K

∏
k=1

zK−k+1
k,k .

Finally, the full absolute Jacobian determinant of the inverse of the covariance
matrix transform from the unconstrained lower-triangular y to a symmetric, positive
definite matrix x is the product of the Jacobian determinants of the exponentiation
and product transforms,

10.14. CHOLESKY FACTORS OF COVARIANCE MATRICES 145

(
K

∏
k=1

zk,k

)(
2K

K

∏
k=1

zK−k+1
k,k

)
= 2K

K

∏
k=1

zK−k+2
k,k .

Let f−1 be the inverse transform from a K + (K
2)-vector y to the K× K covariance

matrix x. A density function pX(x) defined on K× K covariance matrices is trans-
formed to the density pY(y) over K + (K

2) vectors y by

pY(y) = pX(f−1(y)) 2K
K

∏
k=1

zK−k+2
k,k .

10.14. Cholesky factors of covariance matrices
An M × M covariance matrix Σ can be Cholesky factored to a lower triangular
matrix L such that L L⊤ = Σ. If Σ is positive definite, then L will be M×M. If Σ is
only positive semi-definite, then L will be M× N, with N < M.

A matrix is a Cholesky factor for a covariance matrix if and only if it is lower
triangular, the diagonal entries are positive, and M ≥ N. A matrix satisfying these
conditions ensures that L L⊤ is positive semi-definite if M > N and positive definite
if M = N.

A Cholesky factor of a covariance matrix requires N + (N
2) + (M − N)N uncon-

strained parameters.

Cholesky factor of covariance matrix transform
Stan’s Cholesky factor transform only requires the first step of the covariance matrix
transform, namely log transforming the positive diagonal elements. Suppose x is an
M× N Cholesky factor. The above-diagonal entries are zero, the diagonal entries
are positive, and the below-diagonal entries are unconstrained. The transform
required is thus

ym,n =


0 if m < n,

log xm,m if m = n, and
xm,n if m > n.

Cholesky factor of covariance matrix inverse transform
The inverse transform need only invert the logarithm with an exponentiation. If y
is the unconstrained matrix representation, then the elements of the constrained
matrix x is defined by

146 CHAPTER 10. CONSTRAINT TRANSFORMS

xm,n =


0 if m < n,

exp(ym,m) if m = n, and
ym,n if m > n.

Absolute Jacobian determinant of Cholesky factor inverse transform
The transform has a diagonal Jacobian matrix, the absolute determinant of which is

N

∏
n=1

∂

∂yn,n

exp(yn,n) =
N

∏
n=1

exp(yn,n) =
N

∏
n=1

xn,n.

Let x = f−1(y) be the inverse transform from a N + (N
2) + (M− N)N vector to an

M× N Cholesky factor for a covariance matrix x defined in the previous section. A
density function pX(x) defined on M× N Cholesky factors of covariance matrices
is transformed to the density pY(y) over N + (N

2) + (M− N)N vectors y by

pY(y) = pX(f−1(y))
N

∏
N=1

xn,n.

10.15. Cholesky factors of correlation matrices
A K× K correlation matrix Ω is positive definite and has a unit diagonal. Because it
is positive definite, it can be Cholesky factored to a K× K lower-triangular matrix L
with positive diagonal elements such that Ω = L L⊤. Because the correlation matrix
has a unit diagonal,

Ωk,k = Lk L⊤k = 1,

each row vector Lk of the Cholesky factor is of unit length. The length and positivity
constraint allow the diagonal elements of L to be calculated from the off-diagonal
elements, so that a Cholesky factor for a K× K correlation matrix requires only (K

2)
unconstrained parameters.

Cholesky factor of correlation matrix inverse transform

It is easiest to start with the inverse transform from the (K
2) unconstrained param-

eters y to the K× K lower-triangular Cholesky factor x. The inverse transform is
based on the hyperbolic tangent function, tanh, which satisfies tanh(x) ∈ (−1, 1).
Here it will function like an inverse logit with a sign to pick out the direction of an

10.15. CHOLESKY FACTORS OF CORRELATION MATRICES 147

underlying canonical partial correlation; see the section on correlation matrix trans-
forms for more information on the relation between canonical partial correlations
and the Cholesky factors of correlation matrices.

Suppose y is a vector of (K
2) unconstrained values. Let z be a lower-triangular matrix

with zero diagonal and below diagonal entries filled by row. For example, in the
3× 3 case,

z =

 0 0 0
tanh y1 0 0
tanh y2 tanh y3 0


The matrix z, with entries in the range (−1, 1), is then transformed to the Cholesky
factor x, by taking3

xi,j =


0 if i < j [above diagonal]√

1−∑j′<j x2
i,j′ if i = j [on diagonal]

zi,j

√
1−∑j′<j x2

i,j′ if i > j [below diagonal]

In the 3× 3 case, this yields

x =


1 0 0

z2,1

√
1− x2

2,1 0

z3,1 z3,2

√
1− x2

3,1

√
1− (x2

3,1 + x2
3,2)

 ,

where the zi,j ∈ (−1, 1) are the tanh-transformed y.

The approach is a signed stick-breaking process on the quadratic (Euclidean length)
scale. Starting from length 1 at j = 1, each below-diagonal entry xi,j is determined
by the (signed) fraction zi,j of the remaining length for the row that it consumes.
The diagonal entries xi,i get any leftover length from earlier entries in their row. The
above-diagonal entries are zero.

3For convenience, a summation with no terms, such as ∑j′<1 xi,j′ , is defined to be 0. This implies
x1,1 = 1 and that xi,1 = zi,1 for i > 1.

148 CHAPTER 10. CONSTRAINT TRANSFORMS

Cholesky factor of correlation matrix transform
Suppose x is a K× K Cholesky factor for some correlation matrix. The first step of
the transform reconstructs the intermediate values z from x,

zi,j =
xi,j√

1−∑j′<j x2
i,j′

.

The mapping from the resulting z to y inverts tanh,

y = tanh−1 z =
1
2
(log(1 + z)− log(1− z)) .

Absolute Jacobian determinant of inverse transform
The Jacobian of the full transform is the product of the Jacobians of its component
transforms.

First, for the inverse transform z = tanh y, the derivative is

d
dy

tanh y =
1

(cosh y)2 .

Second, for the inverse transform of z to x, the resulting Jacobian matrix J is of
dimension (K

2)× (K
2), with indexes (i, j) for (i > j). The Jacobian matrix is lower

triangular, so that its determinant is the product of its diagonal entries, of which
there is one for each (i, j) pair,

|det J | = ∏
i>j

∣∣∣∣∣ d
dzi,j

xi,j

∣∣∣∣∣ ,

where

d
dzi,j

xi,j =
√

1− ∑
j′<j

x2
i,j′ .

So the combined density for unconstrained y is

10.15. CHOLESKY FACTORS OF CORRELATION MATRICES 149

pY(y) = pX(f−1(y)) ∏
n<(K

2)

1
(cosh y)2 ∏

i>j

1− ∑
j′<j

x2
i,j′

1/2

,

where x = f−1(y) is used for notational convenience. The log Jacobian determinant
of the complete inverse transform x = f−1(y) is given by

log |det J | = −2 ∑
n≤(K

2)

log cosh y +
1
2 ∑

i>j
log

1− ∑
j′<j

x2
i,j′

 .

11. Language Syntax

This chapter defines the basic syntax of the Stan modeling language using a Backus-
Naur form (BNF) grammar plus extra-grammatical constraints on function typing
and operator precedence and associativity.

11.1. BNF grammars
Syntactic conventions
In the following BNF grammars, tokens are represented in ALLCAPS. Grammar
non-terminals are surrounded by < and >. A square brackets ([A]) indicates op-
tionality of A. A postfixed Kleene star (A*) indicates zero or more occurrences of A.
Parenthesis can be used to group symbols together in productions.

Finally, this grammar uses the concept of “parameterized nonterminals” as used
in the parsing library Menhir. A rule like <list(x)> ::= x (COMMA x)* de-
clares a generic list rule, which can later be applied to others by the symbol
<list(<expression>)>.

The following representation is constructed directly from the OCaml reference
parser using a tool called Obelisk. The raw output is available here.

Programs
<program> ::= [<function_block>] [<data_block>] [<transformed_data_block>]

[<parameters_block>] [<transformed_parameters_block>]
[<model_block>] [<generated_quantities_block>] EOF

<functions_only> ::= <function_def>* EOF

<function_block> ::= FUNCTIONBLOCK LBRACE <function_def>* RBRACE

<data_block> ::= DATABLOCK LBRACE <top_var_decl_no_assign>* RBRACE

<transformed_data_block> ::= TRANSFORMEDDATABLOCK LBRACE
<top_vardecl_or_statement>* RBRACE

<parameters_block> ::= PARAMETERSBLOCK LBRACE <top_var_decl_no_assign>*
RBRACE

150

http://gallium.inria.fr/~fpottier/menhir/manual.html#sec30
https://github.com/stan-dev/stanc3/blob/master/src/frontend/parser.mly
https://github.com/stan-dev/stanc3/blob/master/src/frontend/parser.mly
https://github.com/Lelio-Brun/Obelisk
https://raw.githubusercontent.com/stan-dev/docs/master/src/reference-manual/grammar.txt

11.1. BNF GRAMMARS 151

<transformed_parameters_block> ::= TRANSFORMEDPARAMETERSBLOCK LBRACE
<top_vardecl_or_statement>* RBRACE

<model_block> ::= MODELBLOCK LBRACE <vardecl_or_statement>* RBRACE

<generated_quantities_block> ::= GENERATEDQUANTITIESBLOCK LBRACE
<top_vardecl_or_statement>* RBRACE

Function declarations and definitions
<function_def> ::= <return_type> <decl_identifier> LPAREN [<arg_decl> (COMMA

<arg_decl>)*] RPAREN <statement>

<return_type> ::= VOID
| <unsized_type>

<arg_decl> ::= [DATABLOCK] <unsized_type> <decl_identifier>

<unsized_type> ::= ARRAY <unsized_dims> <basic_type>
| ARRAY <unsized_dims> <unsized_tuple_type>
| <basic_type>
| <unsized_tuple_type>

<unsized_tuple_type> ::= TUPLE LPAREN <unsized_type> COMMA <unsized_type>
(COMMA <unsized_type>)* RPAREN

<basic_type> ::= INT
| REAL
| COMPLEX
| VECTOR
| ROWVECTOR
| MATRIX
| COMPLEXVECTOR
| COMPLEXROWVECTOR
| COMPLEXMATRIX

<unsized_dims> ::= LBRACK COMMA* RBRACK

Variable declarations and compound definitions
<identifier> ::= IDENTIFIER

| TRUNCATE
| JACOBIAN

<decl_identifier> ::= <identifier>

152 CHAPTER 11. LANGUAGE SYNTAX

<no_assign> ::= UNREACHABLE

<optional_assignment(rhs)> ::= [ASSIGN rhs]

<id_and_optional_assignment(rhs)> ::= <decl_identifier>
<optional_assignment(rhs)>

<decl(type_rule, rhs)> ::= type_rule <decl_identifier> <dims>
<optional_assignment(rhs)> SEMICOLON

| <higher_type(type_rule)>
<id_and_optional_assignment(rhs)> (COMMA
<id_and_optional_assignment(rhs)>)* SEMICOLON

<higher_type(type_rule)> ::= <array_type(type_rule)>
| <tuple_type(type_rule)>
| type_rule

<array_type(type_rule)> ::= <arr_dims> type_rule
| <arr_dims> <tuple_type(type_rule)>

<tuple_type(type_rule)> ::= TUPLE LPAREN <higher_type(type_rule)> COMMA
<higher_type(type_rule)> (COMMA
<higher_type(type_rule)>)* RPAREN

<var_decl> ::= <decl(<sized_basic_type>, <expression>)>

<top_var_decl> ::= <decl(<top_var_type>, <expression>)>

<top_var_decl_no_assign> ::= <decl(<top_var_type>, <no_assign>)>
| SEMICOLON

<sized_basic_type> ::= INT
| REAL
| COMPLEX
| VECTOR LBRACK <expression> RBRACK
| ROWVECTOR LBRACK <expression> RBRACK
| MATRIX LBRACK <expression> COMMA <expression> RBRACK
| COMPLEXVECTOR LBRACK <expression> RBRACK
| COMPLEXROWVECTOR LBRACK <expression> RBRACK
| COMPLEXMATRIX LBRACK <expression> COMMA <expression>

RBRACK

11.1. BNF GRAMMARS 153

<top_var_type> ::= INT [LABRACK <range> RABRACK]
| REAL <type_constraint> | TUPLE

| COMPLEX <type_constraint>
| VECTOR <type_constraint> LBRACK <expression> RBRACK
| ROWVECTOR <type_constraint> LBRACK <expression> RBRACK
| MATRIX <type_constraint> LBRACK <expression> COMMA
<expression> RBRACK

| COMPLEXVECTOR <type_constraint> LBRACK <expression> RBRACK
| COMPLEXROWVECTOR <type_constraint> LBRACK <expression>
RBRACK

| COMPLEXMATRIX <type_constraint> LBRACK <expression> COMMA
<expression> RBRACK

| ORDERED LBRACK <expression> RBRACK
| POSITIVEORDERED LBRACK <expression> RBRACK
| SIMPLEX LBRACK <expression> RBRACK
| UNITVECTOR LBRACK <expression> RBRACK
| SUMTOZERO LBRACK <expression> RBRACK
| CHOLESKYFACTORCORR LBRACK <expression> RBRACK
| CHOLESKYFACTORCOV LBRACK <expression> [COMMA <expression>]
RBRACK

| CORRMATRIX LBRACK <expression> RBRACK
| COVMATRIX LBRACK <expression> RBRACK
| STOCHASTICCOLUMNMATRIX LBRACK <expression> COMMA
<expression> RBRACK

| STOCHASTICROWMATRIX LBRACK <expression> COMMA <expression>
RBRACK

<type_constraint> ::= [LABRACK <range> RABRACK]
| LABRACK <offset_mult> RABRACK

<range> ::= LOWER ASSIGN <constr_expression> COMMA UPPER ASSIGN
<constr_expression>

| UPPER ASSIGN <constr_expression> COMMA LOWER ASSIGN
<constr_expression>

| LOWER ASSIGN <constr_expression>
| UPPER ASSIGN <constr_expression>

<offset_mult> ::= OFFSET ASSIGN <constr_expression> COMMA MULTIPLIER ASSIGN
<constr_expression>

| MULTIPLIER ASSIGN <constr_expression> COMMA OFFSET ASSIGN
<constr_expression>

| OFFSET ASSIGN <constr_expression>

154 CHAPTER 11. LANGUAGE SYNTAX

| MULTIPLIER ASSIGN <constr_expression>

<arr_dims> ::= ARRAY LBRACK <expression> (COMMA <expression>)* RBRACK

Expressions
<expression> ::= <expression> QMARK <expression> COLON <expression>

| <expression> <infixOp> <expression>
| <prefixOp> <expression>
| <expression> <postfixOp>
| <common_expression>

