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Introduction

This document is a user’s guide for CmdStan, the command-line interface to the Stan
statistical modeling language. CmdStan provides the programs and tools to compile
Stan programs into C++ executables that can be run directly from the command
line, together with a few utilities to check and summarize the resulting outputs.

In CmdStan, statistical models written in the Stan probabilistic programming lan-
guage are translated into a C++ program which is then compiled together with
the CmdStan routines that provide the logic needed to manage all user inputs and
program outputs and the Stan inference algorithms and math library. The resulting
command line executable program can be used to

• do inference on data, producing an exact or approximate estimate of the
posterior;

• generate new quantities of interest from an existing estimate;

• generate data from the model according to a given set of parameters.

The packages CmdStanR and CmdStanPy provide interfaces to CmdStan from R and
Python, respectively, similarly, JuliaStan also interfaces with CmdStan.

Stan home page

For links to up-to-date code, examples, manuals, bug reports, feature requests, and
everything else Stan related, see the Stan home page:

http://mc-stan.org/

Licensing

CmdStan, Stan, and the Stan Math Library are licensed under the new BSD license
(3-clause). See the Stan Reference Manual Licenses section for licensing terms for
Stan.

Stan documentation: user’s guide and reference manuals

The Stan user’s guide provides example models and programming techniques for
coding statistical models in Stan. It also serves as an example-driven introduction to
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Bayesian modeling and inference:

http://mc-stan.org/docs/stan-users-guide

Stan’s modeling language is shared across all of its interfaces. The Stan Language Ref-
erence Manual provides a concise definition of the language syntax for all elements
in the language.

http://mc-stan.org/docs/reference-manual

The Stan Functions Reference provides definitions and examples for all the functions
defined in the Stan math library and available in the Stan programming language,
including all probability distributions.

http://mc-stan.org/docs/functions-reference.

Benefits of CmdStan

• With every new Stan release, there is a corresponding CmdStan release, there-
fore CmdStan provides access to the latest version of Stan, and can be used to
run the development version of Stan as well.

• Of the Stan interfaces, CmdStan has the lightest memory footprint, therefore it
can fit larger and more complex models. It has has the fewest dependencies,
which makes it easier to run in limited environments such as clusters.

• The output generated is in CSV format and can be post-processed using other
Stan interfaces or general tools.

http://mc-stan.org/docs/stan-users-guide
http://mc-stan.org/docs/reference-manual
http://mc-stan.org/docs/functions-reference


QuickStart Guide

This section is designed to help users install CmdStan and get acquainted with the
CmdStan interface.

7



1. CmdStan Installation

There are a few ways that you can install CmdStan. Depending on your operating
system and your level of expertise, you can either:

• Use the conda package management system to install a pre-built version of
CmdStan along with the required dependencies. Recommended for Windows
users.

• Install the source code from GitHub CmdStan repository. This requires a
modern C++ compiler and toolchain. See the C++ Toolchain section for
further details.

1.1. Installation via conda
With conda, you can install CmdStan from the conda-forge channel. This will
install a pre-built version of CmdStan along with the required dependencies (i.e. a
C++ compiler, a version of Make, and required libraries) detailed below under
[Source installation]. The conda installation is designed so one can use the R or
Python bindings to CmdStan seamlessly. Additionally, it provides the command
cmdstan_model to activate the CmdStan makefile from anywhere.

Note: This requires that conda has been installed already on your machine. You
can either install miniconda, a free, minimal installer for conda or you can get the
full Anaconda system which provides graphical installer wizards for MacOS and
Windows users.

We recommend installing CmdStan in a new conda environment:

conda create -n stan -c conda-forge cmdstan

This command creates a new conda environment named stan and downloads and
installs the cmdstan package as well as CmdStan and the required C++ toolchain.

To install into an existing conda environment, use the conda install command
instead of create:

conda install -c conda-forge cmdstan

Whichever installation method you use, afterwards you must activate the new
environment or deactivate/activate the existing one. For example, if you installed
cmdstan into a new environment stan, run the command
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conda activate stan

By default, the latest release of CmdStan is installed. If you require a specific release
of CmdStan, CmdStan versions 2.26.1 and newer can be installed by specifying
cmdstan==VERSION in the install command. For example to install an earlier version
of CmdStan into your current conda environment, run the following command, then
re-activate the environment

conda install -c conda-forge cmdstan=2.27.0

CmdStan install location under conda
A Conda environment is a directory that contains a specific collection of Conda
packages. To see the locations of your conda environments, use the command

conda info -e

The shell environment variable CONDA_PREFIX points to the active conda environ-
ment (if any). Both CmdStan and the C++ toolchain are installed into the bin
subdirectory of the conda environment directory, i.e., $CONDA_PREFIX/bin/cmdstan
(Linux, MacOS), %CONDA_PREFIX%\bin\cmdstan (Windows).

Please report conda-specific install problems directly to the conda-forge issue tracker,
here.

1.2. Installation from GitHub
Installation from GitHub consists of the following steps:

• Verify that you have a modern C++ toolchain. See the C++ Toolchain section
for details.

• Download the CmdStan source code from GitHub

• Build the CmdStan libraries and executables

• Check the installation by compiling and running the CmdStan example model
bernoulli.stan.

Downloading the source code
The GitHub source code is divided into sub-modules, each in its own repository.
The CmdStan repo contains just the cmdstan module; the Stan inference engine
algorithms and Stan math library functions are specified as submodules and stored
in the GitHub repositories stan and math, respectively.

A CmdStan release is compressed tarfile which contains CmdStan and the Stan and
math library submodules. The most recent CmdStan release is always available
as https://github.com/stan-dev/cmdstan/releases/latest. A CmdStan release is

https://github.com/conda-forge/cmdstan-feedstock/issues
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/stan-dev/stan
https://github.com/stan-dev/math
https://github.com/stan-dev/cmdstan/releases
https://github.com/stan-dev/cmdstan/releases/latest
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versioned by major, minor, patch numbers, e.g., “2.29.2”. The release tarfile unpacks
into a directory named “cmdstan-”, e.g. “cmdstan-2.29.2”.

By cloning the CmdStan repository with argument --recursive, Git automatically
initializes and updates each submodule in the repository, including nested submod-
ules if any of the submodules in the repository have submodules themselves. The
following command will download the source code from the current development
branch of CmdStan into a directory named cmdstan:

> git clone https://github.com/stan-dev/cmdstan.git --recursive

Throughout this manual, we refer to this top-level CmdStan source directory as
<cmdstan-home>. This directory contains the following subdirectories:

• directory cmdstan/stan contains the sub-module stan (https://github.com/s
tan-dev/stan)

• directory cmdstan/stan/lib/stan_math contains the sub-module math (https:
//github.com/stan-dev/math)

Building CmdStan
Building CmdStan involves preparing a set of executable programs and compiling
the command line interface and supporting libraries. The CmdStan tools are:

• stanc: the Stan compiler (translates Stan language to C++).

• stansummary: a basic posterior analysis tool. The stansummary utility pro-
cesses one or more output files from a run or set of runs of Stan’s HMC sampler.
For all parameters and quantities of interest in the Stan program, stansummary
reports a set of statistics including mean, standard deviation, percentiles,
effective number of samples, and R̂ values.

• diagnose: a basic sampler diagnostic tool which checks for indications that
the HMC sampler was unable to sample from the full posterior.

CmdStan releases include pre-built binaries of the Stan language compiler (ht
tps://github.com/stan-dev/stanc3): bin/linux-stanc, bin/mac-stanc and
bin/windows-stanc. The CmdStan makefile build task copies the appropriate
binary to bin/stanc. For CmdStan installations which have been cloned of down-
loaded from the CmdStan GitHub repository, the makefile task will download the
appropriate OS-specific binary from the stanc3 repository’s nightly release.

Steps to build CmdStan:

• Open a command-line terminal window and change directories to the CmdStan
home directory.

https://github.com/stan-dev/stan
https://github.com/stan-dev/stan
https://github.com/stan-dev/math
https://github.com/stan-dev/math
https://github.com/stan-dev/stanc3
https://github.com/stan-dev/stanc3
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• Run the makefile target build which instantiates the CmdStan utilities and
compiles all necessary C++ libraries.

> cd <cmdstan-home>
> make build # on Windows use mingw32-make

If your computer has multiple cores and sufficient ram, the build process can be
parallelized by providing the -j option. For example, to build on 4 cores, type:

> make -j4 build # on Windows use mingw32-make

When make build is successful, the directory <cmdstan-home>/bin/ will contain
the executables stanc, stansummary, and diagnose (on Windows, corresponding
.exe files) and the final lines of console output will show the version of CmdStan
that has just been built, e.g.:

--- CmdStan v2.29.2 built ---

Warning: The Make program may take 10+ minutes and consume 2+ GB of memory
to build CmdStan.

Windows only: CmdStan requires that the Intel TBB library, which is built by
the above command, can be found by the Windows system. This requires that
the directory <cmdstan-home>/stan/lib/stan_math/lib/tbb is part of the PATH
environment variable. See these instructions for details on changing the PATH. To
permanently make this setting for the current user, you may execute:

> mingw32-make install-tbb

After changing the PATH environment variable, you must open an new shell in order
for the new environment variable settings to take effect. (This is not necessary on
Mac and Linux systems because they can use the absolute path to the Intel TBB
library when linking into Stan programs.)

1.3. Checking the Stan compiler
To check that the CmdStan installation is complete and in working order, run the
following series of commands from the folder which CmdStan was installed.

On Linux and macOS:

# compile the example
> make examples/bernoulli/bernoulli

# fit to provided data (results of 10 trials, 2 out of 10 successes)
> ./examples/bernoulli/bernoulli sample data file=examples/bernoulli/bernoulli.data.json

https://helpdeskgeek.com/windows-10/add-windows-path-environment-variable/
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# default output written to file `output.csv`,
# default num_samples is 1000, output file should have approx. 1050 lines
> ls -l output.csv

# run the `bin/stansummary utility to summarize parameter estimates
> bin/stansummary output.csv

On Windows:

# compile the example
> mingw32-make examples/bernoulli/bernoulli.exe

# fit to provided data (results of 10 trials, 2 out of 10 successes)
> ./examples/bernoulli/bernoulli.exe sample data file=examples/bernoulli/bernoulli.data.json

# run the `bin/stansummary.exe utility to summarize parameter estimates
> bin/stansummary.exe output.csv

The sample data in file bernoulli.json.data specifies 2 out of 10 successes, there-
fore the range mean(theta)±sd(theta) should include 0.2.

1.4. Troubleshooting the installation
Updates to CmdStan, changes in compiler options, or updates to the C++ toolchain
may result in errors when trying to compile a Stan program. Often, these problems
can be resolved by removing the existing CmdStan binaries and recompiling. To do
this, you must run the makefile commands from the <cmdstan-home> directory:

> cd <cmdstan-home>
> make clean-all # on Windows use mingw32-make
> make build

Common problems
This section contains solutions to problems reported on https://discourse.mc-
stan.org

Compiler error message about PCH file

To speed up compilation, the Stan makefile pre-compiles parts of the core Stan
library. If these pre-compiled files are out of sync with the compiled model, the
compiler will complain, e.g.:

error: PCH file uses an older PCH format that is no longer supported

https://discourse.mc-stan.org
https://discourse.mc-stan.org
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In this case, clean and rebuild CmdStan, as shown in the previous section.

Windows: ‘mingw32-make’ is not recognised

If the C++ toolchain has been installed but not properly registered, then the call to
mingw32-make will result in error message:

'mingw32-make' is not recognised as an internal or external command

To fix this, ensure you have followed the steps for adding the toolchain to your PATH
and installing the additional utilities covered in the configuration instructions

Windows: ‘g++’ or ‘cut’ is not recognized

The CmdStan makefile uses a few shell utilities which might not be present in
Windows, resulting in the error message:

'cut' is not recognized as an internal or external command, operable program or batch file.

To fix this, ensure you have followed the steps for adding the toolchain to your PATH
and installing the additional utilities covered in the configuration instructions

Spaces in paths to CmdStan or model

Both make and mingw32-make can fail when dealing with files in folders with a space
somewhere in their file path. Particularly on Windows, this can be an issue when
CmdStan, or the models you are trying to build, are placed in the One Drive folder.

Unfortunately, the errors created by this situation are not alwas informative. Some
errors you may see are:

mingw32-make: *** INTERNAL: readdir: Invalid argument

make: *** [make/program:50: x.hpp] Error 2

If the (fully-expanded) folder path to CmdStan or the model you are trying to build
contains a space, we recommend trying a different location if you encounter any
issues during building.

1.5. C++ Toolchain
Compiling a Stan program requires a modern C++ compiler and the GNU Make
build utility (a.k.a. “gmake”). These vary by operating system.

Linux

The required C++ compiler is g++ 4.9 3. On most systems the GNU Make utility
is pre-installed and is the default make utility. There is usually a pre-installed C++
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compiler as well, however, it may not be new enough. To check, run commands:

g++ --version
make --version

If these are at least at g++ version 4.9.3 or later and make version 3.81 or later, no
additional installations are necessary. It may still be desirable to update the C++
compiler g++, because later versions are faster.

To install the latest version of these tools (or upgrade an older version), use the
following commands or their equivalent for your distribution, install via the com-
mands:

sudo apt install g++
sudo apt install make

If you can’t run sudo, you will need to ask your sysadmin or cluster administrator to
install these tools for you.

MacOS

To install a C++ development environment on a Mac, use Apple’s Xcode development
environment https://developer.apple.com/xcode/.

From the Xcode home page View in Mac App Store.

• From the App Store, click Install, enter an Apple ID, and wait for Xcode to
finish installing.

• Open the Xcode application, click top-level menu Preferences, click top-row
button Downloads, click button for Components, click on the Install button to
the right of the Command Line Tools entry, then wait for it to finish installing.

• Click the top-level menu item Xcode, then click item Quit Xcode to quit.

To test, open the Terminal application and enter:

clang++ --version
make --version

If you have installed XCode, but don’t have make, you can install the XCode command-
line tools via command:

xcode-select --install

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
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Windows

The Windows toolchain consists of programs g++, the C++ compiler, and
mingw32-make, the GNU Make utility. To check if these are present, open a command
shell 1 and type:

g++ --version
mingw32-make --version

CmdStan is known compatible with the RTools40, RTools42, and RTools43 toolchains.
These require slightly different steps to configure, so please follow the appropriate
steps below. All toolchains will require updating your PATH variable, See these
instructions for details on changing the PATH if you are unfamiliar. The following
instructions will assume that the default installation directory was used, so be sure
to update the paths accordingly if you have chosen a different directory.

1.5.0.3.1 RTools40 RTools40 provides both a standard g++-8 toolchain and
a g++-10 Universal C Runtime (UCRT) toolchain. Note the that newer g++-10
UCRT toolchain is only available for 64-bit systems, whereas the g++-8 toolchain is
available for both. Additionally the UCRT is only natively supported on Windows 10
and newer, older systems will require a Microsoft update

1.5.0.3.1.1 Installation Download the installer and complete the prompts to
install.

Next, you need to add the location of the toolchain to your PATH environment
variable so that it can be called from the command line. Add the following lines to
your PATH:

C:\rtools40\usr\bin

# Add only one of the below
C:\rtools40\mingw32\bin # 32-bit g++-8
C:\rtools40\mingw64\bin # 64-bit g++-8
C:\rtools40\ucrt64\bin # 64-bit g++-10 (UCRT)

CmdStan additionally needs the mingw32-make utility, which you can install using
RTools. Navigate to the installation directory (e.g., C:\rtools40) and launch the

1To open a Windows command shell, first open the Start Menu, (usually in the lower left of the screen),
select option All Programs, then option Accessories, then program Command Prompt. Alternatively,
enter [Windows+r] (both keys together on the keyboard), and enter cmd into the text field that pops up
in the Run window, then press [Return] on the keyboard to run.

https://helpdeskgeek.com/windows-10/add-windows-path-environment-variable/
https://helpdeskgeek.com/windows-10/add-windows-path-environment-variable/
https://support.microsoft.com/en-us/topic/update-for-universal-c-runtime-in-windows-c0514201-7fe6-95a3-b0a5-287930f3560c
https://github.com/r-windows/rtools-installer/releases/download/2022-02-06/rtools40-x86_64.exe
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msys2.exe file. Execute the appropriate command below to install mingw32-make
for your selected toolchain:

pacman -Sy mingw-w64-i686-make # 32-bit g++-8
pacman -Sy mingw-w64-x86_64-make # 64-bit g++-8
pacman -Sy mingw-w64-ucrt-x86_64-make # 64-bit g++-10 (UCRT)

If you have used the UCRT toolchain,some additional compilation flags will be
needed for CmdStan. Navigate to the CmdStan/make directory and create a file
called local. Add the following lines to the file:

CXXFLAGS += -Wno-nonnull -D_UCRT
TBB_CXXFLAGS= -D_UCRT

1.5.0.3.2 RTools42 & RTools43 Both RTools42 & RTools43 provide 64-bit UCRT
toolchains, where RTools42 provides g++-10 and RTools43 provides g++-12. The
installation/configuration is identical for both toolchains.

1.5.0.3.2.1 Installation Download the installer for your preferred toolchain and
complete the prompts for installation:

• RTools42
• RTools43

Next, you need to add the toolchain directory to your PATH variable. Add the
appropriate lines from below:

# RTools42
C:\rtools42\usr\bin
C:\rtools42\ucrt64\bin

# RTools43
C:\rtools43\usr\bin
C:\rtools43\ucrt64\bin

Next, you need to install the mingw32-make utility and some additional compiler
dependencies. Navigate to the installation directory of the toolchain and launch the
msys2.exe file. Execute the below commands to install the needed dependencies:

pacman -Sy mingw-w64-ucrt-x86_64-make mingw-w64-ucrt-x86_64-gcc

Finally, some additional compilation flags will be needed for CmdStan. Navigate to
the CmdStan/make directory and create a file called local. Add the following lines
to the file:

https://cran.r-project.org/bin/windows/Rtools/rtools42/files/rtools42-5355-5357.exe
https://cran.r-project.org/bin/windows/Rtools/rtools43/files/rtools43-5550-5548.exe
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CXXFLAGS += -Wno-nonnull -D_UCRT
TBB_CXXFLAGS= -D_UCRT

32-bit Builds

CmdStan defaults to a 64-bit build. On a 32-bit operating system, you must specify
the make variable BIT=32 as part of the make command, described in the next
section.

1.6. Using GNU Make
CmdStan relies on the GNU Make utility to build both the Stan model executables
and the CmdStan tools.

GNU Make builds executable programs and libraries from source code by reading
files called Makefiles which specify how to derive the target program. A Makefile
consists of a set of recursive rules where each rule specifies a target, its dependencies,
and the specific operations required to build the target. Specifying dependencies for
a target provides a way to control the build process so that targets which depend
on other files will be updated as needed only when there are changes to those other
files. Thus Make provides an efficient way to manage complex software.

The CmdStan Makefile is in the <cmdstan-home> directory and is named makefile.
This is one of the default GNU Makefile names, which allows you to omit the
-f makefile argument to the Make command. Because the CmdStan Makefile
includes several other Makefiles, Make only works properly when invoked from
the <cmdstan-home> directory; attempts to use this Makefile from another directory
by specifying the full path to the file makefile won’t work. For example, trying to
call Make from another directory by specifying the full path the the makefile results
in the following set of error messages:

make -f ~/github/stan-dev/cmdstan/makefile
/Users/mitzi/github/stan-dev/cmdstan/makefile:58: make/stanc: No such file or directory
/Users/mitzi/github/stan-dev/cmdstan/makefile:59: make/program: No such file or directory
/Users/mitzi/github/stan-dev/cmdstan/makefile:60: make/tests: No such file or directory
/Users/mitzi/github/stan-dev/cmdstan/makefile:61: make/command: No such file or directory
make: *** No rule to make target `make/command'. Stop.

The conda-forge cmdstan package provides a solution to this problem via
cmdstan_model command which lets you run the CmdStan makefile from anywhere
to compile a Stan model.

Makefile syntax allows general pattern rules based on file suffixes. Stan programs
must be stored in files with suffix .stan; the CmdStan makefile rules specify how to

https://www.gnu.org/software/make/manual/html_node/Makefile-Names.html


CHAPTER 1. CMDSTAN INSTALLATION 18

transform the Stan source code into a binary executable. For example, to compile
the Stan program my_program.stan in directory ../my_dir/, the make target is
../my_dir/my_program or ../my_dir/my_program.exe (on Windows).

To call Make, you invoke the utility name, either make or mingw32-make, followed
by, in order:

• zero or more Make program options, then specify any Make variables as a
series of

• zero of more Make variables, described below

• zero or more target names; the set of names is determined by the Makefile
rules.

make <flags> <variables> <targets>

Makefile Variables

Make targets can be preceded by any number of Makefile variable name=value
pairs. For example, to compile ../my_dir/my_program.stan for an OpenCL (GPU)
machine, set the makefile variable STAN_OPENCL to TRUE:

> make STAN_OPENCL=TRUE ../my_dir/my_program # on Windows use mingw32-make

Makefile variables can also be set by creating a file named local in the CmdStan
make subdirectory which contains a list of <VARIABLE>=<VALUE> pairs, one per line.
For example, if you are working on a 32-bit machine, you would put the line BIT=32
into the file <cmdstan-home>/make/local so that all CmdStan programs and Stan
models compile properly.

The complete set of Makefile variables can be found in file
<cmdstan-home>/cmdstan/stan/lib/stan_math/make/compiler_flags.

