CmdStan User's Guide

Version 2.32

Stan Development Team

Contents

Reference Manual 42

Intr	oductio	on 5					
		Guide 7					
Qui	ckstart	Guide /					
1.	CmdStan Installation 8						
	1.1	Installation via conda 8					
	1.2 Installation from GitHub 9						
	1.3	Checking the Stan compiler 11					
	1.4	Troubleshooting the installation 12					
	1.5	C++ Toolchain 13					
	1.6	Using GNU Make 16					
2.	Example Model and Data 20						
3.	Compi	ling a Stan Program 21					
	3.1	Invoking the Make utility 21					
	3.2	Dependencies 21					
	3.3	Compiler errors 22					
	3.4	Troubleshooting C++ compiler or linker errors 23					
	3.5	C++ compilation and linking flags 24					
4.	MCMC Sampling 25						
	4.1	Running the sampler 25					
	4.2	Running multiple chains 26					
	4.3	Stan CSV output file 28					
	4.4	$Summarizing \ sampler \ output (s) \ with \ \mathtt{stansummary} 30$					
5.	Optim	ization 32					
6.	Variati	onal Inference 35					

Generating Quantities of Interest from a Fitted Model 39

8.	Command-Line Interface Overview 43							
	8.1	Input data argument 43						
	8.2	Output control arguments 44						
	8.3	Initialize model parameters argument 45						
	8.4	Random number generator arguments 45						
	8.5	Chain identifier argument: id 46						
	8.6	Command line help 46						
	8.7	Error messages and return codes 46						
9.	MCM	MCMC Sampling using Hamiltonian Monte Carlo 48						
	9.1	Iterations 49						
	9.2	Adaptation 50						
	9.3	Algorithm 52						
	9.4	Sampler diagnostic file 54						
	9.5	Examples 54						
10.	Maximum Likelihood Estimation 61							
	10.1	Jacobian adjustments 61						
	10.2	Optimization algorithms 62						
	10.3	The quasi-Newton optimizers 62						
	10.4	The Newton optimizer 63						
11.	Variat	tional Inference Algorithm: ADVI 64						
	11.1	Variational algorithms 65						
	11.2	Configuration 65						
	11.3	CSV output 66						
12.	Stand	alone Generate Quantities 68						
13.	Laplace sampling 69							
	13.1	Configuration 69						
	13.2	CSV output 69						
	13.3	Example 70						
14.	Extra	cting log probabilities and gradients for diagnostics	72					
	14.1	Configuration 72						
	14.2	CSV output 72						

15.	Diagn	osing HMC by Comparison of Gradients 75					
16.	Parall	Parallelization 77					
	16.1	Multi-threading with TBB 77					
	16.2	Multi-processing with MPI 78					
	16.3	OpenCL 79					
Cm	dStan T	Tools 81					
17.	7. stanc: Translating Stan to C++ 82						
	17.1	Instantiating the stanc binary 82					
	17.2	The Stan compiler program 82					
18.	stans	ummary: MCMC Output Analysis 84					
	18.1	Building the stansummary command 84					
	18.2	Running the stansummary program 85					
	18.3	Command-line options 87					
19.	diagn	ose: Diagnosing Biased Hamiltonian Monte Carlo Infer-					
	_	88					
	19.1	Building the diagnose command 88					
	19.2	Running the diagnose command 88					
	19.3	diagnose warnings and recommendations 91					
20.	print	(deprecated): MCMC Output Analysis 94					
Арр	endice	s 95					
21.	Stan (CSV File Format 96					
	21.1	CSV column names and order 96					
	21.2	MCMC sampler CSV output 97					
	21.3	Optimization output 102					
	21.4	Variational inference output 102					
	21.5	Generate quantities outputs 102					
	21.6	Diagnose method outputs 102					
22.	JSON	Format for CmdStan 103					
	22.1	Creating JSON files 103					
	22.2	JSON syntax summary 103					

	22.3	Stan data types in JSON notation 105						
23.	. RDump Format for CmdStan 108							
	23.1	Creating dump files 108						
	23.2	Scalar variables 108						
	23.3	Sequence variables 108						
	23.4 Array variables 109							
	23.5 Matrix- and vector-valued variables 111							
	23.6 Complex-valued variables 111							
	23.7 Integer- and real-valued variables 111							
	23.8	Quoted variable names 113						
	23.9	Line breaks 113						
	23.10	BNF grammar for dump data 113						
24.	Using	external C++ code 115						
	24.1	Derivative specializations 116						
	24.2	Special functions: RNGs, distributions, editing target	119					

Bibliography 120

Introduction

This document is a user's guide for CmdStan, the command-line interface to the Stan statistical modeling language. CmdStan provides the programs and tools to compile Stan programs into C++ executables that can be run directly from the command line, together with a few utilities to check and summarize the resulting outputs.

In CmdStan, statistical models written in the Stan probabilistic programming language are translated into a C++ program which is then compiled together with the CmdStan routines that provide the logic needed to manage all user inputs and program outputs and the Stan inference algorithms and math library. The resulting command line executable program can be used to

- do inference on data, producing an exact or approximate estimate of the posterior;
- generate new quantities of interest from an existing estimate;
- generate data from the model according to a given set of parameters.

The packages CmdStanR and CmdStanPy provide interfaces to CmdStan from R and Python, respectively, similarly, JuliaStan also interfaces with CmdStan.

Stan home page

For links to up-to-date code, examples, manuals, bug reports, feature requests, and everything else Stan related, see the Stan home page:

http://mc-stan.org/

Licensing

CmdStan, Stan, and the Stan Math Library are licensed under the new BSD license (3-clause). See the Stan Reference Manual Licenses section for licensing terms for Stan.

Stan documentation: user's guide and reference manuals

The Stan user's guide provides example models and programming techniques for coding statistical models in Stan. It also serves as an example-driven introduction to

Bayesian modeling and inference:

http://mc-stan.org/docs/stan-users-guide

Stan's modeling language is shared across all of its interfaces. The Stan Language Reference Manual provides a concise definition of the language syntax for all elements in the language.

http://mc-stan.org/docs/reference-manual

The Stan Functions Reference provides definitions and examples for all the functions defined in the Stan math library and available in the Stan programming language, including all probability distributions.

http://mc-stan.org/docs/functions-reference.

Benefits of CmdStan

- With every new Stan release, there is a corresponding CmdStan release, therefore CmdStan provides access to the latest version of Stan, and can be used to run the development version of Stan as well.
- Of the Stan interfaces, CmdStan has the lightest memory footprint, therefore it can fit larger and more complex models. It has has the fewest dependencies, which makes it easier to run in limited environments such as clusters.
- The output generated is in CSV format and can be post-processed using other Stan interfaces or general tools.

QuickStart Guide

This section is designed to help users install CmdStan and get acquainted with the CmdStan interface.

1. CmdStan Installation

There are a few ways that you can install CmdStan. Depending on your operating system and your level of expertise, you can either:

- Use the conda package management system to install a pre-built version of CmdStan along with the required dependencies. Recommended for Windows users.
- Install the source code from GitHub CmdStan repository. This requires a modern C++ compiler and toolchain. See the C++ Toolchain section for further details.

1.1. Installation via conda

With conda, you can install CmdStan from the conda-forge channel. This will install a pre-built version of CmdStan along with the required dependencies (i.e. a C++ compiler, a version of Make, and required libraries) detailed below under [Source installation]. The conda installation is designed so one can use the R or Python bindings to CmdStan seamlessly. Additionally, it provides the command cmdstan_model to activate the CmdStan makefile from anywhere.

Note: This requires that conda has been installed already on your machine. You can either install miniconda, a free, minimal installer for conda or you can get the full Anaconda system which provides graphical installer wizards for MacOS and Windows users.

We recommend installing CmdStan in a new conda environment:

```
conda create -n stan -c conda-forge cmdstan
```

This command creates a new conda environment named stan and downloads and installs the cmdstan package as well as CmdStan and the required C++ toolchain.

To install into an existing conda environment, use the conda install command instead of create:

```
conda install -c conda-forge cmdstan
```

Whichever installation method you use, afterwards you must activate the new environment or deactivate/activate the existing one. For example, if you installed cmdstan into a new environment stan, run the command

conda activate stan

By default, the latest release of CmdStan is installed. If you require a specific release of CmdStan, CmdStan versions 2.26.1 and *newer* can be installed by specifying cmdstan==VERSION in the install command. For example to install an earlier version of CmdStan into your current conda environment, run the following command, then re-activate the environment

conda install -c conda-forge cmdstan=2.27.0

CmdStan install location under conda

A Conda environment is a directory that contains a specific collection of Conda packages. To see the locations of your conda environments, use the command

```
conda info -e
```

The shell environment variable CONDA_PREFIX points to the active conda environment (if any). Both CmdStan and the C++ toolchain are installed into the bin subdirectory of the conda environment directory, i.e., \$CONDA_PREFIX/bin/cmdstan (Linux, MacOS), %CONDA_PREFIX%\bin\cmdstan (Windows).

Please report conda-specific install problems directly to the conda-forge issue tracker, here.

1.2. Installation from GitHub

Installation from GitHub consists of the following steps:

- Verify that you have a modern C++ toolchain. See the C++ Toolchain section for details.
- Download the CmdStan source code from GitHub
- Build the CmdStan libraries and executables
- Check the installation by compiling and running the CmdStan example model bernoulli.stan.

Downloading the source code

The GitHub source code is divided into sub-modules, each in its own repository. The CmdStan repo contains just the cmdstan module; the Stan inference engine algorithms and Stan math library functions are specified as submodules and stored in the GitHub repositories stan and math, respectively.

A CmdStan release is compressed tarfile which contains CmdStan and the Stan and math library submodules. The most recent CmdStan release is always available as https://github.com/stan-dev/cmdstan/releases/latest. A CmdStan release is

versioned by major, minor, patch numbers, e.g., "2.29.2." The release tarfile unpacks into a directory named "cmdstan-," e.g. "cmdstan-2.29.2."

By cloning the CmdStan repository with argument --recursive, Git automatically initializes and updates each submodule in the repository, including nested submodules if any of the submodules in the repository have submodules themselves. The following command will download the source code from the current development branch of CmdStan into a directory named cmdstan:

> git clone https://github.com/stan-dev/cmdstan.git --recursive

Throughout this manual, we refer to this top-level CmdStan source directory as <mdstan-home>. This directory contains the following subdirectories:

- directory cmdstan/stan contains the sub-module stan (https://github.com/stan-dev/stan)
- directory cmdstan/stan/lib/stan_math contains the sub-module math (https://github.com/stan-dev/math)

Building CmdStan

Building CmdStan involves preparing a set of executable programs and compiling the command line interface and supporting libraries. The CmdStan tools are:

- stanc: the Stan compiler (translates Stan language to C++).
- stansummary: a basic posterior analysis tool. The stansummary utility processes one or more output files from a run or set of runs of Stan's HMC sampler. For all parameters and quantities of interest in the Stan program, stansummary reports a set of statistics including mean, standard deviation, percentiles, effective number of samples, and \hat{R} values.
- diagnose: a basic sampler diagnostic tool which checks for indications that the HMC sampler was unable to sample from the full posterior.

CmdStan releases include pre-built binaries of the Stan language compiler (ht tps://github.com/stan-dev/stanc3): bin/linux-stanc, bin/mac-stanc and bin/windows-stanc. The CmdStan makefile build task copies the appropriate binary to bin/stanc. For CmdStan installations which have been cloned of downloaded from the CmdStan GitHub repository, the makefile task will download the appropriate OS-specific binary from the stanc3 repository's nightly release.

Steps to build CmdStan:

• Open a command-line terminal window and change directories to the CmdStan home directory.

• Run the makefile target build which instantiates the CmdStan utilities and compiles all necessary C++ libraries.

```
> cd <cmdstan-home>
> make build # on Windows use mingw32-make
```

If your computer has multiple cores and sufficient ram, the build process can be parallelized by providing the -j option. For example, to build on 4 cores, type:

```
> make -j4 build # on Windows use mingw32-make
```

When make build is successful, the directory <cmdstan-home>/bin/ will contain the executables stanc, stansummary, and diagnose (on Windows, corresponding .exe files) and the final lines of console output will show the version of CmdStan that has just been built, e.g.:

```
--- CmdStan v2.29.2 built ---
```

Warning: The Make program may take 10+ minutes and consume 2+ GB of memory to build CmdStan.

Windows only: CmdStan requires that the Intel TBB library, which is built by the above command, can be found by the Windows system. This requires that the directory <cmdstan-home>/stan/lib/stan_math/lib/tbb is part of the PATH environment variable. See these instructions for details on changing the PATH. To permanently make this setting for the current user, you may execute:

```
> mingw32-make install-tbb
```

After changing the PATH environment variable, you must open an new shell in order for the new environment variable settings to take effect. (This is not necessary on Mac and Linux systems because they can use the absolute path to the Intel TBB library when linking into Stan programs.)

1.3. Checking the Stan compiler

To check that the CmdStan installation is complete and in working order, run the following series of commands from the folder which CmdStan was installed.

On Linux and macOS:

```
# compile the example
```

> make examples/bernoulli/bernoulli

```
# fit to provided data (results of 10 trials, 2 out of 10 successes)
```

> ./examples/bernoulli/bernoulli sample data file=examples/bernoulli/bernoul

```
# default output written to file `output.csv`,
# default num_samples is 1000, output file should have approx. 1050 lines
> ls -l output.csv

# run the `bin/stansummary utility to summarize parameter estimates
> bin/stansummary output.csv
On Windows:
# compile the example
> mingw32-make examples/bernoulli/bernoulli.exe

# fit to provided data (results of 10 trials, 2 out of 10 successes)
> ./examples/bernoulli/bernoulli.exe sample data file=examples/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoulli/bernoull
```

The sample data in file bernoulli.json.data specifies 2 out of 10 successes, therefore the range mean(theta) \pm sd(theta) should include 0.2.

1.4. Troubleshooting the installation

> bin/stansummary.exe output.csv

Updates to CmdStan, changes in compiler options, or updates to the C++ toolchain may result in errors when trying to compile a Stan program. Often, these problems can be resolved by removing the existing CmdStan binaries and recompiling. To do this, you must run the makefile commands from the <cmdstan-home> directory:

```
> cd <cmdstan-home>
> make clean-all  # on Windows use mingw32-make
> make build
```

Common problems

This section contains solutions to problems reported on https://discourse.mc-stan.org

Compiler error message about PCH file

To speed up compilation, the Stan makefile pre-compiles parts of the core Stan library. If these pre-compiled files are out of sync with the compiled model, the compiler will complain, e.g.:

error: PCH file uses an older PCH format that is no longer supported

In this case, clean and rebuild CmdStan, as shown in the previous section.

Windows: 'mingw32-make' is not recognised

If the C++ toolchain has been installed but not properly registered, then the call to mingw32-make will result in error message:

```
'mingw32-make' is not recognised as an internal or external command
```

To fix this, ensure you have followed the steps for adding the toolchain to your PATH and installing the additional utilities covered in the configuration instructions

Windows: 'g++' or 'cut' is not recognized

The CmdStan makefile uses a few shell utilities which might not be present in Windows, resulting in the error message:

```
'cut' is not recognized as an internal or external command, operable program
```

To fix this, ensure you have followed the steps for adding the toolchain to your PATH and installing the additional utilities covered in the configuration instructions

1.5. C++ Toolchain

Compiling a Stan program requires a modern C++ compiler and the GNU Make build utility (a.k.a. "gmake"). These vary by operating system.

Linux

The required C++ compiler is g++ 4.9 3. On most systems the GNU Make utility is pre-installed and is the default make utility. There is usually a pre-installed C++ compiler as well, however, it may not be new enough. To check, run commands:

```
g++ --version
make --version
```

If these are at least at g++ version 4.9.3 or later and make version 3.81 or later, no additional installations are necessary. It may still be desirable to update the C++ compiler g++, because later versions are faster.

To install the latest version of these tools (or upgrade an older version), use the following commands or their equivalent for your distribution, install via the commands:

```
sudo apt install g++
sudo apt install make
```

If you can't run sudo, you will need to ask your sysadmin or cluster administrator to install these tools for you.