<constr_expression> ::= <constr_expression> <arithmeticBinOp>
<constr_expression>

| <prefixOp> <constr_expression>
| <constr_expression> <postfixOp>
| <common_expression>

<common_expression> ::= <identifier>
| INTNUMERAL
| REALNUMERAL
| DOTNUMERAL
| IMAGNUMERAL
| LBRACE <expression> (COMMA <expression>)* RBRACE
| LBRACK [<expression> (COMMA <expression>)*] RBRACK
| <identifier> LPAREN [<expression> (COMMA

<expression>)*] RPAREN
| TARGET LPAREN RPAREN
| <identifier> LPAREN <expression> BAR [<expression>

(COMMA <expression>)*] RPAREN
| LPAREN <expression> COMMA <expression> (COMMA

<expression>)* RPAREN
| <common_expression> DOTNUMERAL
| <common_expression> LBRACK <indexes> RBRACK
| LPAREN <expression> RPAREN

<prefixOp> ::= BANG
| MINUS
| PLUS

<postfixOp> ::= TRANSPOSE

<infixOp> ::= <arithmeticBinOp>
| <logicalBinOp>

11.1. BNF GRAMMARS 155

<arithmeticBinOp> ::= PLUS
| MINUS
| TIMES
| DIVIDE
| IDIVIDE
| MODULO
| LDIVIDE
| ELTTIMES
| ELTDIVIDE
| HAT
| ELTPOW

<logicalBinOp> ::= OR
| AND
| EQUALS
| NEQUALS
| LABRACK
| LEQ
| RABRACK
| GEQ

<indexes> ::= epsilon
| COLON
| <expression>
| <expression> COLON
| COLON <expression>
| <expression> COLON <expression>
| <indexes> COMMA <indexes>

<printables> ::= <expression>
| <string_literal>
| <printables> COMMA <printables>

Statements
<statement> ::= <atomic_statement>

| <nested_statement>

<atomic_statement> ::= <common_expression> <assignment_op> <expression>
SEMICOLON

| <identifier> LPAREN [<expression> (COMMA
<expression>)*] RPAREN SEMICOLON

| <expression> TILDE <identifier> LPAREN [<expression>

156 CHAPTER 11. LANGUAGE SYNTAX

(COMMA <expression>)*] RPAREN [<truncation>] SEMICOLON
| TARGET PLUSASSIGN <expression> SEMICOLON
| JACOBIAN PLUSASSIGN <expression> SEMICOLON
| BREAK SEMICOLON
| CONTINUE SEMICOLON
| PRINT LPAREN <printables> RPAREN SEMICOLON
| REJECT LPAREN <printables> RPAREN SEMICOLON
| FATAL_ERROR LPAREN <printables> RPAREN SEMICOLON
| RETURN <expression> SEMICOLON
| RETURN SEMICOLON
| SEMICOLON

<assignment_op> ::= ASSIGN
| PLUSASSIGN
| MINUSASSIGN
| TIMESASSIGN
| DIVIDEASSIGN
| ELTTIMESASSIGN
| ELTDIVIDEASSIGN

<string_literal> ::= STRINGLITERAL

<truncation> ::= TRUNCATE LBRACK [<expression>] COMMA [<expression>] RBRACK

<nested_statement> ::= IF LPAREN <expression> RPAREN <vardecl_or_statement>
ELSE <vardecl_or_statement>

| IF LPAREN <expression> RPAREN <vardecl_or_statement>
| WHILE LPAREN <expression> RPAREN

<vardecl_or_statement>
| FOR LPAREN <identifier> IN <expression> COLON

<expression> RPAREN <vardecl_or_statement>
| FOR LPAREN <identifier> IN <expression> RPAREN

<vardecl_or_statement>
| PROFILE LPAREN <string_literal> RPAREN LBRACE

<vardecl_or_statement>* RBRACE
| LBRACE <vardecl_or_statement>* RBRACE

<vardecl_or_statement> ::= <statement>
| <var_decl>

<top_vardecl_or_statement> ::= <statement>
| <top_var_decl>

11.2. TOKENIZING RULES 157

11.2. Tokenizing rules
Many of the tokens used in the BNF grammars follow obviously from their names:
DATABLOCK is the literal string ‘data’, COMMA is a single ‘,’ character, etc. The literal
representation of each operator is additionally provided in the operator precedence
table.

A few tokens are not so obvious, and are defined here in regular expressions:

IDENTIFIER = [a-zA-Z] [a-zA-Z0-9_]*

STRINGLITERAL = ".*"

INTNUMERAL = [0-9]+ (_ [0-9]+)*

EXPLITERAL = [eE] [+-]? INTNUMERAL

REALNUMERAL = INTNUMERAL \. INTNUMERAL? EXPLITERAL?
| \. INTNUMERAL EXPLITERAL
| INTNUMERAL EXPLITERAL

IMAGNUMERAL = (REALNUMERAL | INTNUMERAL) i

DOTNUMERAL = \. INTNUMERAL

11.3. Extra-grammatical constraints
Type constraints
A well-formed Stan program must satisfy the type constraints imposed by functions
and distributions. For example, the binomial distribution requires an integer total
count parameter and integer variate and when truncated would require integer
truncation points. If these constraints are violated, the program will be rejected
during compilation with an error message indicating the location of the problem.

Operator precedence and associativity
In the Stan grammar provided in this chapter, the expression 1 + 2 * 3 has two
parses. As described in the operator precedence table, Stan disambiguates between
the meaning 1+ (2× 3) and the meaning (1+ 2)× 3 based on operator precedences
and associativities.

Typing of compound declaration and definition
In a compound variable declaration and definition, the type of the right-hand side
expression must be assignable to the variable being declared. The assignability

158 CHAPTER 11. LANGUAGE SYNTAX

constraint restricts compound declarations and definitions to local variables and
variables declared in the transformed data, transformed parameters, and generated
quantities blocks.

Typing of array expressions
The types of expressions used for elements in array expressions ('{' expressions
'}') must all be of the same type or a mixture of scalar (int, real and complex)
types (in which case the result is promoted to be of the highest type on the int ->
real -> complex hierarchy).

Forms of numbers
Integer literals longer than one digit may not start with 0 and real literals cannot
consist of only a period or only an exponent.

Conditional arguments
Both the conditional if-then-else statement and while-loop statement require the
expression denoting the condition to be a primitive type, integer or real.

For loop containers
The for loop statement requires that we specify in addition to the loop identifier,
either a range consisting of two expressions denoting an integer, separated by ‘:’, or
a single expression denoting a container. The loop variable will be of type integer in
the former case and of the contained type in the latter case. Furthermore, the loop
variable must not be in scope (i.e., there is no masking of variables).

Print arguments
The arguments to a print statement cannot be void.

Only break and continue in loops
The break and continue statements may only be used within the body of a for-loop
or while-loop.

Block-specific restrictions
Some constructs in the Stan language are only allowed in certain blocks or in certain
kinds of user-defined functions.

PRNG functions
Functions ending in _rng may only be called in the transformed data and gen-
erated quantities block, and within the bodies of user-defined functions with
names ending in _rng.

11.3. EXTRA-GRAMMATICAL CONSTRAINTS 159

Unnormalized distributions
Unnormalized distributions (with suffixes _lupmf or _lupdf) may only be called
in the model block, user-defined probability functions, or within the bodies of user
defined functions which end in _lp.

Incrementing and accessing target
target += statements can only be used inside of the model block or user-defined
functions which end in _lp.

User defined functions which end in _lp and the target() function can only be
used in the model block, transformed parameters block, and in the bodies of
other user defined functions which end in _lp.

Sampling statements (using ~) can only be used in the model block or in the bodies
of user-defined functions which end in _lp.

jacobian += statements can only be used inside of the transformed parameters
block or in functions that end with _jacobian.

Probability function naming
A probability function literal must have one of the following suffixes: _lpdf, _lpmf,
_lcdf, or _lccdf.

Indexes
Standalone expressions used as indexes must denote either an integer (int) or an
integer array (array[] int). Expressions participating in range indexes (e.g., a
and b in a : b) must denote integers (int).

A second condition is that there not be more indexes provided than dimensions of
the underlying expression (in general) or variable (on the left side of assignments)
being indexed. A vector or row vector adds 1 to the array dimension and a matrix
adds 2. That is, the type array[, ,] matrix, a three-dimensional array of
matrices, has five index positions: three for the array, one for the row of the matrix
and one for the column.

12. Program Execution

This chapter provides a sketch of how a compiled Stan model is executed using
sampling. Optimization shares the same data reading and initialization steps, but
then does optimization rather than sampling.

This sketch is elaborated in the following chapters of this part, which cover variable
declarations, expressions, statements, and blocks in more detail.

12.1. Reading and transforming data
The reading and transforming data steps are the same for sampling, optimization
and diagnostics.

Read data
The first step of execution is to read data into memory. Data may be read in through
file (in CmdStan) or through memory (RStan and PyStan); see their respective
manuals for details.1

All of the variables declared in the data block will be read. If a variable cannot
be read, the program will halt with a message indicating which data variable is
missing.

After each variable is read, if it has a declared constraint, the constraint is validated.
For example, if a variable N is declared as int<lower=0>, after N is read, it will
be tested to make sure it is greater than or equal to zero. If a variable violates its
declared constraint, the program will halt with a warning message indicating which
variable contains an illegal value, the value that was read, and the constraint that
was declared.

Define transformed data
After data is read into the model, the transformed data variable statements are
executed in order to define the transformed data variables. As the statements
execute, declared constraints on variables are not enforced.

Transformed data variables are initialized with real values set to NaN and integer
values set to the smallest integer (large absolute value negative number).

1The C++ code underlying Stan is flexible enough to allow data to be read from memory or file. Calls
from R, for instance, can be configured to read data from file or directly from R’s memory.

160

12.2. INITIALIZATION 161

After the statements are executed, all declared constraints on transformed data
variables are validated. If the validation fails, execution halts and the variable’s
name, value and constraints are displayed.

12.2. Initialization
Initialization is the same for all of Stan’s algorithms.

User-supplied initial values
If there are user-supplied initial values for parameters, these are read using the
same input mechanism and same file format as data reads. Any constraints declared
on the parameters are validated for the initial values. If a variable’s value violates
its declared constraint, the program halts and a diagnostic message is printed.

After being read, initial values are transformed to unconstrained values that will be
used to initialize the sampler.

Boundary values are problematic
Because of the way Stan defines its transforms from the constrained to the uncon-
strained space, initializing parameters on the boundaries of their constraints is
usually problematic. For instance, with a constraint

parameters {
real<lower=0, upper=1> theta;
// ...

}

an initial value of 0 for theta leads to an unconstrained value of −∞, whereas
a value of 1 leads to an unconstrained value of +∞. While this will be inverse
transformed back correctly given the behavior of floating point arithmetic, the
Jacobian will be infinite and the log probability function will fail and raise an
exception.

Random initial values
If there are no user-supplied initial values, the default initialization strategy is to
initialize the unconstrained parameters directly with values drawn uniformly from
the interval (−2, 2). The bounds of this initialization can be changed but it is always
symmetric around 0. The value of 0 is special in that it represents the median of
the initialization. An unconstrained value of 0 corresponds to different parameter
values depending on the constraints declared on the parameters.

An unconstrained real does not involve any transform, so an initial value of 0 for
the unconstrained parameters is also a value of 0 for the constrained parameters.

162 CHAPTER 12. PROGRAM EXECUTION

For parameters that are bounded below at 0, the initial value of 0 on the uncon-
strained scale corresponds to exp(0) = 1 on the constrained scale. A value of -2
corresponds to exp(−2) = .13 and a value of 2 corresponds to exp(2) = 7.4.

For parameters bounded above and below, the initial value of 0 on the uncon-
strained scale corresponds to a value at the midpoint of the constraint interval. For
probability parameters, bounded below by 0 and above by 1, the transform is the
inverse logit, so that an initial unconstrained value of 0 corresponds to a constrained
value of 0.5, -2 corresponds to 0.12 and 2 to 0.88. Bounds other than 0 and 1 are just
scaled and translated.

Simplexes with initial values of 0 on the unconstrained basis correspond to sym-
metric values on the constrained values (i.e., each value is 1/K in a K-simplex).

Cholesky factors for positive-definite matrices are initialized to 1 on the diagonal
and 0 elsewhere; this is because the diagonal is log transformed and the below-
diagonal values are unconstrained.

The initial values for other parameters can be determined from the transform that
is applied. The transforms are all described in full detail in the chapter on variable
transforms.