Make Targets

When invoked without any arguments at all, Make prints a help message:

> make # on Windows use mingw32-make
--------------------------------------------------------------------------------
CmdStan v2.23.0 help

Build CmdStan utilities:
> make build

This target will:

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html
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1. Install the Stan compiler bin/stanc from stanc3 binaries.
2. Build the print utility bin/print (deprecated; will be removed in v3.0)
3. Build the stansummary utility bin/stansummary
4. Build the diagnose utility bin/diagnose
5. Build all libraries and object files compile and link an executable Stan program

Note: to build using multiple cores, use the -j option to make, e.g.,
for 4 cores:
> make build -j4

Build a Stan program:

Given a Stan program at foo/bar.stan, build an executable by typing:
> make foo/bar

This target will:
1. Install the Stan compiler (bin/stanc), as needed.
2. Use the Stan compiler to generate C++ code, foo/bar.hpp.
3. Compile the C++ code using cc . to generate foo/bar

Additional make options:
STANCFLAGS: defaults to "". These are extra options passed to bin/stanc

when generating C++ code. If you want to allow undefined functions in the
Stan program, either add this to make/local or the command line:

STANCFLAGS = --allow_undefined
USER_HEADER: when STANCFLAGS has --allow_undefined, this is the name of the

header file that is included. This defaults to "user_header.hpp" in the
directory of the Stan program.

Example - bernoulli model: examples/bernoulli/bernoulli.stan

1. Build the model:
> make examples/bernoulli/bernoulli

2. Run the model:
> examples/bernoulli/bernoulli sample data file=examples/bernoulli/bernoulli.data.R

3. Look at the samples:
> bin/stansummary output.csv
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Clean CmdStan:

Remove the built CmdStan tools:
> make clean-all

--------------------------------------------------------------------------------



2. Example Model and Data

The following is a simple, complete Stan program for a Bernoulli model of binary
data.1 The model assumes the binary observed data y[1],...,y[N] are i.i.d. with
Bernoulli chance-of-success theta.

data {
int<lower=0> N;
array[N] int<lower=0, upper=1> y;

}
parameters {

real<lower=0, upper=1> theta;
}
model {

theta ~ beta(1, 1); // uniform prior on interval 0,1
y ~ bernoulli(theta);

}

The input data file contains definitions for the two variables N and y which are
specified in the data block of program bernoulli.stan (above).

A data set of N=10 observations is included in the example Bernoulli model directory
in both JSON notation and Rdump data format where 8 out of 10 trials had outcome
0 (failure) and 2 trials had outcome 1 (success). In JSON, this data is:

{
"N" : 10,
"y" : [0,1,0,0,0,0,0,0,0,1]

}

1The model is available with the CmdStan distribution at the path
<cmdstan-home>/examples/bernoulli/bernoulli.stan.
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3. Compiling a Stan Program

A Stan program must be in a file with extension .stan. The CmdStan makefile
rules specify all necessary steps to translate files with suffix .stan to a CmdStan
executable program. This is a two-stage process:

• first the Stan program is translated to C++ by the stanc compiler
• then the C++ compiler compiles all C++ sources and links them together

with the CmdStan interface program and the Stan and math libraries.

3.1. Invoking the Make utility
To compile Stan programs, you must invoke the Make program from the
<cmdstan-home> directory. The Stan program can be in a different directory, but the
directory path names cannot contain spaces - this limitation is imposed by Make.

> cd <cmdstan_home>

In the call to the Make program, the target is name of the CmdStan executable
corresponding to the Stan program file. On Mac and Linux, this is the name of the
Stan program with the .stan omitted. On Windows, replace .stan with .exe, and
make sure that the path is given with slashes and not backslashes. To build the
Bernoulli example, on Mac and Linux:

> make examples/bernoulli/bernoulli

On Windows, the command is the same with the addition of .exe at the end of the
target (note the use of forward slashes):

> make examples/bernoulli/bernoulli.exe

The generated C++ code (bernoulli.hpp), object file (bernoulli.o) and the
compiled executable will be placed in the same directory as the Stan program.

The compiled executable consists of the Stan model and the CmdStan command line
interface which provides inference algorithms to do MCMC sampling, optimization,
and variational inference. The following sections provide examples of doing inference
using each method on the example model and data file.

3.2. Dependencies
When executing a Make target, all its dependencies are checked to see if they are
up to date, and if they are not, they are rebuilt. If the you call Make with target
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bernoulli twice in a row, without any editing bernoulli.stan or otherwise chang-
ing the system, on the second invocation, Make will determine that the executable is
already newer than the Stan source file and will not recompile the program:

> make examples/bernoulli/bernoulli
make: `examples/bernoulli/bernoulli' is up to date.

If the file containing the Stan program is updated, the next call to make will rebuild
the CmdStan executable.

3.3. Compiler errors
The Stan probabilistic programming language is a programming language with a
rich syntax, as such, it is often the case that a carefully written program contains
errors.

The simplest class of errors are simple syntax errors such as forgetting the semi-colon
statement termination marker at the end of a line, or typos such as a misspelled
variable name. For example, if in the bernoulli.stan program, we introduce a
typo on line 9 by writing thata instead of theta, the Make command fails with the
following

--- Translating Stan model to C++ code ---
bin/stanc --o=bernoulli.hpp bernoulli.stan

Semantic error in 'bernoulli.stan', line 9, column 2 to column 7:
-------------------------------------------------

7: }
8: model {
9: thata ~ beta(1, 1); // uniform prior on interval 0, 1

^
10: y ~ bernoulli(theta);
11: }

-------------------------------------------------

Identifier 'thata' not in scope.

make: *** [bernoulli.hpp] Error 1

Stan is a strongly-typed language; and the compiler will throw an error if statements
or expressions violate the type rules. The following trivial program foo.stan
contains an illegal assignment statement:

https://mc-stan.org/docs/reference-manual/data-types.html
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data {
real x;

}
transformed data {

int y = x;
}

The Make command fails with the following:

Semantic error in 'foo.stan', line 5, column 2 to column 12:
-------------------------------------------------

3: }
4: transformed data {
5: int y = x;

^
6: }

-------------------------------------------------

Ill-typed arguments supplied to assignment operator =: lhs has type int and rhs has type real

The Stan Reference Manual provides a complete specification of the Stan program-
ming language. The Stan User’s Guide also contains a full description of the errors
and warnings stanc can emit.

3.4. Troubleshooting C++ compiler or linker errors
If the stanc compiler successfully translates a Stan program to C++, the resulting
C++ code should be valid C++ which can be compiled into an executable. The
stanc compiler is also a program, and while it has been extensively tested, it may
still contain errors such that the generated C++ code fails to compile.

The Make command prints the following message to the terminal at the point when
it compiles and links the C++ file:

--- Compiling, linking C++ code ---

If the program fails to compile for any reason, the C++ compiler and linker will
most likely print a long series of error messages to the console.

If this happens, please report the error, together with the Stan program on either the
Stan Forums or on the Stan compiler GitHub issues tracker.

https://mc-stan.org/docs/reference-manual/language.html
https://mc-stan.org/docs/stan-users-guide/understanding-stanc3-errors-and-warnings.html
https://discourse.mc-stan.org/
https://github.com/stan-dev/stanc3/issues
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3.5. C++ compilation and linking flags
Users can set flags for the C++ compiler and linker and compiler to optimize their
executables. We advise users to only do this once they are sure their basic setup of
Cmdstan without flags works.

The CXXFLAGS and LDFLAGS makefile variables can be used to set compiler and linker
flags respectively. We recommend setting these in the make/local file.

For example:

CXXFLAGS = -O2

A recommend a set of CXXFLAGS and LDFLAGS flags can be turned on by setting
STAN_CPP_OPTIMS=true in the make/local file. These are tested compiler and link-
time optimizations that can speed up execution of certain models. We have observed
speedups up to 15 percent, but this depends on the model, operating system and
hardware used. The use of these flags does considerably slow down compilation, so
they are not used by default.

Optimizing by ignoring range checks
When assigning or reading from with vectors, row_vectors, matrices or arrays using
indexing, Stan checks that a supplied index is valid (not out of range), which avoids
segmentation faults and other difficult-to-debug runtime errors.

For some models these checks can represent a significant part of the models execution
time. By setting the STAN_NO_RANGE_CHECKS=true makefile flag in the make/local
file the range checks can be removed. Use this flag with caution (only once the
indexing has been validated). In case of any unexpected behavior remove the flag
for easier debugging.



4. MCMC Sampling

4.1. Running the sampler
To generate a sample from the posterior distribution of the model conditioned on the
data, we run the executable program with the argument sample or method=sample
together with the input data. The executable can be run from any directory.
Here, we run it in the directory which contains the Stan program and input data,
<cmdstan-home>/examples/bernoulli:

> cd examples/bernoulli

To execute sampling of the model under Linux or Mac, use:

> ./bernoulli sample data file=bernoulli.data.json

In Windows, the ./ prefix is not needed:

> bernoulli.exe sample data file=bernoulli.data.json

The output is the same across all supported platforms. First, the configuration of the
program is echoed to the standard output:

method = sample (Default)
sample

num_samples = 1000 (Default)
num_warmup = 1000 (Default)
save_warmup = 0 (Default)
thin = 1 (Default)
adapt

engaged = 1 (Default)
gamma = 0.050000000000000003 (Default)
delta = 0.80000000000000004 (Default)
kappa = 0.75 (Default)
t0 = 10 (Default)
init_buffer = 75 (Default)
term_buffer = 50 (Default)
window = 25 (Default)

algorithm = hmc (Default)
hmc

engine = nuts (Default)
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nuts
max_depth = 10 (Default)

metric = diag_e (Default)
metric_file = (Default)
stepsize = 1 (Default)
stepsize_jitter = 0 (Default)

num_chains = 1 (Default)
id = 0 (Default)
data

file = bernoulli.data.json
init = 2 (Default)
random

seed = 3252652196 (Default)
output

file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

After the configuration has been displayed, a short timing message is given.

Gradient evaluation took 1.2e-05 seconds
1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
Adjust your expectations accordingly!

Next, the sampler reports the iteration number, reporting the percentage complete.

Iteration: 1 / 2000 [ 0%] (Warmup)
....
Iteration: 2000 / 2000 [100%] (Sampling)

Finally, the sampler reports timing information:

Elapsed Time: 0.007 seconds (Warm-up)
0.017 seconds (Sampling)
0.024 seconds (Total)

4.2. Running multiple chains
A Markov chain generates samples from the target distribution only after it has
converged to equilibrium. In theory, convergence is only guaranteed asymptotically
as the number of draws grows without bound. In practice, diagnostics must be
applied to monitor convergence for the finite number of draws actually available.
One way to monitor whether a chain has converged to the equilibrium distribution is
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to compare its behavior to other randomly initialized chains. For robust diagnostics,
we recommend running 4 chains.

There are two different ways of running multiple chains, with the num_chains
argument using a single executable and by using the Unix and DOS shell to run
multiple executables.

Using the num_chains argument to run multiple chains
The num_chains argument can be used for all of Stan’s samplers with the exception
of the static HMC engine.

Example that will run 4 chains:

./bernoulli sample num_chains=4 data file=bernoulli.data.json output file=output.csv

If the model was not compiled with STAN_THREADS=true, the above command
will run 4 chains sequentially and will produce the sample in output_1.csv,
output_2.csv, output_3.csv, output_4.csv. A suffix with the chain id is ap-
pended to the provided output filename (output.csv in the above command).

If the model was compiled with STAN_THREADS=true, the chains can run in parallel,
with the num_threads argument defining the maximum number of threads used
to run the chains. If the model uses no within-chain parallelization (map_rect or
reduce_sum calls), the below command will run 4 chains in parallel, provided there
are cores available:

./bernoulli sample num_chains=4 data file=bernoulli.data.json output file=output.csv num_threads=4

If the model uses within-chain parallelization (map_rect or reduce_sum calls), the
threads are automatically scheduled to run the parallel parts of a single chain or
run the sequential parts of another chains. The below call starts 4 chains that can
use 16 threads. At a given moment a single chain may use all 16 threads, 1 thread,
anything in between, or can wait for a thread to be available. The scheduling is left
to the Threading Building Blocks scheduler.

./bernoulli_par sample num_chains=4 data file=bernoulli.data.json output file=output.csv num_threads=16

Using shell for running multiple chains
To run multiple chains given a model and data, either sequentially or in parallel,
we can also use the Unix or DOS shell for loop to set up index variables needed to
identify each chain and its outputs.

On MacOS or Linux, the for-loop syntax for both the bash and zsh interpreters is:

for NAME [in LIST]; do COMMANDS; done

https://software.intel.com/content/www/us/en/develop/documentation/tbb-documentation/top/intel-threading-building-blocks-developer-guide/the-task-scheduler/how-task-scheduling-works.html
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The list can be a simple sequence of numbers, or you can use the shell expansion
syntax {1..N} which expands to the sequence from 1 to N , e.g. {1..4} expands to
1 2 3 4. Note that the expression {1..N} cannot contain spaces.

To run 4 chains for the example bernoulli model on MacOS or Linux:

> for i in {1..4}
do

./bernoulli sample data file=bernoulli.data.json \
output file=output_${i}.csv

done

The backslash (\) indicates a line continuation in Unix. The expression ${i} sub-
stitutes in the value of loop index variable i. To run chains in parallel, put an
ampersand (&) at the end of the nested sampler command:

> for i in {1..4}
do

./bernoulli sample data file=bernoulli.data.json \
output file=output_${i}.csv &

done

This pushes each process into the background which allows the loop to continue
without waiting for the current chain to finish.

On Windows, the DOS for-loop syntax is one of:

for %i in (SET) do COMMAND COMMAND-ARGUMENTS
for /l %i in (START, STEP, END) do COMMAND COMMAND-ARGUMENTS

To run 4 chains in parallel on Windows:

>for /l %i in (1, 1, 4) do start /b bernoulli.exe sample ^
data file=bernoulli.data.json my_data ^
output file=output_%i.csv

The caret (ˆ) indicates a line continuation in DOS.

4.3. Stan CSV output file
Each execution of the model results in draws from a single Markov chain being
written to a file in comma-separated value (CSV) format. The default name of the
output file is output.csv.

The first part of the output file records the version of the underlying Stan library and
the configuration as comments (i.e., lines beginning with the pound sign (#)).

https://www.windows-commandline.com/windows-for-loop-examples/
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# stan_version_major = 2
# stan_version_minor = 23
# stan_version_patch = 0
# model = bernoulli_model
# method = sample (Default)
# sample
# num_samples = 1000 (Default)
# num_warmup = 1000 (Default)
...
# output
# file = output.csv (Default)
# diagnostic_file = (Default)
# refresh = 100 (Default)

This is followed by a CSV header indicating the names of the values sampled.

lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,theta

The first output columns report the HMC sampler information:

• lp__ - the total log probability density (up to an additive constant) at each
sample

• accept_stat__ - the average Metropolis acceptance probability over each
simulated Hamiltonian trajectory

• stepsize__ - integrator step size
• treedepth__ - depth of tree used by NUTS (NUTS sampler)
• n_leapfrog__ - number of leapfrog calculations (NUTS sampler)
• divergent__ - has value 1 if trajectory diverged, otherwise 0. (NUTS sampler)
• energy__ - value of the Hamiltonian
• int_time__ - total integration time (static HMC sampler)

Because the above header is from the NUTS sampler, it has columns treedepth__,
n_leapfrog__, and divergent__ and doesn’t have column int_time__. The re-
maining columns correspond to model parameters. For the Bernoulli model, it is just
the final column, theta.

The header line is written to the output file before warmup begins. If option
save_warmup is set to 1, the warmup draws are output directly after the header. The
total number of warmup draws saved is num_warmup divided by thin, rounded up
(i.e., ceiling).

Following the warmup draws (if any), are comments which record the results of
adaptation: the stepsize, and inverse mass metric used during sampling:
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# Adaptation terminated
# Step size = 0.884484
# Diagonal elements of inverse mass matrix:
# 0.535006

The default sampler is NUTS with an adapted step size and a diagonal inverse mass
matrix. For this example, the step size is 0.884484, and the inverse mass contains
the single entry 0.535006 corresponding to the parameter theta.

Draws from the posterior distribution are printed out next, each line containing a
single draw with the columns corresponding to the header.

-6.84097,0.974135,0.884484,1,3,0,6.89299,0.198853
-6.91767,0.985167,0.884484,1,1,0,6.92236,0.182295
-7.04879,0.976609,0.884484,1,1,0,7.05641,0.162299
-6.88712,1,0.884484,1,1,0,7.02101,0.188229
-7.22917,0.899446,0.884484,1,3,0,7.73663,0.383596
...

The output ends with timing details:

# Elapsed Time: 0.007 seconds (Warm-up)
# 0.017 seconds (Sampling)
# 0.024 seconds (Total)

4.4. Summarizing sampler output(s) with stansummary
The stansummary utility processes one or more output files from a run or set of
runs of Stan’s HMC sampler given a model and data. For all columns in the Stan
CSV output file stansummary reports a set of statistics including mean, standard
deviation, percentiles, effective number of samples, and R̂ values.

To run stansummary on the output files generated by the for loop above, by the
above run of the bernoulli model on Mac or Linux:

<cmdstan-home>/bin/stansummary output_*.csv

On Windows, use backslashes to call the stansummary.exe.

<cmdstan-home>\bin\stansummary.exe output_*.csv

The stansummary output consists of one row of statistics per column in the Stan
CSV output file. Therefore, the first rows in the stansummary report statistics over
the sampler state. The final row of output summarizes the estimates of the model
variable theta:
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Inference for Stan model: bernoulli_model
4 chains: each with iter=(1000,1000,1000,1000); warmup=(0,0,0,0); thin=(1,1,1,1); 4000 iterations saved.

Warmup took (0.0070, 0.0070, 0.0070, 0.0070) seconds, 0.028 seconds total
Sampling took (0.020, 0.017, 0.021, 0.019) seconds, 0.077 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ -7.3 1.8e-02 0.75 -8.8 -7.0 -6.8 1.8e+03 2.4e+04 1.0e+00
accept_stat__ 0.89 2.7e-03 0.17 0.52 0.96 1.0 3.9e+03 5.1e+04 1.0e+00
stepsize__ 1.1 7.5e-02 0.11 0.93 1.2 1.2 2.0e+00 2.6e+01 2.5e+13
treedepth__ 1.4 8.1e-03 0.49 1.0 1.0 2.0 3.6e+03 4.7e+04 1.0e+00
n_leapfrog__ 2.3 1.7e-02 0.98 1.0 3.0 3.0 3.3e+03 4.3e+04 1.0e+00
divergent__ 0.00 nan 0.00 0.00 0.00 0.00 nan nan nan
energy__ 7.8 2.6e-02 1.0 6.8 7.5 9.9 1.7e+03 2.2e+04 1.0e+00
theta 0.25 2.9e-03 0.12 0.079 0.23 0.46 1.7e+03 2.1e+04 1.0e+00

Samples were drawn using hmc with nuts.
For each parameter, N_Eff is a crude measure of effective sample size,
and R_hat is the potential scale reduction factor on split chains (at
convergence, R_hat=1).

In this example, we conditioned the model on a dataset consisting of the outcomes
of 10 bernoulli trials, where only 2 trials reported success. The 5%, 50%, and 95%
percentile values for theta reflect the uncertainty in our estimate, due to the small
amount of data, given the prior of beta(1, 1)



5. Optimization

The CmdStan executable can run Stan’s optimization algorithms which provide a
deterministic method to find the posterior mode. If the posterior is not convex,
there is no guarantee Stan will be able to find the global mode as opposed to a local
optimum of log probability.

The executable does not need to be recompiled in order to switch from sampling to
optimization, and the data input format is the same. The following is a minimal call
to Stan’s optimizer using defaults for everything but the location of the data file.

> ./bernoulli optimize data file=bernoulli.data.json

Executing this command prints both output to the console and to a csv file.

The first part of the console output reports on the configuration used. The above
command uses all default configurations, therefore the optimizer used is the L-BFGS
optimizer and its default initial stepsize and tolerances for monitoring convergence:

./bernoulli optimize data file=bernoulli.data.json
method = optimize

optimize
algorithm = lbfgs (Default)

lbfgs
init_alpha = 0.001 (Default)
tol_obj = 1e-12 (Default)
tol_rel_obj = 10000 (Default)
tol_grad = 1e-08 (Default)
tol_rel_grad = 10000000 (Default)
tol_param = 1e-08 (Default)
history_size = 5 (Default)

iter = 2000 (Default)
save_iterations = 0 (Default)

id = 0 (Default)
data

file = bernoulli.data.json
init = 2 (Default)
random

seed = 87122538 (Default)
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output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

The second part of the output indicates how well the algorithm fared, here converging
and terminating normally. The numbers reported indicate that it took 5 iterations and
8 gradient evaluations. This is, not surprisingly, far fewer iterations than required
for sampling; even fewer iterations would be used with less stringent user-specified
convergence tolerances. The alpha value is for step size used. In the final state
the change in parameters was roughly 0.002 and the length of the gradient roughly
3e-05 (0.00003).

Initial log joint probability = -6.85653
Iter log prob ||dx|| ||grad|| alpha alpha0 # evals Notes

5 -5.00402 0.00184936 3.35074e-05 1 1 8
Optimization terminated normally:

Convergence detected: relative gradient magnitude is below tolerance

The output from optimization is written into the file output.csv by default. The
output follows the same pattern as the output for sampling, first dumping the entire
set of parameters used as comment lines:

# stan_version_major = 2
# stan_version_minor = 23
# stan_version_patch = 0
# model = bernoulli_model
# method = optimize
# optimize
# algorithm = lbfgs (Default)
...