MacOS

To install a C++ development environment on a Mac, use Apple's Xcode development environment https://developer.apple.com/xcode/.

From the Xcode home page View in Mac App Store.

- From the App Store, click Install, enter an Apple ID, and wait for Xcode to finish installing.
- Open the Xcode application, click top-level menu Preferences, click top-row button Downloads, click button for Components, click on the Install button to the right of the Command Line Tools entry, then wait for it to finish installing.
- Click the top-level menu item Xcode, then click item Quit Xcode to quit.

To test, open the Terminal application and enter:

```
clang++ --version
make --version
```

If you have installed XCode, but don't have make, you can install the XCode commandline tools via command:

```
xcode-select --install
```

Windows

The Windows toolchain consists of programs g++, the C++ compiler, and mingw32-make, the GNU Make utility. To check if these are present, open a command shell¹ and type:

```
g++ --version
mingw32-make --version
```

CmdStan is known compatible with the RTools40, RTools42, and RTools43 toolchains. These require slightly different steps to configure, so please follow the appropriate steps below. All toolchains will require updating your PATH variable, See these instructions for details on changing the PATH if you are unfamiliar. The following

¹To open a Windows command shell, first open the **Start Menu**, (usually in the lower left of the screen), select option **All Programs**, then option **Accessories**, then program **Command Prompt**. Alternatively, enter [Windows+r] (both keys together on the keyboard), and enter cmd into the text field that pops up in the Run window, then press [Return] on the keyboard to run.

instructions will assume that the default installation directory was used, so be sure to update the paths accordingly if you have chosen a different directory.

1.5.0.3.1 RTools40 RTools40 provides both a standard g++-8 toolchain and a g++-10 Universal C Runtime (UCRT) toolchain. Note the that newer g++-10 UCRT toolchain is only available for 64-bit systems, whereas the g++-8 toolchain is available for both. Additionally the UCRT is only natively supported on Windows 10 and newer, older systems will require a Microsoft update

1.5.0.3.1.1 Installation Download the installer and complete the prompts to install.

Next, you need to add the location of the toolchain to your PATH environment variable so that it can be called from the command line. Add the following lines to your PATH:

C:\rtools40\usr\bin

```
# Add only one of the below
C:\rtools40\mingw32\bin  # 32-bit g++-8
C:\rtools40\mingw64\bin  # 64-bit g++-8
C:\rtools40\ucrt64\bin  # 64-bit g++-10 (UCRT)
```

CmdStan additionally needs the mingw32-make utility, which you can install using RTools. Navigate to the installation directory (e.g., C:\rtools40) and launch the msys2.exe file. Execute the appropriate command below to install mingw32-make for your selected toolchain:

```
      pacman -Sy mingw-w64-i686-make
      # 32-bit g++-8

      pacman -Sy mingw-w64-x86_64-make
      # 64-bit g++-8

      pacman -Sy mingw-w64-ucrt-x86 64-make
      # 64-bit g++-10 (UCRT)
```

- **1.5.0.3.2 RTools42 & RTools43** Both RTools42 & RTools43 provide 64-bit UCRT toolchains, where RTools42 provides g++-10 and RTools43 provides g++-12. The installation/configuration is identical for both toolchains.
- **1.5.0.3.2.1 Installation** Download the installer for your preferred toolchain and complete the prompts for installation:
 - RTools42
 - RTools43

Next, you need to add the toolchain directory to your PATH variable. Add the appropriate lines from below:

RTools42

C:\rtools42\usr\bin

C:\rtools42\ucrt64\bin

RTools43

C:\rtools43\usr\bin

C:\rtools43\ucrt64\bin

Next, you need to install the mingw32-make utility and some additional compiler dependencies. Navigate to the installation directory of the toolchain and launch the msys2.exe file. Execute the below commands to install the needed dependencies:

```
pacman -Sy mingw-w64-ucrt-x86_64-make mingw-w64-ucrt-x86_64-gcc
```

Finally, some additional compilation flags will be needed for CmdStan. Navigate to the CmdStan/make directory and create a file called local. Add the following lines to the file:

```
CXXFLAGS += -Wno-nonnull
TBB_CXXFLAGS= -U__MSVCRT_VERSION__ -D__MSVCRT_VERSION__=0x0E00
```

32-bit Builds

CmdStan defaults to a 64-bit build. On a 32-bit operating system, you must specify the make variable BIT=32 as part of the make command, described in the next section.

1.6. Using GNU Make

CmdStan relies on the GNU Make utility to build both the Stan model executables and the CmdStan tools.

GNU Make builds executable programs and libraries from source code by reading files called Makefiles which specify how to derive the target program. A Makefile consists of a set of recursive rules where each rule specifies a target, its dependencies, and the specific operations required to build the target. Specifying dependencies for a target provides a way to control the build process so that targets which depend on other files will be updated as needed *only* when there are changes to those other files. Thus Make provides an efficient way to manage complex software.

The CmdStan Makefile is in the <cmdstan-home> directory and is named makefile. This is one of the default GNU Makefile names, which allows you to omit the

-f makefile argument to the Make command. Because the CmdStan Makefile includes several other Makefiles, **Make only works properly when invoked from the <cmdstan-home> directory**; attempts to use this Makefile from another directory by specifying the full path to the file makefile won't work. For example, trying to call Make from another directory by specifying the full path the makefile results in the following set of error messages:

```
make -f ~/github/stan-dev/cmdstan/makefile
```

```
/Users/mitzi/github/stan-dev/cmdstan/makefile:58: make/stanc: No such file of /Users/mitzi/github/stan-dev/cmdstan/makefile:59: make/program: No such file of /Users/mitzi/github/stan-dev/cmdstan/makefile:60: make/tests: No such file of /Users/mitzi/github/stan-dev/cmdstan/makefile:61: make/command: No such file make: *** No rule to make target `make/command'. Stop.
```

The conda-forge cmdstan package provides a solution to this problem via cmdstan_model command which lets you run the CmdStan makefile from anywhere to compile a Stan model.

Makefile syntax allows general pattern rules based on file suffixes. Stan programs must be stored in files with suffix .stan; the CmdStan makefile rules specify how to transform the Stan source code into a binary executable. For example, to compile the Stan program my_program.stan in directory ../my_dir/, the make target is ../my_dir/my_program or ../my_dir/my_program.exe (on Windows).

To call Make, you invoke the utility name, either make or mingw32-make, followed by, in order:

- zero or more Make program options, then specify any Make variables as a series of
- zero of more Make variables, described below
- zero or more target names; the set of names is determined by the Makefile rules.

make <flags> <variables> <targets>

Makefile Variables

Make targets can be preceded by any number of Makefile variable name=value pairs. For example, to compile ../my_dir/my_program.stan for an OpenCL (GPU) machine, set the makefile variable STAN_OPENCL to TRUE:

> make STAN OPENCL=TRUE ../my dir/my program # on Windows use mingw32-mak

Makefile variables can also be set by creating a file named local in the CmdStan make subdirectory which contains a list of <VARIABLE>=<VALUE> pairs, one per line. For example, if you are working on a 32-bit machine, you would put the line BIT=32 into the file <cmdstan-home>/make/local so that all CmdStan programs and Stan models compile properly.

The complete set of Makefile variables can be found in file <cmdstan-home>/cmdstan/stan/lib/stan_math/make/compiler_flags.

Make Targets

When invoked without any arguments at all, Make prints a help message:

> make # on Windows use mingw32-make

CmdStan v2.23.0 help

Build CmdStan utilities:

> make build

This target will:

- 1. Install the Stan compiler bin/stanc from stanc3 binaries.
- 2. Build the print utility bin/print (deprecated; will be removed in v3.
- 3. Build the stansummary utility bin/stansummary
- 4. Build the diagnose utility bin/diagnose
- 5. Build all libraries and object files compile and link an executable S

Note: to build using multiple cores, use the -j option to make, e.g., for 4 cores:

> make build -j4

Build a Stan program:

Given a Stan program at foo/bar.stan, build an executable by typing: > make foo/bar

This target will:

- 1. Install the Stan compiler (bin/stanc), as needed.
- 2. Use the Stan compiler to generate C++ code, foo/bar.hpp.
- 3. Compile the C++ code using cc . to generate foo/bar

Additional make options:

STANCFLAGS: defaults to "". These are extra options passed to bin/stanc when generating C++ code. If you want to allow undefined functions in Stan program, either add this to make/local or the command line:

STANCFLAGS = --allow_undefined

USER_HEADER: when STANCFLAGS has --allow_undefined, this is the name of header file that is included. This defaults to "user_header.hpp" in the directory of the Stan program.

Example - bernoulli model: examples/bernoulli/bernoulli.stan

- 1. Build the model:
 - > make examples/bernoulli/bernoulli
- 2. Run the model:
 - > examples/bernoulli/bernoulli sample data file=examples/bernoulli/be
- 3. Look at the samples:
 - > bin/stansummary output.csv

Clean CmdStan:

Remove the built CmdStan tools:

> make clean-all

2. Example Model and Data

The following is a simple, complete Stan program for a Bernoulli model of binary data. The model assumes the binary observed data $y[1], \ldots, y[N]$ are i.i.d. with Bernoulli chance-of-success theta.

```
data {
   int<lower=0> N;
   array[N] int<lower=0, upper=1> y;
}
parameters {
   real<lower=0, upper=1> theta;
}
model {
   theta ~ beta(1, 1); // uniform prior on interval 0,1
   y ~ bernoulli(theta);
}
```

The input data file contains definitions for the two variables N and y which are specified in the data block of program bernoulli.stan (above).

A data set of N=10 observations is included in the example Bernoulli model directory in both JSON notation and Rdump data format where 8 out of 10 trials had outcome 0 (failure) and 2 trials had outcome 1 (success). In JSON, this data is:

```
{
    "N" : 10,
    "y" : [0,1,0,0,0,0,0,0,0,1]
}
```

 $^{^{1}{\}rm The}$ model is available with the CmdStan distribution at the path <code><cmdstan-home>/examples/bernoulli/bernoulli.stan.</code>

3. Compiling a Stan Program

A Stan program must be in a file with extension .stan. The CmdStan makefile rules specify all necessary steps to translate files with suffix .stan to a CmdStan executable program. This is a two-stage process:

- first the Stan program is translated to C++ by the stanc compiler
- then the C++ compiler compiles all C++ sources and links them together with the CmdStan interface program and the Stan and math libraries.

3.1. Invoking the Make utility

To compile Stan programs, you must invoke the Make program from the <cmdstan-home> directory. The Stan program can be in a different directory, but the directory path names cannot contain spaces - this limitation is imposed by Make.

> cd <cmdstan home>

In the call to the Make program, the target is name of the CmdStan executable corresponding to the Stan program file. On Mac and Linux, this is the name of the Stan program with the .stan omitted. On Windows, replace .stan with .exe, and make sure that the path is given with slashes and not backslashes. To build the Bernoulli example, on Mac and Linux:

> make examples/bernoulli/bernoulli

On Windows, the command is the same with the addition of .exe at the end of the target (*note the use of forward slashes*):

> make examples/bernoulli/bernoulli.exe

The generated C++ code (bernoulli.hpp), object file (bernoulli.o) and the compiled executable will be placed in the same directory as the Stan program.

The compiled executable consists of the Stan model and the CmdStan command line interface which provides inference algorithms to do MCMC sampling, optimization, and variational inference. The following sections provide examples of doing inference using each method on the example model and data file.

3.2. Dependencies

When executing a Make target, all its dependencies are checked to see if they are up to date, and if they are not, they are rebuilt. If the you call Make with target

bernoulli twice in a row, without any editing bernoulli.stan or otherwise changing the system, on the second invocation, Make will determine that the executable is already newer than the Stan source file and will not recompile the program:

```
> make examples/bernoulli/bernoulli
make: `examples/bernoulli/bernoulli' is up to date.
```

If the file containing the Stan program is updated, the next call to make will rebuild the CmdStan executable.

3.3. Compiler errors

The Stan probabilistic programming language is a programming language with a rich syntax, as such, it is often the case that a carefully written program contains errors.

The simplest class of errors are simple syntax errors such as forgetting the semi-colon statement termination marker at the end of a line, or typos such as a misspelled variable name. For example, if in the bernoulli.stan program, we introduce a typo on line 9 by writing thata instead of theta, the Make command fails with the following

```
Identifier 'thata' not in scope.
```

```
make: *** [bernoulli.hpp] Error 1
```

Stan is a strongly-typed language; and the compiler will throw an error if statements or expressions violate the type rules. The following trivial program foo.stan contains an illegal assignment statement:

```
data {
   real x;
}
transformed data {
   int y = x;
}
```

The Make command fails with the following:

Semantic error in 'foo.stan', line 5, column 2 to column 12:

```
3: }
4: transformed data {
5:   int y = x;
6: }
```

Ill-typed arguments supplied to assignment operator =: lhs has type int and

The Stan Reference Manual provides a complete specification of the Stan programming language. The Stan User's Guide also contains a full description of the errors and warnings stanc can emit.

3.4. Troubleshooting C++ compiler or linker errors

If the stanc compiler successfully translates a Stan program to C++, the resulting C++ code should be valid C++ which can be compiled into an executable. The stanc compiler is also a program, and while it has been extensively tested, it may still contain errors such that the generated C++ code fails to compile.

The Make command prints the following message to the terminal at the point when it compiles and links the C++ file:

```
--- Compiling, linking C++ code ---
```

If the program fails to compile for any reason, the C++ compiler and linker will most likely print a long series of error messages to the console.

If this happens, please report the error, together with the Stan program on either the Stan Forums or on the Stan compiler GitHub issues tracker.

3.5. C++ compilation and linking flags

Users can set flags for the C++ compiler and linker and compiler to optimize their executables. We advise users to only do this once they are sure their basic setup of Cmdstan without flags works.

The CXXFLAGS and LDFLAGS makefile variables can be used to set compiler and linker flags respecitively. We recommend setting these in the make/local file.

For example:

CXXFI.AGS = -02

A recommend a set of CXXFLAGS and LDFLAGS flags can be turned on by setting STAN_CPP_OPTIMS=true in the make/local file. These are tested compiler and link-time optimizations that can speed up execution of certain models. We have observed speedups up to 15 percent, but this depends on the model, operating system and hardware used. The use of these flags does considerably slow down compilation, so they are not used by default.

Optimizing by ignoring range checks

When assigning or reading from with vectors, row_vectors, matrices or arrays using indexing, Stan performs cheks that a supplied index is valid (not out of range). These check avoids segmentation faults and other runtime errors that can be difficult to debug.

For some models these checks can represent a significant part of the models execution time. By setting the STAN_NO_RANGE_CHECKS=true makefile flag in the make/local file the range checks can be removed. Use this flag with caution (only once the indexing has been validated). In case of any unexpected behavior remove the flag for easier debugging.

4. MCMC Sampling

4.1. Running the sampler

To generate a sample from the posterior distribution of the model conditioned on the data, we run the executable program with the argument sample or method=sample together with the input data. The executable can be run from any directory. Here, we run it in the directory which contains the Stan program and input data, <cmdstan-home>/examples/bernoulli:

```
> cd examples/bernoulli
```

To execute sampling of the model under Linux or Mac, use:

```
> ./bernoulli sample data file=bernoulli.data.json
```

In Windows, the ./ prefix is not needed:

```
> bernoulli.exe sample data file=bernoulli.data.json
```

The output is the same across all supported platforms. First, the configuration of the program is echoed to the standard output:

```
method = sample (Default)
  sample
    num_samples = 1000 (Default)
    num_warmup = 1000 (Default)
    save_warmup = 0 (Default)
    thin = 1 (Default)
    adapt
      engaged = 1 (Default)
      gamma = 0.05000000000000000 (Default)
      delta = 0.80000000000000004 (Default)
      kappa = 0.75 (Default)
      t0 = 10 (Default)
      init_buffer = 75 (Default)
      term buffer = 50 (Default)
      window = 25 (Default)
    algorithm = hmc (Default)
        engine = nuts (Default)
```

```
nuts
            max_depth = 10 (Default)
       metric = diag_e (Default)
       metric_file = (Default)
        stepsize = 1 (Default)
        stepsize_jitter = 0 (Default)
id = 0 (Default)
data
 file = bernoulli.data.json
init = 2 (Default)
random
 seed = 3252652196 (Default)
output
 file = output.csv (Default)
 diagnostic file = (Default)
 refresh = 100 (Default)
```

After the configuration has been displayed, a short timing message is given.

```
Gradient evaluation took 1.2e-05 seconds 1000 transitions using 10 leapfrog steps per transition would take 0.12 second Adjust your expectations accordingly!
```

Next, the sampler reports the iteration number, reporting the percentage complete.

```
Iteration: 1 / 2000 [ 0%] (Warmup)
....

Iteration: 2000 / 2000 [100%] (Sampling)

Finally, the sampler reports timing information:

Elapsed Time: 0.007 seconds (Warm-up)
0.017 seconds (Sampling)
0.024 seconds (Total)
```

4.2. Running multiple chains

A Markov chain generates samples from the target distribution only after it has converged to equilibrium. In theory, convergence is only guaranteed asymptotically as the number of draws grows without bound. In practice, diagnostics must be applied to monitor convergence for the finite number of draws actually available. One way to monitor whether a chain has converged to the equilibrium distribution is to compare its behavior to other randomly initialized chains. For robust diagnostics, we recommend running 4 chains.