Zero initial values
The initial values may all be set to 0 on the unconstrained scale. This can be
helpful for diagnosis, and may also be a good starting point for sampling. Once
a model is running, multiple chains with more diffuse starting points can help
diagnose problems with convergence; see the user’s guide for more information on
convergence monitoring.

12.3. Sampling
Sampling is based on simulating the Hamiltonian of a particle with a starting
position equal to the current parameter values and an initial momentum (kinetic
energy) generated randomly. The potential energy at work on the particle is taken
to be the negative log (unnormalized) total probability function defined by the
model. In the usual approach to implementing HMC, the Hamiltonian dynamics of
the particle is simulated using the leapfrog integrator, which discretizes the smooth
path of the particle into a number of small time steps called leapfrog steps.

Leapfrog steps
For each leapfrog step, the negative log probability function and its gradient need
to be evaluated at the position corresponding to the current parameter values (a
more detailed sketch is provided in the next section). These are used to update the

transforms.qmd
transforms.qmd

12.3. SAMPLING 163

momentum based on the gradient and the position based on the momentum.

For simple models, only a few leapfrog steps with large step sizes are needed. For
models with complex posterior geometries, many small leapfrog steps may be
needed to accurately model the path of the parameters.

If the user specifies the number of leapfrog steps (i.e., chooses to use standard
HMC), that number of leapfrog steps are simulated. If the user has not specified
the number of leapfrog steps, the No-U-Turn sampler (NUTS) will determine the
number of leapfrog steps adaptively (Hoffman and Gelman 2014).

Log probability and gradient calculation
During each leapfrog step, the log probability function and its gradient must be
calculated. This is where most of the time in the Stan algorithm is spent. This log
probability function, which is used by the sampling algorithm, is defined over the
unconstrained parameters.

The first step of the calculation requires the inverse transform of the unconstrained
parameter values back to the constrained parameters in terms of which the model
is defined. There is no error checking required because the inverse transform is a
total function on every point in whose range satisfies the constraints.

Because the probability statements in the model are defined in terms of constrained
parameters, the log Jacobian of the inverse transform must be added to the accumu-
lated log probability.

Next, the transformed parameter statements are executed. After they complete, any
constraints declared for the transformed parameters are checked. If the constraints
are violated, the model will halt with a diagnostic error message.

The final step in the log probability function calculation is to execute the statements
defined in the model block.

As the log probability function executes, it accumulates an in-memory representa-
tion of the expression tree used to calculate the log probability. This includes all of
the transformed parameter operations and all of the Jacobian adjustments. This tree
is then used to evaluate the gradients by propagating partial derivatives backward
along the expression graph. The gradient calculations account for the majority of
the cycles consumed by a Stan program.

Metropolis accept/reject
A standard Metropolis accept/reject step is required to retain detailed balance
and ensure draws are marginally distributed according to the probability function

164 CHAPTER 12. PROGRAM EXECUTION

defined by the model. This Metropolis adjustment is based on comparing log
probabilities, here defined by the Hamiltonian, which is the sum of the potential
(negative log probability) and kinetic (squared momentum) energies. In theory, the
Hamiltonian is invariant over the path of the particle and rejection should never
occur. In practice, the probability of rejection is determined by the accuracy of the
leapfrog approximation to the true trajectory of the parameters.

If step sizes are small, very few updates will be rejected, but many steps will be
required to move the same distance. If step sizes are large, more updates will be
rejected, but fewer steps will be required to move the same distance. Thus a balance
between effort and rejection rate is required. If the user has not specified a step size,
Stan will tune the step size during warmup sampling to achieve a desired rejection
rate (thus balancing rejection versus number of steps).

If the proposal is accepted, the parameters are updated to their new values. Other-
wise, the sample is the current set of parameter values.

12.4. Optimization
Optimization runs very much like sampling in that it starts by reading the data and
then initializing parameters. Unlike sampling, it produces a deterministic output
which requires no further analysis other than to verify that the optimizer itself
converged to a posterior mode. The output for optimization is also similar to that
for sampling.

12.5. Variational inference
Variational inference also runs similar to sampling. It begins by reading the data
and initializing the algorithm. The initial variational approximation is a random
draw from the standard normal distribution in the unconstrained (real-coordinate)
space. Again, similar to sampling, it outputs draws from the approximate posterior
once the algorithm has decided that it has converged. Thus, the tools we use for
analyzing the result of Stan’s sampling routines can also be used for variational
inference.

12.6. Model diagnostics
Model diagnostics are like sampling and optimization in that they depend on a
model’s data being read and its parameters being initialized. The user’s guides for
the interfaces (RStan, PyStan, CmdStan) provide more details on the diagnostics
available; as of Stan 2.0, that’s just gradients on the unconstrained scale and log
probabilities.

12.7. OUTPUT 165

12.7. Output
For each final draw (not counting draws during warmup or draws that are thinned),
there is an output stage of writing the draw.

Generated quantities
Before generating any output, the statements in the generated quantities block are
executed. This can be used for any forward simulation based on parameters of
the model. Or it may be used to transform parameters to an appropriate form for
output.

After the generated quantities statements execute, the constraints declared on
generated quantities variables are validated. If these constraints are violated, the
program will terminate with a diagnostic message.

Write
The final step is to write the actual values. The values of all variables declared as
parameters, transformed parameters, or generated quantities are written. Local
variables are not written, nor is the data or transformed data. All values are written
in their constrained forms, that is the form that is used in the model definitions.

In the executable form of a Stan models, parameters, transformed parameters,
and generated quantities are written to a file in comma-separated value (CSV)
notation with a header defining the names of the parameters (including indices for
multivariate parameters).2

2In the R version of Stan, the values may either be written to a CSV file or directly back to R’s memory.

13. Deprecated Features

This appendix lists currently deprecated functionality along with how to replace it.

Starting with Stan 2.29, minor (syntax-level) deprecations can be removed 3 versions
after release; e.g., syntax deprecated in Stan 2.20 will be removed in Stan 2.23 and
placed in Removed Features. The Stan compiler can automatically update many of
these on the behalf of the user for at least one version after they are removed.

Any feature which changes semantic meaning (such as the upgraded ODE solver
interface) will not be removed until a major version change (e.g., Stan 3.0).

13.1. lkj_cov distribution
Deprecated:The distribution lkj_cov is deprecated.

Replacement: Replace lkj_cov_lpdf(...) with an lkj_corr distribution on the
correlation matrix and independent lognormal distributions on the scales. That is,
replace

cov_matrix[K] Sigma;
// ...
Sigma ~ lkj_cov(mu, tau, eta);

with

corr_matrix[K] Omega;
vector<lower=0>[K] sigma;
// ...
Omega ~ lkj_corr(eta);
sigma ~ lognormal(mu, tau);
// ...
cov_matrix[K] Sigma;
Sigma <- quad_form_diag(Omega, sigma);

The variable Sigma may be defined as a local variable in the model block or as a
transformed parameter. An even more efficient transform would use Cholesky
factors rather than full correlation matrix types.

Scheduled Removal: Stan 3.0 or later.

166

removals.qmd
https://mc-stan.org/docs/stan-users-guide/using-stanc.html#stanc-pretty-printing

13.2. USE OF _LP FUNCTIONS IN TRANSFORMED PARAMETERS 167

13.2. Use of _lp functions in transformed parameters
Deprecated: Using functions that end in _lp in the transformed parameters block.

Replacement: Use _jacobian functions and the jacobian += statement instead.
These allow for change-of-variable adjustments which can be conditionally enabled
by Stan’s algorithms.

13.3. New Keywords
Deprecated: The following identifiers will become reserved in the language in the
specified version.

Replacement: Rename any variables or functions with these names.

Identifier Version

jacobian 2.38

13.4. Deprecated Functions
Several built-in Stan functions have been deprecated. Consult the functions refer-
ence for more information.

https://mc-stan.org/docs/functions-reference/deprecated-functions.html
https://mc-stan.org/docs/functions-reference/deprecated-functions.html

14. Removed Features

This chapter lists functionalities that were once present in the language but have
since been removed, along with how to replace them.

14.1. lp__ variable
Removed: The variable lp__ is no longer available for direct access or manipulation.

Replacement: General manipulation of the value of the lp__ variable is not allowed,
but

lp__ <- lp__ + e;

can be replaced with
target += e;

The value of lp__ is available through the no-argument function target().

14.2. Assignment with <-
Removed: The operator <- for assignment, e.g.,

a <- b;

is no longer available.

Replacement: The new syntax uses the operator = for assignment, e.g.,

a = b;

Removed In: Stan 2.33

14.3. increment_log_prob statement
Removed: The increment_log_prob(u) statement for incrementing the log density
accumulator by u is no longer available.

Replacement: Replace the above statement with
target += u;

Removed In: Stan 2.33

168

14.4. GET_LP() FUNCTION 169

14.4. get_lp() function
Removed: The built-in no-argument function get_lp() is no longer available.

Replacement: Use the no-argument function target() instead.

Removed In: Stan 2.33

14.5. _log density and mass functions
Removed: Formerly, the probability function for the distribution foo would be
applied to an outcome variable y and sequence of zero or more parameters ... to
produce the expression foo_log(y, ...). This suffix is no longer a special value.

Replacement: If y can be a real value (including vectors or matrices), replace

foo_log(y, ...)

with the log probability density function notation

foo_lpdf(y | ...).

If y must be an integer (including arrays), instead replace

foo_log(y, ...

with the log probability mass function

foo_lpmf(y | ...).

Removed In: Stan 2.33

14.6. cdf_log and ccdf_log cumulative distribution functions
Removed: The log cumulative distribution and complementary cumulative distri-
bution functions for a distribution foo were formerly written as foo_cdf_log and
foo_ccdf_log.

Replacement:

Replace foo_cdf_log(y, ...) with foo_lcdf(y | ...).

Replace foo_ccdf_log(y, ...) with foo_lccdf(y | ...).

14.7. User-defined function with _log suffix
Removed: A user-defined function ending in _log can be no longer be used in
statements.qmd#distribution-statements.section.

170 CHAPTER 14. REMOVED FEATURES

Replacement: Replace the _log suffix with _lpdf for density functions or _lpmf for
mass functions in the user-defined function.

Removed In: Stan 2.33

Note: Following Stan 2.33, users can stil define a function ending in _log, it simply
no longer has a special meaning or is supported in the ~ syntax.

14.8. if_else function
Removed: The function if_else is no longer available.

Replacement: Use the conditional operator which allows more flexibility in the types
of b and c and is much more efficient in that it only evaluates whichever of b or c is
returned.

x = if_else(a, b, c);

with

x = a ? b : c;

Removed In: Stan 2.33

14.9. Character # as comment prefix
Removed: The use of # for line-based comments is no longer permitted. # may only
be used for #include statements.

Replacement: Use a pair of forward slashes, //, for line comments.

Removed In: Stan 2.33

14.10. Postfix brackets array syntax
Before Stan 2.26, arrays were declared by writing syntax after the variable.

Removed: The use of array declarations like

int n[5];
real a[3, 4];
real<lower=0> z[5, 4, 2];
vector[7] mu[3];
matrix[7, 2] mu[15, 12];
cholesky_factor_cov[5, 6] mu[2, 3, 4];

Replacement: The use of the array keyword, which replaces the above examples

14.11. NESTED MULTIPLE INDEXING IN ASSIGNMENTS 171

with

array[5] int n;
array[3, 4] real a;
array[5, 4, 2] real<lower=0> z;
array[3] vector[7] mu;
array[15, 12] matrix[7, 2] mu;
array[2, 3, 4] cholesky_factor_cov[5, 6] mu;

Removed In: Stan 2.33

14.11. Nested multiple indexing in assignments
Stan interprets nested indexing in assingments as flat indexing so that a statement
like

a[:][1] = b;

is the same as

a[:,1] = b;

However, this is inconsistent with multiple indexing rules.

To avoid confusion nested multiple indexing in assignment became an error in Stan
2.33. Nesting single indexing is still allowed as it cannot lead to ambiguity.

Removed In: Stan 2.33

14.12. Real values in conditionals
Removed: Using a real value in a conditional is no longer permitted.

real x = 1.0;
if (x) {

The value was interpreted as true if it is nonzero.

Replacement: For the exact equivalent, use a comparison operator to make the intent
clear.

real x = 1.0;
if (x != 0) {

However, one should keep in mind that floating point calculations are subject to
rounding errors and precise equality is fragile. It is worth considering whether the

https://mc-stan.org/docs/reference-manual/expressions.html#language-multi-indexing.section

172 CHAPTER 14. REMOVED FEATURES

more robust alternative abs(x) < machine_precision() is appropriate for the
use case.

Removed In: Stan 2.34

Part II

Algorithms

173

15. MCMC Sampling

This chapter presents the two Markov chain Monte Carlo (MCMC) algorithms used
in Stan, the Hamiltonian Monte Carlo (HMC) algorithm and its adaptive variant
the no-U-turn sampler (NUTS), along with details of their implementation and
configuration.

15.1. Hamiltonian Monte Carlo
Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) method
that uses the derivatives of the density function being sampled to generate efficient
transitions spanning the posterior (see, e.g., Betancourt and Girolami (2013), Neal
(2011) for more details). It uses an approximate Hamiltonian dynamics simulation
based on numerical integration which is then corrected by performing a Metropolis
acceptance step.

This section translates the presentation of HMC by Betancourt and Girolami (2013)
into the notation of Gelman et al. (2013).

Target density
The goal of sampling is to draw from a density p(θ) for parameters θ. This is
typically a Bayesian posterior p(θ|y) given data y, and in particular, a Bayesian
posterior coded as a Stan program.

Auxiliary momentum variable
HMC introduces auxiliary momentum variables ρ and draws from a joint density

p(ρ, θ) = p(ρ|θ)p(θ).

In most applications of HMC, including Stan, the auxiliary density is a multivariate
normal that does not depend on the parameters θ,

ρ ∼ MultiNormal(0, M).