Following the config information, are two lines of output: the CSV headers and the
recorded values:

lp__,theta
-5.00402,0.200003

Note that everything is a comment other than a line for the header, and a line
for the values. Here, the header indicates the unnormalized log probability with
lp__ and the model parameter theta. The maximum log probability is -5.0 and
the posterior mode for theta is 0.20. The mode exactly matches what we would
expect from the data. Because the prior was uniform, the result 0.20 represents the
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maximum likelihood estimate (MLE) for the very simple Bernoulli model. Note that
no uncertainty is reported.

All of the optimizers stream per-iteration intermediate approximations to the com-
mand line console. The sub-argument save_iterations specifies whether or not
to save the intermediate iterations to the output file. Allowed values are 0 or 1,
corresponding to False and True respectively. The default value is 0, i.e., inter-
mediate iterations are not saved to the output file. Running the optimizer with
save_iterations=1 writes both the initial log joint probability and values for all
iterations to the output CSV file.

Running the example model with option save_iterations=1, i.e., the command

> ./bernoulli optimize save_iterations=1 data file=bernoulli.data.json

produces CSV file output rows:

lp__,theta
-6.85653,0.493689
-6.10128,0.420936
-5.02953,0.22956
-5.00517,0.206107
-5.00403,0.200299
-5.00402,0.200003



6. Variational Inference using Pathfinder

The CmdStan method pathfinder uses the Pathfinder algorithm of Zhang et al.
(2022). Pathfinder is a variational method for approximately sampling from differen-
tiable log densities. Starting from a random initialization, Pathfinder locates normal
approximations to the target density along a quasi-Newton optimization path, with
local covariance estimated using the negative inverse Hessian estimates produced by
the L-BFGS optimizer. Pathfinder returns draws from the Gaussian approximation
with the lowest estimated Kullback-Leibler (KL) divergence to the true posterior.

Pathfinder differs from the ADVI method in that it uses quasi-Newton optimization
on the log posterior instead of stochastic gradient descent (SGD) on the Monte Carlo
computation of the evidence lower bound (ELBO). Pathfinder’s approach is both
faster and more stable than that of ADVI. Compared to ADVI and short dynamic
HMC runs, Pathfinder requires one to two orders of magnitude fewer log density
and gradient evaluations, with greater reductions for more challenging posteriors.

A single run of the Pathfinder algorithm generates a set of approximate draws.
Inference is improved by running multiple Pathfinder instances and using Pareto-
smoothed importance resampling (PSIS) of the resulting sets of draws. This better
matches non-normal target densities and also eliminates minor modes. By default,
the pathfinder method uses 4 independent Pathfinder runs, each of which produces
1000 approximate draws, which are then importance resampled down to 1000 final
draws.

The following is a minimal call the Pathfinder algorithm using defaults for everything
but the location of the data file.

> ./bernoulli pathfinder data file=bernoulli.data.R

Executing this command prints both output to the console and csv files.

The first part of the console output reports on the configuration used.

method = pathfinder
pathfinder

init_alpha = 0.001 (Default)
tol_obj = 9.9999999999999998e-13 (Default)
tol_rel_obj = 10000 (Default)
tol_grad = 1e-08 (Default)
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tol_rel_grad = 10000000 (Default)
tol_param = 1e-08 (Default)
history_size = 5 (Default)
num_psis_draws = 1000 (Default)
num_paths = 4 (Default)
save_single_paths = 0 (Default)
max_lbfgs_iters = 1000 (Default)
num_draws = 1000 (Default)
num_elbo_draws = 25 (Default)

id = 1 (Default)
data

file = examples/bernoulli/bernoulli.data.json
init = 2 (Default)
random

seed = 1995513073 (Default)
output

file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)
sig_figs = -1 (Default)
profile_file = profile.csv (Default)

num_threads = 1 (Default)

The rest of the output describes the progression of the algorithm.

By default, the Pathfinder algorithm runs 4 single-path Pathfinders in parallel, the
uses importance resampling on the set of returned draws to produce the specified
number of draws.

Path [1] :Initial log joint density = -11.543343
Path [1] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes

5 -6.748e+00 1.070e-03 1.707e-05 1.000e+00 1.000e+00 126 -6.220e+00 -6.220e+00
Path [1] :Best Iter: [5] ELBO (-6.219833) evaluations: (126)
Path [2] :Initial log joint density = -7.443345
Path [2] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes

5 -6.748e+00 9.936e-05 3.738e-07 1.000e+00 1.000e+00 126 -6.164e+00 -6.164e+00
Path [2] :Best Iter: [5] ELBO (-6.164015) evaluations: (126)
Path [3] :Initial log joint density = -18.986308
Path [3] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes

5 -6.748e+00 2.996e-04 4.018e-06 1.000e+00 1.000e+00 126 -6.201e+00 -6.201e+00
Path [3] :Best Iter: [5] ELBO (-6.200559) evaluations: (126)
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Path [4] :Initial log joint density = -8.304453
Path [4] : Iter log prob ||dx|| ||grad|| alpha alpha0 # evals ELBO Best ELBO Notes

5 -6.748e+00 2.814e-04 2.034e-06 1.000e+00 1.000e+00 126 -6.221e+00 -6.221e+00
Path [4] :Best Iter: [3] ELBO (-6.161276) evaluations: (126)
Total log probability function evaluations:8404

Pathfinder outputs a StanCSV file file which contains the importance resampled
draws from multi-path Pathfinder. The initial CSV comment rows contain the
complete set of CmdStan configuration options. Next is the column header line,
followed the set of approximate draws. The Pathfinder algorithm first outputs
lp_approx__, the log density in the approximating distribution, and lp__, the log
density in the target distribution, followed by estimates of the model parameters,
transformed parameters, and generated quantities.

lp_approx__,lp__,theta
-2.4973, -8.2951, 0.0811852
-0.87445, -7.06526, 0.160207
-0.812285, -7.07124, 0.35819
...

The final lines are comment lines which give timing information.

# Elapsed Time: 0.016000 seconds (Pathfinders)
# 0.003000 seconds (PSIS)
# 0.019000 seconds (Total)

Pathfinder provides option save_single_paths which will save output from the
single-path Pathfinder runs. See section Pathfinder Method for details.



7. Variational Inference using ADVI

The CmdStan method variational uses the Automatic Differentiation Variational
Inference (ADVI) algorithm of Kucukelbir et al. (2017) to provide an approximate
posterior distribution of the model conditioned on the data. The approximating distri-
bution it uses is a Gaussian in the unconstrained variable space, either a fully factor-
ized Gaussian approximation, specified by argument algorithm=meanfield option,
or a Gaussian approximation using a full-rank covariance matrix, specified by argu-
ment algorithm=fullrank. By default, ADVI uses option algorithm=meanfield.

The following is a minimal call to Stan’s variational inference algorithm using
defaults for everything but the location of the data file.

> ./bernoulli variational data file=bernoulli.data.R

Executing this command prints both output to the console and to a csv file.

The first part of the console output reports on the configuration used: the default op-
tion algorithm=meanfield and the default tolerances for monitoring the algorithm’s
convergence.

method = variational
variational

algorithm = meanfield (Default)
meanfield

iter = 10000 (Default)
grad_samples = 1 (Default)
elbo_samples = 100 (Default)
eta = 1 (Default)
adapt

engaged = 1 (Default)
iter = 50 (Default)

tol_rel_obj = 0.01 (Default)
eval_elbo = 100 (Default)
output_samples = 1000 (Default)

id = 0 (Default)
data

file = bernoulli.data.json
init = 2 (Default)
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random
seed = 3323783840 (Default)

output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

After the configuration has been displayed, informational and timing messages are
output:

------------------------------------------------------------
EXPERIMENTAL ALGORITHM:

This procedure has not been thoroughly tested and may be unstable
or buggy. The interface is subject to change.

------------------------------------------------------------

Gradient evaluation took 2.1e-05 seconds
1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
Adjust your expectations accordingly!

The rest of the output describes the progression of the algorithm. An adaptation
phase finds a good value for the step size scaling parameter eta. The evidence
lower bound (ELBO) is the variational objective function and is evaluated based on
a Monte Carlo estimate. The variational inference algorithm in Stan is stochastic,
which makes it challenging to assess convergence. That is, while the algorithm
appears to have converged in ∼ 250 iterations, the algorithm runs for another few
thousand iterations until mean change in ELBO drops below the default tolerance of
0.01.

Begin eta adaptation.
Iteration: 1 / 250 [ 0%] (Adaptation)
Iteration: 50 / 250 [ 20%] (Adaptation)
Iteration: 100 / 250 [ 40%] (Adaptation)
Iteration: 150 / 250 [ 60%] (Adaptation)
Iteration: 200 / 250 [ 80%] (Adaptation)
Success! Found best value [eta = 1] earlier than expected.

Begin stochastic gradient ascent.
iter ELBO delta_ELBO_mean delta_ELBO_med notes
100 -6.131 1.000 1.000
200 -6.458 0.525 1.000
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300 -6.300 0.359 0.051
400 -6.137 0.276 0.051
500 -6.243 0.224 0.027
600 -6.305 0.188 0.027
700 -6.289 0.162 0.025
800 -6.402 0.144 0.025
900 -6.103 0.133 0.025

1000 -6.314 0.123 0.027
1100 -6.348 0.024 0.025
1200 -6.244 0.020 0.018
1300 -6.293 0.019 0.017
1400 -6.250 0.017 0.017
1500 -6.241 0.015 0.010 MEDIAN ELBO CONVERGED

Drawing a sample of size 1000 from the approximate posterior...
COMPLETED.

The output from variational is written into the file output.csv by default. The
output follows the same pattern as the output for sampling, first dumping the entire
set of parameters used as CSV comments:

# stan_version_major = 2
# stan_version_minor = 23
# stan_version_patch = 0
# model = bernoulli_model
# method = variational
# variational
# algorithm = meanfield (Default)
# meanfield
# iter = 10000 (Default)
# grad_samples = 1 (Default)
# elbo_samples = 100 (Default)
# eta = 1 (Default)
# adapt
# engaged = 1 (Default)
# iter = 50 (Default)
# tol_rel_obj = 0.01 (Default)
# eval_elbo = 100 (Default)
# output_samples = 1000 (Default)
...
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Next is the column header line, followed more CSV comments reporting the adapted
value for the stepsize, followed by the values. The first line is special: it is the mean
of the variational approximation. The rest of the output contains output_samples
number of samples drawn from the variational approximation.

lp__,log_p__,log_g__,theta
# Stepsize adaptation complete.
# eta = 1
0,0,0,0.236261
0,-6.82318,-0.0929121,0.300415
0,-6.89701,-0.158687,0.321982
0,-6.99391,-0.23916,0.343643
0,-7.35801,-0.51787,0.401554
0,-7.4668,-0.539473,0.123081
...

The header indicates the unnormalized log probability with lp__. This is a legacy
feature that we do not use for variational inference. The ELBO is not stored unless a
diagnostic option is given.



8. Generating Quantities of Interest from a
Fitted Model

The generated quantities block computes quantities of interest (QOIs) based on the
data, transformed data, parameters, and transformed parameters. It can be used to:

• generate simulated data for model testing by forward sampling
• generate predictions for new data
• calculate posterior event probabilities, including multiple comparisons, sign

tests, etc.
• calculating posterior expectations
• transform parameters for reporting
• apply full Bayesian decision theory
• calculate log likelihoods, deviances, etc. for model comparison

The generate_quantities method allows you to generate additional quantities of
interest from a fitted model without re-running the sampler. Instead, you write a
modified version of the original Stan program and add a generated quantities block
or modify the existing one which specifies how to compute the new quantities of
interest. Running the generate_quantities method on the new program together
with sampler outputs (i.e., a set of draws) from the fitted model runs the generated
quantities block of the new program using the the existing sample by plugging in the
per-draw parameter estimates for the computations in the generated quantities block.
See the Stan User’s Guide section Stand-alone generated quantities and ongoing
prediction for further details.

To illustrate how this works we use the generate_quantities method to do poste-
rior predictive checks using the estimate of theta given the example bernoulli model
and data, following the posterior predictive simulation procedure in the Stan User’s
Guide.

We write a program bernoulli_ppc.stan which contains the following generated
quantities block, with comments to explain the procedure:

generated quantities {
real<lower=0, upper=1> theta_rep;
array[N] int y_sim;
// use current estimate of theta to generate new sample
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for (n in 1:N) {
y_sim[n] = bernoulli_rng(theta);

}
// estimate theta_rep from new sample
theta_rep = sum(y_sim) * 1.0 / N;

}

The rest of the program is the same as in bernoulli.stan.

The generate_method requires the sub-argument fitted_params which takes as
its value the name of a Stan CSV file. The per-draw parameter estimates from the
fitted_params file will be used to run the generated quantities block.

If we run the bernoulli.stan program for a single chain to generate a sample in
file bernoulli_fit.csv:

> ./bernoulli sample data file=bernoulli.data.json output file=bernoulli_fit.csv

Then we can run the bernoulli_ppc.stan to carry out the posterior predictive
checks:

> ./bernoulli_ppc generate_quantities fitted_params=bernoulli_fit.csv \
data file=bernoulli.data.json \
output file=bernoulli_ppc.csv

The output file bernoulli_ppc.csv consists of just the values for the variables
declared in the generated quantities block, i.e., theta_rep and the elements of
y_sim:

# model = bernoulli_ppc_model
# method = generate_quantities
# generate_quantities
# fitted_params = bernoulli_fit.csv
# id = 0 (Default)
# data
# file = bernoulli.data.json
# init = 2 (Default)
# random
# seed = 2135140492 (Default)
# output
# file = bernoulli_ppc.csv
# diagnostic_file = (Default)
# refresh = 100 (Default)
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theta_rep,y_sim.1,y_sim.2,y_sim.3,y_sim.4,y_sim.5,y_sim.6,y_sim.7,y_sim.8,y_sim.9,y_sim.10
0.2,0,0,1,0,0,0,0,0,1,0
0.3,1,0,0,1,0,1,0,0,0,0
0.8,1,0,1,1,1,1,1,1,1,0
0.1,0,0,0,0,0,1,0,0,0,0
0.3,0,0,0,0,0,0,1,1,1,0

Note: the only relevant analysis of the resulting CSV output is computing per-column
statistics; this can easily be done in Python, R, Excel or similar, or you can use the
CmdStanPy and CmdStanR interfaces which provide a better user experience for this
workflow.

Given the current implementation, to see the fitted parameter values for each draw,
create a copy variable in the generated quantities block, e.g.:

generated quantities {
real<lower=0, upper=1> theta_cp = theta;
real<lower=0, upper=1> theta_rep;
array[N] int y_sim;
// use current estimate of theta to generate new sample
for (n in 1:N) {

y_sim[n] = bernoulli_rng(theta);
}
// estimate theta_rep from new sample
theta_rep = sum(y_sim) * 1.0 / N;

}

Now the output is slightly more interpretable: theta_cp is the same as the theta
used to generate the values y_sim[1] through y_sim[1]. Comparing columns
theta_cp and theta_rep allows us to see how the uncertainty in our estimate of
theta is carried forward into our predictions:

theta_cp,theta_rep,y_sim.1,y_sim.2,y_sim.3,y_sim.4,y_sim.5,y_sim.6,y_sim.7,y_sim.8,y_sim.9,y_sim.10
0.102391,0,0,0,0,0,0,0,0,0,0,0
0.519567,0.2,0,1,0,0,1,0,0,0,0,0
0.544634,0.6,1,0,0,0,0,1,1,1,1,1
0.167651,0,0,0,0,0,0,0,0,0,0,0
0.167651,0.1,1,0,0,0,0,0,0,0,0,0



Reference Manual

This section provides a complete reference for all CmdStan methods:

• sample
• optimize
• variational
• generate_quantities
• diagnose
• help
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9. Command-Line Interface Overview

A CmdStan executable is built from the Stan model concept and the CmdStan com-
mand line parser. The command line argument syntax consists of sets of keywords
and keyword-value pairs. Arguments are grouped by the following keywords:

• method - specifies the kind of inference done on the model. Each kind of
inference requires further configuration via sub-arguments. The method ar-
gument is required. It can be specified overtly as the a keyword-value pair
method=<inference> or implicitly as one of the following:

– sample - obtain a sample from the posterior using HMC
– optimize - penalized maximum likelihood estimation
– variational - automatic variational inference
– generate_quantities - run model’s generated quantities block on

existing sample to obtain new quantities of interest.
– log_prob - compute the log probability and gradient of the model for one

set of parameters.
– diagnose - compute and compare sampler gradient calculations to finite

differences.

• data - specifies the input data file, if any.

• output - specifies program outputs, both disk files and terminal window
outputs.

• init - specifies initial values for the model parameters, if any.

• random - specifies the seed for the pseudo-random number.

The remainder of this chapter covers the general configuration options used for all
processing. The following chapters cover the per-inference configuration options.

9.1. Input data argument
The values for all variables declared in the data block of the model are read in from
an input data file in either JSON or Rdump format. The syntax for the input data
argument is:

data file=<filepath>

The keyword data must be followed directly by the keyword-value pair
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file=<filepath>. If the model doesn’t declare any data variables, this argument is
ignored.

The input data file must contain definitions for all data variables declared in the
data block. If one or more data block variables are missing from the input data file,
the program prints an error message to stderr and returns a non-zero return code.
For example, the model bernoulli.stan defines two data variables N and y. If the
input data file doesn’t include both variables, or if the data variable doesn’t match
the declared type and dimensions, the program will exit with an error message at
the point where it first encounters missing data.

For example if the input data file doesn’t include the definition for variable y, the
executable exits with the following message:

Exception: variable does not exist; processing stage=data initialization; variable name=y; base type=int (in 'examples/bernoulli/bernoulli.stan', line 3, column 2 to column 28)

9.2. Output control arguments
The output keyword is used to specify non-default options for output files and mes-
sages written to the terminal window. The output keyword takes several keyword-
value pair sub-arguments.

The keyword value pair file=<filepath> specifies the location of the Stan CSV
output file. If unspecified, the output file is written to a file named output.csv in
the current working directory.

The keyword value pair diagnostic_file=<filepath> specifies the location of the
auxiliary output file. By default, no auxiliary output file is produced. This option is
only valid for the iterative algorithms sample and variational.

The keyword value pair refresh=<int> specifies the number of iterations between
progress messages written to the terminal window. The default value is 100 itera-
tions.

The keyword value pair sig_figs=<int> specifies the number of significant digits
for all numerical values in the output files. Allowable values are between 1 and
18, which is the maximum amount of precision available for 64-bit floating point
arithmetic. The default value is 6. Note: increasing sig_figs above the default
will increase the size of the output CSV files accordingly.

The keyword value pair profile_file=<filepath> specifies the location of the
output file for profiling data. If the model uses no profiling, the output profile
file is not produced. If the model uses profiling and profile_file is unspecified,
the profiling data is written to a file named profile.csv in the current working
directory.
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9.3. Initialize model parameters argument
Initialization is only applied to parameters defined in the parameters block. By de-
fault, all parameters are initialized to random draws from a uniform distribution over
the range [−2, 2]. These values are on the unconstrained scale, so must be inverse
transformed back to satisfy the constraints declared for parameters. Because zero
is chosen to be a reasonable default initial value for most parameters, the interval
around zero provides a fairly diffuse starting point. For instance, unconstrained
variables are initialized randomly in (−2, 2), variables constrained to be positive are
initialized roughly in (0.14, 7.4), variables constrained to fall between 0 and 1 are
initialized with values roughly in (0.12, 0.88).

The initialization argument is specified as keyword-value pair with keyword init.
The value can be one of the following:

• positive real number x. All parameters will be initialized to random draws
from a uniform distribution over the range [−x, x].

• 0 - All parameters will be initialized to zero values on the unconstrained
scale. The transforms are arranged in such a way that zero initialization
provides reasonable variable initializations: 0 for unconstrained parameters; 1
for parameters constrained to be positive; 0.5 for variables to constrained to
lie between 0 and 1; a symmetric (uniform) vector for simplexes; unit matrices
for both correlation and covariance matrices; and so on.

• filepath - A data file in JSON or Rdump format containing initial parameters
values for some or all of the model parameters. User specified initial values
must satisfy the constraints declared in the model (i.e., they are on the con-
strained scale). Parameters which aren’t explicitly initialized will be initialized
randomly over the range [−2, 2].

9.4. Random number generator arguments
The random-number generator’s behavior is determined by the unsigned seed (pos-
itive integer) it is started with. If a seed is not specified, or a seed of 0 or less is
specified, the system time is used to generate a seed. The seed is recorded and
included with Stan’s output regardless of whether it was specified or generated
randomly from the system time.

The syntax for the random seed argument is:

random seed=<int>

The keyword random must be followed directly by the keyword-value pair
seed=<int>.
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9.5. Chain identifier argument: id
The chain identifier argument is used in conjunction with the random seed argument
when running multiple Markov chains for sampling. The chain identifier is used
to advance the random number generator a very large number of random variates
so that two chains with the same seed and different identifiers draw from non-
overlapping subsequences of the random-number sequence determined by the seed.
Together, the seed and chain identifier determine the behavior of the random number
generator.

The syntax for the random seed argument is:

id=<int>

The default value is 0.

When running a set of chains from the command line with a specified seed, this
argument should be set to the chain index. E.g., when running 4 chains, the value
should be 1,..,4, successively. When running multiple chains from a single command,
Stan’s interfaces manage the chain identifier arguments automatically.

For complete reproducibility, every aspect of the environment needs to be locked
down from the OS and version to the C++ compiler and version to the version of
Stan and all dependent libraries. See the Stan Reference Manual Reproducibility
chapter for further details.