There are two different ways of running multiple chains, with the num_chains argument using a single executable and by using the Unix and DOS shell to run multiple executables. The former is currently supported and recommended when using the NUTS sampling algorithm with either the diagonal (diag_e) on dense (dense_e) metric.

Using the num chains argument to run multiple chains

The num_chains argument can be used with the NUTS sampling algorithm with either the diagonal (diag e) or dense (dense e) metric.

Example that will run 4 chains:

./bernoulli sample num_chains=4 data file=bernoulli.data.json output file=ou

If the model was not compiled with STAN_THREADS=true, the above command will run 4 chains sequentially and will produce the sample in output_1.csv, output_2.csv, output_3.csv, output_4.csv. A suffix with the chain id is appended to the provided output filename (output.csv in the above command).

If the model was compiled with STAN_THREADS=true, the chains can run in parallel, with the num_threads argument defining the maximum number of threads used to run the chains. If the model uses no within-chain parallelization (map_rect or reduce_sum calls), the below command will run 4 chains in parallel, provided there are cores available:

./bernoulli sample num_chains=4 data file=bernoulli.data.json output file=ou

If the model uses within-chain parallelization (map_rect or reduce_sum calls), the threads are automatically scheduled to run the parallel parts of a single chain or run the sequential parts of another chains. The below call starts 4 chains that can use 16 threads. At a given moment a single chain may use all 16 threads, 1 thread, anything in between, or can wait for a thread to be available. The scheduling is left to the Threading Building Blocks scheduler.

./bernoulli_par sample num_chains=4 data file=bernoulli.data.json output fil

Using shell for running multiple chains

To run multiple chains given a model and data, either sequentially or in parallel, we can also use the Unix or DOS shell for loop to set up index variables needed to identify each chain and its outputs.

On MacOS or Linux, the for-loop syntax for both the bash and zsh interpreters is:

for NAME [in LIST]; do COMMANDS; done

The list can be a simple sequence of numbers, or you can use the shell expansion syntax $\{1..N\}$ which expands to the sequence from 1 to N, e.g. $\{1..4\}$ expands to 1 2 3 4. Note that the expression $\{1..N\}$ cannot contain spaces.

To run 4 chains for the example bernoulli model on MacOS or Linux:

```
> for i in {1..4}
    do
        ./bernoulli sample data file=bernoulli.data.json \
        output file=output_${i}.csv
    done
```

The backslash (\) indicates a line continuation in Unix. The expression \${i} substitutes in the value of loop index variable i. To run chains in parallel, put an ampersand (&) at the end of the nested sampler command:

```
> for i in {1..4}
    do
        ./bernoulli sample data file=bernoulli.data.json \
        output file=output_${i}.csv &
        done
```

This pushes each process into the background which allows the loop to continue without waiting for the current chain to finish.

On Windows, the DOS for-loop syntax is one of:

```
for %i in (SET) do COMMAND COMMAND-ARGUMENTS for /1 %i in (START, STEP, END) do COMMAND COMMAND-ARGUMENTS
```

To run 4 chains in parallel on Windows:

The caret (^) indicates a line continuation in DOS.

4.3. Stan CSV output file

Each execution of the model results in draws from a single Markov chain being written to a file in comma-separated value (CSV) format. The default name of the output file is output.csv.

The first part of the output file records the version of the underlying Stan library and the configuration as comments (i.e., lines beginning with the pound sign (#)).

```
# stan_version_major = 2
# stan_version_minor = 23
# stan_version_patch = 0
# model = bernoulli_model
# method = sample (Default)
#
    sample
#
      num_samples = 1000 (Default)
#
      num warmup = 1000 (Default)
# output
    file = output.csv (Default)
    diagnostic_file = (Default)
    refresh = 100 (Default)
#
```

This is followed by a CSV header indicating the names of the values sampled.

```
lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,
```

The first output columns report the HMC sampler information:

- lp__ the total log probability density (up to an additive constant) at each sample
- accept_stat__ the average Metropolis acceptance probability over each simulated Hamiltonian trajectory
- stepsize__ integrator step size
- treedepth__ depth of tree used by NUTS (NUTS sampler)
- n_leapfrog__ number of leapfrog calculations (NUTS sampler)
- divergent__ has value 1 if trajectory diverged, otherwise 0. (NUTS sampler)
- energy__ value of the Hamiltonian
- int_time__ total integration time (static HMC sampler)

Because the above header is from the NUTS sampler, it has columns treedepth__, n_leapfrog__, and divergent__ and doesn't have column int_time__. The remaining columns correspond to model parameters. For the Bernoulli model, it is just the final column, theta.

The header line is written to the output file before warmup begins. If option save_warmup is set to 1, the warmup draws are output directly after the header. The total number of warmup draws saved is num_warmup divided by thin, rounded up (i.e., ceiling).

Following the warmup draws (if any), are comments which record the results of adaptation: the stepsize, and inverse mass metric used during sampling:

```
# Adaptation terminated
# Step size = 0.884484
# Diagonal elements of inverse mass matrix:
# 0.535006
```

The default sampler is NUTS with an adapted step size and a diagonal inverse mass matrix. For this example, the step size is 0.884484, and the inverse mass contains the single entry 0.535006 corresponding to the parameter theta.

Draws from the posterior distribution are printed out next, each line containing a single draw with the columns corresponding to the header.

```
-6.84097,0.974135,0.884484,1,3,0,6.89299,0.198853

-6.91767,0.985167,0.884484,1,1,0,6.92236,0.182295

-7.04879,0.976609,0.884484,1,1,0,7.05641,0.162299

-6.88712,1,0.884484,1,1,0,7.02101,0.188229

-7.22917,0.899446,0.884484,1,3,0,7.73663,0.383596

...
```

The output ends with timing details:

```
# Elapsed Time: 0.007 seconds (Warm-up)
# 0.017 seconds (Sampling)
# 0.024 seconds (Total)
```

4.4. Summarizing sampler output(s) with stansummary

The stansummary utility processes one or more output files from a run or set of runs of Stan's HMC sampler given a model and data. For all columns in the Stan CSV output file stansummary reports a set of statistics including mean, standard deviation, percentiles, effective number of samples, and \hat{R} values.

To run stansummary on the output files generated by the for loop above, by the above run of the bernoulli model on Mac or Linux:

```
<cmdstan-home>/bin/stansummary output_*.csv
```

On Windows, use backslashes to call the stansummary.exe.

```
<cmdstan-home>\bin\stansummary.exe output_*.csv
```

The stansummary output consists of one row of statistics per column in the Stan CSV output file. Therefore, the first rows in the stansummary report statistics over the sampler state. The final row of output summarizes the estimates of the model variable theta:

Inference for Stan model: bernoulli_model

4 chains: each with iter=(1000,1000,1000,1000); warmup=(0,0,0,0); thin=(1,1,

Warmup took (0.0070, 0.0070, 0.0070, 0.0070) seconds, 0.028 seconds total Sampling took (0.020, 0.017, 0.021, 0.019) seconds, 0.077 seconds total

	Mean	MCSE	StdDev	5%	50%	95%	N_Eff	N_Eff/s
lp	-7.3	1.8e-02	0.75	-8.8	-7.0	-6.8	1.8e+03	2.4e+04
accept_stat	0.89	2.7e-03	0.17	0.52	0.96	1.0	3.9e+03	5.1e+04
stepsize	1.1	7.5e-02	0.11	0.93	1.2	1.2	2.0e+00	2.6e+01
treedepth	1.4	8.1e-03	0.49	1.0	1.0	2.0	3.6e+03	4.7e+04
n_leapfrog	2.3	1.7e-02	0.98	1.0	3.0	3.0	3.3e+03	4.3e+04
divergent	0.00	nan	0.00	0.00	0.00	0.00	nan	nan
energy	7.8	2.6e-02	1.0	6.8	7.5	9.9	1.7e+03	2.2e+04
theta	0.25	2.9e-03	0.12	0.079	0.23	0.46	1.7e+03	2.1e+04

Samples were drawn using hmc with nuts.

For each parameter, N_Eff is a crude measure of effective sample size, and R_hat is the potential scale reduction factor on split chains (at convergence, $R_hat=1$).

In this example, we conditioned the model on a dataset consisting of the outcomes of 10 bernoulli trials, where only 2 trials reported success. The 5%, 50%, and 95% percentile values for theta reflect the uncertainty in our estimate, due to the small amount of data, given the prior of beta(1, 1)

5. Optimization

The CmdStan executable can run Stan's optimization algorithms which provide a deterministic method to find the posterior mode. If the posterior is not convex, there is no guarantee Stan will be able to find the global mode as opposed to a local optimum of log probability.

The executable does not need to be recompiled in order to switch from sampling to optimization, and the data input format is the same. The following is a minimal call to Stan's optimizer using defaults for everything but the location of the data file.

```
> ./bernoulli optimize data file=bernoulli.data.json
```

Executing this command prints both output to the console and to a csv file.

The first part of the console output reports on the configuration used. The above command uses all default configurations, therefore the optimizer used is the L-BFGS optimizer and its default initial stepsize and tolerances for monitoring convergence:

```
./bernoulli optimize data file=bernoulli.data.json
method = optimize
  optimize
    algorithm = lbfgs (Default)
      lbfgs
        init_alpha = 0.001 (Default)
        tol_obj = 1e-12 (Default)
        tol rel obj = 10000 (Default)
        tol_grad = 1e-08 (Default)
        tol rel grad = 10000000 (Default)
        tol param = 1e-08 (Default)
        history size = 5 (Default)
    iter = 2000 (Default)
    save iterations = 0 (Default)
id = 0 (Default)
data
  file = bernoulli.data.json
init = 2 (Default)
random
  seed = 87122538 (Default)
```

```
output
  file = output.csv (Default)
  diagnostic_file = (Default)
  refresh = 100 (Default)
```

The second part of the output indicates how well the algorithm fared, here converging and terminating normally. The numbers reported indicate that it took 5 iterations and 8 gradient evaluations. This is, not surprisingly, far fewer iterations than required for sampling; even fewer iterations would be used with less stringent user-specified convergence tolerances. The alpha value is for step size used. In the final state the change in parameters was roughly 0.002 and the length of the gradient roughly 3e-05 (0.00003).

```
Initial log joint probability = -6.85653

Iter log prob ||dx|| ||grad|| alpha alpha0

5 -5.00402 0.00184936 3.35074e-05 1 1

Optimization terminated normally:
```

Convergence detected: relative gradient magnitude is below tolerance

The output from optimization is written into the file output.csv by default. The output follows the same pattern as the output for sampling, first dumping the entire set of parameters used as comment lines:

```
# stan_version_major = 2
# stan_version_minor = 23
# stan_version_patch = 0
# model = bernoulli_model
# method = optimize
# optimize
# algorithm = lbfgs (Default)
```

Following the config information, are two lines of output: the CSV headers and the recorded values:

```
lp__,theta -5.00402,0.200003
```

Note that everything is a comment other than a line for the header, and a line for the values. Here, the header indicates the unnormalized log probability with lp__ and the model parameter theta. The maximum log probability is -5.0 and the posterior mode for theta is 0.20. The mode exactly matches what we would expect from the data. Because the prior was uniform, the result 0.20 represents the

maximum likelihood estimate (MLE) for the very simple Bernoulli model. Note that no uncertainty is reported.

All of the optimizers stream per-iteration intermediate approximations to the command line console. The sub-argument <code>save_iterations</code> specifies whether or not to save the intermediate iterations to the output file. Allowed values are 0 or 1, corresponding to <code>False</code> and <code>True</code> respectively. The default value is 0, i.e., intermediate iterations are not saved to the output file. Running the optimizer with <code>save_iterations=1</code> writes both the initial log joint probability and values for all iterations to the output CSV file.

Running the example model with option save_iterations=1, i.e., the command

> ./bernoulli optimize save_iterations=1 data file=bernoulli.data.json
produces CSV file output rows:

```
lp__,theta
```

- -6.85653,0.493689
- -6.10128,0.420936
- -5.02953,0.22956
- -5.00517,0.206107
- -5.00403,0.200299
- -5.00402,0.200003

6. Variational Inference

CmdStan can approximate the posterior distribution using variational inference. The approximation is a Gaussian in the unconstrained variable space. Stan implements two variational algorithms. The algorithm=meanfield option uses a fully factorized Gaussian for the approximation. The algorithm=fullrank option uses a Gaussian with a full-rank covariance matrix for the approximation.

The executable does not need to be recompiled in order to switch to variational inference, and the data input format is the same. The following is a minimal call to Stan's variational inference algorithm using defaults for everything but the location of the data file.

> ./bernoulli variational data file=bernoulli.data.R

Executing this command prints both output to the console and to a csv file.

The first part of the console output reports on the configuration used. Here it indicates the default mean-field setting of the variational inference algorithm. It also indicates the default parameter sizes and tolerances for monitoring the algorithm's convergence.

```
method = variational
  variational
    algorithm = meanfield (Default)
      meanfield
    iter = 10000 (Default)
    grad_samples = 1 (Default)
    elbo samples = 100 (Default)
    eta = 1 (Default)
    adapt
      engaged = 1 (Default)
      iter = 50 (Default)
    tol rel obj = 0.01 (Default)
    eval elbo = 100 (Default)
    output samples = 1000 (Default)
id = 0 (Default)
data
  file = bernoulli.data.json
```

```
init = 2 (Default)
random
  seed = 3323783840 (Default)
output
  file = output.csv (Default)
  diagnostic_file = (Default)
  refresh = 100 (Default)
```

After the configuration has been displayed, informational and timing messages are output:

EXPERIMENTAL ALGORITHM:

This procedure has not been thoroughly tested and may be unstable or buggy. The interface is subject to change.

Gradient evaluation took 2.1e-05 seconds

1000 transitions using 10 leapfrog steps per transition would take 0.21 secondjust your expectations accordingly!

The rest of the output describes the progression of the algorithm. An adaptation phase finds a good value for the step size scaling parameter eta. The evidence lower bound (ELBO) is the variational objective function and is evaluated based on a Monte Carlo estimate. The variational inference algorithm in Stan is stochastic, which makes it challenging to assess convergence. That is, while the algorithm appears to have converged in \sim 250 iterations, the algorithm runs for another few thousand iterations until mean change in ELBO drops below the default tolerance of 0.01.

Begin eta adaptation.

```
      Iteration:
      1 / 250 [ 0%]
      (Adaptation)

      Iteration:
      50 / 250 [ 20%]
      (Adaptation)

      Iteration:
      100 / 250 [ 40%]
      (Adaptation)

      Iteration:
      150 / 250 [ 60%]
      (Adaptation)

      Iteration:
      200 / 250 [ 80%]
      (Adaptation)
```

Success! Found best value [eta = 1] earlier than expected.