M is the Euclidean metric. It can be seen as a transform of parameter space that
makes sampling more efficient; see Betancourt (2017) for details.

175

176 CHAPTER 15. MCMC SAMPLING

By default Stan sets M−1 equal to a diagonal estimate of the covariance computed
during warmup.

The Hamiltonian
The joint density p(ρ, θ) defines a Hamiltonian

H(ρ, θ) = − log p(ρ, θ)

= − log p(ρ|θ)− log p(θ).
= T(ρ|θ) + V(θ),

where the term

T(ρ|θ) = − log p(ρ|θ)

is called the “kinetic energy” and the term

V(θ) = − log p(θ)

is called the “potential energy.” The potential energy is specified by the Stan
program through its definition of a log density.

Generating transitions
Starting from the current value of the parameters θ, a transition to a new state is
generated in two stages before being subjected to a Metropolis accept step.

First, a value for the momentum is drawn independently of the current parameter
values,

ρ ∼ MultiNormal(0, M).

Thus momentum does not persist across iterations.

Next, the joint system (θ, ρ) made up of the current parameter values θ and new
momentum ρ is evolved via Hamilton’s equations,

dθ

dt
= +

∂H
∂ρ

= +
∂T
∂ρ

dρ

dt
= −∂H

∂θ
= −∂T

∂θ
− ∂V

∂θ
.

15.1. HAMILTONIAN MONTE CARLO 177

With the momentum density being independent of the target density, i.e., p(ρ|θ) =
p(ρ), the first term in the momentum time derivative, ∂T/∂θ is zero, yielding the
pair time derivatives

dθ
dt = + ∂T

∂ρ
dρ
dt = − ∂V

∂θ .

Leapfrog integrator
The last section leaves a two-state differential equation to solve. Stan, like most other
HMC implementations, uses the leapfrog integrator, which is a numerical integra-
tion algorithm that’s specifically adapted to provide stable results for Hamiltonian
systems of equations.

Like most numerical integrators, the leapfrog algorithm takes discrete steps of some
small time interval ϵ. The leapfrog algorithm begins by drawing a fresh momentum
term independently of the parameter values θ or previous momentum value.

ρ ∼ MultiNormal(0, M).

It then alternates half-step updates of the momentum and full-step updates of the
position.

ρ ← ρ − ϵ
2

∂V
∂θ

θ ← θ + ϵ M−1 ρ

ρ ← ρ − ϵ
2

∂V
∂θ .

By applying L leapfrog steps, a total of L ϵ time is simulated. The resulting state at
the end of the simulation (L repetitions of the above three steps) will be denoted
(ρ∗, θ∗).

The leapfrog integrator’s error is on the order of ϵ3 per step and ϵ2 globally, where ϵ
is the time interval (also known as the step size); Leimkuhler and Reich (2004) pro-
vide a detailed analysis of numerical integration for Hamiltonian systems, including
a derivation of the error bound for the leapfrog integrator.

Metropolis accept step
If the leapfrog integrator were perfect numerically, there would no need to do any
more randomization per transition than generating a random momentum vector.
Instead, what is done in practice to account for numerical errors during integration

178 CHAPTER 15. MCMC SAMPLING

is to apply a Metropolis acceptance step, where the probability of keeping the
proposal (ρ∗, θ∗) generated by transitioning from (ρ, θ) is

min(1, exp(H(ρ, θ)− H(ρ∗, θ∗))) .

If the proposal is not accepted, the previous parameter value is returned for the
next draw and used to initialize the next iteration.

Algorithm summary
The Hamiltonian Monte Carlo algorithm starts at a specified initial set of parameters
θ; in Stan, this value is either user-specified or generated randomly. Then, for a
given number of iterations, a new momentum vector is sampled and the current
value of the parameter θ is updated using the leapfrog integrator with discretization
time ϵ and number of steps L according to the Hamiltonian dynamics. Then a
Metropolis acceptance step is applied, and a decision is made whether to update to
the new state (θ∗, ρ∗) or keep the existing state.

15.2. HMC algorithm parameters
The Hamiltonian Monte Carlo algorithm has three parameters which must be set,

• discretization time ϵ,
• metric M, and
• number of steps taken L.

In practice, sampling efficiency, both in terms of iteration speed and iterations per
effective sample, is highly sensitive to these three tuning parameters Neal (2011),
Hoffman and Gelman (2014).

If ϵ is too large, the leapfrog integrator will be inaccurate and too many proposals
will be rejected. If ϵ is too small, too many small steps will be taken by the leapfrog
integrator leading to long simulation times per interval. Thus the goal is to balance
the acceptance rate between these extremes.

If L is too small, the trajectory traced out in each iteration will be too short and
sampling will devolve to a random walk. If L is too large, the algorithm will do too
much work on each iteration.

If the inverse metric M−1 is a poor estimate of the posterior covariance, the step
size ϵ must be kept small to maintain arithmetic precision. This would lead to a
large L to compensate.

15.2. HMC ALGORITHM PARAMETERS 179

Integration time
The actual integration time is L ϵ, a function of number of steps. Some interfaces to
Stan set an approximate integration time t and the discretization interval (step size)
ϵ. In these cases, the number of steps will be rounded down as

L =

⌊
t
ϵ

⌋
.

and the actual integration time will still be L ϵ.

Automatic parameter tuning
Stan is able to automatically optimize ϵ to match an acceptance-rate target, able to
estimate M based on warmup sample iterations, and able to dynamically adapt L
on the fly during sampling (and during warmup) using the no-U-turn sampling
(NUTS) algorithm Hoffman and Gelman (2014).

Warmup Epochs Figure. Adaptation during warmup occurs in three stages: an initial fast
adaptation interval (I), a series of expanding slow adaptation intervals (II), and a final fast
adaptation interval (III). For HMC, both the fast and slow intervals are used for adapting
the step size, while the slow intervals are used for learning the (co)variance necessitated by
the metric. Iteration numbering starts at 1 on the left side of the figure and increases to the
right.

When adaptation is engaged (it may be turned off by fixing a step size and metric),
the warmup period is split into three stages, as illustrated in the warmup adaptation
figure, with two fast intervals surrounding a series of growing slow intervals. Here
fast and slow refer to parameters that adapt using local and global information,
respectively; the Hamiltonian Monte Carlo samplers, for example, define the step
size as a fast parameter and the (co)variance as a slow parameter. The size of the
the initial and final fast intervals and the initial size of the slow interval are all
customizable, although user-specified values may be modified slightly in order to
ensure alignment with the warmup period.

180 CHAPTER 15. MCMC SAMPLING

The motivation behind this partitioning of the warmup period is to allow for more
robust adaptation. The stages are as follows.

1. In the initial fast interval the chain is allowed to converge towards the typical
set,1 with only parameters that can learn from local information adapted.

2. After this initial stage parameters that require global information, for example
(co)variances, are estimated in a series of expanding, memoryless windows;
often fast parameters will be adapted here as well.

3. Lastly, the fast parameters are allowed to adapt to the final update of the slow
parameters.

These intervals may be controlled through the following configuration parameters,
all of which must be positive integers:

Adaptation Parameters Table. The parameters controlling adaptation and their default
values.

parameter description default

initial buffer width of initial fast adaptation interval 75
term buffer width of final fast adaptation interval 50
window initial width of slow adaptation interval 25

Discretization-interval adaptation parameters
Stan’s HMC algorithms utilize dual averaging Nesterov (2009) to optimize the step
size.2

This warmup optimization procedure is extremely flexible and for completeness,
Stan exposes each tuning option for dual averaging, using the notation of Hoffman
and Gelman (2014). In practice, the efficacy of the optimization is sensitive to
the value of these parameters, but we do not recommend changing the defaults
without experience with the dual-averaging algorithm. For more information, see
the discussion of dual averaging in Hoffman-Gelman:2014.

The full set of dual-averaging parameters are

1The typical set is a concept borrowed from information theory and refers to the neighborhood (or
neighborhoods in multimodal models) of substantial posterior probability mass through which the
Markov chain will travel in equilibrium.

2This optimization of step size during adaptation of the sampler should not be confused with running
Stan’s optimization method.

15.2. HMC ALGORITHM PARAMETERS 181

Step Size Adaptation Parameters Table The parameters controlling step size adaptation,
with constraints and default values.

parameter description constraint default

delta target Metropolis acceptance rate [0, 1] 0.8
gamma adaptation regularization scale (0, infty) 0.05
kappa adaptation relaxation exponent (0, infty) 0.75
t_0 adaptation iteration offset (0, infty) 10

By setting the target acceptance parameter δ to a value closer to 1 (its value must
be strictly less than 1 and its default value is 0.8), adaptation will be forced to use
smaller step sizes. This can improve sampling efficiency (effective sample size per
iteration) at the cost of increased iteration times. Raising the value of δ will also
allow some models that would otherwise get stuck to overcome their blockages.

Step-size jitter
All implementations of HMC use numerical integrators requiring a step size (equiv-
alently, discretization time interval). Stan allows the step size to be adapted or set
explicitly. Stan also allows the step size to be “jittered” randomly during sampling
to avoid any poor interactions with a fixed step size and regions of high curvature.
The jitter is a proportion that may be added or subtracted, so the maximum amount
of jitter is 1, which will cause step sizes to be selected in the range of 0 to twice the
adapted step size. The default value is 0, producing no jitter.

Small step sizes can get HMC samplers unstuck that would otherwise get stuck
with higher step sizes. The downside is that jittering below the adapted value
will increase the number of leapfrog steps required and thus slow down iterations,
whereas jittering above the adapted value can cause premature rejection due to
simulation error in the Hamiltonian dynamics calculation. See Neal (2011) for
further discussion of step-size jittering.

Euclidean metric
All HMC implementations in Stan utilize quadratic kinetic energy functions which
are specified up to the choice of a symmetric, positive-definite matrix known as a
mass matrix or, more formally, a metric Betancourt (2017).

If the metric is constant then the resulting implementation is known as Euclidean
HMC. Stan allows a choice among three Euclidean HMC implementations,

• a unit metric (diagonal matrix of ones),

182 CHAPTER 15. MCMC SAMPLING

• a diagonal metric (diagonal matrix with positive diagonal entries), and
• a dense metric (a dense, symmetric positive definite matrix)

to be configured by the user.

If the metric is specified to be diagonal, then regularized variances are estimated
based on the iterations in each slow-stage block (labeled II in the warmup adaptation
stages figure). Each of these estimates is based only on the iterations in that block.
This allows early estimates to be used to help guide warmup and then be forgotten
later so that they do not influence the final covariance estimate.

If the metric is specified to be dense, then regularized covariance estimates will be
carried out, regularizing the estimate to a diagonal matrix, which is itself regularized
toward a unit matrix.

Variances or covariances are estimated using Welford accumulators to avoid a loss
of precision over many floating point operations.

Warmup times and estimating the metric
The metric can compensate for linear (i.e. global) correlations in the posterior which
can dramatically improve the performance of HMC in some problems. This requires
knowing the global correlations.

In complex models, the global correlations are usually difficult, if not impossible, to
derive analytically; for example, nonlinear model components convolve the scales of
the data, so standardizing the data does not always help. Therefore, Stan estimates
these correlations online with an adaptive warmup. In models with strong nonlinear
(i.e. local) correlations this learning can be slow, even with regularization. This is
ultimately why warmup in Stan often needs to be so long, and why a sufficiently
long warmup can yield such substantial performance improvements.

Nonlinearity
The metric compensates for only linear (equivalently global or position-
independent) correlations in the posterior. The hierarchical parameterizations,
on the other hand, affect some of the nasty nonlinear (equivalently local or position-
dependent) correlations common in hierarchical models.3

One of the biggest difficulties with dense metrics is the estimation of the metric
itself which introduces a bit of a chicken-and-egg scenario; in order to estimate an
appropriate metric for sampling, convergence is required, and in order to converge,
an appropriate metric is required.

3In Riemannian HMC the metric compensates for nonlinear correlations.

15.2. HMC ALGORITHM PARAMETERS 183

Dense vs. diagonal metrics
Statistical models for which sampling is problematic are not typically dominated
by linear correlations for which a dense metric can adjust. Rather, they are gov-
erned by more complex nonlinear correlations that are best tackled with better
parameterizations or more advanced algorithms, such as Riemannian HMC.

Warmup times and curvature
MCMC convergence time is roughly equivalent to the autocorrelation time. Because
HMC (and NUTS) chains tend to be lowly autocorrelated they also tend to converge
quite rapidly.

This only applies when there is uniformity of curvature across the posterior, an
assumption which is violated in many complex models. Quite often, the tails have
large curvature while the bulk of the posterior mass is relatively well-behaved; in
other words, warmup is slow not because the actual convergence time is slow but
rather because the cost of an HMC iteration is more expensive out in the tails.

Poor behavior in the tails is the kind of pathology that can be uncovered by running
only a few warmup iterations. By looking at the acceptance probabilities and
step sizes of the first few iterations provides an idea of how bad the problem is
and whether it must be addressed with modeling efforts such as tighter priors or
reparameterizations.

NUTS and its configuration
The no-U-turn sampler (NUTS) automatically selects an appropriate number of
leapfrog steps in each iteration in order to allow the proposals to traverse the
posterior without doing unnecessary work. The motivation is to maximize the
expected squared jump distance (see, e.g., Roberts, Gelman, and Gilks (1997)) at each
step and avoid the random-walk behavior that arises in random-walk Metropolis
or Gibbs samplers when there is correlation in the posterior. For a precise definition
of the NUTS algorithm and a proof of detailed balance, see Hoffman and Gelman
(2014).