9.6. Command line help
CmdStan provides a help and help-all mechanism that displays either the available
top-level or keyword-specific key-value argument pairs. To display top-level help,
call the CmdStan executable with keyword help:

./bernoulli help

9.7. Error messages and return codes
CmdStan executables and utility programs use streams standard output (stdout)
and standard error (stderr) to report information and error messages, respectively.
Some methods also generate warning messages when the algorithm detects potential
problems with the inference. Depending on the method, these messages are sent to
either standard out or standard error.

All program executables provide a return code between 0 and 255:

• 0 - Program ran to termination as expected.

• value in range [1 : 125] - Method invoked could not run due to problems with

https://mc-stan.org/docs/reference-manual/reproducibility.html
https://mc-stan.org/docs/reference-manual/reproducibility.html
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model or data.

• value > 128 - Fatal error during execution, process terminated by signal. To
determine the signal number, subtract 128 from the return value, e.g. return
code 139 results from termination signal 11 (segmentation violation).

A non-zero return code or outputs sent to stderr indicate problems with the inference.
However, a return code of zero and absence of error messages doesn’t necessarily
mean that the inference is valid, it is still necessary to validate the inferences using
all available summary and diagnostic techniques.



10. MCMC Sampling using Hamiltonian
Monte Carlo

The sample method provides Bayesian inference over the model conditioned on data
using Hamiltonian Monte Carlo (HMC) sampling. By default, the inference engine
used is the No-U-Turn sampler (NUTS), an adaptive form of Hamiltonian Monte
Carlo sampling. For details on HMC and NUTS, see the Stan Reference Manual
chapter on MCMC Sampling.

The full set of configuration options available for the sample method is reported
at the beginning of the sampler output file as CSV comments. When the example
model bernoulli.stan is run via the command line with all default arguments,
the resulting Stan CSV file header comments show the complete set of default
configuration options:

# model = bernoulli_model
# method = sample (Default)
# sample
# num_samples = 1000 (Default)
# num_warmup = 1000 (Default)
# save_warmup = 0 (Default)
# thin = 1 (Default)
# adapt
# engaged = 1 (Default)
# gamma = 0.05 (Default)
# delta = 0.8 (Default)
# kappa = 0.75 (Default)
# t0 = 10 (Default)
# init_buffer = 75 (Default)
# term_buffer = 50 (Default)
# window = 25 (Default)
# algorithm = hmc (Default)
# hmc
# engine = nuts (Default)
# nuts
# max_depth = 10 (Default)

52

https://mc-stan.org/docs/reference-manual/hmc.html


CHAPTER 10. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 53

# metric = diag_e (Default)
# metric_file = (Default)
# stepsize = 1 (Default)
# stepsize_jitter = 0 (Default)
# num_chains = 1 (Default)

10.1. Iterations
At every sampler iteration, the sampler returns a set of estimates for all parameters
and quantities of interest in the model. During warmup, the NUTS algorithm adjusts
the HMC algorithm parameters metric and stepsize in order to efficiently sample
from typical set, the neighborhood substantial posterior probability mass through
which the Markov chain will travel in equilibrium. After warmup, the fixed metric
and stepsize are used to produce a set of draws.

The following keyword-value arguments control the total number of iterations:

• num_samples
• num_warmup
• save_warmup
• thin

The values for arguments num_samples and num_warmup must be a non-negative
integer. The default value for both is 1000.

For well-specified models and data, the sampler may converge faster and this many
warmup iterations may be overkill. Conversely, complex models which have difficult
posterior geometries may require more warmup iterations in order to arrive at good
values for the step size and metric.

The number of sampling iterations to runs depends on the effective sample size (EFF)
reported for each parameter and the desired precision of your estimates. An EFF of
at least 100 is required to make a viable estimate. The precision of your estimate is√

N ; therefore every additional decimal place of accuracy increases this by a factor
of 10.

Argument save_warmup takes values 0 or 1, corresponding to False and True re-
spectively. The default value is 0, i.e., warmup draws are not saved to the output file.
When the value is 1, the warmup draws are written to the CSV output file directly
after the CSV header line.

Argument thin controls the number of draws from the posterior written to the
output file. Some users familiar with older approaches to MCMC sampling might be
used to thinning to eliminate an expected autocorrelation in the samples. HMC is not
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nearly as susceptible to this autocorrelation problem and thus thinning is generally
not required nor advised, as HMC can produce anticorrelated draws, which increase
the effective sample size beyond the number of draws from the posterior. Thinning
should only be used in circumstances where storage of the samples is limited and/or
RAM for later processing the samples is limited.

The value of argument thin must be a positive integer. When thin is set to value
N , every N th iteration is written to the output file. Should the value of thin
exceed the specified number of iterations, the first iteration is saved to the output.
This is because the iteration counter starts from zero and whenever the counter
modulo the value of thin equals zero, the iteration is saved to the output file. Since
zero modulo any positive integer is zero, the first iteration is always saved. When
num_sampling=M and thin=N, the number of iterations written to the output CSV
file will be ceiling(M/N). If save_warmup=1, thinning is applied to the warmup
iterations as well.

10.2. Adaptation
The adapt keyword is used to specify non-default options for the sampler adaptation
schedule and settings.

Adaptation can be turned off by setting sub-argument engaged to value 0. If
engaged=0, no adaptation will be done, and all other adaptation sub-arguments will
be ignored. Since the default argument is engaged=1, this keyword-value pair can
be omitted from the command.

There are two sets of adaptation sub-arguments: step size optimization parameters
and the warmup schedule. These are described in detail in the Reference Manual
section Automatic Parameter Tuning.

Step size optimization configuration
The Stan User’s Guide section on model conditioning and curvature provides a
discussion of adaptation and stepsize issues. The Stan Reference Manual section on
HMC algorithm parameters explains the NUTS-HMC adaptation schedule and the
tuning parameters for setting the step size.

The following keyword-value arguments control the settings used to optimize the
step size:

• delta - The target Metropolis acceptance rate. The default value is 0.8. Its
value must be strictly between 0 and 1. Increasing the default value forces the
algorithm to use smaller step sizes. This can improve sampling efficiency (effec-
tive sample size per iteration) at the cost of increased iteration times. Raising
the value of delta will also allow some models that would otherwise get stuck

https://mc-stan.org/docs/reference-manual/hmc-algorithm-parameters.html
https://mc-stan.org/docs/stan-users-guide/model-conditioning-and-curvature.html
https://mc-stan.org/docs/reference-manual/hmc-algorithm-parameters.html
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to overcome their blockages. Models with difficult posterior geometries may
required increasing the delta argument closer to 1; we recommend first trying
to raise it to 0.9 or at most 0.95. Values about 0.95 are strong indication of
bad geometry; the better solution is to change the model geometry through
reparameterization which could yield both more efficient and faster sampling.

• gamma - Adaptation regularization scale. Must be a positive real number, default
value is 0.05. This is a parameter of the Nesterov dual-averaging algorithm.
We recommend always using the default value.

• kappa - Adaptation relaxation exponent. Must be a positive real number,
default value is 0.75. This is a parameter of the Nesterov dual-averaging
algorithm. We recommend always using the default value.

• t_0 - Adaptation iteration offset. Must be a positive real number, default
value is 10. This is a parameter of the Nesterov dual-averaging algorithm. We
recommend always using the default value.

Warmup schedule configuration
When adaptation is engaged, the warmup schedule is specified by sub-arguments,
all of which take positive integers as values:

• init_buffer - The number of iterations spent tuning the step size at the outset
of adaptation.

• window - The initial number of iterations devoted to tune the metric, will be
doubled successively.

• term_buffer - The number of iterations used to re-tune the step size once the
metric has been tuned.

The specified values may be modified slightly in order to ensure alignment between
the warmup schedule and total number of warmup iterations.

The following figure is taken from the Stan Reference Manual, where label “I”
correspond to init_buffer, the initial “II” corresponds to window, and the final “III”
corresponds to term_buffer:

Warmup Epochs Figure. Adaptation during warmup occurs in three stages: an initial
fast adaptation interval (I), a series of expanding slow adaptation intervals (II), and a
final fast adaptation interval (III). For HMC, both the fast and slow intervals are used
for adapting the step size, while the slow intervals are used for learning the (co)variance
necessitated by the metric. Iteration numbering starts at 1 on the left side of the figure
and increases to the right.

https://mc-stan.org/docs/stan-users-guide/reparameterization.html
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10.3. Algorithm
The algorithm keyword-value pair specifies the algorithm used to generate the
sample. There are two possible values: hmc, which generates from an HMC-driven
Markov chain; and fixed_param which generates a new sample without changing
the state of the Markov chain. The default argument is algorithm=hmc.

Samples from a set of fixed parameters
If a model doesn’t specify any parameters, then argument algorithm=fixed_param
is mandatory.

The fixed parameter sampler generates a new sample without changing the current
state of the Markov chain. This can be used to write models which generate pseudo-
data via calls to RNG functions in the transformed data and generated quantities
blocks.

HMC samplers
All HMC algorithms have three parameters:

• step size
• metric
• integration time - the number of steps taken along the Hamiltonian trajectory

See the Stan Reference Manual section on HMC algorithm parameters for further
details.

Step size

The HMC algorithm simulates the evolution of a Hamiltonian system. The step
size parameter controls the resolution of the sampler. Low step sizes can get HMC
samplers unstuck that would otherwise get stuck with higher step sizes.

The following keyword-value arguments control the step size:

• stepsize - How far to move each time the Hamiltonian system evolves forward.
Must be a positive real number, default value is 1.

https://mc-stan.org/docs/reference-manual/hmc-algorithm-parameters.html
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• stepsize_jitter - Allows step size to be “jittered” randomly during sampling
to avoid any poor interactions with a fixed step size and regions of high
curvature. Must be a real value between 0 and 1. The default value is 0.
Setting stepsize_jitter to 1 causes step sizes to be selected in the range of 0
to twice the adapted step size. Jittering below the adapted value will increase
the number of steps required and will slow down sampling, while jittering
above the adapted value can cause premature rejection due to simulation error
in the Hamiltonian dynamics calculation. We strongly recommend always
using the default value.

Metric

All HMC implementations in Stan utilize quadratic kinetic energy functions which
are specified up to the choice of a symmetric, positive-definite matrix known as a
mass matrix or, more formally, a metric Betancourt (2017).

The metric argument specifies the choice of Euclidean HMC implementations:

• metric=unit specifies unit metric (diagonal matrix of ones).
• metric=diag_e specifies a diagonal metric (diagonal matrix with positive

diagonal entries). This is the default value.
• metric=dense_e specifies a dense metric (a dense, symmetric positive definite

matrix).

By default, the metric is estimated during warmup. However, when metric=diag_e
or metric=dense_e, an initial guess for the metric can be specified with the
metric_file argument whose value is the filepath to a JSON or Rdump file which
contains a single variable inv_metric. For a diag_e metric the inv_metric value
must be a vector of positive values, one for each parameter in the system. For a
dense_e metric, inv_metric value must be a positive-definite square matrix with
number of rows and columns equal to the number of parameters in the model.

The metric_file option can be used with and without adaptation enabled. If
adaptation is enabled, the provided metric will be used as the initial guess in the
adaptation process. If the initial guess is good, then adaptation should not change it
much. If the metric is no good, then the adaptation will override the initial guess.

If adaptation is disabled, both the metric_file and stepsize arguments should be
specified.
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Integration time

The total integration time is determined by the argument engine which take possible
values:

• nuts - the No-U-Turn Sampler which dynamically determines the optimal
integration time.

• static - an HMC sampler which uses a user-specified integration time.

The default argument is engine=nuts.

The NUTS sampler generates a proposal by starting at an initial position determined
by the parameters drawn in the last iteration. It then evolves the initial system both
forwards and backwards in time to form a balanced binary tree. The algorithm is
iterative; at each iteration the tree depth is increased by one, doubling the number
of leapfrog steps thus effectively doubling the computation time. The algorithm
terminates in one of two ways: either the NUTS criterion (i.e., a U-turn in Euclidean
space on a subtree) is satisfied for a new subtree or the completed tree; or the depth
of the completed tree hits the maximum depth allowed.

When engine=nuts, the subargument max_depth can be used to control the depth
of the tree. The default argument is max_depth=10. In the case where a model has a
difficult posterior from which to sample, max_depth should be increased to ensure
that that the NUTS tree can grow as large as necessary.

When the argument engine=static is specified, the user must specify the integration
time via keyword int_time which takes as a value a positive number. The default
value is 2π.

10.4. Sampler diagnostic file
The output keyword sub-argument diagnostic_file=<filepath> specifies the
location of the auxiliary output file which contains sampler information for each
draw, and the gradients on the unconstrained scale and log probabilities for all
parameters in the model. By default, no auxiliary output file is produced.

10.5. Multiple chains in one executable
As described in the quickstart section on parallelism, the preferred way to run
multiple chains is to use the num_chains argument.

This will run multiple chains of MCMC from the same executable, which can save
on memory usage due to only needing one copy of the model and data. As noted in
the quickstart guide, this will be done in parallel if the model was compiled with
STAN_THREADS=true.
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The num_chains argument changes the meanings of several other arguments when it
is greater than 1 (the default). Many arguments are now interpreted as a “template”
which is used for each chain.

For example, when num_chains=2, the argument output file=foo.csv no longer
produces a file foo.csv, but instead produces two files, foo_1.csv and foo_2.csv.
If you also supply id=5, the files produced will be foo_5.csv and foo_6.csv – id=5
gives the id of the first chain, and the remaining chains are sequential from there.

This also applies to input files, like those used for initialization. For example, if
num_chains=3 and init=bar.json will first look for bar_1.json. If it exists, it
will use bar_1.json for the first chain, bar_2.json for the second, and so on. If
bar_1.json does not exist, it falls back to looking for bar.json, and if it exists, uses
the same initial values for each chain. The numbers in these filenames are also based
on the id argument, which defaults to 1.

10.6. Examples - older parallelism
Note: Many of these examples can be simplified by using the num_chains argument.

The Quickstart Guide MCMC Sampling chapter section on multiple chains also
showed how to run multiple chains given a model and data, using the minimal
required command line options: the method, the name of the data file, and a
chain-specific name for the output file.

This creates multiple copies of the model process which will all load the data.

To run 4 chains in parallel on Mac OS and Linux, the syntax in both bash and zsh is
the same:

> for i in {1..4}
do

./bernoulli sample data file=my_model.data.json \
output file=output_${i}.csv &

done

The backslash (\) indicates a line continuation in Unix. The expression ${i} substi-
tutes in the value of loop index variable i. The ampersand (&) pushes each process
into the background which allows the loop to continue without waiting for the
current chain to finish.

On Windows the corresponding loop is:

>for /l %i in (1, 1, 4) do start /b bernoulli.exe sample ^
data file=my_model.data.json my_data ^
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output file=output_%i.csv

The caret (ˆ) indicates a line continuation in DOS. The expression %i is the loop
index.

In the following examples, we focus on just the nested sampler command for Unix.

Running multiple chains with a specified RNG seed
For reproducibility, we specify the same RNG seed across all chains and use the chain
id argument to specify the RNG offset.

The RNG seed is specified by random seed=<int> and the offset is specified by
id=<loop index>, so the call to the sampler is:

./my_model sample data file=my_model.data.json \
output file=output_${i}.csv \
random seed=12345 id=${i}

Changing the default warmup and sampling iterations
The warmup and sampling iteration keyword-value arguments must follow the
sample keyword. The call to the sampler which overrides the default warmup and
sampling iterations is:

./my_model sample num_warmup=500 num_sampling=500 \
data file=my_model.data.json \
output file=output_${i}.csv

Saving warmup draws
To save warmup draws as part of the Stan CSV output file, use the keyword-value
argument save_warmup=1. This must be grouped with the other sample keyword
sub-arguments.

./my_model sample num_warmup=500 num_sampling=500 save_warmup=1 \
data file=my_model.data.json \
output file=output_${i}.csv

Initializing parameters
By default, all parameters are initialized on an unconstrained scale to random
draws from a uniform distribution over the range [−2, 2]. To initialize some or all
parameters to good starting points on the constrained scale from a data file in JSON
or Rdump format, use the keyword-value argument init=<filepath>:

./my_model sample init=my_param_inits.json data file=my_model.data.json \
output file=output_${i}.csv
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To verify that the specified values will be used by the sampler, you can run the sampler
with option algorithm=fixed_param, so that the initial values are used to generate
the sample. Since this generates a set of identical draws, setting num_warmp=0 and
num_samples=1 saves unnecessary iterations. As the output values are also on the
constrained scale, the set of reported values will match the set of specified initial
values.

For example, if we run the example Bernoulli model with specified initial value for
parameter “theta”:

{ "theta" : 0.5 }

via command:

./bernoulli sample algorithm=fixed_param num_warmup=0 num_samples=1 \
init=bernoulli.init.json data file=bernoulli.data.json

The resulting output CSV file contains a single draw:

lp__,accept_stat__,theta
0,0,0.5
#
# Elapsed Time: 0 seconds (Warm-up)
# 0 seconds (Sampling)
# 0 seconds (Total)
#

Specifying the metric and stepsize
An initial guess for the metric can be specified with the metric_file argument
whose value is the filepath to a JSON or Rdump file which contains a single variable
inv_metric. The metric_file option can be used with and without adaptation
enabled.

By default, the metric is estimated during warmup adaptation. If the initial guess
is good, then adaptation should not change it much. If the metric is no good,
then the adaptation will override the initial guess. For example, the JSON file
bernoulli.diag_e.json, contents

{ "inv_metric" : [0.296291] }

can be used as the initial metric as follows:

../my_model sample algorithm=hmc metric_file=bernoulli.diag_e.json \
data file=my_model.data.json \
output file=output_${i}.csv
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If adaptation is disabled, both the metric_file and stepsize arguments should be
specified.

../my_model sample adapt engaged=0 \
algorithm=hmc stepsize=0.9 \
metric_file=bernoulli.diag_e.json \
data file=my_model.data.json \
output file=output_${i}.csv

The resulting output CSV file will contain the following set of comment lines:

# Adaptation terminated
# Step size = 0.9
# Diagonal elements of inverse mass matrix:
# 0.296291

Changing the NUTS-HMC adaptation parameters
The keyword-value arguments for these settings are grouped together under the
adapt keyword which itself is a sub-argument of the sample keyword.

Models with difficult posterior geometries may required increasing the delta argu-
ment closer to 1.

./my_model sample adapt delta=0.95 \
data file=my_model.data.json \
output file=output_${i}.csv

To skip adaptation altogether, use the keyword-value argument engaged=0. Disabling
adaptation disables both metric and stepsize adaptation, so a stepsize should be
provided along with a metric to enable efficient sampling.

../my_model sample adapt engaged=0 \
algorithm=hmc stepsize=0.9 \
metric_file=bernoulli.diag_e.json \
data file=my_model.data.json \
output file=output_${i}.csv

Even with adaptation disabled, it is still advisable to run warmup iterations in order
to allow the initial parameter values to be adjusted to estimates which fall within
the typical set.

To skip warmup altogether requires specifying both num_warmup=0 and adapt
engaged=0.

../my_model sample num_warmup=0 adapt engaged=0 \

https://mc-stan.org/docs/stan-users-guide/model-conditioning-and-curvature.html
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algorithm=hmc stepsize=0.9 \
metric_file=bernoulli.diag_e.json \
data file=my_model.data.json \
output file=output_${i}.csv

Increasing the tree-depth
Models with difficult posterior geometries may required increasing the max_depth
argument from its default value 10. This requires specifying a series of keyword-
argument pairs:

./my_model sample adapt delta=0.95 \
algorithm=hmc engine=nuts max_depth=15 \
data file=my_model.data.json \
output file=output_${i}.csv

Capturing Hamiltonian diagnostics and gradients
The output keyword sub-argument diagnostic_file=<filepath> write the sam-
pler parameters and gradients of all model parameters for each draw to a CSV
file:

./my_model sample data file=my_model.data.json \
output file=output_${i}.csv \
diagnostic_file=diagnostics_${i}.csv

Suppressing progress updates to the console
The output keyword sub-argument refresh=<int> specifies the number of itera-
tions between progress messages written to the terminal window. The default value
is 100 iterations. The progress updates look like:

Iteration: 1 / 2000 [ 0%] (Warmup)
Iteration: 100 / 2000 [ 5%] (Warmup)
Iteration: 200 / 2000 [ 10%] (Warmup)
Iteration: 300 / 2000 [ 15%] (Warmup)

For simple models which fit quickly, such updates can be annoying; to suppress
them altogether, set refresh=0. This only turns off the Iteration: messages; the
configuration and timing information are still written to the terminal.

./my_model sample data file=my_model.data.json \
output file=output_${i}.csv \
refresh=0

For complicated models which take a long time to fit, setting the refresh rate to a
low number, e.g. 10 or even 1, provides a way to more closely monitor the sampler.
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Everything example
The CmdStan argument parser requires keeping sampler config sub-arguments
together; interleaving sampler config with the inputs, outputs, inits, RNG seed and
chain id config results in an error message such as the following:

./bernoulli sample data file=bernoulli.data.json adapt delta=0.95
adapt is either mistyped or misplaced.
Perhaps you meant one of the following valid configurations?

method=sample sample adapt
method=variational variational adapt

Failed to parse arguments, terminating Stan

The following example provides a template for a call to the sampler which specifies
input data, initial parameters, initial step-size and metric, adaptation, output, and
RNG initialization.

./my_model sample num_warmup=2000 \
init=my_param_inits.json \
adapt delta=0.95 init_buffer=100 \
window=50 term_buffer=100 \
algorithm=hmc engine=nuts max_depth=15 \
metric=dense_e metric_file=my_metric.json \
stepsize=0.6555 \
data file=my_model.data.json \
output file=output_${i}.csv refresh=10 \
random seed=12345 id=${i}

The keywords sample, data, output, and random are the top-level argument groups.
Within the sample config arguments, the keyword adapt groups the adaptation
algorithm parameters and the keyword-value algorithm=hmc groups the NUTS-
HMC parameters.