Begin stochastic gradient ascent.

```
iter ELBO delta_ELBO_mean delta_ELBO_med notes
100 -6.131 1.000 1.000
```

200	-6.458	0.525	1.000	
300	-6.300	0.359	0.051	
400	-6.137	0.276	0.051	
500	-6.243	0.224	0.027	
600	-6.305	0.188	0.027	
700	-6.289	0.162	0.025	
800	-6.402	0.144	0.025	
900	-6.103	0.133	0.025	
1000	-6.314	0.123	0.027	
1100	-6.348	0.024	0.025	
1200	-6.244	0.020	0.018	
1300	-6.293	0.019	0.017	
1400	-6.250	0.017	0.017	
1500	-6.241	0.015	0.010	MEDIAN ELBO CON

Drawing a sample of size 1000 from the approximate posterior...

The output from variational is written into the file output.csv by default. The output follows the same pattern as the output for sampling, first dumping the entire set of parameters used as CSV comments:

```
# stan_version_major = 2
# stan version minor = 23
# stan_version_patch = 0
# model = bernoulli_model
# method = variational
#
    variational
#
      algorithm = meanfield (Default)
#
        meanfield
#
      iter = 10000 (Default)
      grad samples = 1 (Default)
#
#
      elbo_samples = 100 (Default)
      eta = 1 (Default)
#
#
      adapt
        engaged = 1 (Default)
#
        iter = 50 (Default)
#
#
      tol_rel_obj = 0.01 (Default)
      eval_elbo = 100 (Default)
#
      output_samples = 1000 (Default)
#
```

. . .

Next is the column header line, followed more CSV comments reporting the adapted value for the stepsize, followed by the values. The first line is special: it is the mean of the variational approximation. The rest of the output contains output_samples number of samples drawn from the variational approximation.

```
lp__,log_p__,log_g__,theta
# Stepsize adaptation complete.
# eta = 1
0,0,0,0.236261
0,-6.82318,-0.0929121,0.300415
0,-6.89701,-0.158687,0.321982
0,-6.99391,-0.23916,0.343643
0,-7.35801,-0.51787,0.401554
0,-7.4668,-0.539473,0.123081
```

The header indicates the unnormalized log probability with 1p__. This is a legacy feature that we do not use for variational inference. The ELBO is not stored unless a diagnostic option is given.

For further details, see Kucukelbir, Alp, Rajesh Ranganath, Andrew Gelman, and David M. Blei. 2015. *Automatic Variational Inference in Stan.* arXiv 1506.03431. http://arxiv.org/abs/1506.03431.

7. Generating Quantities of Interest from a Fitted Model

The generated quantities block computes *quantities of interest* (QOIs) based on the data, transformed data, parameters, and transformed parameters. It can be used to:

- · generate simulated data for model testing by forward sampling
- generate predictions for new data
- calculate posterior event probabilities, including multiple comparisons, sign tests, etc.
- calculating posterior expectations
- transform parameters for reporting
- apply full Bayesian decision theory
- calculate log likelihoods, deviances, etc. for model comparison

The generate_quantities method allows you to generate additional quantities of interest from a fitted model without re-running the sampler. Instead, you write a modified version of the original Stan program and add a generated quantities block or modify the existing one which specifies how to compute the new quantities of interest. Running the generate_quantities method on the new program together with sampler outputs (i.e., a set of draws) from the fitted model runs the generated quantities block of the new program using the the existing sample by plugging in the per-draw parameter estimates for the computations in the generated quantities block. See the Stan User's Guide section Stand-alone generated quantities and ongoing prediction for further details.

To illustrate how this works we use the <code>generate_quantities</code> method to do posterior predictive checks using the estimate of <code>theta</code> given the example bernoulli model and data, following the posterior predictive simulation procedure in the Stan User's Guide.

We write a program bernoulli_ppc.stan which contains the following generated quantities block, with comments to explain the procedure:

```
generated quantities {
  real<lower=0, upper=1> theta_rep;
  array[N] int y_sim;
  // use current estimate of theta to generate new sample
```

```
for (n in 1:N) {
   y_sim[n] = bernoulli_rng(theta);
}
// estimate theta_rep from new sample
theta_rep = sum(y_sim) * 1.0 / N;
}
```

The rest of the program is the same as in bernoulli.stan.

The generate_method requires the sub-argument fitted_params which takes as its value the name of a Stan CSV file. The per-draw parameter estimates from the fitted params file will be used to run the generated quantities block.

If we run the bernoulli.stan program for a single chain to generate a sample in file bernoulli fit.csv:

> ./bernoulli sample data file=bernoulli.data.json output file=bernoulli_fit

Then we can run the bernoulli_ppc.stan to carry out the posterior predictive checks:

The output file bernoulli_ppc.csv consists of just the values for the variables declared in the generated quantities block, i.e., theta_rep and the elements of y_sim:

```
# model = bernoulli ppc model
# method = generate_quantities
   generate_quantities
#
      fitted_params = bernoulli_fit.csv
# id = 0 (Default)
# data
   file = bernoulli.data.json
# init = 2 (Default)
# random
    seed = 2135140492 (Default)
# output
#
   file = bernoulli_ppc.csv
#
   diagnostic file = (Default)
   refresh = 100 (Default)
#
```

```
theta_rep,y_sim.1,y_sim.2,y_sim.3,y_sim.4,y_sim.5,y_sim.6,y_sim.7,y_sim.8,y_0.2,0,0,1,0,0,0,0,0,0,0
0.3,1,0,0,1,0,1,0,0,0,0
0.8,1,0,1,1,1,1,1,1,0
0.1,0,0,0,0,0,1,0,0,0,0
0.3,0,0,0,0,0,1,1,1,0
```

Note: the only relevant analysis of the resulting CSV output is computing per-column statistics; this can easily be done in Python, R, Excel or similar, or you can use the CmdStanPy and CmdStanR interfaces which provide a better user experience for this workflow.

Given the current implementation, to see the fitted parameter values for each draw, create a copy variable in the generated quantities block, e.g.:

```
generated quantities {
  real<lower=0, upper=1> theta_cp = theta;
  real<lower=0, upper=1> theta_rep;
  array[N] int y_sim;
  // use current estimate of theta to generate new sample
  for (n in 1:N) {
    y_sim[n] = bernoulli_rng(theta);
  }
  // estimate theta_rep from new sample
  theta_rep = sum(y_sim) * 1.0 / N;
}
```

Now the output is slightly more interpretable: theta_cp is the same as the theta used to generate the values y_sim[1] through y_sim[1]. Comparing columns theta_cp and theta_rep allows us to see how the uncertainty in our estimate of theta is carried forward into our predictions:

```
theta_cp,theta_rep,y_sim.1,y_sim.2,y_sim.3,y_sim.4,y_sim.5,y_sim.6,y_sim.7,y 0.102391,0,0,0,0,0,0,0,0,0,0 0.519567,0.2,0,1,0,0,1,0,0,0,0 0.544634,0.6,1,0,0,0,0,1,1,1,1,1 0.167651,0,0,0,0,0,0,0,0,0,0 0.00 0.167651,0.1,1,0,0,0,0,0,0,0,0,0
```

Reference Manual

This section provides a complete reference for all CmdStan methods:

- sample
- optimize
- variational
- generate_quantities
- diagnose
- help

8. Command-Line Interface Overview

A CmdStan executable is built from the Stan model concept and the CmdStan command line parser. The command line argument syntax consists of sets of keywords and keyword-value pairs. Arguments are grouped by the following keywords:

- method specifies the kind of inference done on the model. Each kind of inference requires further configuration via sub-arguments. The method argument is required. It can be specified overtly as the a keyword-value pair method=<inference> or implicitly as one of the following:
 - sample obtain a sample from the posterior using HMC
 - optimize penalized maximum likelihood estimation
 - variational automatic variational inference
 - generate_quantities run model's generated quantities block on existing sample to obtain new quantities of interest.
 - log_prob compute the log probability and gradient of the model for one set of parameters.
 - diagnose compute and compare sampler gradient calculations to finite differences.
- data specifies the input data file, if any.
- output specifies program outputs, both disk files and terminal window outputs.
- init specifies initial values for the model parameters, if any.
- random specifies the seed for the pseudo-random number.

The remainder of this chapter covers the general configuration options used for all processing. The following chapters cover the per-inference configuration options.

8.1. Input data argument

The values for all variables declared in the data block of the model are read in from an input data file in either JSON or Rdump format. The syntax for the input data argument is:

data file=<filepath>

The keyword data must be followed directly by the keyword-value pair

file=<filepath>. If the model doesn't declare any data variables, this argument is ignored.

The input data file must contain definitions for all data variables declared in the data block. If one or more data block variables are missing from the input data file, the program prints an error message to stderr and returns a non-zero return code. For example, the model bernoulli.stan defines two data variables N and y. If the input data file doesn't include both variables, or if the data variable doesn't match the declared type and dimensions, the program will exit with an error message at the point where it first encounters missing data.

For example if the input data file doesn't include the definition for variable y, the executable exits with the following message:

Exception: variable does not exist; processing stage=data initialization; variable does not exist e

8.2. Output control arguments

The output keyword is used to specify non-default options for output files and messages written to the terminal window. The output keyword takes several keyword-value pair sub-arguments.

The keyword value pair file=<filepath> specifies the location of the Stan CSV output file. If unspecified, the output file is written to a file named output.csv in the current working directory.

The keyword value pair diagnostic_file=<filepath> specifies the location of the auxiliary output file. By default, no auxiliary output file is produced. This option is only valid for the iterative algorithms sample and variational.

The keyword value pair refresh=<int> specifies the number of iterations between progress messages written to the terminal window. The default value is 100 iterations.

The keyword value pair sig_figs=<int> specifies the number of significant digits for all numerical values in the output files. Allowable values are between 1 and 18, which is the maximum amount of precision available for 64-bit floating point arithmetic. The default value is 6. *Note:* increasing sig_figs above the default will increase the size of the output CSV files accordingly.

The keyword value pair profile_file=<filepath> specifies the location of the output file for profiling data. If the model uses no profiling, the output profile file is not produced. If the model uses profiling and profile_file is unspecified, the profiling data is written to a file named profile.csv in the current working directory.

8.3. Initialize model parameters argument

Initialization is only applied to parameters defined in the parameters block. By default, all parameters are initialized to random draws from a uniform distribution over the range [-2,2]. These values are on the unconstrained scale, so must be inverse transformed back to satisfy the constraints declared for parameters. Because zero is chosen to be a reasonable default initial value for most parameters, the interval around zero provides a fairly diffuse starting point. For instance, unconstrained variables are initialized randomly in (-2,2), variables constrained to be positive are initialized roughly in (0.14,7.4), variables constrained to fall between 0 and 1 are initialized with values roughly in (0.12,0.88).

The initialization argument is specified as keyword-value pair with keyword init. The value can be one of the following:

- positive real number x. All parameters will be initialized to random draws from a uniform distribution over the range [-x, x].
- 0 All parameters will be initialized to zero values on the unconstrained scale. The transforms are arranged in such a way that zero initialization provides reasonable variable initializations: 0 for unconstrained parameters; 1 for parameters constrained to be positive; 0.5 for variables to constrained to lie between 0 and 1; a symmetric (uniform) vector for simplexes; unit matrices for both correlation and covariance matrices; and so on.
- filepath A data file in JSON or Rdump format containing initial parameters values for some or all of the model parameters. User specified initial values must satisfy the constraints declared in the model (i.e., they are on the constrained scale). Parameters which aren't explicitly initialized will be initialized randomly over the range [-2, 2].

8.4. Random number generator arguments

The random-number generator's behavior is determined by the unsigned seed (positive integer) it is started with. If a seed is not specified, or a seed of 0 or less is specified, the system time is used to generate a seed. The seed is recorded and included with Stan's output regardless of whether it was specified or generated randomly from the system time.

The syntax for the random seed argument is:

random seed=<int>

The keyword random must be followed directly by the keyword-value pair seed=<int>.

8.5. Chain identifier argument: id

The chain identifier argument is used in conjunction with the random seed argument when running multiple Markov chains for sampling. The chain identifier is used to advance the random number generator a very large number of random variates so that two chains with the same seed and different identifiers draw from non-overlapping subsequences of the random-number sequence determined by the seed. Together, the seed and chain identifier determine the behavior of the random number generator.

The syntax for the random seed argument is:

id=<int>

The default value is 0.

When running a set of chains from the command line with a specified seed, this argument should be set to the chain index. E.g., when running 4 chains, the value should be 1,..,4, successively. When running multiple chains from a single command, Stan's interfaces manage the chain identifier arguments automatically.

For complete reproducibility, every aspect of the environment needs to be locked down from the OS and version to the C++ compiler and version to the version of Stan and all dependent libraries. See the Stan Reference Manual Reproducibility chapter for further details.

8.6. Command line help

CmdStan provides a help and help-all mechanism that displays either the available top-level or keyword-specific key-value argument pairs. To display top-level help, call the CmdStan executable with keyword help:

./bernoulli help

8.7. Error messages and return codes

CmdStan executables and utility programs use streams standard output (stdout) and standard error (stderr) to report information and error messages, respectively. Some methods also generate warning messages when the algorithm detects potential problems with the inference. Depending on the method, these messages are sent to either standard out or standard error.

All program executables provide a return code between 0 and 255:

- 0 Program ran to termination as expected.
- value in range [1:125] Method invoked could not run due to problems with

model or data.

• value > 128 - Fatal error during execution, process terminated by signal. To determine the signal number, subtract 128 from the return value, e.g. return code 139 results from termination signal 11 (segmentation violation).

A non-zero return code or outputs sent to stderr indicate problems with the inference. However, a return code of zero and absense of error messages doesn't necessarily mean that the inference is valid, it is still necessary to validate the inferences using all available summary and diagnostic techniques.

9. MCMC Sampling using Hamiltonian Monte Carlo

The sample method provides Bayesian inference over the model conditioned on data using Hamiltonian Monte Carlo (HMC) sampling. By default, the inference engine used is the No-U-Turn sampler (NUTS), an adaptive form of Hamiltonian Monte Carlo sampling. For details on HMC and NUTS, see the Stan Reference Manual chapter on MCMC Sampling.

The full set of configuration options available for the sample method is reported at the beginning of the sampler output file as CSV comments. When the example model bernoulli.stan is run via the command line with all default arguments, the resulting Stan CSV file header comments show the complete set of default configuration options:

```
# model = bernoulli_model
# method = sample (Default)
#
    sample
#
      num samples = 1000 (Default)
      num warmup = 1000 (Default)
#
      save warmup = 0 (Default)
#
#
      thin = 1 (Default)
#
      adapt
#
        engaged = 1 (Default)
#
        gamma = 0.05 (Default)
#
        delta = 0.8 (Default)
        kappa = 0.75 (Default)
#
#
        t0 = 10 (Default)
#
        init buffer = 75 (Default)
#
        term buffer = 50 (Default)
        window = 25 (Default)
#
#
      algorithm = hmc (Default)
#
        hmc
#
          engine = nuts (Default)
#
            nuts
#
              max_depth = 10 (Default)
```

```
# metric = diag_e (Default)
# metric_file = (Default)
# stepsize = 1 (Default)
# stepsize_jitter = 0 (Default)
```

9.1. Iterations

At every sampler iteration, the sampler returns a set of estimates for all parameters and quantities of interest in the model. During warmup, the NUTS algorithm adjusts the HMC algorithm parameters metric and stepsize in order to efficiently sample from *typical set*, the neighborhood substantial posterior probability mass through which the Markov chain will travel in equilibrium. After warmup, the fixed metric and stepsize are used to produce a set of draws.

The following keyword-value arguments control the total number of iterations:

- num samples
- num_warmup
- save_warmup
- thin

The values for arguments num_samples and num_warmup must be a non-negative integer. The default value for both is 1000.

For well-specified models and data, the sampler may converge faster and this many warmup iterations may be overkill. Conversely, complex models which have difficult posterior geometries may require more warmup iterations in order to arrive at good values for the step size and metric.

The number of sampling iterations to runs depends on the effective sample size (EFF) reported for each parameter and the desired precision of your estimates. An EFF of at least 100 is required to make a viable estimate. The precision of your estimate is \sqrt{N} ; therefore every additional decimal place of accuracy increases this by a factor of 10.

Argument save_warmup takes values 0 or 1, corresponding to False and True respectively. The default value is 0, i.e., warmup draws are not saved to the output file. When the value is 1, the warmup draws are written to the CSV output file directly after the CSV header line.