NUTS generates a proposal by starting at an initial position determined by the
parameters drawn in the last iteration. It then generates an independent standard
normal random momentum vector. It then evolves the initial system both forwards
and backwards in time to form a balanced binary tree. At each iteration of the NUTS
algorithm the tree depth is increased by one, doubling the number of leapfrog steps
and effectively doubles the computation time. The algorithm terminates in one of
two ways, either

• the NUTS criterion (i.e., a U-turn in Euclidean space on a subtree) is satisfied

184 CHAPTER 15. MCMC SAMPLING

for a new subtree or the completed tree, or
• the depth of the completed tree hits the maximum depth allowed.

Rather than using a standard Metropolis step, the final parameter value is selected
via multinomial sampling with a bias toward the second half of the steps in the
trajectory Betancourt (2016b).4

Configuring the no-U-turn sample involves putting a cap on the depth of the trees
that it evaluates during each iteration. This is controlled through a maximum depth
parameter. The number of leapfrog steps taken is then bounded by 2 to the power
of the maximum depth minus 1.

Both the tree depth and the actual number of leapfrog steps computed are reported
along with the parameters in the output as treedepth__ and n_leapfrog__, re-
spectively. Because the final subtree may only be partially constructed, these two
will always satisfy

2treedepth−1 − 1 < Nleapfrog ≤ 2treedepth − 1.

Tree depth is an important diagnostic tool for NUTS. For example, a tree depth of
zero occurs when the first leapfrog step is immediately rejected and the initial state
returned, indicating extreme curvature and poorly-chosen step size (at least relative
to the current position). On the other hand, a tree depth equal to the maximum
depth indicates that NUTS is taking many leapfrog steps and being terminated
prematurely to avoid excessively long execution time. Taking very many steps may
be a sign of poor adaptation, may be due to targeting a very high acceptance rate,
or may simply indicate a difficult posterior from which to sample. In the latter
case, reparameterization may help with efficiency. But in the rare cases where the
model is correctly specified and a large number of steps is necessary, the maximum
depth should be increased to ensure that that the NUTS tree can grow as large as
necessary.

15.3. Sampling without parameters
In some situations, such as pure forward data simulation in a directed graphical
model (e.g., where you can work down generatively from known hyperpriors to
simulate parameters and data), there is no need to declare any parameters in Stan,
the model block will be empty (and thus can be omitted), and all output quantities
will be produced in the generated quantities block.

4Stan previously used slice sampling along the trajectory, following the original NUTS paper of
Hoffman and Gelman (2014).

15.4. GENERAL CONFIGURATION OPTIONS 185

For example, to generate a sequence of N draws from a binomial with trials K and
chance of success θ, the following program suffices.

data {
real<lower=0, upper=1> theta;
int<lower=0> K;
int<lower=0> N;

}
generated quantities {

array[N] int<lower=0, upper=K> y;
for (n in 1:N) {
y[n] = binomial_rng(K, theta);

}
}

For this model, the sampler must be configured to use the fixed-parameters setting
because there are no parameters. Without parameter sampling there is no need for
adaptation and the number of warmup iterations should be set to zero.

Most models that are written to be sampled without parameters will not declare any
parameters, instead putting anything parameter-like in the data block. Nevertheless,
it is possible to include parameters for fixed-parameters sampling and initialize
them in any of the usual ways (randomly, fixed to zero on the unconstrained scale,
or with user-specified values). For example, theta in the example above could be
declared as a parameter and initialized as a parameter.

15.4. General configuration options
Stan’s interfaces provide a number of configuration options that are shared among
the MCMC algorithms (this chapter), the optimization algorithms chapter, and the
diagnostics chapter.

Random number generator
The random-number generator’s behavior is fully determined by the unsigned seed
(positive integer) it is started with. If a seed is not specified, or a seed of 0 or less
is specified, the system time is used to generate a seed. The seed is recorded and
included with Stan’s output regardless of whether it was specified or generated
randomly from the system time.

Stan also allows a chain identifier to be specified, which is useful when running
multiple Markov chains for sampling. The chain identifier is used to advance the
random number generator a very large number of random variates so that two

optimization.qmd
diagnostics.qmd

186 CHAPTER 15. MCMC SAMPLING

chains with different identifiers draw from non-overlapping subsequences of the
random-number sequence determined by the seed. When running multiple chains
from a single command, Stan’s interfaces will manage the chain identifiers.

Replication
Together, the seed and chain identifier determine the behavior of the underlying
random number generator. For complete reproducibility, every aspect of the envi-
ronment needs to be locked down from the OS and version to the C++ compiler
and version to the version of Stan and all dependent libraries.

Initialization
The initial parameter values for Stan’s algorithms (MCMC, optimization, or diag-
nostic) may be either specified by the user or generated randomly. If user-specified
values are provided, all parameters must be given initial values or Stan will abort
with an error message.

User-defined initialization
If the user specifies initial values, they must satisfy the constraints declared in the
model (i.e., they are on the constrained scale).

System constant zero initialization
It is also possible to provide an initialization of 0, which causes all variables to be
initialized with zero values on the unconstrained scale. The transforms are arranged
in such a way that zero initialization provides reasonable variable initializations
for most parameters, such as 0 for unconstrained parameters, 1 for parameters
constrained to be positive, 0.5 for variables to constrained to lie between 0 and 1, a
symmetric (uniform) vector for simplexes, unit matrices for both correlation and
covariance matrices, and so on.

System random initialization
Random initialization by default initializes the parameter values with values drawn
at random from a Uniform(−2, 2) distribution. Alternatively, a value other than 2
may be specified for the absolute bounds. These values are on the unconstrained
scale, so must be inverse transformed back to satisfy the constraints declared for
parameters.

Because zero is chosen to be a reasonable default initial value for most parameters,
the interval around zero provides a fairly diffuse starting point. For instance,
unconstrained variables are initialized randomly in (−2, 2), variables constrained
to be positive are initialized roughly in (0.14, 7.4), variables constrained to fall
between 0 and 1 are initialized with values roughly in (0.12, 0.88).

15.5. DIVERGENT TRANSITIONS 187

15.5. Divergent transitions
The Hamiltonian Monte Carlo algorithms (HMC and NUTS) simulate the trajectory
of a fictitious particle representing parameter values when subject to a potential
energy field, the value of which at a point is the negative log posterior density (up
to a constant that does not depend on location). Random momentum is imparted
independently in each direction, by drawing from a standard normal distribution.
The Hamiltonian is defined to be the sum of the potential energy and kinetic energy
of the system. The key feature of the Hamiltonian is that it is conserved along the
trajectory the particle moves.

In Stan, we use the leapfrog algorithm to simulate the path of a particle along
the trajectory defined by the initial random momentum and the potential energy
field. This is done by alternating updates of the position based on the momentum
and the momentum based on the position. The momentum updates involve the
potential energy and are applied along the gradient. This is essentially a stepwise
(discretized) first-order approximation of the trajectory. Leimkuhler and Reich
(2004) provide details and error analysis for the leapfrog algorithm.

A divergence arises when the simulated Hamiltonian trajectory departs from the
true trajectory as measured by departure of the Hamiltonian value from its initial
value. When this divergence is too high,5 the simulation has gone off the rails and
cannot be trusted. The positions along the simulated trajectory after the Hamiltonian
diverges will never be selected as the next draw of the MCMC algorithm, potentially
reducing Hamiltonian Monte Carlo to a simple random walk and biasing estimates
by not being able to thoroughly explore the posterior distribution. Betancourt
(2016a) provides details of the theory, computation, and practical implications of
divergent transitions in Hamiltonian Monte Carlo.

The Stan interfaces report divergences as warnings and provide ways to access
which iterations encountered divergences. ShinyStan provides visualizations that
highlight the starting point of divergent transitions to diagnose where the diver-
gences arise in parameter space. A common location is in the neck of the funnel in
a centered parameterization, an example of which is provided in the user’s guide.

If the posterior is highly curved, very small step sizes are required for this gradient-
based simulation of the Hamiltonian to be accurate. When the step size is too large
(relative to the curvature), the simulation diverges from the true Hamiltonian. This
definition is imprecise in the same way that stiffness for a differential equation is

5The current default threshold is a factor of 103, whereas when the leapfrog integrator is working
properly, the divergences will be around 10−7 and do not compound due to the symplectic nature of the
leapfrog integrator.

188 CHAPTER 15. MCMC SAMPLING

imprecise; both are defined by the way they cause traditional stepwise algorithms
to diverge from where they should be.

The primary cause of divergent transitions in Euclidean HMC (other than bugs
in the code) is highly varying posterior curvature, for which small step sizes are
too inefficient in some regions and diverge in other regions. If the step size is
too small, the sampler becomes inefficient and halts before making a U-turn (hits
the maximum tree depth in NUTS); if the step size is too large, the Hamiltonian
simulation diverges.

Diagnosing and eliminating divergences
In some cases, simply lowering the initial step size and increasing the target ac-
ceptance rate will keep the step size small enough that sampling can proceed. In
other cases, a reparameterization is required so that the posterior curvature is more
manageable; see the funnel example in the user’s guide for an example.

Before reparameterization, it may be helpful to plot the posterior draws, highlight-
ing the divergent transitions to see where they arise. This is marked as a divergent
transition in the interfaces; for example, ShinyStan and RStan have special plotting
facilities to highlight where divergent transitions arise.

16. Posterior Analysis

Stan uses Markov chain Monte Carlo (MCMC) techniques to generate draws from
the posterior distribution for full Bayesian inference. Markov chain Monte Carlo
(MCMC) methods were developed for situations in which it is not straightforward
to make independent draws Metropolis et al. (1953).

Stan’s variational inference algorithm provides draws from the variational approxi-
mation to the posterior which may be analyzed just as any other MCMC output,
despite the fact that it is not actually a Markov chain.

Stan’s Laplace algorithm produces a sample from a normal approximation centered
at the mode of a distribution in the unconstrained space. If the mode is a maxi-
mum a posteriori (MAP) estimate, the sample provides an estimate of the mean
and standard deviation of the posterior distribution. If the mode is a maximum
likelihood estimate (MLE), the sample provides an estimate of the standard error of
the likelihood.

16.1. Markov chains

A Markov chain is a sequence of random variables θ(1), θ(2), . . . where each variable
is conditionally independent of all other variables given the value of the previous
value. Thus if θ = θ(1), θ(2), . . . , θ(N), then

p(θ) = p(θ(1))
N

∏
n=2

p(θ(n)|θ(n−1)).

Stan uses Hamiltonian Monte Carlo to generate a next state in a manner described
in the Hamiltonian Monte Carlo chapter.

The Markov chains Stan and other MCMC samplers generate are ergodic in the sense
required by the Markov chain central limit theorem, meaning roughly that there is a
reasonable chance of reaching one value of θ from another. The Markov chains are
also stationary, meaning that the transition probabilities do not change at different
positions in the chain, so that for n, n′ ≥ 0, the probability function p(θ(n+1)|θ(n)) is
the same as p(θ(n

′+1)|θ(n′)) (following the convention of overloading random and
bound variables and picking out a probability function by its arguments).

189

mcmc.qmd

190 CHAPTER 16. POSTERIOR ANALYSIS

Stationary Markov chains have an equilibrium distribution on states in which each
has the same marginal probability function, so that p(θ(n)) is the same probability
function as p(θ(n+1)). In Stan, this equilibrium distribution p(θ(n)) is the target
density p(θ) defined by a Stan program, which is typically a proper Bayesian
posterior density p(θ|y) defined on the log scale up to a constant.

Using MCMC methods introduces two difficulties that are not faced by independent
sample Monte Carlo methods. The first problem is determining when a randomly
initialized Markov chain has converged to its equilibrium distribution. The second
problem is that the draws from a Markov chain may be correlated or even anti-
correlated, and thus the central limit theorem’s bound on estimation error no longer
applies. These problems are addressed in the next two sections.

Stan’s posterior analysis tools compute a number of summary statistics, estimates,
and diagnostics for Markov chain Monte Carlo (MCMC) sample. Stan’s estima-
tors and diagnostics are more robust in the face of non-convergence, antithetical
sampling, and long-term Markov chain correlations than most of the other tools
available. The algorithms Stan uses to achieve this are described in this chapter.

16.2. Convergence
By definition, a Markov chain samples from the target distribution only after it
has converged to equilibrium (i.e., equilibrium is defined as being achieved when
p(θ(n)) is the target density). The following point cannot be expressed strongly
enough:

• In theory, convergence is only guaranteed asymptotically as the number of draws
grows without bound.

• In practice, diagnostics must be applied to monitor convergence for the finite
number of draws actually available.

16.3. Notation for samples, chains, and draws
To establish basic notation, suppose a target Bayesian posterior density p(θ|y) given
real-valued vectors of parameters θ and real- and discrete-valued data y.1

An MCMC sample consists of a set of a sequence of M Markov chains, each consisting
of an ordered sequence of N draws from the posterior.2 The sample thus consists of
M× N draws from the posterior.

1Using vectors simplifies high level exposition at the expense of collapsing structure.
2The structure is assumed to be rectangular; in the future, this needs to be generalized to ragged

samples.

16.3. NOTATION FOR SAMPLES, CHAINS, AND DRAWS 191

Potential scale reduction
One way to monitor whether a chain has converged to the equilibrium distribution is
to compare its behavior to other randomly initialized chains. This is the motivation
for the Gelman and Rubin (1992) potential scale reduction statistic, R̂. The R̂
statistic measures the ratio of the average variance of drawss within each chain to
the variance of the pooled draws across chains; if all chains are at equilibrium, these
will be the same and R̂ will be one. If the chains have not converged to a common
distribution, the R̂ statistic will be greater than one.

Gelman and Rubin’s recommendation is that the independent Markov chains be
initialized with diffuse starting values for the parameters and sampled until all
values for R̂ are below some threshold. Vehtari et al. (2021) suggest in general
to use a threshold 1.01, but othe thresholds can be used depending on the use
case. Stan allows users to specify initial values for parameters and it is also able to
draw diffuse random initializations automatically satisfying the declared parameter
constraints.