The top-level groups can be freely ordered with respect to one another. The following
is also a valid command:

./my_model random seed=12345 id=${i} \
data file=my_model.data.json \
output file=output_${i}.csv refresh=10 \
sample num_warmup=2000 \
init=my_param_inits.json \
algorithm=hmc engine=nuts max_depth=15 \
metric=dense_e metric_file=my_metric.json \
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stepsize=0.6555 \
adapt delta=0.95 init_buffer=100 \
window=50 term_buffer=100



11. Maximum Likelihood Estimation

The optimize method finds the mode of the posterior distribution, assuming that
there is one. If the posterior is not convex, there is no guarantee Stan will be
able to find the global mode as opposed to a local optimum of log probability. For
optimization, the mode is calculated without the Jacobian adjustment for constrained
variables, which shifts the mode due to the change of variables. Thus modes
correspond to modes of the model as written.

The full set of configuration options available for the optimize method is reported
at the beginning of the sampler output file as CSV comments. When the example
model bernoulli.stan is run with method=optimize via the command line with all
default arguments, the resulting Stan CSV file header comments show the complete
set of default configuration options:

# model = bernoulli_model
# method = optimize
# optimize
# algorithm = lbfgs (Default)
# lbfgs
# init_alpha = 0.001 (Default)
# tol_obj = 9.9999999999999998e-13 (Default)
# tol_rel_obj = 10000 (Default)
# tol_grad = 1e-08 (Default)
# tol_rel_grad = 10000000 (Default)
# tol_param = 1e-08 (Default)
# history_size = 5 (Default)
# jacobian = 0 (Default)
# iter = 2000 (Default)
# save_iterations = 0 (Default)

11.1. Jacobian adjustments
The jacobian argument specifies whether or not the call to the model’s log prob-
ability function should include the log absolute Jacobian determinant of inverse
parameter transforms. Without the Jacobian adjustment, optimization returns the
(regularized) maximum likelihood estimate (MLE), argmaxθ p(y|θ), the value which
maximizes the likelihood of the data given the parameters, (including prior terms).
Applying the Jacobian adjustment produces the maximum a posteriori estimate
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(MAP), the maximum value of the posterior distribution, argmaxθ p(y|θ) p(θ). By
default this value is 0 (false), do not include the Jacobian adjustment.

11.2. Optimization algorithms
The algorithm argument specifies the optimization algorithm. This argument takes
one of the following three values:

• lbfgs A quasi-Newton optimizer. This is the default optimizer and also much
faster than the other optimizers.

• bfgs A quasi-Newton optimizer.

• newton A Newton optimizer. This is the least efficient optimization algorithm,
but has the advantage of setting its own stepsize.

See the Stan Reference Manual’s Optimization chapter for a description of these
algorithms.

All of the optimizers stream per-iteration intermediate approximations to the com-
mand line console. The sub-argument save_iterations specifies whether or not to
save the intermediate iterations to the output file. Allowed values are 0 or 1, corre-
sponding to False and True respectively. The default value is 0, i.e., intermediate
iterations are not saved to the output file.

11.3. The quasi-Newton optimizers
For both BFGS and L-BFGS optimizers, convergence monitoring is controlled by a
number of tolerance values, any one of which being satisfied causes the algorithm
to terminate with a solution. See the BFGS and L-BFGS configuration chapter for
details on the convergence tests.

Both BFGS and L-BFGS have the following configuration arguments:

• init_alpha - The initial step size parameter. Must be a positive real number.
Default value is 0.001

• tol_obj - Convergence tolerance on changes in objective function value. Must
be a positive real number. Default value is 1−12.

• tol_rel_obj - Convergence tolerance on relative changes in objective function
value. Must be a positive real number. Default value is 14.

• tol_grad - Convergence tolerance on the norm of the gradient. Must be a
positive real number. Default value is 1−8.

• tol_rel_grad - Convergence tolerance on the relative norm of the gradient.
Must be a positive real number. Default value is 17.

https://mc-stan.org/docs/reference-manual/optimization.html
https://mc-stan.org/docs/reference-manual/bfgs-and-l-bfgs-configuration.html
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• tol_param - Convergence tolerance on changes in parameter value. Must be a
positive real number. Default value is 1−8.

The init_alpha argument specifies the first step size to try on the initial iteration.
If the first iteration takes a long time (and requires a lot of function evaluations),
set init_alpha to be the roughly equal to the alpha used in that first iteration. The
default value is very small, which is reasonable for many problems but might be too
large or too small depending on the objective function and initialization. Being too
big or too small just means that the first iteration will take longer (i.e., require more
gradient evaluations) before the line search finds a good step length.

In addition to the above, the L-BFGS algorithm has argument history_size which
controls the size of the history it uses to approximate the Hessian. The value should
be less than the dimensionality of the parameter space and, in general, relatively
small values (5-10) are sufficient; the default value is 5.

If L-BFGS performs poorly but BFGS performs well, consider increasing the history
size. Increasing history size will increase the memory usage, although this is unlikely
to be an issue for typical Stan models.

11.4. The Newton optimizer
There are no configuration parameters for the Newton optimizer. It is not recom-
mended because of the slow Hessian calculation involving finite differences.



12. Pathfinder Method for Approximate
Bayesian Inference

The Pathfinder algorithm is described in section Pathfinder overview.

The pathfinder method runs multi-path Pathfinder by default, which returns a
PSIS sample over the draws from several individual (“single-path”) Pathfinder runs.
Argument num_paths specifies the number of single-path Pathfinders, the default is
4. If num_paths is set to 1, then only one individual Pathfinder is run without the
PSIS reweighting of the sample.

The full set of configuration options available for the pathfinder method is reported
at the beginning of the pathfinder output file as CSV comments. When the exam-
ple model bernoulli.stan is run with method=pathfinder via the command line
with all default arguments, the resulting Stan CSV file header comments show the
complete set of default configuration options:

method = pathfinder
pathfinder

init_alpha = 0.001 (Default)
tol_obj = 9.9999999999999998e-13 (Default)
tol_rel_obj = 10000 (Default)
tol_grad = 1e-08 (Default)
tol_rel_grad = 10000000 (Default)
tol_param = 1e-08 (Default)
history_size = 5 (Default)
num_psis_draws = 1000 (Default)
num_paths = 4 (Default)
save_single_paths = 0 (Default)
max_lbfgs_iters = 1000 (Default)
num_draws = 1000 (Default)
num_elbo_draws = 25 (Default)

12.1. Pathfinder Configuration
• num_psis_draws - Final number of draws from multi-path pathfinder. Must be

a positive integer. Default value is 1000.

• num_paths - Number of single pathfinders. Must be a positive integer. Default

69



CHAPTER 12. PATHFINDER METHOD FOR APPROXIMATE BAYESIAN INFERENCE70

value is 4.

• save_single_paths - When True (1), save outputs from single pathfinders.
Valid values: {0, 1}. Default is 0 (False).

• max_lbfgs_iters - Maximum number of L-BFGS iterations. Must be a positive
integer. Default value is 1000.

• num_draws - Number of approximate posterior draws for each single pathfinder.
Must be a positive integer. Default value is 1000. Can differ from
num_psis_draws.

• num_elbo_draws - Number of Monte Carlo draws to evaluate ELBO. Must be a
positive integer. Default value is 25.

12.2. L-BFGS Configuration
Arguments init_alpha through history_size are the full set of arguments to the
L-BFGS optimizer and have the same defaults for optimization.

12.3. Multi-path Pathfinder CSV files
By default, the pathfinder method uses 4 independent Pathfinder runs, each of
which produces 1000 approximate draws, which are then importance resampled
down to 1000 final draws. The importance resampled draws are output as a StanCSV
file file.

The CSV files have the following structure:

• The full set of configuration options available for the pathfinder method is
reported at the beginning of the sampler output file as CSV comments.

• The CSV header row consists of columns lp_approx__, lp__, and the Stan
model parameters, transformed parameters, and generated quantities in the
order in which they are declared in the Stan program.

• The data rows contain the draws from the single- or multi-path run.

• Final comments containing timing information.

12.4. Single-path Pathfinder Outputs.
The boolean option save_single_paths is used to save both the draws and the
ELBO iterations from the individual Pathfinder runs. When save_single_paths is
1, the draws from each are saved to StanCSV files with the same format as the PSIS
sample and the ELBO evaluations along the L-BFGS trajectory for each are saved
as JSON. Given an output file name, CmdStan adds suffixes to the base filename to
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distinguish between the output files. For the default output file name output.csv
and default number of runs (4), the resulting CSV files are

output.csv
output_path_1.csv
output_path_1.json
output_path_2.csv
output_path_2.json
output_path_3.csv
output_path_3.json
output_path_4.csv
output_path_4.json

The individual sample CSV files have the same structure as the PSIS sample CSV file.
The JSON files contain information from each ELBO iteration.

To see how this works, we run Pathfinder on the centered-parameterization of the
eight-schools model, where the posterior distribution has a funnel shape:

> eight_schools pathfinder save_single_paths=1 data file=eight_schools.data.json

Each JSON file records the approximations to the target density at each point along
the trajectory of the L-BFGS optimization algorithms.

{
"0": {

"iter": 0,
"unconstrained_parameters": [1.00595, -0.503687, 1.79367, 0.99083, 0.498077, -0.65816, 1.49176, -1.22647, 1.62911, 0.767445],
"grads": [-0.868919, 0.45198, -0.107675, -0.0123304, 0.163172, 0.354362, -0.108746, 0.673306, -0.102268, -4.51445]

},
"1": {

"iter": 1,
"unconstrained_parameters": [1.00595, -0.503687, 1.79367, 0.99083, 0.498077, -0.65816, 1.49176, -1.22647, 1.62911, 0.767445],
"grads": [-0.868919, 0.45198, -0.107675, -0.0123304, 0.163172, 0.354362, -0.108746, 0.673306, -0.102268, -4.51445],
"history_size": 1,
"lbfgs_success": true,
"pathfinder_success": true,
"x_center": [0.126047, -0.065048, 1.55708, 0.958509, 0.628075, -0.217041, 1.32032, -0.561338, 1.42988, 1.23213],
"logDetCholHk": -2.6839,
"L_approx": [[-0.0630456, -0.0187959], [0, 1.08328]],
"Qk": [[-0.361073, 0.5624], [0.183922, -0.279474], [-0.0708175, 0.15715], [-0.00917823, 0.0215802], [0.0606019, -0.0814513], [0.164071, -0.285769], [-0.057723, 0.112428], [0.276376, -0.424348], [-0.0620524, 0.131786], [-0.846488, -0.531094]],
"alpha": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
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"full": false,
"lbfgs_note": ""

},
...,
"171": {

"iter": 171,
"unconstrained_parameters": [1.60479, 1.60479, 1.60479, 1.60479, 1.60479, 1.60479, 1.60479, 1.60479, 1.60479, -35.7821],
"grads": [2.66927e+15, -0.117312, -0.0639521, -2.66927e+15, -0.0445885, 0.0321579, 0.00499827, -0.163952, -0.032084, 6.4073],
"history_size": 5,
"lbfgs_success": true,
"pathfinder_success": true,
"x_center": [5.58876e+15, 5.58876e+15, 5.58876e+15, 5.58876e+15, 5.58876e+15, 5.58876e+15, 5.58876e+15, 5.58876e+15, 5.58876e+15, -2.02979e+17],
"logDetCholHk": 299.023,
"L_approx": [[4.6852e+06, 4.6852e+06, 4.6852e+06, 4.6852e+06, 4.6852e+06, 4.6852e+06, 4.6852e+06, 4.6852e+06, 4.6852e+06, -1.70162e+08], [0, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, -7.97244e+14], [0, 0, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, -7.97244e+14], [0, 0, 0, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, -7.97244e+14], [0, 0, 0, 0, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, -7.97244e+14], [0, 0, 0, 0, 0, 2.19511e+13, 2.19511e+13, 2.19511e+13, 2.19511e+13, -7.97244e+14], [0, 0, 0, 0, 0, 0, 2.19511e+13, 2.19511e+13, 2.19511e+13, -7.97244e+14], [0, 0, 0, 0, 0, 0, 0, 2.19511e+13, 2.19511e+13, -7.97244e+14], [0, 0, 0, 0, 0, 0, 0, 0, 2.19511e+13, -7.97244e+14], [0, 0, 0, 0, 0, 0, 0, 0, 0, 2.89552e+16]],
"Qk": [],
"alpha": [1.11027e-12, 2.24669e-12, 2.05603e-12, 3.71177e-12, 5.7855e-12, 1.80169e-12, 3.40291e-12, 2.29699e-12, 3.43423e-12, 1.25815e-08],
"full": true,
"lbfgs_note": ""

},
"172": {

"iter": 172,
"unconstrained_parameters": [1.60531, 1.60531, 1.60531, 1.60531, 1.60531, 1.60531, 1.60531, 1.60531, 1.60531, -35.801],
"grads": [-0, -0.11731, -0.0639469, 0.0179895, -0.0445842, 0.0321643, 0.00500256, -0.163947, -0.0320824, 7],
"history_size": 5,
"lbfgs_success": false,
"pathfinder_success": false,
"lbfgs_note": ""

}
}

Option num_paths=1 runs one single-path Pathfinder and output CSV file contains
the draws from that run without PSIS reweighting. The combination of arguments
num_paths=1 save_single_paths=1 creates just two output files, the CSV sample
and the set of ELBO iterations. In this case, the default output file name is “output.csv”
and the default diagnostic file name is “output.json”.



13. Variational Inference Algorithm: ADVI

CmdStan can approximate the posterior distribution using variational inference. The
approximation is a Gaussian in the unconstrained variable space.

Stan implements an automatic variational inference algorithm, called Automatic
Differentiation Variational Inference (ADVI) Kucukelbir et al. (2017). ADVI uses
Monte Carlo integration to approximate the variational objective function, the ELBO
(evidence lower bound). ADVI optimizes the ELBO in the real-coordinate space using
stochastic gradient ascent. The measures of convergence are similar to the relative
tolerance scheme of Stan’s optimization algorithms.

The algorithm progression consists of an adaptation phase followed by a sampling
phase. The adaptation phase finds a good value for the step size scaling parameter
eta. The evidence lower bound (ELBO) is the variational objective function and is
evaluated based on a Monte Carlo estimate. The variational inference algorithm in
Stan is stochastic, which makes it challenging to assess convergence. The algorithm
runs until the mean change in ELBO drops below the specified tolerance.

The full set of configuration options available for the variational method is re-
ported at the beginning of the sampler output file as CSV comments. When the
example model bernoulli.stan is run with method=variational via the command
line with all default arguments, the resulting Stan CSV file header comments show
the complete set of default configuration options:

# method = variational
# variational
# algorithm = meanfield (Default)
# meanfield
# iter = 10000 (Default)
# grad_samples = 1 (Default)
# elbo_samples = 100 (Default)
# eta = 1 (Default)
# adapt
# engaged = 1 (Default)
# iter = 50 (Default)
# tol_rel_obj = 0.01 (Default)
# eval_elbo = 100 (Default)
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# output_samples = 1000 (Default)

The console output includes a notice that this algorithm is considered to be experi-
mental:

EXPERIMENTAL ALGORITHM:
This procedure has not been thoroughly tested and may be unstable
or buggy. The interface is subject to change.

13.1. Variational algorithms
Stan implements two variational algorithms. The algorithm argument specifies the
variational algorithm.

• algorithm=meanfield - Use a fully factorized Gaussian for the approximation.
This is the default algorithm.

• algorithm=fullrank Use a Gaussian with a full-rank covariance matrix for
the approximation.

13.2. Configuration
• iter=<int> Maximum number of iterations. Must be > 0. Default is 10000.

• grad_samples=<int> Number of samples for Monte Carlo estimate of gradi-
ents. Must be > 0. Default is 1.

• elbo_samples=<int> Number of samples for Monte Carlo estimate of ELBO
(objective function). Must be > 0. Default is 100.

• eta=<double> Stepsize weighting parameter for adaptive stepsize sequence.
Must be > 0. Default is 1.0.

• adapt Warmup Adaptation keyword, takes sub-arguments:

– engaged=<boolean> Adaptation engaged? Valid values: (0, 1). Default is
1.

– iter=<int> Maximum number of adaptation iterations. Must be > 0.
Default is 50.

• tol_rel_obj=<double> Convergence tolerance on the relative norm of the
objective. Must be > 0. Default is 0.01.

• eval_elbo=<int> Evaluate ELBO every Nth iteration. Must be > 0. Default is
100.

• output_samples=<int> Number of posterior samples to draw and save. Must
be > 0. Default is 1000.
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13.3. CSV output
The output file consists of the following pieces of information:

• The full set of configuration options available for the variational method is
reported at the beginning of the sampler output file as CSV comments.

• The first three output columns are labelled lp__, log_p__, log_g__, the rest
are the model parameters.

• The stepsize adaptation information is output as CSV comments following
column header row.

• The following line contains the mean of the variational approximation.

• The rest of the output contains output_samples number of samples drawn
from the variational approximation.

To illustrate, we call Stan’s variational inference on the example model and data:

> ./bernoulli variational data file=bernoulli.data.R

By default, the output file is output.csv. Lines 1 - 28 contain configuration infor-
mation:

# stan_version_major = 2
# stan_version_minor = 23
# stan_version_patch = 0
# model = bernoulli_model
# method = variational
# variational
# algorithm = meanfield (Default)
# meanfield
# iter = 10000 (Default)
# grad_samples = 1 (Default)
# elbo_samples = 100 (Default)
# eta = 1 (Default)
# adapt
# engaged = 1 (Default)
# iter = 50 (Default)
# tol_rel_obj = 0.01 (Default)
# eval_elbo = 100 (Default)
# output_samples = 1000 (Default)
...
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The column header row is:

lp__,log_p__,log_g__,theta

The stepsize adaptation information is:

# Stepsize adaptation complete.
# eta = 1

The reported mean variational approximations information is:

0,0,0,0.214911

That is, the estimate for theta given the data is 0.2.

The following is a sample based on this approximation:

0,-14.0252,-5.21718,0.770397
0,-7.05063,-0.10025,0.162061
0,-6.75031,-0.0191099,0.241606
...



14. Standalone Generate Quantities

The generate_quantities method allows you to generate additional quantities of
interest from a fitted model without re-running the sampler. For an overview of
the uses of this feature, see the QuickStart Guide section and the Stan User’s Guide
section on Stand-alone generated quantities and ongoing prediction.

This method requires sub-argument fitted_params which takes as its value an
existing Stan CSV file that contains a sample from an equivalent model, i.e., a model
with the same parameters, transformed parameters, and model blocks, conditioned
on the same data.

If we run the bernoulli.stan program for a single chain to generate a sample in
file bernoulli_fit.csv:

> ./bernoulli sample data file=bernoulli.data.json output file=bernoulli_fit.csv

Then we can run the bernoulli_ppc.stan to carry out the posterior predictive
checks:

> ./bernoulli_ppc generate_quantities fitted_params=bernoulli_fit.csv \
data file=bernoulli.data.json \
output file=bernoulli_ppc.csv

The fitted_params file must be a Stan CSV file; attempts to use a regular CSV file
will result an error message of the form:

Error reading fitted param names from sample csv file <filename.csv>

The fitted_params file must contain columns corresponding to legal values for all
parameters defined in the model. If any parameters are missing, the program will
exit with an error message of the form:

Error reading fitted param names from sample csv file <filename.csv>

The parameter values of the fitted_params are on the constrained scale and must
obey all constraints. For example, if we modify the contencts of the first reported
draw in bernoulli_fit.csv so that the value of theta is outside the declared
bounds real<lower=0, upper=1>, the program will return the following error mes-
sage:

Exception: lub_free: Bounded variable is 1.21397, but must be in the interval [0, 1] (in 'bernoulli_ppc.stan', line 5, column 2 to column 30)
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15. Laplace sampling

The laplace method produces a sample from a normal approximation centered at
the mode of a distribution in the unconstrained space. If the mode is a maximum a
posteriori (MAP) estimate, the samples provide an estimate of the mean and standard
deviation of the posterior distribution. If the mode is a maximum likelihood estimate
(MLE), the sample provides an estimate of the standard error of the likelihood. In
general, the posterior mode in the unconstrained space doesn’t correspond to the
mean (nor mode) in the constrained space, and thus the sample is needed to infer the
mean as well as the standard deviation. (See this case study for a visual illustration.)

This is computationally inexpensive compared to exact Bayesian inference with
MCMC. The goodness of this estimate depends on both the estimate of the mode
and how much the true posterior in the unconstrained space resembles a Gaussian.

15.1. Configuration
This method takes 2 arguments:

• jacobian - Whether or not the Jacobian adjustment should be included in the
gradient. The default value is 1 (include adjustment). (Note: in optimization,
the default value is 0, for historical reasons.)

• mode - Input file of parameters values on the constrained scale. When Stan’s
optimize method is used to estimate the modal values, the value of boolean
argument jacobian should be 0 if optimize was run with default settings, i.e.,
the input is the MLE estimate; if optimize was run with argument jacobian=1,
then the laplace method default setting, jacobian=1, should be used.

15.2. CSV output
The output file consists of the following pieces of information:

• The full set of configuration options available for the laplace method is
reported at the beginning of the output file as CSV comments.

• Output columns log_p__ and log_q__, the unnormalized log density and the
unnormalized density of the Laplace approximation, respectively. These can be
used for diagnostics and importance sampling.