Argument thin controls the number of draws from the posterior written to the output file. Some users familiar with older approaches to MCMC sampling might be used to thinning to eliminate an expected autocorrelation in the samples. HMC is not nearly as susceptible to this autocorrelation problem and thus thinning is generally

not required nor advised, as HMC can produce *anticorrelated* draws, which increase the effective sample size beyond the number of draws from the posterior. Thinning should only be used in circumstances where storage of the samples is limited and/or RAM for later processing the samples is limited.

The value of argument thin must be a positive integer. When thin is set to value N, every N^{th} iteration is written to the output file. Should the value of thin exceed the specified number of iterations, the first iteration is saved to the output. This is because the iteration counter starts from zero and whenever the counter modulo the value of thin equals zero, the iteration is saved to the output file. Since zero modulo any positive integer is zero, the first iteration is always saved. When $num_sampling=M$ and thin=N, the number of iterations written to the output CSV file will be ceiling(M/N). If $save_warmup=1$, thinning is applied to the warmup iterations as well.

9.2. Adaptation

The adapt keyword is used to specify non-default options for the sampler adaptation schedule and settings.

Adaptation can be turned off by setting sub-argument engaged to value 0. If engaged=0, no adaptation will be done, and all other adaptation sub-arguments will be ignored. Since the default argument is engaged=1, this keyword-value pair can be omitted from the command.

There are two sets of adaptation sub-arguments: step size optimization parameters and the warmup schedule. These are described in detail in the Reference Manual section Automatic Parameter Tuning.

Step size optimization configuration

The Stan User's Guide section on model conditioning and curvature provides a discussion of adaptation and stepsize issues. The Stan Reference Manual section on HMC algorithm parameters explains the NUTS-HMC adaptation schedule and the tuning parameters for setting the step size.

The following keyword-value arguments control the settings used to optimize the step size:

delta - The target Metropolis acceptance rate. The default value is 0.8. Its
value must be strictly between 0 and 1. Increasing the default value forces the
algorithm to use smaller step sizes. This can improve sampling efficiency (effective sample size per iteration) at the cost of increased iteration times. Raising
the value of delta will also allow some models that would otherwise get stuck
to overcome their blockages. Models with difficult posterior geometries may

required increasing the delta argument closer to 1; we recommend first trying to raise it to 0.9 or at most 0.95. Values about 0.95 are strong indication of bad geometry; the better solution is to change the model geometry through reparameterization which could yield both more efficient and faster sampling.

- gamma Adaptation regularization scale. Must be a positive real number, default value is 0.05. This is a parameter of the Nesterov dual-averaging algorithm. We recommend always using the default value.
- kappa Adaptation relaxation exponent. Must be a positive real number, default value is 0.75. This is a parameter of the Nesterov dual-averaging algorithm. We recommend always using the default value.
- t_0 Adaptation iteration offset. Must be a positive real number, default value is 10. This is a parameter of the Nesterov dual-averaging algorithm. We recommend always using the default value.

Warmup schedule configuration

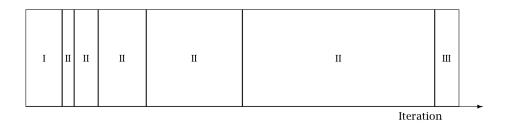
When adaptation is engaged, the warmup schedule is specified by sub-arguments, all of which take positive integers as values:

- init_buffer The number of iterations spent tuning the step size at the outset of adaptation.
- window The initial number of iterations devoted to tune the metric, will be doubled successively.
- term_buffer The number of iterations used to re-tune the step size once the metric has been tuned.

The specified values may be modified slightly in order to ensure alignment between the warmup schedule and total number of warmup iterations.

The following figure is taken from the Stan Reference Manual, where label "I" correspond to init_buffer, the initial "II" corresponds to window, and the final "III" corresponds to term_buffer:

Warmup Epochs Figure. Adaptation during warmup occurs in three stages: an initial fast adaptation interval (I), a series of expanding slow adaptation intervals (II), and a final fast adaptation interval (III). For HMC, both the fast and slow intervals are used for adapting the step size, while the slow intervals are used for learning the (co)variance necessitated by the metric. Iteration numbering starts at 1 on the left side of the figure and increases to the right.



9.3. Algorithm

The algorithm keyword-value pair specifies the algorithm used to generate the sample. There are two possible values: hmc, which generates from an HMC-driven Markov chain; and fixed_param which generates a new sample without changing the state of the Markov chain. The default argument is algorithm=hmc.

Samples from a set of fixed parameters

If a model doesn't specify any parameters, then argument algorithm=fixed_param is mandatory.

The fixed parameter sampler generates a new sample without changing the current state of the Markov chain. This can be used to write models which generate pseudodata via calls to RNG functions in the transformed data and generated quantities blocks.

HMC samplers

All HMC algorithms have three parameters:

- step size
- · metric
- integration time the number of steps taken along the Hamiltonian trajectory

See the Stan Reference Manual section on HMC algorithm parameters for further details.

Step size

The HMC algorithm simulates the evolution of a Hamiltonian system. The step size parameter controls the resolution of the sampler. Low step sizes can get HMC samplers unstuck that would otherwise get stuck with higher step sizes.

The following keyword-value arguments control the step size:

• stepsize - How far to move each time the Hamiltonian system evolves forward. Must be a positive real number, default value is 1.

• stepsize_jitter - Allows step size to be "jittered" randomly during sampling to avoid any poor interactions with a fixed step size and regions of high curvature. Must be a real value between 0 and 1. The default value is 0. Setting stepsize_jitter to 1 causes step sizes to be selected in the range of 0 to twice the adapted step size. Jittering below the adapted value will increase the number of steps required and will slow down sampling, while jittering above the adapted value can cause premature rejection due to simulation error in the Hamiltonian dynamics calculation. We strongly recommend always using the default value.

Metric

All HMC implementations in Stan utilize quadratic kinetic energy functions which are specified up to the choice of a symmetric, positive-definite matrix known as a *mass matrix* or, more formally, a *metric* Betancourt (2017).

The metric argument specifies the choice of Euclidean HMC implementations:

- metric=unit specifies unit metric (diagonal matrix of ones).
- metric=diag_e specifies a diagonal metric (diagonal matrix with positive diagonal entries). This is the default value.
- metric=dense_e specifies a dense metric (a dense, symmetric positive definite matrix).

By default, the metric is estimated during warmup. However, when metric=diag_e or metric=dense_e, an initial guess for the metric can be specified with the metric_file argument whose value is the filepath to a JSON or Rdump file which contains a single variable inv_metric. For a diag_e metric the inv_metric value must be a vector of positive values, one for each parameter in the system. For a dense_e metric, inv_metric value must be a positive-definite square matrix with number of rows and columns equal to the number of parameters in the model.

The metric_file option can be used with and without adaptation enabled. If adaptation is enabled, the provided metric will be used as the initial guess in the adaptation process. If the initial guess is good, then adaptation should not change it much. If the metric is no good, then the adaptation will override the initial guess.

If adaptation is disabled, both the metric_file and stepsize arguments should be specified.

Integration time

The total integration time is determined by the argument engine which take possible values:

- nuts the No-U-Turn Sampler which dynamically determines the optimal integration time.
- static an HMC sampler which uses a user-specified integration time.

The default argument is engine=nuts.

The NUTS sampler generates a proposal by starting at an initial position determined by the parameters drawn in the last iteration. It then evolves the initial system both forwards and backwards in time to form a balanced binary tree. The algorithm is iterative; at each iteration the tree depth is increased by one, doubling the number of leapfrog steps thus effectively doubling the computation time. The algorithm terminates in one of two ways: either the NUTS criterion (i.e., a U-turn in Euclidean space on a subtree) is satisfied for a new subtree or the completed tree; or the depth of the completed tree hits the maximum depth allowed.

When engine=nuts, the subargument max_depth can be used to control the depth of the tree. The default argument is max_depth=10. In the case where a model has a difficult posterior from which to sample, max_depth should be increased to ensure that that the NUTS tree can grow as large as necessary.

When the argument engine=static is specified, the user must specify the integration time via keyword int_time which takes as a value a positive number. The default value is 2π .

9.4. Sampler diagnostic file

The output keyword sub-argument diagnostic_file=<filepath> specifies the location of the auxiliary output file which contains sampler information for each draw, and the gradients on the unconstrained scale and log probabilities for all parameters in the model. By default, no auxiliary output file is produced.

9.5. Examples

The Quickstart Guide MCMC Sampling chapter section on multiple chains showed how to run multiple chains given a model and data, using the minimal required command line options: the method, the name of the data file, and a chain-specific name for the output file.

To run 4 chains in parallel on Mac OS and Linux, the syntax in both bash and zsh is the same:

The backslash (\) indicates a line continuation in Unix. The expression \${i} substitutes in the value of loop index variable i. The ampersand (&) pushes each process into the background which allows the loop to continue without waiting for the current chain to finish.

On Windows the corresponding loop is:

The caret (^) indicates a line continuation in DOS. The expression %i is the loop index.

In the following examples, we focus on just the nested sampler command for Unix.

Running multiple chains with a specified RNG seed

For reproducibility, we specify the same RNG seed across all chains and use the chain id argument to specify the RNG offset.

The RNG seed is specified by random seed=<int> and the offset is specified by id=<loop index>, so the call to the sampler is:

```
./my_model sample data file=my_model.data.json \
    output file=output_${i}.csv \
    random seed=12345 id=${i}
```

Changing the default warmup and sampling iterations

The warmup and sampling iteration keyword-value arguments must follow the sample keyword. The call to the sampler which overrides the default warmup and sampling iterations is:

```
./my_model sample num_warmup=500 num_sampling=500 \
data file=my_model.data.json \
output file=output_${i}.csv
```

Saving warmup draws

To save warmup draws as part of the Stan CSV output file, use the keyword-value argument save_warmup=1. This must be grouped with the other sample keyword

sub-arguments.

Initializing parameters

By default, all parameters are initialized on an unconstrained scale to random draws from a uniform distribution over the range [-2,2]. To initialize some or all parameters to good starting points on the constrained scale from a data file in JSON or Rdump format, use the keyword-value argument init=<filepath>:

```
./my_model sample init=my_param_inits.json data file=my_model.data.json \ output file=output_${i}.csv
```

To verify that the specified values will be used by the sampler, you can run the sampler with option algorithm=fixed_param, so that the initial values are used to generate the sample. Since this generates a set of idential draws, setting num_warmp=0 and num_samples=1 will save unnecessary iterations. As the output values are also on the constrained scale, the set of reported values will match the set of specified initial values.

For example, if we run the example Bernoulli model with specified initial value for parameter "theta":

```
{ "theta" : 0.5 } via command:
```

```
./bernoulli sample algorithm=fixed_param num_warmup=0 num_samples=1 \
    init=bernoulli.init.json data file=bernoulli.data.json
```

The resulting output CSV file contains a single draw:

Specifying the metric and stepsize

An initial guess for the metric can be specified with the metric_file argument whose value is the filepath to a JSON or Rdump file which contains a single variable

inv_metric. The metric_file option can be used with and without adaptation enabled.

By default, the metric is estimated during warmup adaptation. If the initial guess is good, then adaptation should not change it much. If the metric is no good, then the adaptation will override the initial guess. For example, the JSON file bernoulli.diag_e.json, contents

```
{ "inv_metric" : [0.296291] }
```

can be used as the initial metric as follows:

If adaptation is disabled, both the metric_file and stepsize arguments should be specified.

```
../my_model sample adapt engaged=0 \
    algorithm=hmc stepsize=0.9 \
    metric_file=bernoulli.diag_e.json \
    data file=my_model.data.json \
    output file=output ${i}.csv
```

The resulting output CSV file will contain the following set of comment lines:

```
# Adaptation terminated
# Step size = 0.9
# Diagonal elements of inverse mass matrix:
# 0.296291
```

Changing the NUTS-HMC adaptation parameters

The keyword-value arguments for these settings are grouped together under the adapt keyword which itself is a sub-argument of the sample keyword.

Models with difficult posterior geometries may required increasing the delta argument closer to 1.

To skip adaptation altogether, use the keyword-value argument engaged=0. Disabling adaptation disables both metric and stepsize adaptation, so a stepsize should be

provided along with a metric to enable efficient sampling.

```
../my_model sample adapt engaged=0 \
    algorithm=hmc stepsize=0.9 \
    metric_file=bernoulli.diag_e.json \
    data file=my_model.data.json \
    output file=output_${i}.csv
```

Even with adaptation disabled, it is still advisable to run warmup iterations in order to allow the initial parameter values to be adjusted to estimates which fall within the typical set.

To skip warmup altogether requires specifying both num_warmup=0 and adapt engaged=0.

```
../my_model sample num_warmup=0 adapt engaged=0 \
    algorithm=hmc stepsize=0.9 \
    metric_file=bernoulli.diag_e.json \
    data file=my_model.data.json \
    output file=output_${i}.csv
```

Increasing the tree-depth

Models with difficult posterior geometries may required increasing the max_depth argument from its default value 10. This requires specifying a series of keyword-argument pairs:

Capturing Hamiltonian diagnostics and gradients

The output keyword sub-argument diagnostic_file=<filepath> write the sampler parameters and gradients of all model parameters for each draw to a CSV file:

Suppressing progress updates to the console

The output keyword sub-argument refresh=<int> specifies the number of iterations between progress messages written to the terminal window. The default value is 100 iterations. The progress updates look like:

```
Iteration: 1 / 2000 [ 0%] (Warmup)
Iteration: 100 / 2000 [ 5%] (Warmup)
Iteration: 200 / 2000 [ 10%] (Warmup)
Iteration: 300 / 2000 [ 15%] (Warmup)
```

For simple models which fit quickly, such updates can be annoying; to suppress them altogether, set refresh=0. This only turns off the Iteration: messages; the configuration and timing information are still written to the terminal.

For complicated models which take a long time to fit, setting the refresh rate to a low number, e.g. 10 or even 1, provides a way to more closely monitor the sampler.

Everything example

The CmdStan argument parser requires keeping sampler config sub-arguments together; interleaving sampler config with the inputs, outputs, inits, RNG seed and chain id config results in an error message such as the following:

```
./bernoulli sample data file=bernoulli.data.json adapt delta=0.95 adapt is either mistyped or misplaced.

Perhaps you meant one of the following valid configurations?

method=sample sample adapt

method=variational variational adapt

Failed to parse arguments, terminating Stan
```

The following example provides a template for a call to the sampler which specifies input data, initial parameters, initial step-size and metric, adaptation, output, and RNG initialization.

```
./my_model sample num_warmup=2000 \
init=my_param_inits.json \
adapt delta=0.95 init_buffer=100 \
window=50 term_buffer=100 \
algorithm=hmc engine=nuts max_depth=15 \
metric=dense_e metric_file=my_metric.json \
stepsize=0.6555 \
data file=my_model.data.json \
output file=output_${i}.csv refresh=10 \
random seed=12345 id=${i}
```

The keywords sample, data, output, and random are the top-level argument groups. Within the sample config arguments, the keyword adapt groups the adaptation algorithm parameters and the keyword-value algorithm=hmc groups the NUTS-HMC parameters.

The top-level groups can be freely ordered with respect to one another. The following is also a valid command:

10. Maximum Likelihood Estimation

The optimize method finds the mode of the posterior distribution, assuming that there is one. If the posterior is not convex, there is no guarantee Stan will be able to find the global mode as opposed to a local optimum of log probability. For optimization, the mode is calculated without the Jacobian adjustment for constrained variables, which shifts the mode due to the change of variables. Thus modes correspond to modes of the model as written.