The R̂ statistic is defined for a set of M Markov chains, θm, each of which has N
draws θ

(n)
m . The between-chain variance estimate is

B =
N

M− 1

M

∑
m=1

(θ̄
(•)
m − θ̄

(•)
•)2,

where

θ̄
(•)
m =

1
N

N

∑
n=1

θ
(n)
m

and

θ̄
(•)
• =

1
M

M

∑
m=1

θ̄
(•)
m .

The within-chain variance is averaged over the chains,

W =
1
M

M

∑
m=1

s2
m,

192 CHAPTER 16. POSTERIOR ANALYSIS

where

s2
m =

1
N − 1

N

∑
n=1

(θ
(n)
m − θ̄

(•)
m)2.

The variance estimator is a mixture of the within-chain and cross-chain sample
variances,

v̂ar+(θ|y) = N − 1
N

W +
1
N

B.

Finally, the potential scale reduction statistic is defined by

R̂ =

√
v̂ar+(θ|y)

W
.

Split R-hat for detecting non-stationarity

Before Stan calculating the potential-scale-reduction statistic R̂, each chain is split
into two halves. This provides an additional means to detect non-stationarity in
the individual chains. If one chain involves gradually increasing values and one
involves gradually decreasing values, they have not mixed well, but they can have
R̂ values near unity. In this case, splitting each chain into two parts leads to R̂ values
substantially greater than 1 because the first half of each chain has not mixed with
the second half.

Rank normalization helps when there are heavy tails
Split R-hat and the effective sample size (ESS) are well defined only if the marginal
posteriors have finite mean and variance. Therefore, following Vehtari et al. (2021),
we compute the rank normalized parameter values and then feed them into the
formulas for split R-hat and ESS.

Rank normalization proceeds as follows:

• First, replace each value θ(nm) by its rank r(nm) within the pooled draws from
all chains. Average rank for ties are used to conserve the number of unique
values of discrete quantities.

• Second, transform ranks to normal scores using the inverse normal transfor-
mation and a fractional offset:

16.3. NOTATION FOR SAMPLES, CHAINS, AND DRAWS 193

z(nm) = Φ−1
(r(nm) − 3/8

S− 1/4

)
To further improve sensitivity to chains having different scales,

rank normalized R-hat is computed also for the for the corresponding folded draws
ζ(mn), absolute deviations from the median,

ζ(mn) =
∣∣∣θ(nm) −median(θ)

∣∣∣ .

The rank normalized split-R̂ measure computed on the ζ(mn) values is called folded-
split-R̂. This measures convergence in the tails rather than in the bulk of the distri-
bution.

To obtain a single conservative R̂ estimate, we propose to report the maximum of
rank normalized split-R̂ and rank normalized folded-split-R̂ for each parameter.

Bulk-ESS is defined as ESS for rank normalized split chains. Tail-ESS is defined as
the minimum ESS for the 5% and 95% quantiles. See Effective Sample Size section
for details on how ESS is estimated.

Convergence is global
A question that often arises is whether it is acceptable to monitor convergence of
only a subset of the parameters or generated quantities. The short answer is “no,”
but this is elaborated further in this section.

For example, consider the value lp__, which is the log posterior density (up to a
constant).3

It is thus a mistake to declare convergence in any practical sense if lp__ has not
converged, because different chains are really in different parts of the space. Yet
measuring convergence for lp__ is particularly tricky, as noted below.

Asymptotics and transience vs. equilibrium
Markov chain convergence is a global property in the sense that it does not depend
on the choice of function of the parameters that is monitored. There is no hard
cutoff between pre-convergence “transience” and post-convergence “equilibrium.”
What happens is that as the number of states in the chain approaches infinity, the
distribution of possible states in the chain approaches the target distribution and in

3The lp__ value also represents the potential energy in the Hamiltonian system and is rate bounded
by the randomly supplied kinetic energy each iteration, which follows a Chi-square distribution in the
number of parameters.

194 CHAPTER 16. POSTERIOR ANALYSIS

that limit the expected value of the Monte Carlo estimator of any integrable function
converges to the true expectation. There is nothing like warmup here, because in
the limit, the effects of initial state are completely washed out.

Multivariate convergence of functions
The R̂ statistic considers the composition of a Markov chain and a function, and if
the Markov chain has converged then each Markov chain and function composition
will have converged. Multivariate functions converge when all of their margins
have converged by the Cramer-Wold theorem.

The transformation from unconstrained space to constrained space is just another
function, so does not effect convergence.

Different functions may have different autocorrelations, but if the Markov chain has
equilibrated then all Markov chain plus function compositions should be consistent
with convergence. Formally, any function that appears inconsistent is of concern
and although it would be unreasonable to test every function, lp__ and other
measured quantities should at least be consistent.

The obvious difference in lp__ is that it tends to vary quickly with position and is
consequently susceptible to outliers.

Finite numbers of states
The question is what happens for finite numbers of states? If we can prove a
strong geometric ergodicity property (which depends on the sampler and the target
distribution), then one can show that there exists a finite time after which the chain
forgets its initial state with a large probability. This is both the autocorrelation time
and the warmup time. But even if you can show it exists and is finite (which is nigh
impossible) you can’t compute an actual value analytically.

So what we do in practice is hope that the finite number of draws is large enough for
the expectations to be reasonably accurate. Removing warmup iterations improves
the accuracy of the expectations but there is no guarantee that removing any finite
number of draws will be enough.

Why inconsistent R-hat?
Firstly, as noted above, for any finite number of draws, there will always be some
residual effect of the initial state, which typically manifests as some small (or large
if the autocorrelation time is huge) probability of having a large outlier. Functions
robust to such outliers (say, quantiles) will appear more stable and have better R̂.
Functions vulnerable to such outliers may show fragility.

Secondly, use of the R̂ statistic makes very strong assumptions. In particular, it

16.4. EFFECTIVE SAMPLE SIZE 195

assumes that the functions being considered are Gaussian or it only uses the first
two moments and assumes some kind of independence. The point is that strong
assumptions are made that do not always hold. In particular, the distribution for
the log posterior density (lp__) almost never looks Gaussian, instead it features
long tails that can lead to large R̂ even in the large N limit. Tweaks to R̂, such as
using quantiles in place of raw values, have the flavor of making the sample of
interest more Gaussian and hence the R̂ statistic more accurate.

Final words on convergence monitoring
“Convergence” is a global property and holds for all integrable functions at once,
but employing the R̂ statistic requires additional assumptions and thus may not
work for all functions equally well.

Note that if you just compare the expectations between chains then we can rely
on the Markov chain asymptotics for Gaussian distributions and can apply the
standard tests.

16.4. Effective sample size
The second technical difficulty posed by MCMC methods is that the draws will
typically be autocorrelated (or anticorrelated) within a chain. This increases (or
reduces) the uncertainty of the estimation of posterior quantities of interest, such as
means, variances, or quantiles; see Charles J. Geyer (2011).

Stan estimates an effective sample size for each parameter, which plays the role in
the Markov chain Monte Carlo central limit theorem (MCMC CLT) as the number
of independent draws plays in the standard central limit theorem (CLT).

Unlike most packages, the particular calculations used by Stan follow those for
split-R̂, which involve both cross-chain (mean) and within-chain calculations (auto-
correlation); see Gelman et al. (2013) and Vehtari et al. (2021).

Definition of effective sample size
The amount by which autocorrelation within the chains increases uncertainty in
estimates can be measured by effective sample size (ESS). Given independent
sample (with finite variance), the central limit theorem bounds uncertainty in
estimates based on the sample size N. Given dependent sample, the sample size is
replaced with the effective sample size Neff.
For example, Monte Carlo standard error (MCSE) is proportional to 1/

√
Neff rather

than 1/
√

N.

The effective sample size of a sequence is defined in terms of the autocorrelations
within the sequence at different lags. The autocorrelation ρt at lag t ≥ 0 for a chain

196 CHAPTER 16. POSTERIOR ANALYSIS

with joint probability function p(θ) with mean µ and variance σ2 is defined to be

ρt =
1
σ2

∫
Θ
(θ(n) − µ)(θ(n+t) − µ) p(θ) dθ.

This is the correlation between the two chains offset by t positions (i.e., a lag in
time-series terminology). Because we know θ(n) and θ(n+t) have the same marginal
distribution in an MCMC setting, multiplying the two difference terms and reducing
yields

ρt =
1
σ2

∫
Θ

θ(n) θ(n+t) p(θ) dθ − µ2

σ2 .

The effective sample size of N draws generated by a process with autocorrelations
ρt is defined by

Neff =
N

∑∞
t=−∞ ρt

=
N

1 + 2 ∑∞
t=1 ρt

.

For independent draws, the effective sample size is just the number of iterations.
For correlated draws, the effective sample size is usually lower than the number
of iterations, but in case of anticorrelated draws, the effective sample size can be
larger than the number of iterations. In this latter case, MCMC can work better than
independent sampling for some estimation problems. Hamiltonian Monte Carlo,
including the no-U-turn sampler used by default in Stan, can produce anticorrelated
draws if the posterior is close to Gaussian with little posterior correlation.

Estimation of effective sample size
In practice, the probability function in question cannot be tractably integrated
and thus the autocorrelation cannot be calculated, nor the effective sample size.
Instead, these quantities must be estimated from the draws themselves. The rest
of this section describes a autocorrelations and split-R̂ based effective sample size
estimator, based on multiple chains. As before, each chain θm will be assumed to be
of length N.

Stan carries out the autocorrelation computations for all lags simultaneously using
Eigen’s fast Fourier transform (FFT) package with appropriate padding; see Charles
J. Geyer (2011) for more detail on using FFT for autocorrelation calculations. The
autocorrelation estimates ρ̂t,m at lag t from multiple chains m ∈ (1, . . . , M) are com-
bined with within-sample variance estimate W and multi-chain variance estimate

16.4. EFFECTIVE SAMPLE SIZE 197

v̂ar+ introduced in the previous section to compute the combined autocorrelation
at lag t as

ρ̂t = 1−
W − 1

M ∑M
m=1 s2

mρ̂t,m

v̂ar+
.

If the chains have not converged, the variance estimator v̂ar+ will overestimate vari-
ance, leading to an overestimate of autocorrelation and an underestimate effective
sample size.

Because of the noise in the correlation estimates ρ̂t as t increases, a typical truncated
sum of ρ̂t is used. Negative autocorrelations may occur only on odd lags and by
summing over pairs starting from lag 0, the paired autocorrelation is guaranteed to
be positive, monotone and convex modulo estimator noise Charles J. Geyer (1992),
Charles J. Geyer (2011). Stan uses Geyer’s initial monotone sequence criterion. The
effective sample size estimator is defined as

N̂eff =
M · N

τ̂
,

where

τ̂ = 1 + 2
2m+1

∑
t=1

ρ̂t = −1 + 2
m

∑
t′=0

P̂t′ ,

where P̂t′ = ρ̂2t′ + ρ̂2t′+1. Initial positive sequence estimators is obtained by choos-
ing the largest m such that P̂t′ > 0, t′ = 1, . . . , m. The initial monotone sequence
is obtained by further reducing P̂t′ to the minimum of the preceding ones so that
the estimated sequence is monotone.

Estimation of MCMC standard error
The posterior standard deviation of a parameter θn conditioned on observed data y
is just the standard deviation of the posterior density p(θn|y). This is estimated by
the standard deviation of the combined posterior draws across chains,

σ̂n = sd(θ(1)n , . . . , θ
(m)
n).

The previous section showed how to estimate Neff for a parameter θn based on
multiple chains of posterior draws.

198 CHAPTER 16. POSTERIOR ANALYSIS

The mean of the posterior draws of θn

θ̂n = mean(θ(1)n , . . . , θ
(m)
n)

is treated as an estimator of the true posterior mean,

E[θn | y] =
∫ ∞

−∞
θ p(θ|y)dθn,

based the observed data y.

The standard error for the estimator θ̂n is given by the posterior standard deviation
divided by the square root of the effective sample size. This standard error is itself
estimated as σ̂n/

√
Neff. The smaller the standard error, the closer the estimate θ̂n is

expected to be to the true value. This is just the MCMC CLT applied to an estimator;
see Charles J. Geyer (2011) for more details of the MCMC central limit theorem.

Thinning samples
In complex posteriors, draws are almost always positively correlated. In these
situations, the autocorrelation at lag t, ρt, decreases as the lag, t, increases. In this
situation, thinning the sample by keeping only every N-th draw will reduce the
autocorrelation of the resulting chain. This is particularly useful if we need to save
storage or re-use the draws for inference.

For instance, consider generating one thousand posterior draws in one of the
following two ways.

• Generate 1000 draws after convergence and save all of them.

• Generate 10,000 draws after convergence and save every tenth draw.

Even though both produce a sample consisting one thousand draws, the second ap-
proach with thinning can produce a higher effective sample size when the draws are
positively correlated. That’s because the autocorrelation ρt for the thinned sequence
is equivalent to ρ10t in the unthinned sequence, so the sum of the autocorrelations
usually will be lower and thus the effective sample size higher.

Now contrast the second approach above with the unthinned alternative,

• Generate 10,000 draws after convergence and save every draw.

This will typically have a higher effective sample than the thinned sample consisting
of every tenth drawn. But the gap might not be very large. To summarize, the only
reason to thin a sample is to reduce memory requirements.

16.4. EFFECTIVE SAMPLE SIZE 199

If draws are anticorrelated, then thinning will increase correlation and further
reduce the overall effective sample size.

17. Optimization

Stan provides optimization algorithms which find modes of the density specified
by a Stan program. Such modes may be used as parameter estimates or as the basis
of approximations to a Bayesian posterior.

Stan provides three different optimizers, a Newton optimizer, and two related
quasi-Newton algorithms, BFGS and L-BFGS; see Nocedal and Wright (2006) for
thorough description and analysis of all of these algorithms. The L-BFGS algorithm
is the default optimizer. Newton’s method is the least efficient of the three, but has
the advantage of setting its own stepsize.