• Output columns for all model parameters on the constrained scale.
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15.3. Example
To get an approximate estimate of the mode and standard deviation of the example
Bernoulli model given the example dataset:

• find the MAP estimate by running optimization with argument jacobian=1

• run the Laplace estimator using the MAP estimate as the mode argument.

Because the default output file name from all methods is output.csv, a more
informative name is used for the output of optimization. We run the commands from
the CmdStan home directory. This results in a sample with mean 2.7 and standard
deviation 0.12. In comparison, running the NUTS-HMC sampler results in mean 2.6
and standard deviation 0.12.

./examples/bernoulli/bernoulli optimize jacobian=1 \
data file=examples/bernoulli/bernoulli.data.json \
output file=bernoulli_optimize_lbfgs.csv random seed=1234

./examples/bernoulli/bernoulli laplace mode=bernoulli_optimize_lbfgs.csv \
data file=examples/bernoulli/bernoulli.data.json random seed=1234

The header and first few data rows of the output sample are shown below.

# stan_version_major = 2
# stan_version_minor = 31
# stan_version_patch = 0
# model = bernoulli_model
# start_datetime = 2022-12-20 01:01:14 UTC
# method = laplace
# laplace
# mode = bernoulli_lbfgs.csv
# jacobian = 1 (Default)
# draws = 1000 (Default)
# id = 1 (Default)
# data
# file = examples/bernoulli/bernoulli.data.json
# init = 2 (Default)
# random
# seed = 875960551 (Default)
# output
# file = output.csv (Default)
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# diagnostic_file = (Default)
# refresh = 100 (Default)
# sig_figs = -1 (Default)
# profile_file = profile.csv (Default)
# num_threads = 1 (Default)
# stanc_version = stanc3 v2.31.0-7-g20444266
# stancflags =
log_p__,log_q__,theta
-9.4562,-2.33997,0.0498545
-6.9144,-0.0117349,0.182898
-7.18171,-0.746034,0.376428
...



16. Extracting log probabilities and gradi-
ents for diagnostics

CmdStan can return the computed log probability and the gradient with respect to a
set of parameters.

This is similar to the diagnose subcommand, but the output format differs and the
results here are not compared with those from finite differences.

Note: Startup and data initialization costs mean that this method is not an efficient
way to calculate these quantities. It is provided only for convenience and should not
be used for serious computation.

16.1. Configuration
This method takes 3 arguments:

• jacobian - Whether or not the Jacobian adjustment for constrained parameters
should be included in the gradient. Default value is 1 (include adjustment).

• constrained_params - Input file of parameters values on the constrained scale.
A single set of constrained parameters can be specified using JSON or Rdump
format. Alternatively, the input file can be set of draws in StanCSV format.

• unconstrained_params - Input file (JSON or R dump) of parameter values
on unconstrained scale. These files should contain a single variable, called
params_r, which is a flattened vector of all unconstrained parameters. If this
object is two dimensional, each entry should be a vector of the same form and
the output will feature multiple rows.

Only one of constrained_params and unconstrained_params can be specified.

For more on the differences between constrained and unconstrained parameters, see
the reference manual.

16.2. CSV output
The output file consists of the following pieces of information:

• The full set of configuration options available for the log_prob method is
reported at the beginning of the output file as CSV comments.
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• Column headers, the first column is labelled lp__, and the rest are named
after parameters. These will be the unconstrained parameters, regardless of
whether constrained or unconstrained parameters were supplied as input.

• Values which correspond to the value of the log density (column 1) and the
gradient with respect to each parameter (remaining columns).

For example, if we have a file called params.json:

{
"theta" : 0.1

}

We can run the example model:

/bernoulli log_prob constrained_params=params.json data file=bernoulli.data.json

This yields

# stan_version_major = 2
# stan_version_minor = 31
# stan_version_patch = 0
# model = bernoulli_model
# start_datetime = 2022-11-17 20:46:06 UTC
# method = log_prob
# log_prob
# unconstrained_params = (Default)
# constrained_params = params.json
# jacobian = 1 (Default)
# id = 1 (Default)
# data
# file = bernoulli.data.json
# init = 2 (Default)
# random
# seed = 2390820139 (Default)
# output
# file = output.csv (Default)
# diagnostic_file = (Default)
# refresh = 100 (Default)
# sig_figs = -1 (Default)
# profile_file = profile.csv (Default)
# num_threads = 1 (Default)
# stanc_version = stanc3 2.31.0 (Linux)
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# stancflags =
lp_,theta
-7.856,1.8



17. Diagnosing HMC by Comparison of Gra-
dients

CmdStan has a basic diagnostic feature that will calculate the gradients of the initial
state and compare them with gradients calculated by finite differences. Discrepancies
between the two indicate that there is a problem with the model or initial states or
else there is a bug in Stan.

To allow for the possibility of adding other kinds of diagnostic tests, the diagnose
method argument configuration has subargument test which currently only takes
value gradient. There are two available gradient test configuration arguments:

• epsilon - The finite difference step size. Must be a positive real number.
Default value is 1−6

• error - The error threshold. Must be a positive real number. Default value is
1−6

To run on the different platforms with the default configuration, use one of the
following.

Mac OS and Linux

> ./my_model diagnose data file=my_data

Windows

> my_model diagnose data file=my_data

To relax the test threshold, specify the error argument as follows:

> ./my_model diagnose test=gradient error=0.0001 data file=my_data

To see how this works, we run diagnostics on the example bernoulli model:

> ./bernoulli diagnose data file=bernoulli.data.R

Executing this command prints output to the console and as a series of comment
lines to the output csv file. The console output is:

method = diagnose
diagnose

test = gradient (Default)
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gradient
epsilon = 9.9999999999999995e-07 (Default)
error = 9.9999999999999995e-07 (Default)

id = 0 (Default)
data

file = bernoulli.data.json
init = 2 (Default)
random

seed = 2152196153 (Default)
output

file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

TEST GRADIENT MODE

Log probability=-8.42814

param idx value model finite diff error
0 0.0361376 -3.1084 -3.1084 -2.37554e-10

The same information is printed to the output file as csv comments, i.e., each line is
prefixed with a pound sign #.



18. Parallelization

Stan provides three ways of parallelizing execution of a Stan model:

• multi-threading with Intel Threading Building Blocks (TBB),
• multi-processing with Message Passing Interface (MPI) and
• manycore processing with OpenCL.

18.1. Multi-threading with TBB
In order to exploit multi-threading in a Stan model, the models must be rewritten
to use the reduce_sum and map_rect functions. For instructions on how to rewrite
Stan models to use these functions see Stan’s User guide chapter on parallelization,
the reduce_sum case study or the Multithreading and Map-Reduce tutorial.

Compiling
Once a model is rewritten to use the above-mentioned functions, the model must be
compiled with the STAN_THREADS makefile flag. The flag can be supplied in the make
call but we recommend writing the flag to the make/local file.

An example of the contents of make/local to enable threading with TBB:

STAN_THREADS=true

The model is then compiled as normal:

make path/to/model

Running
Before running a multi-threaded model, we need to specify the maximum number of
threads the program can run (total threads for all chains). This is done by setting
the num_threads argument. Valid values for num_threads are positive integers and
-1. If num_threads is set to -1, all available cores will be used.

Generally, this number should not exceed the number of available cores for best
performance.

Example:

./model sample data file=data.json num_threads=4 ...

When the model is compiled with STAN_THREADS we can sample with multiple chains
with a single executable (see section running multiple chains for cases when this is
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available). When running multiple chains num_threads is the maximum number of
threads that can be used by all the chains combined. The exact number of threads
that will be used for each chain at a given point in time is determined by the TBB
scheduler. The following example start 2 chains with 8 total threads available:

./model sample num_chains=2 data file=data.json num_threads=8 ...

18.2. Multi-processing with MPI
In order to use multi-processing with MPI in a Stan model, the models must be
rewritten to use the map_rect function. By using MPI, the model can be parallelized
across multiple cores or a cluster. MPI with Stan is supported on MacOS and Linux.

Dependencies
Compiling and running Stan models with MPI requires that the system has an MPI im-
plementation installed. For Unix systems the most commonly used implementations
are MPICH and OpenMPI.

Compiling
Once a model is rewritten to use map_rect, additional makefile flags must be written
to the make/local. These are:

• STAN_MPI: Enables the use of MPI with Stan if true.
• CXX: The name of the MPI C++ compiler wrapper. Typically mpicxx.
• TBB_CXX_TYPE: The C++ compiler the MPI wrapper wraps. Typically gcc on

Linux and clang on macOS.

An example of make/local on Linux:

STAN_MPI=true
CXX=mpicxx
TBB_CXX_TYPE=gcc

The model is then compiled as normal:

make path/to/model

Running
The Stan model compiled with STAN_MPI is run using an MPI launcher. The MPI
standard suggests using mpiexec, but a vendor wrapper for the launcher like mpirun
can also be used. The launcher is supplied the path to the built executable and
the number of processes to start: -n X for mpiexec or -np X for mpirun where X is
replaced by the integer representing the number of processes.

Example for running a model with six processes:

https://mc-stan.org/docs/2_26/functions-reference/functions-map.html
https://www.mpich.org/
https://www.open-mpi.org/
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mpiexec -n 6 path/to/model sample data file=data.json ...

18.3. OpenCL
Dependencies
OpenCL is supported on most modern CPUs and GPUs. In order to run OpenCL-
enabled Stan models, an OpenCL runtime for the target device must be installed. This
subsection lists installation instructions for OpenCL runtimes of the commonly-found
devices.

In order to check if any OpenCL-enabled device and its runtime is already present
use the clinfo tool. On Linux, clinfo can typically be installed with the default
package manager (for example sudo apt-get install clinfo on Ubuntu). For
Windows, pre-built clinfo binary can be found here.

Also use clinfo to verify successful installation of OpenCL runtimes.

NVIDIA GPU

• Linux:

Install the NVIDIA GPU driver and the NVIDIA CUDA Toolkit. On Ubuntu the
commands to install both is:

sudo apt update
sudo apt install nvidia-driver-460 nvidia-cuda-toolkit

Replace the driver version (460 in the above case) with the lastest number at
the time of installation.

• Windows:

Install the NVIDIA GPU Driver and CUDA Toolkit.

AMD GPU

• Linux:

Install Radeon Software for Linux available here.

• Windows:

We recommend installing the open source OCL-SDK.

AMD CPU

Install the open source PoCL.

https://github.com/Oblomov/clinfo#windows-support
https://www.nvidia.com/Download/index.aspx
https://developer.nvidia.com/cuda-toolkit
https://www.amd.com/en/support/kb/release-notes/rn-amdgpu-unified-linux-20-40
https://github.com/GPUOpen-LibrariesAndSDKs/OCL-SDK/releases
http://portablecl.org/download.html


CHAPTER 18. PARALLELIZATION 89

Intel CPU/GPU

Follow Intel’s install instructions given here (requires registration).

Compiling
In order to enable the OpenCL backend the model must be compiled with the
STAN_OPENCL makefile flag. The flag can be supplied in the make call but we recom-
mend writing the flag to the make/local file.

An example of the contents of make/local to enable parallelization with OpenCL:

STAN_OPENCL=true

If you are using OpenCL with an integrated GPU you also need to add the
INTEGRATED_OPENCL flag, as the sharing of memory between CPU and GPU is slightly
different with integrated graphics:

INTEGRATED_OPENCL=true

The model is then compiled as normal:

make path/to/model

Running
The Stan model compiled with STAN_OPENCL can also be supplied the OpenCL
platform and device IDs of the target device. These IDs determine the device on
which to run the OpenCL-supported functions on. You can list the devices on your
system using the clinfo program. If the system has one GPU and no OpenCL CPU
runtime, the platform and device IDs of the GPU are typically 0. In that case you can
also omit the OpenCL IDs as the default 0 IDs are used in that case.

We supply these IDs when starting the executable as shown below:

path/to/model sample data file=data.json opencl platform=0 device=1

https://software.intel.com/content/www/us/en/develop/articles/opencl-drivers.html


CmdStan Tools

This section provides a reference for the CmdStan tools:

• stanc
• stansummary
• diagnose
• print (deprecated)
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19. stanc: Translating Stan to C++

CmdStan translates Stan programs to C++ using the Stan compiler program which
is included in the CmdStan release bin directory as program stanc. One can view
the complete stanc documentation in the Stan User’s Guide.

As of release 2.22, the CmdStan Stan to C++ compiler is written in OCaml. This
compiler is called “stanc3” and has has its own repository https://github.com/stan-
dev/stanc3, from which pre-built binaries for Linux, Mac, and Windows can be
downloaded.

19.1. Instantiating the stanc binary
Before the Stan compiler can be used, the binary stanc must be created. This can be
done using the makefile as follows. For Mac and Linux:

make bin/stanc

For Windows:

make bin/stanc.exe

This is also done as part of the make build command.

19.2. The Stan compiler program
The Stan compiler program stanc converts Stan programs to C++ concepts. If the
compiler encounters syntax errors in the program, it will provide an error message
indicating the location in the input where the failure occurred and reason for the
failure. The following example illustrates a fully qualified call to stanc to generate
the C++ translation of the example model bernoulli.stan. For Linux and Mac:

> cd <cmdstan-home>
> bin/stanc --o=bernoulli.hpp examples/bernoulli/bernoulli.stan

For Windows:

> cd <cmdstan-home>
> bin/stanc.exe --o=bernoulli.hpp examples/bernoulli/bernoulli.stan

The base name of the Stan program file determines the name of the C++ model
class. Because this name is the name of a C++ class, it must start with an alphabetic
character (a--z or A--Z) and contain only alphanumeric characters (a--z, A--Z,
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and 0--9) and underscores (_) and should not conflict with any C++ reserved
keyword.

The C++ code implementing the class is written to the file bernoulli.hpp in the
current directory. The final argument, bernoulli.stan, is the file from which to
read the Stan program.

In practice, stanc is invoked indirectly, via the GNU Make utility, which contains
rules that compile a Stan program to its corresponding executable. To build the
simple Bernoulli model via make, we specify the name of the target executable file.
On Mac and Linux, this is the name of the Stan program with the .stan omitted.
On Windows, replace .stan with .exe, and make sure that the path is given with
slashes and not backslashes. For Linux and Mac:

> make examples/bernoulli/bernoulli

For Windows:

> make examples/bernoulli/bernoulli.exe

The makefile rules first invoke the stanc compiler to translate the Stan model to
C++ , then compiles and links the C++ code to a binary executable. The makefile
variable STANCFLAGS can be used to to override the default arguments to stanc, e.g.,

> make STANCFLAGS="--include-paths=~/foo" examples/bernoulli/bernoulli

https://mc-stan.org/docs/stan-users-guide/stanc-args.html


20. stansummary: MCMC Output Analysis

The CmdStan stansummary program reports statistics for one or more sampler chains
over all sampler and model parameters and quantities of interest. The statistics
reported include both summary statistics of the estimates and diagnostic statistics
on the sampler chains, reported in the following order:

• Mean - sample mean
• MCSE - Monte Carlo Standard Error, a measure of the amount of noise in the

sample
• StdDev - sample standard deviation
• Quantiles - default 5%, 50%, 95%
• N_eff - effective sample size - the number of independent draws in the sample
• N_eff/S - the number of independent draws per second
• R_hat - R̂ statistic, a measure of chain equilibrium, must be within 0.05 of 1.0.

When reviewing the stansummary output, it is important to check the final three
output columns first - these are the diagnostic statistics on chain convergence and
number of independent draws in the sample. A R̂ statistic of greater than 1.05
indicates that the chain has not converged and therefore the sample is not drawn
from the posterior, thus the estimates of the mean and all other summary statistics
are invalid.

Estimation by sampling produces an approximate value for the model parameters;
the MCSE statistic indicates the amount of noise in the estimate. Therefore MCSE
column is placed next to the sample mean column, in order to make it easy to
compare this sample with others.

For more information, see the Posterior Analysis chapter of the Stan Reference
Manual which describes both the theory and practice of MCMC estimation techniques.
The summary statistics and the algorithms used to compute them are described in
sections Notation for samples and Effective Sample Size.

20.1. Building the stansummary command
The CmdStan makefile task build compiles the stansummary utility into the bin
directory. It can be compiled directly using the makefile as follows:

> cd <cmdstan-home>
> make bin/stansummary
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20.2. Running the stansummary program
The stansummary utility processes one or more output files from a set of chains
from one run of the HMC sampler. To run stansummary on the output file or files
generated by a run of the sampler, on Mac or Linux:

<cmdstan-home>/bin/stansummary <file_1.csv> ... <file_N.csv>

On Windows, use backslashes to call the stansummary.exe.

<cmdstan-home>\bin\stansummary.exe <file_1.csv> ... <file_N.csv>

For example, after running 4 chains to fit the example model eight_schools.stan
to the supplied example data file, we run stansummary on the resulting Stan CSV
output files to get the following report:

> bin/stansummary eight_*.csv
Input files: eight_1.csv, eight_2.csv, eight_3.csv, eight_4.csv
Inference for Stan model: eight_schools_model
4 chains: each with iter=(1000,1000,1000,1000); warmup=(0,0,0,0); thin=(1,1,1,1); 4000 iterations saved.

Warmup took (0.048, 0.060, 0.047, 0.045) seconds, 0.20 seconds total
Sampling took (0.057, 0.058, 0.061, 0.066) seconds, 0.24 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat

lp__ -18 0.33 5.1 -26 -19 -9.1 233 963 1.0
accept_stat__ 0.88 1.6e-02 0.23 0.21 0.98 1.00 203 838 1.0e+00
stepsize__ 0.18 2.2e-02 0.031 0.14 0.20 0.22 2.0 8.3 3.9e+13
treedepth__ 3.8 5.9e-02 0.78 2.0 4.0 5.0 175 724 1.0e+00
n_leapfrog__ 18 1.3e+00 9.4 7.0 15 31 51 212 1.0e+00
divergent__ 0.015 4.1e-03 0.12 0.00 0.00 0.00 865 3576 1.0e+00
energy__ 23 3.4e-01 5.5 13 23 32 258 1066 1.0e+00

mu 7.9 0.16 5.1 -0.23 7.9 16 1021 4221 1.0
theta[1] 12 0.30 8.6 -0.48 11 28 837 3459 1.0
theta[2] 7.8 0.15 6.4 -2.7 7.7 18 1717 7096 1.00
theta[3] 6.1 0.19 7.7 -6.5 6.5 18 1684 6958 1.0
theta[4] 7.5 0.15 6.7 -3.1 7.4 18 2026 8373 1.0
theta[5] 4.7 0.17 6.4 -6.7 5.3 15 1391 5747 1.00
theta[6] 5.9 0.16 6.7 -5.8 6.2 16 1673 6915 1.00
theta[7] 11 0.22 7.0 0.057 10 23 1069 4419 1.0
theta[8] 8.3 0.20 7.9 -4.2 8.0 22 1503 6209 1.00
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tau 7.2 0.26 5.2 1.5 5.9 17 401 1657 1.0

Samples were drawn using hmc with nuts.
For each parameter, N_Eff is a crude measure of effective sample size,
and R_hat is the potential scale reduction factor on split chains (at
convergence, R_hat=1).

The console output information consists of

• Model, chains, and timing summaries
• Sampler parameter statistics
• Model parameter statistics
• Sampling algorithm - either nuts (shown here) or static HMC.

There is one row per parameter and the row order in the summary report corresponds
to the column order in the Stan CSV output file.

Sampler parameters
The initial Stan CSV columns provide information on the sampler state for each
draw:

• lp__ - the total log probability density (up to an additive constant) at each
sample

• accept_stat__ - the average Metropolis acceptance probability over each
simulated Hamiltonian trajectory

• stepsize__ - integrator step size
• treedepth__ - depth of tree used by NUTS (NUTS sampler)
• n_leapfrog__ - number of leapfrog calculations (NUTS sampler)
• divergent__ - has value 1 if trajectory diverged, otherwise 0. (NUTS sampler)
• energy__ - value of the Hamiltonian
• int_time__ - total integration time (static HMC sampler)

Because we ran the NUTS sampler, the above summary reports sampler parameters
treedepth__, n_leapfrog__, and divergent__; the static HMC sampler would
report int_time__ instead.

Model parameters and quantities of interest
The remaining Stan CSV columns report the values of all parameters, transformed
parameters, and generated quantities in the order in which these variables are
declared in the Stan program. For container variables, i.e., vector, row_vector,
matrix, and array variables, the statistics for each element are reported separately, in
row-major order. The eight_schools.stan program parameters block contains the
following parameter variable declarations:



CHAPTER 20. STANSUMMARY: MCMC OUTPUT ANALYSIS 96

real mu;
array[J] real theta;
real<lower=0> tau;

In the example data, J is 8; therefore the stansummary listing reports on theta[1]
through theta[8].

20.3. Command-line options
The stansummary command syntax provides a set of flags to customize the output
which must precede the list of filenames. When invoked with no arguments or with
the -h or --help option, the program prints the usage message to the console and
exits.

Report statistics for one or more Stan CSV files from a HMC sampler run.
Example: stansummary model_chain_1.csv model_chain_2.csv
Options:

-a, --autocorr [n] Display the chain autocorrelation for the n-th
input file, in addition to statistics.

-c, --csv_filename [file] Write statistics to a CSV file.
-h, --help Produce help message, then exit.
-p, --percentiles [values] Percentiles to report as ordered set of

comma-separated integers from (1,99), inclusive.
Default is 5,50,95.

-s, --sig_figs [n] Significant figures reported. Default is 2.
Must be an integer from (1, 18), inclusive.