The full set of configuration options available for the optimize method is reported at the beginning of the sampler output file as CSV comments. When the example model bernoulli.stan is run with method=optimize via the command line with all default arguments, the resulting Stan CSV file header comments show the complete set of default configuration options:

```
# model = bernoulli model
# method = optimize
#
    optimize
      algorithm = lbfgs (Default)
#
#
        lbfgs
#
          init alpha = 0.001 (Default)
          tol obj = 9.99999999999998e-13 (Default)
#
#
          tol rel obj = 10000 (Default)
          tol grad = 1e-08 (Default)
#
#
          tol_rel_grad = 10000000 (Default)
          tol param = 1e-08 (Default)
#
          history_size = 5 (Default)
#
#
      jacobian = 0 (Default)
#
      iter = 2000 (Default)
#
      save iterations = 0 (Default)
```

10.1. Jacobian adjustments

The jacobian argument specifies whether or not the call to the model's log probability function should include the log absolute Jacobian determinant of inverse parameter transforms. Without the Jacobian adjustment, optimization returns the (regularized) maximum likelihood estimate (MLE), $\operatorname{argmax}_{\theta} p(y|\theta)$, the value which maximizes the likelihood of the data given the parameters, (including prior terms). Applying the Jacobian adjustment produces the maximum a posteriori estimate

(MAP), the maximum value of the posterior distribution, $\operatorname{argmax}_{\theta} p(y|\theta) p(\theta)$. By default this value is 0 (false), do not include the Jacobian adjustment.

10.2. Optimization algorithms

The algorithm argument specifies the optimization algorithm. This argument takes one of the following three values:

- 1bfgs A quasi-Newton optimizer. This is the default optimizer and also much faster than the other optimizers.
- bfgs A quasi-Newton optimizer.
- newton A Newton optimizer. This is the least efficient optimization algorithm, but has the advantage of setting its own stepsize.

See the Stan Reference Manual's Optimization chapter for a description of these algorithms.

All of the optimizers stream per-iteration intermediate approximations to the command line console. The sub-argument <code>save_iterations</code> specifies whether or not to save the intermediate iterations to the output file. Allowed values are 0 or 1, corresponding to <code>False</code> and <code>True</code> respectively. The default value is 0, i.e., intermediate iterations are not saved to the output file.

10.3. The quasi-Newton optimizers

For both BFGS and L-BFGS optimizers, convergence monitoring is controlled by a number of tolerance values, any one of which being satisfied causes the algorithm to terminate with a solution. See the BFGS and L-BFGS configuration chapter for details on the convergence tests.

Both BFGS and L-BFGS have the following configuration arguments:

- init_alpha The initial step size parameter. Must be a positive real number.
 Default value is 0.001
- tol_obj Convergence tolerance on changes in objective function value. Must be a positive real number. Default value is 1^{-12} .
- tol_rel_obj Convergence tolerance on relative changes in objective function value. Must be a positive real number. Default value is 1⁴.
- tol_grad Convergence tolerance on the norm of the gradient. Must be a positive real number. Default value is 1^{-8} .
- tol_rel_grad Convergence tolerance on the relative norm of the gradient.
 Must be a positive real number. Default value is 1⁷.

• tol_param - Convergence tolerance on changes in parameter value. Must be a positive real number. Default value is 1^{-8} .

The init_alpha argument specifies the first step size to try on the initial iteration. If the first iteration takes a long time (and requires a lot of function evaluations), set init_alpha to be the roughly equal to the alpha used in that first iteration. The default value is very small, which is reasonable for many problems but might be too large or too small depending on the objective function and initialization. Being too big or too small just means that the first iteration will take longer (i.e., require more gradient evaluations) before the line search finds a good step length.

In addition to the above, the L-BFGS algorithm has argument history_size which controls the size of the history it uses to approximate the Hessian. The value should be less than the dimensionality of the parameter space and, in general, relatively small values (5-10) are sufficient; the default value is 5.

If L-BFGS performs poorly but BFGS performs well, consider increasing the history size. Increasing history size will increase the memory usage, although this is unlikely to be an issue for typical Stan models.

10.4. The Newton optimizer

There are no configuration parameters for the Newton optimizer. It is not recommended because of the slow Hessian calculation involving finite differences.

11. Variational Inference Algorithm: ADVI

CmdStan can approximate the posterior distribution using variational inference. The approximation is a Gaussian in the unconstrained variable space.

Stan implements an automatic variational inference algorithm, called Automatic Differentiation Variational Inference (ADVI) Kucukelbir et al. (2015). ADVI uses Monte Carlo integration to approximate the variational objective function, the ELBO (evidence lower bound). ADVI optimizes the ELBO in the real-coordinate space using stochastic gradient ascent. The measures of convergence are similar to the relative tolerance scheme of Stan's optimization algorithms.

The algorithm progression consists of an adaptation phase followed by a sampling phase. The adaptation phase finds a good value for the step size scaling parameter eta. The evidence lower bound (ELBO) is the variational objective function and is evaluated based on a Monte Carlo estimate. The variational inference algorithm in Stan is stochastic, which makes it challenging to assess convergence. The algorithm runs until the mean change in ELBO drops below the specified tolerance.

The full set of configuration options available for the variational method is reported at the beginning of the sampler output file as CSV comments. When the example model bernoulli.stan is run with method=variational via the command line with all default arguments, the resulting Stan CSV file header comments show the complete set of default configuration options:

```
# method = variational
#
    variational
#
      algorithm = meanfield (Default)
#
        meanfield
      iter = 10000 (Default)
#
      grad samples = 1 (Default)
#
      elbo samples = 100 (Default)
#
#
      eta = 1 (Default)
#
      adapt
#
        engaged = 1 (Default)
        iter = 50 (Default)
#
#
      tol_rel_obj = 0.01 (Default)
      eval elbo = 100 (Default)
#
```

output_samples = 1000 (Default)

The console output includes a notice that this algorithm is considered to be experimental:

EXPERIMENTAL ALGORITHM:

This procedure has not been thoroughly tested and may be unstable or buggy. The interface is subject to change.

11.1. Variational algorithms

Stan implements two variational algorithms. The algorithm argument specifies the variational algorithm.

- algorithm=meanfield Use a fully factorized Gaussian for the approximation. This is the default algorithm.
- algorithm=fullrank Use a Gaussian with a full-rank covariance matrix for the approximation.

11.2. Configuration

- iter=<int> Maximum number of iterations. Must be > 0. Default is 10000.
- grad_samples=<int> Number of samples for Monte Carlo estimate of gradients. Must be > 0. Default is 1.
- elbo_samples=<int> Number of samples for Monte Carlo estimate of ELBO (objective function). Must be > 0. Default is 100.
- eta=<double> Stepsize weighting parameter for adaptive stepsize sequence.
 Must be > 0. Default is 1.0.
- adapt Warmup Adaptation keyword, takes sub-arguments:
 - engaged=<boolean> Adaptation engaged? Valid values: (0,1). Default is 1.
 - iter=<int> Maximum number of adaptation iterations. Must be >0. Default is 50.
- tol_rel_obj=<double> Convergence tolerance on the relative norm of the objective. Must be > 0. Default is 0.01.
- eval_elbo=<int> Evaluate ELBO every Nth iteration. Must be > 0. Default is 100.
- output_samples=<int> Number of posterior samples to draw and save. Must be > 0. Default is 1000.

11.3. CSV output

The output file consists of the following pieces of information:

- The full set of configuration options available for the variational method is reported at the beginning of the sampler output file as CSV comments.
- The first three output columns are labelled lp__, log_p__, log_g__, the rest are the model parameters.
- The stepsize adaptation information is output as CSV comments following column header row.
- The following line contains the mean of the variational approximation.
- The rest of the output contains output_samples number of samples drawn from the variational approximation.

To illustrate, we call Stan's variational inference on the example model and data:

> ./bernoulli variational data file=bernoulli.data.R

By default, the output file is output.csv. Lines 1 - 28 contain configuration information:

```
# stan_version_major = 2
# stan_version_minor = 23
# stan version patch = 0
# model = bernoulli model
# method = variational
#
    variational
#
      algorithm = meanfield (Default)
#
        meanfield
      iter = 10000 (Default)
#
#
      grad samples = 1 (Default)
      elbo_samples = 100 (Default)
#
      eta = 1 (Default)
#
#
      adapt
        engaged = 1 (Default)
#
        iter = 50 (Default)
#
#
      tol_rel_obj = 0.01 (Default)
#
      eval elbo = 100 (Default)
      output samples = 1000 (Default)
#
. . .
```

The column header row is:

$$lp_-,log_p_-,log_g_-,theta$$

The stepsize adaptation information is:

Stepsize adaptation complete.

eta = 1

The reported mean variational approximations information is:

0,0,0,0.214911

That is, the estimate for theta given the data is 0.2.

The following is a sample based on this approximation:

0,-14.0252,-5.21718,0.770397

0,-7.05063,-0.10025,0.162061

0,-6.75031,-0.0191099,0.241606

. . .

12. Standalone Generate Quantities

The generate_quantities method allows you to generate additional quantities of interest from a fitted model without re-running the sampler. For an overview of the uses of this feature, see the QuickStart Guide section and the Stan User's Guide section on Stand-alone generated quantities and ongoing prediction.

This method requires sub-argument fitted_params which takes as its value an existing Stan CSV file that contains a sample from an equivalent model, i.e., a model with the same parameters, transformed parameters, and model blocks, conditioned on the same data.

If we run the bernoulli.stan program for a single chain to generate a sample in file bernoulli_fit.csv:

> ./bernoulli sample data file=bernoulli.data.json output file=bernoulli_fit
Then we can run the bernoulli_ppc.stan to carry out the posterior predictive checks:

The fitted_params file must be a Stan CSV file; attempts to use a regular CSV file will result an error message of the form:

Error reading fitted param names from sample csv file <filename.csv>

The fitted_params file must contain columns corresponding to legal values for all parameters defined in the model. If any parameters are missing, the program will exit with an error message of the form:

Error reading fitted param names from sample csv file <filename.csv>

The parameter values of the fitted_params are on the constrained scale and must obey all constraints. For example, if we modify the contencts of the first reported draw in bernoulli_fit.csv so that the value of theta is outside the declared bounds real<lower=0, upper=1>, the program will return the following error message:

Exception: lub_free: Bounded variable is 1.21397, but must be in the interva-

13. Laplace sampling

The laplace method produces a sample from a normal approximation centered at the mode of a distribution in the unconstrained space. If the mode is a maximum a posteriori (MAP) estimate, the samples provide an estimate of the mean and standard deviation of the posterior distribution. If the mode is a maximum likelihood estimate (MLE), the sample provides an estimate of the standard error of the likelihood. In general, the posterior mode in the unconstrained space doesn't correspond to the mean (nor mode) in the constrained space, and thus the sample is needed to infer the mean as well as the standard deviation. (See this case study for a visual illustration.)

This is computationally inexpensive compared to exact Bayesian inference with MCMC. The goodness of this estimate depends on both the estimate of the mode and how much the true posterior in the unconstrained space resembles a Gaussian.

13.1. Configuration

This method takes 2 arguments:

- jacobian Whether or not the Jacobian adjustment should be included in the gradient. The default value is 1 (include adjustment). (Note: in optimization, the default value is 0, for historical reasons.)
- mode Input file of parameters values on the constrained scale. When Stan's optimize method is used to estimate the modal values, the value of boolean argument jacobian should be 0 if optimize was run with default settings, i.e., the input is the MLE estimate; if optimize was run with argument jacobian=1, then the laplace method default setting, jacobian=1, should be used.

13.2. CSV output

The output file consists of the following pieces of information:

- The full set of configuration options available for the laplace method is reported at the beginning of the output file as CSV comments.
- Output columns log_p__ and log_q__, the unnormalized log density and the unnormalized density of the Laplace approximation, respectively. These can be used for diagnostics and importance sampling.
- Output columns for all model parameters on the constrained scale.

13.3. Example

To get an approximate estimate of the mode and standard deviation of the example Bernoulli model given the example dataset:

- find the MAP estimate by running optimization with argument jacobian=1
- run the Laplace estimator using the MAP estimate as the mode argument.

Because the default output file name from all methods is output.csv, a more informative name is used for the output of optimization. We run the commands from the CmdStan home directory. This results in a sample with mean 2.7 and standard deviation 0.12. In comparison, running the NUTS-HMC sampler results in mean 2.6 and standard deviation 0.12.

```
./examples/bernoulli/bernoulli optimize jacobian=1 \
  data file=examples/bernoulli/bernoulli.data.json \
  output file=bernoulli_optimize_lbfgs.csv random seed=1234
```

./examples/bernoulli/bernoulli laplace mode=bernoulli_optimize_lbfgs.csv \ data file=examples/bernoulli/bernoulli.data.json random seed=1234

The header and first few data rows of the output sample are shown below.

```
# stan_version_major = 2
# stan_version_minor = 31
# stan_version_patch = 0
# model = bernoulli model
# start datetime = 2022-12-20 01:01:14 UTC
# method = laplace
#
    laplace
#
      mode = bernoulli_lbfgs.csv
      jacobian = 1 (Default)
#
      draws = 1000 (Default)
# id = 1 (Default)
# data
    file = examples/bernoulli/bernoulli.data.json
# init = 2 (Default)
# random
#
    seed = 875960551 (Default)
# output
#
    file = output.csv (Default)
```

```
# diagnostic_file = (Default)
# refresh = 100 (Default)
# sig_figs = -1 (Default)
# profile_file = profile.csv (Default)
# num_threads = 1 (Default)
# stanc_version = stanc3 v2.31.0-7-g20444266
# stancflags =
log_p__,log_q__,theta
-9.4562,-2.33997,0.0498545
-6.9144,-0.0117349,0.182898
-7.18171,-0.746034,0.376428
```

14. Extracting log probabilities and gradients for diagnostics

CmdStan can return the computed log probability and the gradient with respect to a set of parameters.

This is similar to the diagnose subcommand, but the output format differs and the results here are not compared with those from finite differences.

Note: Startup and data initialization costs mean that this method is not an efficient way to calculate these quantities. It is provided only for convenience and should not be used for serious computation.

14.1. Configuration

This method takes 3 arguments:

- jacobian Whether or not the Jacobian adjustment for constrained parameters should be included in the gradient. Default value is 1 (include adjustment).
- constrained_params Input file of parameters values on the constrained scale. A single set of constrained parameters can be specified using JSON or Rdump format. Alternatively, the input file can be set of draws in StanCSV format.
- unconstrained_params Input file (JSON or R dump) of parameter values on unconstrained scale. These files should contain a single variable, called params_r, which is a flattened vector of all unconstrained parameters. If this object is two dimensional, each entry should be a vector of the same form and the output will feature multiple rows.

Only one of constrained_params and unconstrained_params can be specified.

For more on the differences between constrained and unconstrained parameters, see the reference manual.

14.2. CSV output

The output file consists of the following pieces of information:

• The full set of configuration options available for the log_prob method is reported at the beginning of the output file as CSV comments.

- Column headers, the first column is labelled 1p__, and the rest are named after parameters. These will be the unconstrained parameters, regardless of whether constrained or unconstrained parameters were supplied as input.
- Values which correspond to the value of the log density (column 1) and the gradient with respect to each parameter (remaining columns).

For example, if we have a file called params.json:

```
₹
    "theta" : 0.1
}
```

We can run the example model:

```
/bernoulli log_prob constrained_params=params.json data file=bernoulli.data.
```

```
This yields
# stan_version_major = 2
# stan_version_minor = 31
# stan version patch = 0
# model = bernoulli_model
# start datetime = 2022-11-17 20:46:06 UTC
# method = log_prob
#
    log_prob
#
      unconstrained_params = (Default)
#
      constrained_params = params.json
      jacobian = 1 (Default)
# id = 1 (Default)
# data
    file = bernoulli.data.json
# init = 2 (Default)
# random
    seed = 2390820139 (Default)
# output
    file = output.csv (Default)
#
#
    diagnostic file = (Default)
    refresh = 100 (Default)
#
    sig_figs = -1 (Default)
#
#
    profile_file = profile.csv (Default)
# num_threads = 1 (Default)
# stanc_version = stanc3 2.31.0 (Linux)
```

CHAPTER 14. EXTRACTING LOG PROBABILITIES AND GRADIENTS FOR DIAGNOSTICS74

stancflags =
lp_,theta
-7.856,1.8

15. Diagnosing HMC by Comparison of Gradients

CmdStan has a basic diagnostic feature that will calculate the gradients of the initial state and compare them with gradients calculated by finite differences. Discrepancies between the two indicate that there is a problem with the model or initial states or else there is a bug in Stan.