17.1. General configuration
All of the optimizers have the option of including the the log absolute Jacobian
determinant of inverse parameter transforms in the log probability computation.
Without the Jacobian adjustment, optimization returns the maximum likelihood
estimate (MLE), argmaxθ p(y|θ), the value which maximizes the likelihood of
the data given the parameters. Applying the Jacobian adjustment produces the
maximum a posteriori estimate (MAP), that maximizes the value of the posterior
density in the unconstrained space, argmaxθ p(y|θ) p(θ).

All of the optimizers are iterative and allow the maximum number of iterations to
be specified; the default maximum number of iterations is 2000.

All of the optimizers are able to stream intermediate output reporting on their
progress. Whether or not to save the intermediate iterations and stream progress is
configurable.

17.2. BFGS and L-BFGS configuration
Convergence monitoring
Convergence monitoring in (L-)BFGS is controlled by a number of tolerance values,
any one of which being satisfied causes the algorithm to terminate with a solution.
Any of the convergence tests can be disabled by setting its corresponding tolerance
parameter to zero. The tests for convergence are as follows.

200

17.2. BFGS AND L-BFGS CONFIGURATION 201

Parameter convergence
The parameters θi in iteration i are considered to have converged with respect to
tolerance tol_param if

||θi − θi−1|| < tol_param.

Density convergence
The (unnormalized) log density log p(θi|y) for the parameters θi in iteration i given
data y is considered to have converged with respect to tolerance tol_obj if

|log p(θi|y)− log p(θi−1|y)| < tol_obj.

The log density is considered to have converged to within relative tolerance
tol_rel_obj if

|log p(θi|y)− log p(θi−1|y)|
max (|log p(θi|y)| , |log p(θi−1|y)| , 1.0)

< tol_rel_obj ∗ ϵ.

Gradient convergence
The gradient is considered to have converged to 0 relative to a specified tolerance
tol_grad if

||gi|| < tol_grad,

where ∇θ is the gradient operator with respect to θ and gi = ∇θ log p(θ|y) is the
gradient at iteration i evaluated at θ(i), the value on the i-th posterior iteration.

The gradient is considered to have converged to 0 relative to a specified relative
tolerance tol_rel_grad if

gT
i Ĥ−1

i gi

max (|log p(θi|y)| , 1.0)
< tol_rel_grad ∗ ϵ,

where Ĥi is the estimate of the Hessian at iteration i, |u| is the absolute value (L1
norm) of u, ||u|| is the vector length (L2 norm) of u, and ϵ ≈ 2e− 16 is machine
precision.

202 CHAPTER 17. OPTIMIZATION

Initial step size
The initial step size parameter α for BFGS-style optimizers may be specified. If the
first iteration takes a long time (and requires a lot of function evaluations) initialize
α to be the roughly equal to the α used in that first iteration. The default value is
intentionally small, 0.001, which is reasonable for many problems but might be too
large or too small depending on the objective function and initialization. Being
too big or too small just means that the first iteration will take longer (i.e., require
more gradient evaluations) before the line search finds a good step length. It’s not a
critical parameter, but for optimizing the same model multiple times (as you tweak
things or with different data), being able to tune α can save some real time.

L-BFGS history size
L-BFGS has a command-line argument which controls the size of the history it uses
to approximate the Hessian. The value should be less than the dimensionality of
the parameter space and, in general, relatively small values (5–10) are sufficient; the
default value is 5.

If L-BFGS performs poorly but BFGS performs well, consider increasing the history
size. Increasing history size will increase the memory usage, although this is
unlikely to be an issue for typical Stan models.

17.3. Writing models for optimization
Constrained vs. unconstrained parameters
For constrained optimization problems, for instance, with a standard deviation
parameter σ constrained so that σ > 0, it can be much more efficient to declare a
parameter sigma with no constraints. This allows the optimizer to easily get close
to 0 without having to tend toward −∞ on the log σ scale.

With unconstrained parameterizations of parameters with constrained support, it is
important to provide a custom initialization that is within the support. For example,
declaring a vector

vector[M] sigma;

and using the default random initialization which is Uniform(−2, 2) on the uncon-
strained scale means that there is only a 2−M chance that the initialization will be
within support.

For any given optimization problem, it is probably worthwhile trying the program
both ways, with and without the constraint, to see which one is more efficient.

18. Pathfinder

Stan supports the Pathfinder algorithm (Zhang et al. 2022). Pathfinder is a varia-
tional method for approximately sampling from differentiable log densities. Starting
from a random initialization, Pathfinder locates normal approximations to the target
density along a quasi-Newton optimization path, with local covariance estimated
using the negative inverse Hessian estimates produced by the LBFGS optimizer.
Pathfinder returns draws from the Gaussian approximation with the lowest esti-
mated Kullback-Leibler (KL) divergence to the true posterior.

Stan provides two versions of the Pathfinder algorithm: single-path Pathfinder
and multi-path Pathfinder. Single-path Pathfinder generates a set of approximate
draws from one run of the basic Pathfinder algorithm. Multi-path Pathfinder uses
importance resampling over the draws from multiple runs of Pathfinder. This
better matches non-normal target densities and also mitigates the problem of L-
BFGS getting stuck at local optima or in saddle points on plateaus. Compared
to ADVI and short dynamic HMC runs, Pathfinder requires one to two orders of
magnitude fewer log density and gradient evaluations, with greater reductions for
more challenging posteriors. While the evaluations by Zhang et al. (2022) found
that single-path and multi-path Pathfinder outperform ADVI for most of the models
in the PosteriorDB (Magnusson et al. 2024) evaluation set, we recognize the need
for further experiments on a wider range of models.

18.1. Diagnosing Pathfinder
Pathfinder diagnoses the accuracy of the approximation by computing the density
ratio of the true posterior and the approximation and using Pareto-k̂ diagnostic
(Vehtari et al. 2024) to assess whether these ratios can be used to improve the
approximation via resampling. The normalization for the posterior can be estimated
reliably (Vehtari et al. 2024, sec. 3), which is the first requirement for reliable
resampling. If estimated Pareto-k̂ for the ratios is smaller than 0.7, there is still need
to further diagnose reliability of importance sampling estimate for all quantities of
interest (Vehtari et al. 2024, sec. 2.2). If estimated Pareto-k̂ is larger than 0.7, then
the estimate for the normalization is unreliable and any Monte Carlo estimate may
have a big error. The resampled draws can still contain some useful information
about the location and shape of the posterior which can be used in early parts of
Bayesian workflow (Gelman et al. 2020).

203

204 CHAPTER 18. PATHFINDER

18.2. Using Pathfinder for initializing MCMC

If estimated Pareto-k̂ for the ratios is smaller than 0.7, the resampled posterior draws
are almost as good for initializing MCMC as would independent draws from the
posterior be. If estimated Pareto-k̂ for the ratios is larger than 0.7, the Pathfinder
draws are not reliable for posterior inference directly, but they are still very likely
better for initializing MCMC than random draws from an arbitrary pre-defined
distribution (e.g. uniform from -2 to 2 used by Stan by default). If Pareto-k̂ is
larger than 0.7, it is likely that one of the ratios is much bigger than others and
the default resampling with replacement would produce copies of one unique
draw. For initializing several Markov chains, it is better to use resampling without
replacement to guarantee unique initialization for each chain. At the moment Stan
allows turning off the resampling completely, and then the resampling without
replacement can be done outside of Stan.

19. Variational Inference

Stan implements an automatic variational inference algorithm, called Automatic
Differentiation Variational Inference (ADVI) Kucukelbir et al. (2017). In this chapter,
we describe the specifics of how ADVI maximizes the variational objective.

19.1. Stochastic gradient ascent
ADVI optimizes the ELBO in the real-coordinate space using stochastic gradient
ascent. We obtain noisy (yet unbiased) gradients of the variational objective using
automatic differentiation and Monte Carlo integration. The algorithm ascends these
gradients using an adaptive stepsize sequence. We evaluate the ELBO also using
Monte Carlo integration and measure convergence similar to the relative tolerance
scheme in Stan’s optimization feature.

Monte Carlo approximation of the ELBO
ADVI uses Monte Carlo integration to approximate the variational objective func-
tion, the ELBO. The number of draws used to approximate the ELBO is denoted
by elbo_samples. We recommend a default value of 100, as we only evaluate the
ELBO every eval_elbo iterations, which also defaults to 100.

Monte Carlo approximation of the gradients
ADVI uses Monte Carlo integration to approximate the gradients of the ELBO. The
number of draws used to approximate the gradients is denoted by grad_samples.
We recommend a default value of 1, as this is the most efficient. It also a very noisy
estimate of the gradient, but stochastic gradient ascent is capable of following such
gradients.

Adaptive stepsize sequence
ADVI uses a finite-memory version of adaGrad Duchi, Hazan, and Singer (2011).
This has a single parameter that we expose, denoted eta. We now have a warmup
adaptation phase that selects a good value for eta. The procedure does a heuristic
search over eta values that span 5 orders of magnitude.

Assessing convergence
ADVI tracks the progression of the ELBO through the stochastic optimization.
Specifically, ADVI heuristically determines a rolling window over which it com-
putes the average and the median change of the ELBO. Should either number fall

205

206 CHAPTER 19. VARIATIONAL INFERENCE

below a threshold, denoted by tol_rel_obj, we consider the algorithm to have
converged. The change in ELBO is calculated the same way as in Stan’s optimization
module.

20. Laplace Approximation

Stan provides a Laplace approximation algorithm which can be used to obtain
samples from an approximated posterior. The Laplace approximation works in
the unconstrained space, so that if there are constrained parameters, the normal
approximation is centered at the mode in the unconstrained space and then the im-
plemented method transforms the normal approximation sample to the constrained
space before outputting them.

Given the estimate of the mode θ̂, the Hessian H(θ̂) is computed using central finite
differences of the model functor. Next the algorithm computes the Cholesky factor
of the negative inverse Hessian:

R−1 = chol(−H(θ̂))\1.

Each draw is generated on the unconstrained scale by sampling

θstd(m) ∼ normal(0, I)

and defining draw m to be

θ(m) = θ̂ + R−1 · θstd(m)

Finally, each θ(m) is transformed back to the constrained scale.

The one-time computation of the Cholesky factor incurs a high constant overhead of
O(N3) in N dimensions. It also requires 2N gradient calculations to use as the basis,
which scales at best as O(N2) and is worse for models whose gradient calculation
is super-linear in dimension. The algorithm also has a high per-draw overhead,
requiring N standard normal pseudorandom numbers and O(N2) per draw (to
multiply by the Cholesky factor). For M draws, the total cost is proportional to
O(N3 + M · N2).

207

21. Diagnostic Mode

Stan’s diagnostic mode runs a Stan program with data, initializing parameters
either randomly or with user-specified initial values, and then evaluates the log
probability and its gradients. The gradients computed by the Stan program are
compared to values calculated by finite differences.

Diagnostic mode may be configured with two parameters.

Diagnostic Mode Configuration Table. The diagnostic model configuration parameters,
constraints, and default values.

parameter description constraints default

epsilon finite difference size (0, infty) 1e–6
error error threshold for matching (0, infty) 1e–6

If the difference between the Stan program’s gradient value and that calculated by
finite difference is higher than the specified threshold, the argument will be flagged.

21.1. Diagnostic mode output
Diagnostic mode prints the log posterior density (up to a proportion) calculated by
the Stan program for the specified initial values. For each parameter, it prints the
gradient at the initial parameter values calculated by Stan’s program and by finite
differences over Stan’s program for the log probability.

Unconstrained scale
The output is for the variable values and their gradients are on the unconstrained
scale, which means each variable is a vector of size corresponding to the number of
unconstrained variables required to define it. For example, an N × N correlation
matrix, requires (N

2) unconstrained parameters. The transformations from con-
strained to unconstrained parameters are based on the constraints in the parameter
declarations and described in the reference manual chapter on transforms.

Includes Jacobian
The log density includes the Jacobian adjustment implied by the constraints declared
on variables. The Jacobian adjustment for constrained parameter transforms may be

208

21.2. CONFIGURATION OPTIONS 209

turned off for optimization, but there is as of yet no way to turn it off in diagnostic
mode.

21.2. Configuration options
The general configuration options for diagnostics are the same as those for MCMC.
Initial values may be specified, or they may be drawn at random. Setting the
random number generator will only have an effect if a random initialization is
specified.

21.3. Speed warning and data trimming
Due to the application of finite differences, the computation time grows linearly
with the number of parameters. This can be require a very long time, especially in
models with latent parameters that grow with the data size. It can be helpful to
diagnose a model with smaller data sizes in such cases.

Part III

Usage

210

22. Reproducibility

Floating point operations on modern computers are notoriously difficult to repli-
cate because the fundamental arithmetic operations, right down to the IEEE 754
encoding level, are not fully specified. The primary problem is that the precision of
operations varies across different hardware platforms and software implementa-
tions.

Stan is designed to allow full reproducibility. However, this is only possible up to
the external constraints imposed by floating point arithmetic.

Stan results will only be exactly reproducible if all of the following components are
identical:

• Stan version
• Stan interface (RStan, PyStan, CmdStan) and version, plus version of interface

language (R, Python, shell)
• versions of included libraries (Boost and Eigen)
• operating system version
• computer hardware including CPU, motherboard and memory
• C++ compiler, including version, compiler flags, and linked libraries
• same configuration of call to Stan, including random seed, chain ID, initializa-

tion and data

It doesn’t matter if you use a stable release version of Stan or the version with a
particular Git hash tag. The same goes for all of the interfaces, compilers, and so on.
The point is that if any of these moving parts changes in some way, floating point
results may change.