Both short an long option names are allowed. Short names are specified as -<o>
<value>; long option names can be specified either as --<option>=<value> or
--<option> <value>.

The amount of precision in the sampler output limits the amount of real precision in
the summary report. CmdStan’s command line interface also has output argument
sig_figs. The default sampler output precision is 6. The --sig_figs argument to
the stansummary program should not exceed the sig_figs argument to the sampler.



21. diagnose: Diagnosing Biased Hamilto-
nian Monte Carlo Inferences

CmdStan is distributed with a utility that is able to read in and analyze the output of
one or more Markov chains to check for the following potential problems:

• Divergent transitions
• Transitions that hit the maximum treedepth
• Low E-BFMI values
• Low effective sample sizes
• High R̂ values

The meanings of several of these problems are discussed in https://arxiv.org/abs/17
01.02434.

21.1. Building the diagnose command
The CmdStan makefile task build compiles the diagnose utility into the bin direc-
tory. It can be compiled directly using the makefile as follows:

> cd <cmdstan-home>
> make bin/diagnose

21.2. Running the diagnose command
The diagnose command is executed on one or more output files, which are provided
as command-line arguments separated by spaces. If there are no apparent problems
with the output files passed to diagnose, it outputs a message that all transitions are
within treedepth limit and that no divergent transitions were found. It problems are
detected, it outputs a summary of the problem along with possible ways to mitigate
it.

To fully exercise the diagnose command, we run 4 chains to sample from the Neal’s
funnel distribution, discussed in the Stan User’s Guide reparameterization section
https://mc-stan.org/docs/stan-users-guide/reparameterization.html. This
program defines a distribution which exemplifies the difficulties of sampling from
some hierarchical models:

parameters {
real y;
vector[9] x;
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}
model {

y ~ normal(0, 3);
x ~ normal(0, exp(y / 2));

}

This program is available on GitHub: https://github.com/stan-dev/example-
models/blob/master/misc/funnel/funnel.stan

Stan has trouble sampling from the region where y is small and thus x is constrained
to be near 0. This is due to the fact that the density’s scale changes with y, so that a
step size that works well when y is large is inefficient when y is small and vice-versa.

Running 4 chains produces output files output_1.csv, . . . , output_4.csv. We run
diagnose command on this fileset:

> bin/diagnose output_*.csv

The output is printed to the terminal window:

Processing csv files: output_1.csv, output_2.csv, output_3.csv, output_4.csv

Checking sampler transitions treedepth.
9 of 4000 (0.23%) transitions hit the maximum treedepth limit of 10, or 2^10 leapfrog steps.
Trajectories that are prematurely terminated due to this limit will result in slow exploration.
For optimal performance, increase this limit.

Checking sampler transitions for divergences.
9 of 4000 (0.23%) transitions ended with a divergence.
These divergent transitions indicate that HMC is not fully able to explore the posterior distribution.
Try increasing adapt delta closer to 1.
If this doesn't remove all divergences, try to reparameterize the model.

Checking E-BFMI - sampler transitions HMC potential energy.
The E-BFMI, 0.078, is below the nominal threshold of 0.3 which suggests that HMC may have trouble exploring the target distribution.
If possible, try to reparameterize the model.

Effective sample size satisfactory.

The following parameters had split R-hat greater than 1.1:
y

Such high values indicate incomplete mixing and biased estimation.

https://github.com/stan-dev/example-models/blob/master/misc/funnel/funnel.stan
https://github.com/stan-dev/example-models/blob/master/misc/funnel/funnel.stan
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You should consider regularizing your model with additional prior information or a more effective parameterization.

Processing complete.

In this example, changing the model to use a non-centered parameterization is the
only way to correct these problems. In this second model, the parameters x_raw and
y_raw are sampled as independent standard normals, which is easy for Stan.

parameters {
real y_raw;
vector[9] x_raw;

}
transformed parameters {

real y;
vector[9] x;

y = 3.0 * y_raw;
x = exp(y / 2) * x_raw;

}
model {

y_raw ~ std_normal(); // implies y ~ normal(0, 3)
x_raw ~ std_normal(); // implies x ~ normal(0, exp(y / 2))

}

This program is available on GitHub: https://github.com/stan-dev/example-
models/blob/master/misc/funnel/funnel_reparam.stan

We compile the program and run 4 chains, as before. Now the diagnose command
doesn’t detect any problems:

Processing csv files: output_1.csv, output_2.csv, output_3.csv, output_4.csv

Checking sampler transitions treedepth.
Treedepth satisfactory for all transitions.

Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory for all transitions.

Effective sample size satisfactory.

https://github.com/stan-dev/example-models/blob/master/misc/funnel/funnel_reparam.stan
https://github.com/stan-dev/example-models/blob/master/misc/funnel/funnel_reparam.stan
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Split R-hat values satisfactory all parameters.

Processing complete, no problems detected.

21.3. diagnose warnings and recommendations
Divergent transitions after warmup
Stan uses Hamiltonian Monte Carlo (HMC) to explore the target distribution — the
posterior defined by a Stan program + data — by simulating the evolution of a
Hamiltonian system. In order to approximate the exact solution of the Hamiltonian
dynamics we need to choose a step size governing how far we move each time we
evolve the system forward. That is, the step size controls the resolution of the sampler.

Unfortunately, for particularly hard problems there are features of the target distri-
bution that are too small for this resolution. Consequently the sampler misses those
features and returns biased estimates. Fortunately, this mismatch of scales manifests
as divergences which provide a practical diagnostic. If there are any divergences after
warmup, then the samples may be biased.

If the divergent transitions cannot be eliminated by increasing the adapt_delta
parameter, we have to find a different way to write the model that is logically
equivalent but simplifies the geometry of the posterior distribution. This problem
occurs frequently with hierarchical models and one of the simplest examples is
Neal’s Funnel, which is discussed in the reparameterization section of the Stan User’s
Guide.

Maximum treedepth exceeded
Warnings about hitting the maximum treedepth are not as serious as warnings about
divergent transitions. While divergent transitions are a validity concern, hitting the
maximum treedepth is an efficiency concern. Configuring the No-U-Turn-Sampler
(the variant of HMC used by Stan) requires putting a cap on the depth of the trees
that it evaluates during each iteration (for details on this see the Hamiltonian Monte
Carlo Sampling chapter in the Stan Reference Manual. When the maximum allowed
tree depth is reached it indicates that NUTS is terminating prematurely to avoid
excessively long execution time.

This is controlled through the max_depth argument. If the number of transitions
which exceed maximum treedepth is low, increasing max_depth may correct this
problem.

https://en.wikipedia.org/wiki/Hamiltonian_system
https://mc-stan.org/docs/stan-users-guide/reparameterization.html
https://mc-stan.org/docs/reference-manual/hmc.html
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Low E-BFMI values - sampler transitions HMC potential energy.
The sampler csv output column energy__ is used to diagnose the accuracy of any
Hamiltonian Monte Carlo sampler. If the standard deviation of energy is much
larger than

√
D/2, where D is the number of unconstrained parameters, then the

sampler is unlikely to be able to explore the posterior adequately. This is usually due
to heavy-tailed posteriors and can sometimes be remedied by reparameterizing the
model.

The warning that some number of chains had an estimated Bayesian Fraction of
Missing Information (BFMI) that was too low implies that the adaptation phase of
the Markov Chains did not turn out well and those chains likely did not explore
the posterior distribution efficiently. For more details on this diagnostic, see https:
//arxiv.org/abs/1604.00695. Should this occur, you can either run the sampler for
more iterations, or consider reparameterizing your model.

Low effective sample sizes
Roughly speaking, the effective sample size (ESS) of a quantity of interest captures
how many independent draws contain the same amount of information as the
dependent sample obtained by the MCMC algorithm. Clearly, the higher the ESS the
better. Stan uses R̂ adjustment to use the between-chain information in computing
the ESS. For example, in case of multimodal distributions with well-separated modes,
this leads to an ESS estimate that is close to the number of distinct modes that are
found.

Bulk-ESS refers to the effective sample size based on the rank normalized draws.
This does not directly compute the ESS relevant for computing the mean of the
parameter, but instead computes a quantity that is well defined even if the chains do
not have finite mean or variance. Overall bulk-ESS estimates the sampling efficiency
for the location of the distribution (e.g. mean and median).

Often quite smaller ESS would be sufficient for the desired estimation accuracy, but
the estimation of ESS and convergence diagnostics themselves require higher ESS.
We recommend requiring that the bulk-ESS is greater than 100 times the number
of chains. For example, when running four chains, this corresponds to having a
rank-normalized effective sample size of at least 400.

High R̂

R̂ (R-hat) convergence diagnostic compares the between- and within-chain estimates
for model parameters and other univariate quantities of interest. If chains have not
mixed well (ie, the between- and within-chain estimates don’t agree), R̂ is larger
than 1. We recommend running at least four chains by default and only using
the sample if R̂ is less than 1.01. Stan reports R̂ which is the maximum of rank

https://arxiv.org/abs/1604.00695
https://arxiv.org/abs/1604.00695


CHAPTER 21. DIAGNOSE: DIAGNOSING BIASED HAMILTONIAN MONTE CARLO INFERENCES102

normalized split-R-hat and rank normalized folded-split-R-hat, which works for thick
tailed distributions and is sensitive also to differences in scale. For more details on
this diagnostic, see https://arxiv.org/abs/1903.08008.

There is further discussion in https://arxiv.org/abs/1701.02434; however the correct
resolution is necessarily model specific, hence all suggestions general guidelines
only.

https://arxiv.org/abs/1903.08008
https://arxiv.org/abs/1701.02434


22. print (deprecated): MCMC Output Anal-
ysis

The print utility is deprecated, but is still available until CmdStan v3.0. Use the
stansummary utility instead.
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Appendices

This section contains the following appendices:

• Stan CSV File Format
• JSON format
• RDump data format
• Using external C++ code from within a Stan program
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23. Stan CSV File Format

The output from all CmdStan methods is in CSV format. A Stan CSV file is a data
table where the columns are the method and model parameters and quantities of
interest. Each row contains one record’s worth of data in plain-text format using the
comma character (‘,’) as the field delimiter (hence the name).

For the Stan CSV files, data is strictly numerical, however, possible values include
both positive and negative infinity and “Not-a-Number” which are represented as the
strings NaN, inf, +inf, -inf. All other values are written in decimal notation with
at most 6 digits of precision.

Stan CSV files have a header row containing the column names. They also make
extensive use of CSV comments, i.e., lines which begin with the # character. In
addition to initial and final comment rows, some methods also put comment rows in
the middle of the data table, which makes it difficult to use many of the commonly
used CSV parser packages.

23.1. CSV column names and order
The data table is laid out with zero or more method-specific columns followed by the
Stan program variables declared in the parameter block, then the variables in the
transformed parameters block, finally variables declared in the generated quantities,
in declaration order.

Stan provides three types of container objects: arrays, vectors, and matrices. In order
to output all elements of a container object, it is necessary to choose an indexing
notation and a serialization order. The Stan CSV file indexing notation is

• The column name consists of the variable name followed by the element
indices.

• Indices are delimited by periods (‘.’).
• Indexing is 1-based, i.e., given a dimension of size N , the first element index

is 1 and the last element index is N .
• Tuples are laid out element-by-element, with each tuple slot being delimited

by a colon (‘:’).

Container variables are serialized in column major order, a.k.a. “Fortran” order. In
column major-order, all elements of column 1 are listed in ascending order, followed
by all elements of column 2, thus the first index changes the slowest and the last
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index changes the fastest.

To see how this works, consider a 3-dimensional variable with dimension sizes 2,
3, and 4, e.g., an array of matrices, a 2-D array of vectors or row_vectors, or a 3-D
array of scalars. Given a Stan program with model parameter variable:

array[2, 3, 4] real foo;

The Stan CSV file will require 24 columns to output the elements of foo. The first 6
columns will be labeled:

foo.1.1.1, foo.1.1.2, foo.1.1.3, foo.1.1.4, foo.1.2.1, foo.1.2.2

The final 6 columns will be labeled:

foo.2.2.3, foo.2.2.4, foo.2.3.1, foo.2.3.2, foo.2.3.3, foo.2.3.4

To see how a tuple would be laid out, consider the following variable:

tuple(real, array[3] real) bar;

This will correspond to 4 columns in the CSV file, which are labeled

bar:1,bar:2.1,bar:2.2,bar:2.3

23.2. MCMC sampler CSV output
The sample method produces both a Stan CSV output file and a diagnostic file which
contains the sampler parameters together with the gradients on the unconstrained
scale and log probabilities for all parameters in the model.

To see how this works, we show snippets of the output file resulting from the
following command:

./bernoulli sample save_warmup=1 num_warmup=200 num_samples=100 \
data file=bernoulli.data.json \
output file=bernoulli_samples.csv

Sampler Stan CSV output file
The sampler output file contains the following:

• Initial comment rows listing full CmdStan argument configuration.
• Header row
• Data rows containing warmup draws, if run with option save_warmup=1
• Comment rows for adaptation listing step size and metric used for sampling
• Sampling draws
• Comment rows giving timing information
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Initial comments rows: argument configuration

All configuration arguments are listed, one per line, indented according to CmdStan’s
hierarchy of arguments and sub-arguments. Arguments not overtly specified on the
command line are annotated as (Default).

In the above example the num_samples, num_warmup, and save_warmup arguments
were specified, whereas subargument thin is left at its default value, as seen in the
initial comment rows:

# stan_version_major = 2
# stan_version_minor = 24
# stan_version_patch = 0
# model = bernoulli_model
# method = sample (Default)
# sample
# num_samples = 100
# num_warmup = 200
# save_warmup = 1
# thin = 1 (Default)
# adapt
# engaged = 1 (Default)
# gamma = 0.050000000000000003 (Default)
# delta = 0.80000000000000004 (Default)
# kappa = 0.75 (Default)
# t0 = 10 (Default)
# init_buffer = 75 (Default)
# term_buffer = 50 (Default)
# window = 25 (Default)
# algorithm = hmc (Default)
# hmc
# engine = nuts (Default)
# nuts
# max_depth = 10 (Default)
# metric = diag_e (Default)
# metric_file = (Default)
# stepsize = 1 (Default)
# stepsize_jitter = 0 (Default)
# id = 0 (Default)
# data
# file = bernoulli.data.json
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# init = 2 (Default)
# random
# seed = 2991989946 (Default)
# output
# file = bernoulli_samples.csv
# diagnostic_file = bernoulli_diagnostics.csv
# refresh = 100 (Default)

Note that when running multi-threaded programs which use reduce_sum for high-
level parallelization, the number of threads used will also be included in this initial
comment header.

Column headers

The CSV header row lists all sampler parameters, model parameters, transformed
parameters, and quantities of interest. The sampler parameters are described in
detail in the output file section of the Quickstart Guide chapter on MCMC Sampling.
The example model bernoulli.stan only contains one parameter theta, therefore
the CSV file data table consists of 7 sampler parameter columns and one column for
the model parameter:

lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,theta

As a second example, we show the output of the eight_schools.stan model on run
on example dataset. This model has 3 parameters: mu, theta a vector whose length
is dependent on the input data, here N = 8, and tau. The initial columns are for the
7 sampler parameters, as before. The column headers for the model parameters are:

mu,theta.1,theta.2,theta.3,theta.4,theta.5,theta.6,theta.7,theta.8,tau

Data rows containing warmup draws

When run with option save_warmup=1, the thinned warmup draws are written to
the CSV output file directly after the CSV header line. Since the default option is
save_warmup=0, this section is usually not present in the output file.

Here we specified num_warmup=200 and left thin at the default value 1, therefore
the next 200 lines are data rows containing the sampler and model parameter values
for each warmup draw.

-6.74827,1,1,1,1,0,6.75348,0.247195
-6.74827,4.1311e-103,14.3855,1,1,0,6.95087,0.247195
-6.74827,1.74545e-21,2.43117,1,1,0,7.67546,0.247195
-6.77655,0.99873,0.239791,2,7,0,6.81982,0.280619
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-6.7552,0.999392,0.323158,1,3,0,6.79175,0.26517

Comment rows for adaptation

During warmup, the sampler adjusts the stepsize and the metric. At the end warmup,
the sampler outputs this information as comments.

# Adaptation terminated
# Step size = 0.813694
# Diagonal elements of inverse mass matrix:
# 0.592879

As the example bernoulli model only contains a single parameter, and as the default
metric is diag_e, the inverse mass matrix is a 1 × 1 matrix, and the length of the
diagonal vector is also 1.

In contrast, if we run the eight schools example model with metric dense_e, the
adaptation comments section lists both the stepsize and the full 10 × 10 inverse mass
matrix:

# Adaptation terminated
# Step size = 0.211252
# Elements of inverse mass matrix:
# 25.6389, 17.3379, 13.9455, 15.9036, 15.1953, 8.73729, 16.9486, 14.4231, 17.4969, 0.518757
# 17.3379, 79.8719, 12.2989, -1.28006, 9.92895, -3.51622, 10.073, 22.0196, 19.8151, 4.71028
# 13.9455, 12.2989, 36.1572, 12.8734, 11.9446, 9.09582, 9.74519, 10.9539, 12.1204, 0.211353
# 15.9036, -1.28006, 12.8734, 59.9998, 10.245, 8.03461, 16.9754, 3.13443, 9.68292, -1.36097
# 15.1953, 9.92895, 11.9446, 10.245, 43.548, 15.3403, 13.0537, 7.69818, 10.1093, 0.155245
# 8.73729, -3.51622, 9.09582, 8.03461, 15.3403, 39.981, 12.7695, 1.16248, 6.13749, -2.08507
# 16.9486, 10.073, 9.74519, 16.9754, 13.0537, 12.7695, 45.8884, 11.6074, 8.96413, -1.15946
# 14.4231, 22.0196, 10.9539, 3.13443, 7.69818, 1.16248, 11.6074, 49.4083, 18.9169, 3.15661
# 17.4969, 19.8151, 12.1204, 9.68292, 10.1093, 6.13749, 8.96413, 18.9169, 68.0228, 1.74104
# 0.518757, 4.71028, 0.211353, -1.36097, 0.155245, -2.08507, -1.15946, 3.15661, 1.74104, 1.50433

Note that when the sampler is run with arguments algorithm=fixed_param, this
section will be missing.

Data rows containing sampling draws

The output file contains the values for the thinned set draws during sampling. Here
we specified num_sampling=100 and left thin at the default value 1, therefore the
next 100 lines are data rows containing the sampler and model parameter values for
each sampling iteration.
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-8.76921,0.796814,0.813694,1,1,0,9.75854,0.535093
-6.79143,0.979604,0.813694,1,3,0,9.13092,0.214431
-6.79451,0.955359,0.813694,2,3,0,7.19149,0.289341

Timing information

Upon successful completion, the sampler writes timing information to the output
CSV file as a series of final comment lines:

#
# Elapsed Time: 0.005 seconds (Warm-up)
# 0.002 seconds (Sampling)
# 0.007 seconds (Total)
#

Diagnostic CSV output file
The diagnostic file contains the following:

• Initial comment rows listing full CmdStan argument configuration.
• Header row
• Data rows containing warmup draws, if run with option save_warmup=1
• Sampling draws
• Comment rows giving timing information

The columns in this file contain, in order:

• all sampler parameters
• all model parameter estimates (on the unconstrained scale)
• the latent Hamiltonian for each parameter
• the gradient for each parameters

The labels for the latent Hamiltonian columns are the parameter column label with
prefix p_ and the labels for the gradient columns are the parameter column label
with prefix g_.

These are the column labels from the file bernoulli_diagnostic.csv:

lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,theta,p_theta,g_theta

Profiling CSV output file
The profiling information is stored in a plain CSV format with no meta information
in the comments.

Each row represents timing information collected in a profile statement for a given
thread. It is possible that some profile statements have only one entry (if they
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were only executed by one thread) and others have multiple entries (if they were
executed by multiple threads).

The columns are as follows:

• name, The name of the profile statement that is being timed
• thread_id, The thread that executed the profile statement
• total_time, The combined time spent executing statements inside the

profile which includes calculation with and without automatic differenti-
ation

• forward_time, The time spent in the profile statement during the forward
pass of a reverse mode automatic differentiation calculation or during a calcu-
lation without automatic differentiation

• reverse_time, The time spent in the profile statement during the reverse
(backward) pass of reverse mode automatic differentiation

• chain_stack, The number of objects allocated on the chaining automatic
differentiation stack. There is a function call for each of these objects in the
reverse pass

• no_chain_stack, The number of objects allocated on the non-chaining auto-
matic differentiation stack

• autodiff_calls, The total number of times the profile statement was exe-
cuted with automatic differentiation

• no_autodiff_calls - The total number of times the profile statement was
executed without automatic differentiation

23.3. Optimization output
• Config as comments
• Header row
• Penalized maximum likelihood estimate

23.4. Variational inference output
• Config as comments
• Header row
• Adaptation as comments
• Variational estimate
• Sample draws from estimate of the posterior

23.5. Generate quantities outputs
• Header row
• Quantities of interest
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23.6. Diagnose method outputs
• Header row
• Gradients



24. JSON Format for CmdStan

CmdStan can use JSON format for input data for both model data and parameters.
Model data is read in by the model constructor. Model parameters are used to
initialize the sampler and optimizer.

24.1. Creating JSON files
You can create the JSON file yourself using the guidelines below, but a more
convenient way to create a JSON file for use with CmdStan is to use the
write_stan_json() function provided by the CmdStanR interface.

24.2. JSON syntax summary
JSON is a data interchange notation, defined by an EMCA standard. JSON data
files must in Unicode. JSON data is a series of structural tokens, literal tokens, and
values:

• Structural tokens are the left and right curly bracket {}, left and right square
bracket [], the semicolon ;, and the comma ,.