To allow for the possibility of adding other kinds of diagnostic tests, the diagnose method argument configuration has subargument test which currently only takes value gradient. There are two available gradient test configuration arguments:

- epsilon The finite difference step size. Must be a positive real number. Default value is 1^{-6}
- $\bullet\,$ error The error threshold. Must be a positive real number. Default value is 1^{-6}

To run on the different platforms with the default configuration, use one of the following.

Mac OS and Linux

> ./my_model diagnose data file=my_data

Windows

> my_model diagnose data file=my_data

To relax the test threshold, specify the error argument as follows:

> ./my_model diagnose test=gradient error=0.0001 data file=my_data

To see how this works, we run diagnostics on the example bernoulli model:

> ./bernoulli diagnose data file=bernoulli.data.R

Executing this command prints output to the console and as a series of comment lines to the output csv file. The console output is:

```
method = diagnose
  diagnose
  test = gradient (Default)
```

```
gradient
      epsilon = 9.999999999999999999 (Default)
      id = 0 (Default)
data
 file = bernoulli.data.json
init = 2 (Default)
random
 seed = 2152196153 (Default)
output
 file = output.csv (Default)
 diagnostic_file = (Default)
 refresh = 100 (Default)
```

TEST GRADIENT MODE

Log probability=-8.42814

param idx	value	model	finite diff	error
0	0.0361376	-3.1084	-3.1084	-2.37554e-10

The same information is printed to the output file as csv comments, i.e., each line is prefixed with a pound sign #.

16. Parallelization

Stan provides three ways of parallelizing execution of a Stan model:

- multi-threading with Intel Threading Building Blocks (TBB),
- multi-processing with Message Passing Interface (MPI) and
- manycore processing with OpenCL.

16.1. Multi-threading with TBB

In order to exploit multi-threading in a Stan model, the models must be rewritten to use the reduce_sum and map_rect functions. For instructions on how to rewrite Stan models to use these functions see Stan's User guide chapter on parallelization, the reduce sum case study or the Multithreading and Map-Reduce tutorial.

Compiling

Once a model is rewritten to use the above-mentioned functions, the model must be compiled with the STAN_THREADS makefile flag. The flag can be supplied in the make call but we recommend writing the flag to the make/local file.

An example of the contents of make/local to enable threading with TBB:

STAN THREADS=true

The model is then compiled as normal:

make path/to/model

Running

Before running a multi-threaded model, we need to specify the maximum number of threads the program can run (total threads for all chains). This is done by setting the num_threads argument. Valid values for num_threads are positive integers and -1. If num_threads is set to -1, all available cores will be used.

Generally, this number should not exceed the number of available cores for best performance.

Example:

```
./model sample data file=data.json num_threads=4 ...
```

When the model is compiled with STAN_THREADS we can sample with multiple chains with a single executable (see section running multiple chains for cases when this is

available). When running multiple chains num_threads is the maximum number of threads that can be used by all the chains combined. The exact number of threads that will be used for each chain at a given point in time is determined by the TBB scheduler. The following example start 2 chains with 8 total threads available:

./model sample num chains=2 data file=data.json num threads=8 ...

16.2. Multi-processing with MPI

In order to use multi-processing with MPI in a Stan model, the models must be rewritten to use the map_rect function. By using MPI, the model can be parallelized across multiple cores or a cluster. MPI with Stan is supported on MacOS and Linux.

Dependencies

Compiling and running Stan models with MPI requires that the system has an MPI implementation installed. For Unix systems the most commonly used implementations are MPICH and OpenMPI.

Compiling

Once a model is rewritten to use map_rect, additional makefile flags must be written to the make/local. These are:

- STAN_MPI: Enables the use of MPI with Stan if true.
- CXX: The name of the MPI C++ compiler wrapper. Typically mpicxx.
- TBB_CXX_TYPE: The C++ compiler the MPI wrapper wraps. Typically gcc on Linux and clang on macOS.

An example of make/local on Linux:

STAN_MPI=true CXX=mpicxx TBB_CXX_TYPE=gcc

The model is then compiled as normal:

make path/to/model

Running

The Stan model compiled with STAN_MPI is run using an MPI launcher. The MPI standard suggests using mpiexec, but a vendor wrapper for the launcher like mpirun can also be used. The launcher is supplied the path to the built executable and the number of processes to start: -n X for mpiexec or -np X for mpirun where X is replaced by the integer representing the number of processes.

Example for running a model with six processes:

mpiexec -n 6 path/to/model sample data file=data.json ...

16.3. OpenCL

Dependencies

OpenCL is supported on most modern CPUs and GPUs. In order to run OpenCL-enabled Stan models, an OpenCL runtime for the target device must be installed. This subsection lists installation instructions for OpenCL runtimes of the commonly-found devices.

In order to check if any OpenCL-enabled device and its runtime is already present use the clinfo tool. On Linux, clinfo can typically be installed with the default package manager (for example sudo apt-get install clinfo on Ubuntu). For Windows, pre-built clinfo binary can be found here.

Also use clinfo to verify successful installation of OpenCL runtimes.

NVIDIA GPU

· Linux:

Install the NVIDIA GPU driver and the NVIDIA CUDA Toolkit. On Ubuntu the commands to install both is:

```
sudo apt update
sudo apt install nvidia-driver-460 nvidia-cuda-toolkit
```

Replace the driver version (460 in the above case) with the lastest number at the time of installation.

Windows:

Install the NVIDIA GPU Driver and CUDA Toolkit.

AMD GPU

• Linux:

Install Radeon Software for Linux available here.

Windows:

We recommend installing the open source OCL-SDK.

AMD CPU

Install the open source PoCL.

Intel CPU/GPU

Follow Intel's install instructions given here (requires registration).

Compiling

In order to enable the OpenCL backend the model must be compiled with the STAN_OPENCL makefile flag. The flag can be supplied in the make call but we recommend writing the flag to the make/local file.

An example of the contents of make/local to enable parallelization with OpenCL:

STAN_OPENCL=true

The model is then compiled as normal:

make path/to/model

Running

The Stan model compiled with STAN_OPENCL can also be supplied the OpenCL platform and device IDs of the target device. These IDs determine the device on which to run the OpenCL-supported functions on. You can list the devices on your system using the clinfo program. If the system has one GPU and no OpenCL CPU runtime, the platform and device IDs of the GPU are typically 0. In that case you can also omit the OpenCL IDs as the default 0 IDs are used in that case.

We supply these IDs when starting the executable as shown below:

path/to/model sample data file=data.json opencl platform=0 device=1

CmdStan Tools

This section provides a reference for the CmdStan tools:

- stanc
- stansummary
- diagnose
- print (deprecated)

17. stanc: Translating Stan to C++

CmdStan translates Stan programs to C++ using the Stan compiler program which is included in the CmdStan release bin directory as program stanc. One can view the complete stanc documentation in the Stan User's Guide.

As of release 2.22, the CmdStan Stan to C++ compiler is written in OCaml. This compiler is called "stanc3" and has has its own repository https://github.com/standev/stanc3, from which pre-built binaries for Linux, Mac, and Windows can be downloaded.

17.1. Instantiating the stanc binary

Before the Stan compiler can be used, the binary stanc must be created. This can be done using the makefile as follows. For Mac and Linux:

make bin/stanc

For Windows:

make bin/stanc.exe

This is also done as part of the make build command.

17.2. The Stan compiler program

The Stan compiler program stanc converts Stan programs to C++ concepts. If the compiler encounters syntax errors in the program, it will provide an error message indicating the location in the input where the failure occurred and reason for the failure. The following example illustrates a fully qualified call to stanc to generate the C++ translation of the example model bernoulli.stan. For Linux and Mac:

- > cd <cmdstan-home>
- > bin/stanc --o=bernoulli.hpp examples/bernoulli/bernoulli.stan

For Windows:

- > cd <cmdstan-home>
- > bin/stanc.exe --o=bernoulli.hpp examples/bernoulli/bernoulli.stan

The base name of the Stan program file determines the name of the C++ model class. Because this name is the name of a C++ class, it must start with an alphabetic character (a--z or A--Z) and contain only alphanumeric characters (a--z, A--Z,

and 0--9) and underscores (_) and should not conflict with any C++ reserved keyword.

The C++ code implementing the class is written to the file bernoulli.hpp in the current directory. The final argument, bernoulli.stan, is the file from which to read the Stan program.

In practice, stanc is invoked indirectly, via the GNU Make utility, which contains rules that compile a Stan program to its corresponding executable. To build the simple Bernoulli model via make, we specify the name of the target executable file. On Mac and Linux, this is the name of the Stan program with the .stan omitted. On Windows, replace .stan with .exe, and make sure that the path is given with slashes and not backslashes. For Linux and Mac:

> make examples/bernoulli/bernoulli

For Windows:

> make examples/bernoulli/bernoulli.exe

The makefile rules first invoke the stanc compiler to translate the Stan model to C++, then compiles and links the C++ code to a binary executable. The makefile variable STANCFLAGS can be used to to override the default arguments to stanc, e.g.,

> make STANCFLAGS="--include-paths=~/foo" examples/bernoulli/bernoulli

18. stansummary: MCMC Output Analysis

The CmdStan stansummary program reports statistics for one or more sampler chains over all sampler and model parameters and quantities of interest. The statistics reported include both summary statistics of the estimates and diagnostic statistics on the sampler chains, reported in the following order:

- Mean sample mean
- MCSE Monte Carlo Standard Error, a measure of the amount of noise in the sample
- StdDev sample standard deviation
- Quantiles default 5%, 50%, 95%
- N eff effective sample size the number of independent draws in the sample
- N eff/S the number of independent draws per second
- R hat \hat{R} statistic, a measure of chain equilibrium, must be within 0.05 of 1.0.

When reviewing the stansummary output, it is important to check the final three output columns first - these are the diagnostic statistics on chain convergence and number of independent draws in the sample. A \hat{R} statistic of greater than 1.05 indicates that the chain has not converged and therefore the sample is not drawn from the posterior, thus the estimates of the mean and all other summary statistics are invalid.

Estimation by sampling produces an approximate value for the model parameters; the MCSE statistic indicates the amount of noise in the estimate. Therefore MCSE column is placed next to the sample mean column, in order to make it easy to compare this sample with others.

For more information, see the Posterior Analysis chapter of the Stan Reference Manual which describes both the theory and practice of MCMC estimation techniques. The summary statistics and the algorithms used to compute them are described in sections Notation for samples and Effective Sample Size.

18.1. Building the stansummary command

The CmdStan makefile task build compiles the stansummary utility into the bin directory. It can be compiled directly using the makefile as follows:

- > cd <cmdstan-home>
- > make bin/stansummary

18.2. Running the stansummary program

The stansummary utility processes one or more output files from a set of chains from one run of the HMC sampler. To run stansummary on the output file or files generated by a run of the sampler, on Mac or Linux:

<cmdstan-home>/bin/stansummary <file 1.csv> ... <file N.csv>

On Windows, use backslashes to call the stansummary.exe.

<cmdstan-home>\bin\stansummary.exe <file_1.csv> ... <file_N.csv>

For example, after running 4 chains to fit the example model eight_schools.stan to the supplied example data file, we run stansummary on the resulting Stan CSV output files to get the following report:

> bin/stansummary eight_*.csv

Input files: eight_1.csv, eight_2.csv, eight_3.csv, eight_4.csv

Inference for Stan model: eight_schools_model

4 chains: each with iter=(1000,1000,1000,1000); warmup=(0,0,0,0); thin=(1,1,0)

Warmup took (0.048, 0.060, 0.047, 0.045) seconds, 0.20 seconds total Sampling took (0.057, 0.058, 0.061, 0.066) seconds, 0.24 seconds total

	Mean	MCSE	StdDev	5%	50%	95%	N_Eff	N_Eff/s	
lp	-18	0.33	5.1	-26	-19	-9.1	233	963	
accept_stat	0.88	1.6e-02	0.23	0.21	0.98	1.00	203	838	
stepsize	0.18	2.2e-02	0.031	0.14	0.20	0.22	2.0	8.3	
treedepth	3.8	5.9e-02	0.78	2.0	4.0	5.0	175	724	
n_leapfrog	18	1.3e+00	9.4	7.0	15	31	51	212	
divergent	0.015	4.1e-03	0.12	0.00	0.00	0.00	865	3576	
energy	23	3.4e-01	5.5	13	23	32	258	1066	
mu	7.9	0.16	5.1	-0.23	7.9	16	1021	4221	
theta[1]	12	0.30	8.6	-0.48	11	28	837	3459	
theta[2]	7.8	0.15	6.4	-2.7	7.7	18	1717	7096	
theta[3]	6.1	0.19	7.7	-6.5	6.5	18	1684	6958	
theta[4]	7.5	0.15	6.7	-3.1	7.4	18	2026	8373	
theta[5]	4.7	0.17	6.4	-6.7	5.3	15	1391	5747	
theta[6]	5.9	0.16	6.7	-5.8	6.2	16	1673	6915	
theta[7]	11	0.22	7.0	0.057	10	23	1069	4419	
theta[8]	8.3	0.20	7.9	-4.2	8.0	22	1503	6209	

tau 7.2 0.26 5.2 1.5 5.9 17 401 1657

Samples were drawn using hmc with nuts.

For each parameter, N_Eff is a crude measure of effective sample size, and R_hat is the potential scale reduction factor on split chains (at convergence, $R_hat=1$).

The console output information consists of

- · Model, chains, and timing summaries
- Sampler parameter statistics
- Model parameter statistics
- Sampling algorithm either nuts (shown here) or static HMC.

There is one row per parameter and the row order in the summary report corresponds to the column order in the Stan CSV output file.

Sampler parameters

The initial Stan CSV columns provide information on the sampler state for each draw:

- lp__ the total log probability density (up to an additive constant) at each sample
- accept_stat__ the average Metropolis acceptance probability over each simulated Hamiltonian trajectory
- stepsize__ integrator step size
- treedepth__ depth of tree used by NUTS (NUTS sampler)
- n_leapfrog__ number of leapfrog calculations (NUTS sampler)
- divergent__ has value 1 if trajectory diverged, otherwise 0. (NUTS sampler)
- energy__ value of the Hamiltonian
- int_time__ total integration time (static HMC sampler)

Because we ran the NUTS sampler, the above summary reports sampler parameters treedepth__, n_leapfrog__, and divergent__; the static HMC sampler would report int_time__ instead.

Model parameters and quantities of interest

The remaining Stan CSV columns report the values of all parameters, transformed parameters, and generated quantities in the order in which these variables are declared in the Stan program. For container variables, i.e., vector, row_vector, matrix, and array variables, the statistics for each element are reported separately, in row-major order. The eight_schools.stan program parameters block contains the following parameter variable declarations:

```
real mu;
array[J] real theta;
real<lower=0> tau;
```

In the example data, J is 8; therefore the stansummary listing reports on theta[1] through theta[8].

18.3. Command-line options

The stansummary command syntax provides a set of flags to customize the output which must precede the list of filenames. When invoked with no arguments or with the -h or --help option, the program prints the usage message to the console and exits.

Report statistics for one or more Stan CSV files from a HMC sampler run. Example: stansummary model_chain_1.csv model_chain_2.csv Options:

```
-a, --autocorr [n]

Display the chain autocorrelation for the n-th input file, in addition to statistics.

-c, --csv_filename [file]

-h, --help

Produce help message, then exit.

-p, --percentiles [values]

Percentiles to report as ordered set of comma-separated integers from (1,99), inclusive Default is 5,50,95.

-s, --sig_figs [n]

Significant figures reported. Default is 2.

Must be an integer from (1, 18), inclusive.
```

Both short an long option names are allowed. Short names are specified as -<o><value>; long option names can be specified either as --<option>=<value> or --<option> <value>.

The amount of precision in the sampler output limits the amount of real precision in the summary report. CmdStan's command line interface also has output argument sig_figs. The default sampler output precision is 6. The --sig_figs argument to the stansummary program should not exceed the sig_figs argument to the sampler.

19. diagnose: Diagnosing Biased Hamiltonian Monte Carlo Inferences

CmdStan is distributed with a utility that is able to read in and analyze the output of one or more Markov chains to check for the following potential problems:

- Divergent transitions
- Transitions that hit the maximum treedepth
- Low E-BFMI values
- Low effective sample sizes
- High \hat{R} values

The meanings of several of these problems are discussed in https://arxiv.org/abs/17 01.02434.