Concretely, if you compile a single Stan program using the same CmdStan code
base, but changed the optimization flag (-O3 vs. -O2 or -O0), the two programs
may not return the identical stream of results. Thus it is very hard to guarantee
reproducibility on externally managed hardware, like in a cluster or even a desktop
managed by an IT department or with automatic updates turned on.

If, however, you compiled a Stan program today using one set of flags, took the
computer away from the internet and didn’t allow it to update anything, then came
back in a decade and recompiled the Stan program in the same way, you should get
the same results.

212

22.1. NOTABLE CHANGES ACROSS VERSIONS 213

The data needs to be the same down to the bit level. For example, if you are running
in RStan, Rcpp handles the conversion between R’s floating point numbers and C++
doubles. If Rcpp changes the conversion process or use different types, the results
are not guaranteed to be the same down to the bit level.

The compiler and compiler settings can also be an issue. There is a nice discussion
of the issues and how to control reproducibility in Intel’s proprietary compiler by
Corden and Kreitzer (2014).

22.1. Notable changes across versions
As noted above, there is no guarantee that the same results will be reproducible
between two different versions of Stan, even if the same settings and environment
are used.

However, there are occassionally notable changes which would affect many if not
all users, and these are noted here. The absence of a version from this list still does
not guarantee exact reproducibility between it and other versions.

• Stan 2.28 changed the default chain ID for MCMC from 0 to 1. Users who had
set a seed but not a chain ID would observe completely different outputs.

• Stan 2.35 changed the default pseudo-random number generator used by the
Stan algorithms. There is no relationship between seeds in versions pre-2.35
and version 2.35 and on.

23. Licenses and Dependencies

Stan and its dependent libraries, are distributed under generous, freedom-
respecting licenses approved by the Open Source Initiative.

In particular, the licenses for Stan and its dependent libraries have no “copyleft”
provisions requiring applications of Stan to be open source if they are redistributed.

This chapter specifies the licenses for the libraries on which Stan’s math library,
language, and algorithms depend. The last tool mentioned, Google Test, is only
used for testing and is not needed to run Stan.

23.1. Stan license
Stan is distributed under

• BSD 3-clause license (BSD New)

The copyright holder of each contribution is the developer or his or her assignee.1

23.2. Boost license
Stan uses the Boost library for template metaprograms, traits programs, the parser,
and various numerical libraries for special functions, probability functions, and
random number generators. Boost is distributed under the

• Boost Software License version 1.0

The copyright for each Boost package is held by its developers or their assignees.

23.3. Eigen license
Stan uses the Eigen library for matrix arithmetic and linear algebra. Eigen is
distributed under the

• Mozilla Public License, version 2

The copyright of Eigen is owned jointly by its developers or their assignees.

1Universities or companies often own the copyright of computer programs developed by their
employees.

214

http://opensource.org
http://www.opensource.org/licenses/BSD-3-Clause
https://opensource.org/license/bsl1-0-html/
http://opensource.org/licenses/mpl-2.0

23.4. SUNDIALS LICENSE 215

23.4. SUNDIALS license
Stan uses the SUNDIALS package for solving differential equations. SUNDIALS is
distributed under the

• BSD 3-clause license (BSD New)

The copyright of SUNDIALS is owned by Lawrence Livermore National Security
Lab.

23.5. Threaded Building Blocks (TBB) License
Stan uses the Threaded Building Blocks (TBB) library for parallel computations.
TBB is distributed under the

• Apache License, version 2

The copyright of TBB is owned by Intel Corporation.

23.6. Google test license
Stan uses Google Test for unit testing; it is not required to compile or execute models.
Google Test is distributed under the

• BSD 3-clause license (BSD New)

The copyright of Google Test is owned by Google, Inc.

http://www.opensource.org/licenses/BSD-3-Clause
https://opensource.org/license/apache-2-0
http://www.opensource.org/licenses/BSD-3-Clause

References

Betancourt, Michael. 2010. “Cruising the Simplex: Hamiltonian Monte Carlo and
the Dirichlet Distribution.” arXiv 1010.3436. http://arxiv.org/abs/1010.3436.

———. 2016a. “Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian
Monte Carlo.” arXiv 1604.00695. https://arxiv.org/abs/1604.00695.

———. 2016b. “Identifying the Optimal Integration Time in Hamiltonian Monte
Carlo.” arXiv 1601.00225. https://arxiv.org/abs/1601.00225.

———. 2017. “A Conceptual Introduction to Hamiltonian Monte Carlo.” arXiv
1701.02434. https://arxiv.org/abs/1701.02434.

Betancourt, Michael, and Mark Girolami. 2013. “Hamiltonian Monte Carlo for
Hierarchical Models.” arXiv 1312.0906. http://arxiv.org/abs/1312.0906.

Corden, Martyn J., and David Kreitzer. 2014. “Consistency of Floating-Point
Results Using the Intel Compiler or Why Doesn’t My Application Always
Give the Same Answer?” Intel Corporation. https://software.intel.com/en-
us/articles/consistency-of-floating-point-results-using-the-intel-compiler.

Duchi, John, Elad Hazan, and Yoram Singer. 2011. “Adaptive Subgradient Meth-
ods for Online Learning and Stochastic Optimization.” The Journal of Machine
Learning Research 12: 2121–59.

Egozcue, Juan José, Vera Pawlowsky-Glahn, Glòria Mateu-Figueras, and Carles
Barcelo-Vidal. 2003. “Isometric Logratio Transformations for Compositional
Data Analysis.” Mathematical Geology 35 (3): 279–300.

Filzmoser, Peter, Karel Hron, and Matthias Templ. 2018. Geometrical Properties of
Compositional Data. Springer.

Gelman, Andrew, J. B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and
Donald B. Rubin. 2013. Bayesian Data Analysis. Third Edition. London: Chapman
& Hall / CRC Press.

Gelman, Andrew, and Jennifer Hill. 2007. Data Analysis Using Regression and
Multilevel-Hierarchical Models. Cambridge, United Kingdom: Cambridge Univer-
sity Press.

Gelman, Andrew, and Donald B. Rubin. 1992. “Inference from Iterative Simulation
Using Multiple Sequences.” Statistical Science 7 (4): 457–72.

Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C Margossian, Bob Car-
penter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and
Martin Modrák. 2020. “Bayesian Workflow.” arXiv Preprint arXiv:2011.01808.

Geyer, Charles J. 1992. “Practical Markov Chain Monte Carlo.” Statistical Science,

216

http://arxiv.org/abs/1010.3436
https://arxiv.org/abs/1604.00695
https://arxiv.org/abs/1601.00225
https://arxiv.org/abs/1701.02434
http://arxiv.org/abs/1312.0906
https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler

473–83.
Geyer, Charles J. 2011. “Introduction to Markov Chain Monte Carlo.” In Handbook

of Markov Chain Monte Carlo, edited by Steve Brooks, Andrew Gelman, Galin L.
Jones, and Xiao-Li Meng, 3–48. Chapman; Hall/CRC.

Hoffman, Matthew D., and Andrew Gelman. 2014. “The No-U-Turn Sampler:
Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.” Journal of Ma-
chine Learning Research 15: 1593–623. http://jmlr.org/papers/v15/hoffman14a.
html.

Kucukelbir, Alp, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M
Blei. 2017. “Automatic Differentiation Variational Inference.” Journal of Machine
Learning Research.

Leimkuhler, Benedict, and Sebastian Reich. 2004. Simulating Hamiltonian Dynamics.
Cambridge: Cambridge University Press.

Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. 2009. “Generating
Random Correlation Matrices Based on Vines and Extended Onion Method.”
Journal of Multivariate Analysis 100: 1989–2001.

Magnusson, Måns, Jakob Torgander, Paul-Christian Bürkner, Lu Zhang, Bob Carpen-
ter, and Aki Vehtari. 2024. “Posteriordb: Testing, Benchmarking and Developing
Bayesian Inference Algorithms.” arXiv Preprint arXiv:2407.04967.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, M. Teller, and E. Teller. 1953. “Equa-
tions of State Calculations by Fast Computing Machines.” Journal of Chemical
Physics 21: 1087–92.

Muller, Mervin E. 1959. “A Note on a Method for Generating Points Uniformly on
n-Dimensional Spheres.” Commun. ACM 2 (4): 19–20. https://doi.org/10.1145/
377939.377946.

Neal, Radford. 2011. “MCMC Using Hamiltonian Dynamics.” In Handbook of
Markov Chain Monte Carlo, edited by Steve Brooks, Andrew Gelman, Galin L.
Jones, and Xiao-Li Meng, 116–62. Chapman; Hall/CRC.

Nesterov, Y. 2009. “Primal-Dual Subgradient Methods for Convex Problems.” Math-
ematical Programming 120 (1): 221–59.

Nocedal, Jorge, and Stephen J. Wright. 2006. Numerical Optimization. Second. Berlin:
Springer-Verlag.

Roberts, G. O., Andrew Gelman, and Walter R. Gilks. 1997. “Weak Convergence
and Optimal Scaling of Random Walk Metropolis Algorithms.” Annals of Applied
Probability 7 (1): 110–20.

Seyboldt, Adrian. 2024. “Add ZeroSumNormal Distribution.” https://github.com
/pyro-ppl/numpyro/pull/1751#issuecomment-1980569811.

Vehtari, Aki, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian
Bürkner. 2021. “Rank-Normalization, Folding, and Localization: An Improved

217

http://jmlr.org/papers/v15/hoffman14a.html
http://jmlr.org/papers/v15/hoffman14a.html
https://doi.org/10.1145/377939.377946
https://doi.org/10.1145/377939.377946
https://github.com/pyro-ppl/numpyro/pull/1751#issuecomment-1980569811
https://github.com/pyro-ppl/numpyro/pull/1751#issuecomment-1980569811

R̂ for Assessing Convergence of MCMC.” Bayesian Analysis 16: 667–718.
Vehtari, Aki, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. 2024.

“Pareto Smoothed Importance Sampling.” Journal of Machine Learning Research 25
(72): 1–58.

Zhang, Lu, Bob Carpenter, Andrew Gelman, and Aki Vehtari. 2022. “Pathfinder:
Parallel Quasi-Newton Variational Inference.” Journal of Machine Learning Re-
search 23 (306): 1–49. http://jmlr.org/papers/v23/21-0889.html.

218

http://jmlr.org/papers/v23/21-0889.html

	Overview
	I Language
	Character Encoding
	Content characters
	Comment characters
	String literals

	Includes
	Recursive includes
	Include paths

	Comments
	Line-based comments
	Bracketed comments

	Whitespace
	Whitespace characters
	Whitespace neutrality
	Whitespace location

	Data Types and Declarations
	Overview of data types
	Primitive numerical data types
	Complex numerical data type
	Scalar data types and variable declarations
	Vector and matrix data types
	Array data types
	Tuple data type
	Variable types vs. constraints and sizes
	Variable declaration
	Compound variable declaration and definition
	Declaring multiple variables at once

	Expressions
	Numeric literals
	Variables
	Container expressions
	Parentheses for grouping
	Arithmetic and matrix operations on expressions
	Conditional operator
	Indexing
	Multiple indexing and range indexing
	Function application
	Type inference
	Higher-order functions
	Chain rule and derivatives

	Statements
	Statement block contexts
	Assignment statements
	Increment log density
	Increment log density with a change of variables adjustment
	Sampling statements
	Distribution statements
	For loops
	Foreach loops
	Conditional statements
	While statements
	Statement blocks and local variable declarations
	Break and continue statements
	Print statements
	Reject statements
	Fatal error statements

	Program Blocks
	Overview of Stan's program blocks
	Statistical variable taxonomy
	Program block: data
	Program block: transformed data
	Program block: parameters
	Program block: transformed parameters
	Program block: model
	Program block: generated quantities

	User-Defined Functions
	Function-definition block
	Function names
	Calling functions
	Argument types and qualifiers
	Function bodies
	Parameters are constant
	Return value
	Void Functions as Statements
	Declarations

	Constraint Transforms
	Limitations due to finite accuracy presentation
	Changes of variables
	Lower bounded scalar
	Upper bounded scalar
	Lower and upper bounded scalar
	Affinely transformed scalar
	Ordered vector
	Zero sum vector
	Unit simplex
	Stochastic Matrix
	Unit vector
	Correlation matrices
	Covariance matrices
	Cholesky factors of covariance matrices
	Cholesky factors of correlation matrices

	Language Syntax
	BNF grammars
	Tokenizing rules
	Extra-grammatical constraints

	Program Execution
	Reading and transforming data
	Initialization
	Sampling
	Optimization
	Variational inference
	Model diagnostics
	Output

	Deprecated Features
	lkj_cov distribution
	Use of _lp functions in transformed parameters
	New Keywords
	Deprecated Functions

	Removed Features
	lp__ variable
	Assignment with <-
	increment_log_prob statement
	get_lp() function
	_log density and mass functions
	cdf_log and ccdf_log cumulative distribution functions
	User-defined function with _log suffix
	if_else function
	Character # as comment prefix
	Postfix brackets array syntax
	Nested multiple indexing in assignments
	Real values in conditionals

	II Algorithms
	MCMC Sampling
	Hamiltonian Monte Carlo
	HMC algorithm parameters
	Sampling without parameters
	General configuration options
	Divergent transitions

	Posterior Analysis
	Markov chains
	Convergence
	Notation for samples, chains, and draws
	Effective sample size

	Optimization
	General configuration
	BFGS and L-BFGS configuration
	Writing models for optimization

	Pathfinder
	Diagnosing Pathfinder
	Using Pathfinder for initializing MCMC

	Variational Inference
	Stochastic gradient ascent

	Laplace Approximation
	Diagnostic Mode
	Diagnostic mode output
	Configuration options
	Speed warning and data trimming

	III Usage
	Reproducibility
	Notable changes across versions

	Licenses and Dependencies
	Stan license
	Boost license
	Eigen license
	SUNDIALS license
	Threaded Building Blocks (TBB) License
	Google test license

	References