• Literal tokens must always be in lowercase. There are three literal tokens:
true, false, null.

• A primitive value is a single token which is either a literal, a string, or a number.

• A string consists of zero or more Unicode characters enclosed in double quotes,
e.g. "foo". A backslash is used to escape the double quote character as well
as the backslash itself. JSON allows the use of Unicode character escapes,
e.g. "\\uHHHH" where HHHH is the Unicode code point in hex.

• Numbers are represented using either decimal notation or scientific notation.
The following are examples of numbers: 17, 17.2, -17.2, -17.2e8, 17.2e-8.
There is no distinction between integer and real numbers in the JSON format
other than whether they have periods or scientific notation.

• The special floating point values for positive infinity, negative infinity, and not-
a-number can be represented in multiple ways. Positive infinity can be repre-
sented as the string "Inf", the string "Infinity", or the atom Infinity. Neg-
ative infinity can be represented as the string "-Inf", the string "-Infinity",
or the atom -Infinity. Not-a-number can be represented as the string "NaN"
or the atom NaN. These values may be mixed with other numerical types.
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https://mc-stan.org/cmdstanr/reference/write_stan_json
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
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• A complex scalar is represented as a two-element array consisting of its real
component followed by its imaginary component. For example, the complex
number 2.3 − 1.83i would be represented in JSON as the two-element array
[2.3, -1.83].

• A JSON array is an ordered, comma-separated list of zero or more JSON values
enclosed in square brackets. The elements of an array can be of any type. The
following are examples of arrays: [], [1], [0.2, "-inf", true].

• Vectors and row vectors in JSON are representing as arrays of their elements.
For example, both the vector [1 2]⊤ and the row vector [1 2] are represented
by the JSON array [1, 2].

• Complex vectors are represented as arrays of two-element arrays. For example,
the complex vector [2.3−1.83i −4.8+2i]⊤ is represented as [[2.3, -1.83],
[-4.8, 2]] in JSON. A complex row vector has the same representation as its
transpose (the vector with the same elements).

• Matrices are represented as arrays of their row vectors. For example, the 2 × 3
matrix [

1 2.7 −9.8
4.2 1.8 −7.3

]
is represented in JSON as [[1, 2.7, -9.8], [4.2, 1.8, -7.3]].

• Complex matrices are also represented as arrays of their row vectors. For
example, the 2 × 3 complex matrix[

1 + 2i 3 − 4.2i 13.1 + 2.7i
3.1 −5i 0

]
would be represented in JSON as [[[1, 2], [3, -4.2], [13.1, 2.7]],
[[3.1, 0], [0, -5], [0, 0]]].

• Tuples are written as nested JSON objects where the keys are strings for the
numbered slots in the tuple. For example, the tuple (1.5, 3.4) is represented
in JSON as {"1": 1.5, "2": 3.4}.

• A name-value pair consists of a string followed by a colon followed by a value,
either primitive or compound.

• A JSON object is a comma-separated series of zero or more name-value pairs
enclosed in curly brackets. Each name-value pair is a member of the object.
Membership is unordered. Member names are not required to be unique. The
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following are examples of objects: { }, {"foo": null}, {"bar" : 17, "baz"
: [14,15,16.6] }.

24.3. Stan data types in JSON notation
Stan follows the JSON standard. A Stan input file in JSON notation consists of
single JSON object which contains zero or more name-value pairs. This structure
corresponds to a Python data dictionary object. The following is an example of JSON
data for the simple Bernoulli example model:

{ "N" : 10, "y" : [0,1,0,0,0,0,0,0,0,1] }

Matrix data and multi-dimensional arrays are indexed in row-major order. For a
Stan program which has data block:

data {
int d1;
int d2;
int d3;
array[d1, d2, d3] int ar;

}

the following JSON input would be valid:

{ "d1" : 2,
"d2" : 3,
"d3" : 4,
"ar" : [[[0,1,2,3], [4,5,6,7], [8,9,10,11]],

[[12,13,14,15], [16,17,18,19], [20,21,22,23]]]
}

JSON ignores whitespace. In the above examples, the spaces and newlines are only
used to improve readability and can be omitted.

All data inputs are encoded as name-value pairs. The following table provides more
examples of JSON data. The left column contains a Stan data variable declaration
and the right column contains valid JSON data inputs.

Stan declaration JSON encoding

int i "i": 17

real a "a" : 17
"a" : 17.2
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Stan declaration JSON encoding

"a" : "NaN"
"a" : "+inf"
"a" : "-inf"

complex z "z": [1, -2.3]

array[5] int "a" : [1, 2, 3, 4, 5]
array[5] real a "a" : [ 1, 2, 3.3, "NaN", 5 ]

array[2] complex b "b" : [[1, -2.3], [4.9, 0]]

vector[5] a "a" : [1, 2, 3.3, "NaN", 5]
row_vector[5] a "a" : [1, 2, 3.3, "NaN", 5]

matrix[2, 3] a "a" : [[ 1, 2, 3 ], [ 4, 5, 6]]

complex_vector[2] c "c" : [[-1.2, 3.3], [4.8, 1.9], [2.3, 0]]
complex_row_vector[2] c "c" : [[-1.2, 3.3], [4.8, 1.9], [2.3, 0]]

complex_matrix[2, 3] d "d" : [[[1, 1], [2, 2], [3, 3]],
[4, 4], [5, 5], [6, 6]]]

tuple(real, array[2] int)
t

"t" : { "1": 1.4, "2": [1, 2]}

Empty arrays in JSON
JSON notation is not able to distinguish between multi-dimensional arrays where
any dimension is 0, e.g., a 2-D array with dimensions (1, 0), i.e., an array which
contains a single array which is empty, has JSON representation [ ]. To see how
this works, consider the following Stan program data block:

data {
int d;
array[d] int ar_1d;
array[d, d] int ar_2d;
array[d, d, d] int ar_3d;

}
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In the case where variable d is 1, all arrays will contain a single value. If array
variable ar_d1 contains value 7, 2-D array variable ar_d2 contains (an array which
contains) value 8, and 3-D array variable ar_d3 contains (an array which contains
an array which contains) value 9, the JSON representation is:

{ "ar_d1" : [7],
"ar_d2" : [[8]],
"ar_d3" : [[[9]]]

}

However, in the case where variable d is 0, ar_d1 is empty, i.e., it contains no values,
as is ar_d2, ar_d3, and the JSON representation is

{ "d" : 0,
"ar_d1" : [ ],
"ar_d2" : [ ],
"ar_d3" : [ ]

}



25. RDump Format for CmdStan

NOTE: Although the RDump format is still supported, I/O with JSON is faster and
recommended. See the chapter on JSON for more details.

RDump format can be used to represent values for Stan variables. This format was
introduced in SPLUS and is used in R, JAGS, and in BUGS (but with a different
ordering).

A dump file is structured as a sequence of variable definitions. Each variable is
defined in terms of its dimensionality and its values. There are three kinds of
variable declarations: - scalars - sequences - general arrays

25.1. Creating dump files
Dump files can be created from R using RStan, via the rstan package function
stan_rdump. Stan RDump files must be created via stan_rdump and not by R’s
native dump function because R’s dump function uses a richer syntax than is supported
by the underlying Stan i/o libraries.

25.2. Scalar variables
A simple scalar value can be thought of as having an empty list of dimensions. Its
declaration in the dump format follows the SPLUS assignment syntax. For example,
the following would constitute a valid dump file defining a single scalar variable y
with value 17.2:

y <- 17.2

25.3. Sequence variables
One-dimensional arrays may be specified directly using the SPLUS sequence notation.
The following example defines an integer-value and a real-valued sequence.

n <- c(1,2,3) y <- c(2.0,3.0,9.7)

Arrays are provided without a declaration of dimensionality because the reader just
counts the number of entries to determine the size of the array.

Sequence variables may alternatively be represented with R’s colon-based notation.
For instance, the first example above could equivalently be written as

n <- 1:3

118
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The sequence denoted by 1:3 is of length 3, running from 1 to 3 inclusive. The colon
notation allows sequences going from high to low. The following are equivalent:

n <- 2:-2
n <- c(2,1,0,-1,-2)

As a special case, a sequence of zeros can also be represented in the dump format
by integer(x) and double(x), for type int and double, respectively. Here x is a
non-negative integer to specify the length. If x is 0, it can be omitted. The following
are some examples.

x1 <- integer()
x2 <- integer(0)
x3 <- integer(2)
y1 <- double()
y2 <- double(0)
y3 <- double(2)

25.4. Array variables
For more than one dimension, the dump format uses a dimensionality specification.
For example, the following defines a 2 × 3 array:

y <- structure(c(1,2,3,4,5,6), .Dim = c(2,3))

Data is stored column-major, thus the values for y will be:

y[1, 1] = 1
y[1, 2] = 3
y[1, 3] = 5
y[2, 1] = 2
y[2, 2] = 4
y[2, 3] = 6

The structure keyword just wraps a sequence of values and a dimensionality
declaration, which is itself just a sequence of non-negative integer values. The
product of the dimensions must equal the length of the array.

If the values happen to form a contiguous sequence of integers, they may be written
with colon notation. Thus the example above is equivalent to the following.

y <- structure(1:6, .Dim = c(2,3))

Sequence notation can be used within any call to the generic c() function in R. In
the above example, c(2,3) could be written as c(2:3).
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The generalization of column-major indexing is last-index major indexing. Arrays of
more than two dimensions are written in a last-index major form. For example,

z <- structure(1:24, .Dim = c(2,3,4))

produces a three-dimensional int (assignable to real) array z with values:

z[1, 1, 1] = 1
z[2, 1, 1] = 2
z[1, 2, 1] = 3
z[2, 2, 1] = 4
z[1, 3, 1] = 5
z[2, 3, 1] = 6
z[1, 1, 2] = 7
z[2, 1, 2] = 8
z[1, 2, 2] = 9
z[2, 2, 2] = 10
z[1, 3, 2] = 11
z[2, 3, 2] = 12
z[1, 1, 3] = 13
z[2, 1, 3] = 14
z[1, 2, 3] = 15
z[2, 2, 3] = 16
z[1, 3, 3] = 17
z[2, 3, 3] = 18
z[1, 1, 4] = 19
z[2, 1, 4] = 20
z[1, 2, 4] = 21
z[2, 2, 4] = 22
z[1, 3, 4] = 23
z[2, 3, 4] = 24

If the underlying 3-D array is stored as a 1-D array in last-index major format, the
innermost array elements will be contiguous.

The sequence of values inside structure can also be integer(x) or double(x). In
particular, if one or more dimensions is zero, integer() can be put inside structure.
For instance, the following example is supported by the dump format.

y <- structure(integer(), .Dim = c(2,0))
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25.5. Matrix- and vector-valued variables
The dump format for matrices and vectors, including arrays of matrices and vectors,
is the same as that for arrays of the same shape.

Vector dump format
The following three declarations have the same dump format for their data.

array[K] real a;
vector[K] b;
row_vector[K] c;

Matrix dump format
The following declarations have the same dump format.

array[M, N] real a;
matrix[M, N] b;

Arrays of vectors and matrices
The key to understanding arrays is that the array indexing comes before any of the
container indexing. That is, an array of vectors is just that: each array element is a
vector. See the chapter on array and matrix types in the user’s guide section of the
language manual for more information.

For the dump data format, the following declarations have the same arrangement.

array[M, N] real a;
matrix[M, N] b;
array[M] vector[N] c;
array[M] row_vector[N] d;

Similarly, the following also have the same dump format.

array[P, M, N] real a;
array[P] matrix[M, N] b;
array[P, M] vector[N] c;
array[P, M] row_vector[N] d;

25.6. Complex-valued variables
At this time, there is no support for complex number input through the R dump
format. As an alternative, the JSON input format supports complex numbers.

25.7. Integer- and real-valued variables
There is no declaration in a dump file that distinguishes integer versus continuous
values. If a value in a dump file’s definition of a variable contains a decimal point
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(e.g., 132.3) or uses scientific notation (e.g., 1.323e2), Stan assumes that the values
are real.

For a single value, if there is no decimal point, it may be assigned to an int or
real variable in Stan. An array value may only be assigned to an int array if there
is no decimal point or scientific notation in any of the values. This convention is
compatible with the way R writes data.

The following dump file declares an integer value for y.

y <- 2

This definition can be used for a Stan variable y declared as real or as int. Assigning
an integer value to a real variable automatically promotes the integer value to a real
value.

Integer values may optionally be followed by L or l, denoting long integer values.
The following example, where the type is explicit, is equivalent to the above.

y <- 2L

The following dump file provides a real value for y.

y <- 2.0

Even though this is a round value, the occurrence of the decimal point in the value,
2.0, causes Stan to infer that y is real valued. This dump file may only be used for
variables y declared as real in Stan.

Scientific notation
Numbers written in scientific notation may only be used for real values in Stan. R
will write out the integer one million as 1e + 06.

Infinite and not-a-number values
Stan’s reader supports infinite and not-a-number values for scalar quantities (see the
section of the reference manual section of the language manual for more information
on Stan’s numerical data types). Both infinite and not-a-number values are supported
by Stan’s dump-format readers.

Value Preferred Form Alternative Forms

positive infinity Inf Infinity, infinity
negative infinity -Inf -Infinity, -infinity

not a number NaN
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These strings are not case sensitive, so inf may also be used for positive infinity, or
NAN for not-a-number.

25.8. Quoted variable names
In order to support JAGS data files, variables may be double quoted. For instance,
the following definition is legal in a dump file.

"y" <- c(1,2,3) \end{Verbatim}

25.9. Line breaks
The line breaks in a dump file are required to be consistent with the way R reads in
data. Both of the following declarations are legal.

y <- 2
y <-
3

Also following R, breaking before the assignment arrow are not allowed, so the
following is invalid.

y
<- 2 # Syntax Error

Lines may also be broken in the middle of sequences declared using the c(...)
notation., as well as between the comma following a sequence definition and the
dimensionality declaration. For example, the following declaration of a 2 × 2 × 3
array is valid.

y <-
structure(c(1,2,3,
4,5,6,7,8,9,10,11,
12), .Dim = c(2,2,
3))

Because there are no decimal points in the values, the resulting dump file may be
used for three-dimensional array variables declared as int or real.

25.10. BNF grammar for dump data
A more precise definition of the dump data format is provided by the following
(mildly templated) Backus-Naur form grammar.

definition ::= name <- value optional_semicolon

name ::= char* | ''' char* ''' | '"' char* '"'
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value ::= value<int> | value<double>

value<T> ::= T | seq<T> | zero_array<T> |
'structure' '(' seq<T> ',' ".Dim" '=' seq<int> ')' | 'structure'
'(' zero_array<T> ',' ".Dim" '=' seq<int> ')'

seq<int> ::= int ':' int | cseq<int>

zero_array<int> ::= "integer" '(' <non-negative int>? ')'

zero_array<real> ::= "double" '(' <non-negative int>? ')'

seq<real> ::= cseq<real>

cseq<T> ::= 'c' '(' vseq<T> ')'

vseq<T> ::= T | T ',' vseq<T>

The template parameters T will be set to either int or real. Because Stan allows
promotion of integer values to real values, an integer sequence specification in the
dump data format may be assigned to either an integer- or real-based variable in
Stan.



26. Using external C++ code

The --allow-undefined flag can be passed to the call to stanc, which will allow
undefined functions in the Stan language to be parsed without an error. We can then
include a definition of the function in a C++ header file.

This requires specifying two makefile variables:

• STANCFLAGS=--allow-undefined
• USER_HEADER=<header_file.hpp>, where <header_file.hpp> is the name

of a header file that defines a function with the same name and a compatible
signature. This function can appear in the global namespace or in the model
namespace, which is defined as the name of the model (either the file name,
or the --name argument to stanc) followed by _namespace.

This is an advanced feature which is only recommended to users familiar with the
internals of Stan’s Math library. Most existing C++ code will need to be modified to
work with Stan, to varying degrees.

As an example, consider the following variant of the Bernoulli example

functions {
real make_odds(data real theta);

}
data {

int<lower=0> N;
array[N] int<lower=0, upper=1> y;

}
parameters {

real<lower=0, upper=1> theta;
}
model {

theta ~ beta(1, 1); // uniform prior on interval 0, 1
y ~ bernoulli(theta);

}
generated quantities {

real odds;
odds = make_odds(theta);

}
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Here the make_odds function is declared but not defined, which would ordinarily
result in a parser error. However, if you put STANCFLAGS = --allow-undefined
into the make/local file or into the stanc call, then the stanc compiler will translate
this program to C++, but the generated C++ code will not compile unless you
write a file such as examples/bernoulli/make_odds.hpp with the following lines

#include <ostream>

double make_odds(const double& theta, std::ostream *pstream__) {
return theta / (1 - theta);

}

The signature for this function needs to fulfill all the usages in the C++ class emitted
by stanc. The pstream__ argument is mandatory in the signature but need not be
used if your function does not print any output. Because make_odds was declared
with a data argument and only used in generated quantites, a signature which
accepts and returns double is acceptable. Functions which will have parameters
passed as input in the transformed parameters or model blocks will require the
ability to accept Stan’s autodiff types. If you wish to autodiff through this function,
the simplest option is to make it a template, like

template <typename T>
T make_odds(const T &theta, std::ostream *pstream__)
{

return theta / (1 - theta);
}

Given the above, the following make invocation should work

> make STANCFLAGS=--allow-undefined USER_HEADER=examples/bernoulli/make_odds.hpp examples/bernoulli/bernoulli # on Windows add .exe

Alternatively, you could put STANCFLAGS and USER_HEADER into the make/local file
instead of specifying them on the command-line.

If the function were more complicated and involved functions in the Stan Math
Library, then you would need to add #include <stan/model/model_header.hpp>
and prefix the function calls with stan::math::.

26.1. Derivative specializations
External C++ functions are currently the only way to encode a function with a
known analytic gradient outside the Stan Math Library. This is done very simi-
larly to how a function would be added to the Math library with a reverse-mode
specialization. The following code is adapted from the Stan Math documentation.

https://mc-stan.org/math/md_doxygen_2contributor__help__pages_2getting__started.html
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Suppose you have the following (nonsensical) model which relies on a function
called my_dot_self. We will implement this as a copy of the built-in dot_self
function.

functions {
// both overloads end up using the same C++ template
real my_dot_self(vector theta);
real my_dot_self(row_vector theta);

}
data {

int<lower=0> N;
vector[N] input_data;

}
transformed data {

// no autodiff for data - will call using doubles
real ds = my_dot_self(input_data);

}
parameters {

row_vector[N] thetas;
}
model {

thetas ~ normal(0,1);
// autodiff - will call using stan::math::var types
input_data ~ normal(thetas, my_dot_self(thetas));

}

If you wanted to autodiff through this function, the following header would suffice1:

#include <stan/model/model_header.hpp>
#include <ostream>

template <typename EigVec, stan::require_eigen_vector_t<EigVec> * = nullptr>
inline stan::value_type_t<EigVec> my_dot_self(const EigVec &x, std::ostream *pstream__)
{

const auto &x_ref = stan::math::to_ref(x);
stan::value_type_t<EigVec> sum_x = 0.0;
for (int i = 0; i < x.size(); ++i)
{

1Details of programming in the Stan Math style are omitted from this section, it is presented only as
an example
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sum_x += x_ref.coeff(i) * x_ref.coeff(i);
}
return sum_x;

}

However, we know the derivative of this function directly. To leverage this, we could
use a more complicated form which has two function templates that differentiate
themselves based on whether or not derivatives are required:

#include <stan/model/model_header.hpp>
#include <ostream>

template <typename EigVec, stan::require_eigen_vector_t<EigVec> * = nullptr,
stan::require_not_st_var<EigVec> * = nullptr>

inline double my_dot_self(const EigVec &x, std::ostream *pstream__)
{

auto x_ref = stan::math::to_ref(x);
double sum = 0.0;
for (int i = 0; i < x.size(); ++i)
{

sum += x_ref.coeff(i) * x_ref.coeff(i);
}
return sum;

}

template <typename EigVec, stan::require_eigen_vt<stan::is_var, EigVec> * = nullptr>
inline stan::math::var my_dot_self(const EigVec &v, std::ostream *pstream__)
{

// (1) put v into our memory arena
stan::arena_t<EigVec> arena_v(v);
// (2) calculate forward pass using
// (3) the .val() method for matrices of var types
stan::math::var res = my_dot_self(arena_v.val(), pstream__);
// (4) Place a callback for the reverse pass on the callback stack.
stan::math::reverse_pass_callback(

[res, arena_v]() mutable
{ arena_v.adj() += 2.0 * res.adj() * arena_v.val(); });

return res;
}
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For more details about how to write C++ code using the Stan Math Library, see
the Math library documentation at https://mc-stan.org/math/ or the paper at
https://arxiv.org/abs/1509.07164.

26.2. Special functions: RNGs, distributions, editing target
Some functions have special meanings in Stan and place additional requirements on
their signatures if used in external C++.

• RNGs must end with _rng. They will be passed a “base RNG object” as the
second to last argument, before the pointer to the ostream. We recommend
making this a template, since it may change, but at the moment it is always a
boost::random::ecuyer1988 object.

• Functions which edit the target directly must end with _lp and will be passed
a reference to lp__ and a reference to a stan::math::accumulator object as
the final parameters before the ostream pointer. They are also expected to
have a boolean template parameter propto__ which controls whether or not
constant terms can be dropped.

• Probability distributions must end with _lpdf or _lpmf and will be passed a
boolean template parameter propto__ which controls whether or not constant
terms can be dropped.

https://mc-stan.org/math/
https://arxiv.org/abs/1509.07164
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