19.1. Building the diagnose command

The CmdStan makefile task build compiles the diagnose utility into the bin directory. It can be compiled directly using the makefile as follows:

```
> cd <cmdstan-home>
> make bin/diagnose
```

19.2. Running the diagnose command

The diagnose command is executed on one or more output files, which are provided as command-line arguments separated by spaces. If there are no apparent problems with the output files passed to diagnose, it outputs a message that all transitions are within treedepth limit and that no divergent transitions were found. It problems are detected, it outputs a summary of the problem along with possible ways to mitigate it.

To fully exercise the diagnose command, we run 4 chains to sample from the Neal's funnel distribution, discussed in the Stan User's Guide reparameterization section https://mc-stan.org/docs/stan-users-guide/reparameterization.html. This program defines a distribution which exemplifies the difficulties of sampling from some hierarchical models:

```
parameters {
  real y;
  vector[9] x;
```

```
}
model {
    y ~ normal(0, 3);
    x ~ normal(0, exp(y / 2));
}
```

This program is available on GitHub: https://github.com/stan-dev/example-models/blob/master/misc/funnel/funnel.stan

Stan has trouble sampling from the region where y is small and thus x is constrained to be near 0. This is due to the fact that the density's scale changes with y, so that a step size that works well when y is large is inefficient when y is small and vice-versa.

Running 4 chains produces output files output_1.csv, ..., output_4.csv. We run diagnose command on this fileset:

> bin/diagnose output_*.csv

The output is printed to the terminal window:

Processing csv files: output_1.csv, output_2.csv, output_3.csv, output_4.csv

Checking sampler transitions treedepth.

9 of 4000 (0.23%) transitions hit the maximum treedepth limit of 10, or 2^10 Trajectories that are prematurely terminated due to this limit will result in For optimal performance, increase this limit.

Checking sampler transitions for divergences.

9 of 4000 (0.23%) transitions ended with a divergence.

These divergent transitions indicate that HMC is not fully able to explore t Try increasing adapt delta closer to 1.

If this doesn't remove all divergences, try to reparameterize the model.

Checking E-BFMI - sampler transitions HMC potential energy.

The E-BFMI, 0.078, is below the nominal threshold of 0.3 which suggests that If possible, try to reparameterize the model.

Effective sample size satisfactory.

The following parameters had split R-hat greater than 1.1:

V

Such high values indicate incomplete mixing and biased estimation.

You should consider regularizing your model with additional prior information

Processing complete.

In this example, changing the model to use a non-centered parameterization is the only way to correct these problems. In this second model, the parameters x_{raw} and y_{raw} are sampled as independent standard normals, which is easy for Stan.

```
parameters {
   real y_raw;
   vector[9] x_raw;
}

transformed parameters {
   real y;
   vector[9] x;

   y = 3.0 * y_raw;
   x = exp(y / 2) * x_raw;
}

model {
   y_raw ~ std_normal(); // implies y ~ normal(0, 3)
   x_raw ~ std_normal(); // implies x ~ normal(0, exp(y / 2))
}
```

This program is available on GitHub: https://github.com/stan-dev/example-models/blob/master/misc/funnel/funnel reparam.stan

We compile the program and run 4 chains, as before. Now the diagnose command doesn't detect any problems:

Processing csv files: output_1.csv, output_2.csv, output_3.csv, output_4.csv

Checking sampler transitions treedepth.

 ${\tt Treedepth\ satisfactory\ for\ all\ transitions.}$

Checking sampler transitions for divergences.

No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy. E-BFMI satisfactory for all transitions.

Effective sample size satisfactory.

Split R-hat values satisfactory all parameters.

Processing complete, no problems detected.

19.3. diagnose warnings and recommendations

Divergent transitions after warmup

Stan uses Hamiltonian Monte Carlo (HMC) to explore the target distribution — the posterior defined by a Stan program + data — by simulating the evolution of a Hamiltonian system. In order to approximate the exact solution of the Hamiltonian dynamics we need to choose a step size governing how far we move each time we evolve the system forward. That is, the *step size controls the resolution of the sampler*.

Unfortunately, for particularly hard problems there are features of the target distribution that are too small for this resolution. Consequently the sampler misses those features and returns biased estimates. Fortunately, this mismatch of scales manifests as *divergences* which provide a practical diagnostic. If there are any divergences after warmup, then the samples may be biased.

If the divergent transitions cannot be eliminated by increasing the adapt_delta parameter, we have to find a different way to write the model that is logically equivalent but simplifies the geometry of the posterior distribution. This problem occurs frequently with hierarchical models and one of the simplest examples is Neal's Funnel, which is discussed in the reparameterization section of the Stan User's Guide.

Maximum treedepth exceeded

Warnings about hitting the maximum treedepth are not as serious as warnings about divergent transitions. While divergent transitions are a *validity* concern, hitting the maximum treedepth is an *efficiency* concern. Configuring the No-U-Turn-Sampler (the variant of HMC used by Stan) requires putting a cap on the depth of the trees that it evaluates during each iteration (for details on this see the *Hamiltonian Monte Carlo Sampling* chapter in the Stan Reference Manual. When the maximum allowed tree depth is reached it indicates that NUTS is terminating prematurely to avoid excessively long execution time.

This is controlled through the max_depth argument. If the number of transitions which exceed maximum treedepth is low, increasing max_depth may correct this problem.

Low E-BFMI values - sampler transitions HMC potential energy.

The sampler csv output column energy_ is used to diagnose the accuracy of any Hamiltonian Monte Carlo sampler. If the standard deviation of energy is much larger than $\sqrt{D/2}$, where D is the number of unconstrained parameters, then the sampler is unlikely to be able to explore the posterior adequately. This is usually due to heavy-tailed posteriors and can sometimes be remedied by reparameterizing the model.

The warning that some number of chains had an estimated Bayesian Fraction of Missing Information (BFMI) that was too low implies that the adaptation phase of the Markov Chains did not turn out well and those chains likely did not explore the posterior distribution efficiently. For more details on this diagnostic, see https://arxiv.org/abs/1604.00695. Should this occur, you can either run the sampler for more iterations, or consider reparameterizing your model.

Low effective sample sizes

Roughly speaking, the effective sample size (ESS) of a quantity of interest captures how many independent draws contain the same amount of information as the dependent sample obtained by the MCMC algorithm. Clearly, the higher the ESS the better. Stan uses \hat{R} adjustment to use the between-chain information in computing the ESS. For example, in case of multimodal distributions with well-separated modes, this leads to an ESS estimate that is close to the number of distinct modes that are found.

Bulk-ESS refers to the effective sample size based on the rank normalized draws. This does not directly compute the ESS relevant for computing the mean of the parameter, but instead computes a quantity that is well defined even if the chains do not have finite mean or variance. Overall bulk-ESS estimates the sampling efficiency for the location of the distribution (e.g. mean and median).

Often quite smaller ESS would be sufficient for the desired estimation accuracy, but the estimation of ESS and convergence diagnostics themselves require higher ESS. We recommend requiring that the bulk-ESS is greater than 100 times the number of chains. For example, when running four chains, this corresponds to having a rank-normalized effective sample size of at least 400.

High \hat{R}

 \hat{R} (R-hat) convergence diagnostic compares the between- and within-chain estimates for model parameters and other univariate quantities of interest. If chains have not mixed well (ie, the between- and within-chain estimates don't agree), \hat{R} is larger than 1. We recommend running at least four chains by default and only using the sample if \hat{R} is less than 1.01. Stan reports \hat{R} which is the maximum of rank

CHAPTER 19. DIAGNOSE: DIAGNOSING BIASED HAMILTONIAN MONTE CARLO INFERENC

normalized split-R-hat and rank normalized folded-split-R-hat, which works for thick tailed distributions and is sensitive also to differences in scale. For more details on this diagnostic, see https://arxiv.org/abs/1903.08008.

There is further discussion in https://arxiv.org/abs/1701.02434; however the correct resolution is necessarily model specific, hence all suggestions general guidelines only.

20. print (deprecated): MCMC Output Analysis

The print utility is deprecated, but is still available until CmdStan v3.0. Use the stansummary utility instead.

Appendices

This section contains the following appendices:

- Stan CSV File Format
- JSON format
- RDump data format
- Using external C++ code from within a Stan program

21. Stan CSV File Format

The output from all CmdStan methods is in CSV format. A Stan CSV file is a data table where the columns are the method and model parameters and quantities of interest. Each row contains one record's worth of data in plain-text format using the comma character (',') as the field delimiter (hence the name).

For the Stan CSV files, data is strictly numerical, however, possible values include both positive and negative infinity and "Not-a-Number" which are represented as the strings NaN, inf, +inf, -inf. All other values are written in decimal notation with at most 6 digits of precision.

Stan CSV files have a header row containing the column names. They also make extensive use of CSV comments, i.e., lines which begin with the # character. In addition to initial and final comment rows, some methods also put comment rows in the middle of the data table, which makes it difficult to use many of the commonly used CSV parser packages.

21.1. CSV column names and order

The data table is laid out with zero or more method-specific columns followed by the Stan program variables declared in the parameter block, then the variables in the transformed parameters block, finally variables declared in the generated quantities, in declaration order.

Stan provides three types of container objects: arrays, vectors, and matrices. In order to output all elements of a container object, it is necessary to choose an indexing notation and a serialization order. The Stan CSV file indexing notation is

- The column name consists of the variable name followed by the element indices.
- Indices are delimited by periods ('.').
- Indexing is 1-based, i.e., given a dimension of size N, the first element index is 1 and the last element index is N.

Container variables are serialized in column major order, a.k.a. "Fortran" order. In column major-order, all elements of column 1 are listed in ascending order, followed by all elements of column 2, thus the first index changes the slowest and the last index changes the fastest.

To see how this works, consider a 3-dimensional variable with dimension sizes 2,

3, and 4, e.g., an array of matrices, a 2-D array of vectors or row_vectors, or a 3-D array of scalars. Given a Stan program with model parameter variable:

```
array[2, 3, 4] real foo;
```

The Stan CSV file will require 24 columns to output the elements of foo. The first 6 columns will be labeled:

```
foo.1.1.1, foo.1.1.2, foo.1.1.3, foo.1.1.4, foo.1.2.1, foo.1.2.2
```

The final 6 columns will be labeled:

```
foo.2.2.3, foo.2.2.4, foo.2.3.1, foo.2.3.2, foo.2.3.3, foo.2.3.4
```

21.2. MCMC sampler CSV output

The sample method produces both a Stan CSV output file and a diagnostic file which contains the sampler parameters together with the gradients on the unconstrained scale and log probabilities for all parameters in the model.

To see how this works, we show snippets of the output file resulting from the following command:

Sampler Stan CSV output file

The sampler output file contains the following:

- Initial comment rows listing full CmdStan argument configuration.
- Header row
- Data rows containing warmup draws, if run with option save_warmup=1
- Comment rows for adaptation listing step size and metric used for sampling
- Sampling draws
- Comment rows giving timing information

Initial comments rows: argument configuration

All configuration arguments are listed, one per line, indented according to CmdStan's hierarchy of arguments and sub-arguments. Arguments not overtly specified on the command line are annotated as (Default).

In the above example the num_samples, num_warmup, and save_warmup arguments were specified, whereas subargument thin is left at its default value, as seen in the initial comment rows:

```
# stan version major = 2
# stan_version_minor = 24
# stan version patch = 0
# model = bernoulli model
# method = sample (Default)
#
    sample
#
      num_samples = 100
      num_warmup = 200
#
#
      save warmup = 1
      thin = 1 (Default)
#
#
      adapt
#
        engaged = 1 (Default)
        gamma = 0.05000000000000000 (Default)
#
        delta = 0.8000000000000004 (Default)
#
#
        kappa = 0.75 (Default)
#
        t0 = 10 (Default)
#
        init buffer = 75 (Default)
        term buffer = 50 (Default)
#
#
        window = 25 (Default)
#
      algorithm = hmc (Default)
#
        hmc
#
          engine = nuts (Default)
#
            nuts
              max_depth = 10 (Default)
#
#
          metric = diag e (Default)
#
          metric_file = (Default)
#
          stepsize = 1 (Default)
          stepsize_jitter = 0 (Default)
# id = 0 (Default)
# data
    file = bernoulli.data.json
# init = 2 (Default)
# random
    seed = 2991989946 (Default)
# output
#
   file = bernoulli_samples.csv
#
   diagnostic_file = bernoulli_diagnostics.csv
#
    refresh = 100 (Default)
```

Note that when running multi-threaded programs which use reduce_sum for high-

level parallelization, the number of threads used will also be included in this initial comment header.

Column headers

The CSV header row lists all sampler parameters, model parameters, transformed parameters, and quantities of interest. The sampler parameters are described in detail in the output file section of the Quickstart Guide chapter on MCMC Sampling. The example model bernoulli.stan only contains one parameter theta, therefore the CSV file data table consists of 7 sampler parameter columns and one column for the model parameter:

```
lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,
```

As a second example, we show the output of the eight_schools.stan model on run on example dataset. This model has 3 parameters: mu, theta a vector whose length is dependent on the input data, here N = 8, and tau. The initial columns are for the 7 sampler parameters, as before. The column headers for the model parameters are:

```
mu, theta.1, theta.2, theta.3, theta.4, theta.5, theta.6, theta.7, theta.8, tau
```

Data rows containing warmup draws

When run with option save_warmup=1, the thinned warmup draws are written to the CSV output file directly after the CSV header line. Since the default option is save_warmup=0, this section is usually not present in the output file.

Here we specified num_warmup=200 and left thin at the default value 1, therefore the next 200 lines are data rows containing the sampler and model parameter values for each warmup draw.

```
-6.74827,1,1,1,1,0,6.75348,0.247195

-6.74827,4.1311e-103,14.3855,1,1,0,6.95087,0.247195

-6.74827,1.74545e-21,2.43117,1,1,0,7.67546,0.247195

-6.77655,0.99873,0.239791,2,7,0,6.81982,0.280619

-6.7552,0.999392,0.323158,1,3,0,6.79175,0.26517
```

Comment rows for adaptation

During warmup, the sampler adjusts the stepsize and the metric. At the end warmup, the sampler outputs this information as comments.

```
# Adaptation terminated
# Step size = 0.813694
# Diagonal elements of inverse mass matrix:
```

0.592879

As the example bernoulli model only contains a single parameter, and as the default metric is $\mathtt{diag_e}$, the inverse mass matrix is a 1×1 matrix, and the length of the diagonal vector is also 1.

In contrast, if we run the eight schools example model with metric dense_e, the adaptation comments section lists both the stepsize and the full 10×10 inverse mass matrix:

```
# Adaptation terminated
# Step size = 0.211252
# Elements of inverse mass matrix:
# 25.6389, 17.3379, 13.9455, 15.9036, 15.1953, 8.73729, 16.9486, 14.4231, 17.3379, 79.8719, 12.2989, -1.28006, 9.92895, -3.51622, 10.073, 22.0196, 17.3.9455, 12.2989, 36.1572, 12.8734, 11.9446, 9.09582, 9.74519, 10.9539, 12.75, 12.8734, 11.9446, 9.09582, 9.74519, 10.9539, 12.75, 12.9036, -1.28006, 12.8734, 59.9998, 10.245, 8.03461, 16.9754, 3.13443, 9.75, 15.1953, 9.92895, 11.9446, 10.245, 43.548, 15.3403, 13.0537, 7.69818, 10.12, 16.9486, 10.073, 9.74519, 16.9754, 13.0537, 12.7695, 45.8884, 11.6074, 8.57, 12.4231, 22.0196, 10.9539, 3.13443, 7.69818, 1.16248, 11.6074, 49.4083, 18.75, 12.4969, 19.8151, 12.1204, 9.68292, 10.1093, 6.13749, 8.96413, 18.9169, 68.75, 4.71028, 0.211353, -1.36097, 0.155245, -2.08507, -1.15946, 3.156
```

Note that when the sampler is run with arguments algorithm=fixed_param, this section will be missing.

Data rows containing sampling draws

The output file contains the values for the thinned set draws during sampling. Here we specified num_sampling=100 and left thin at the default value 1, therefore the next 100 lines are data rows containing the sampler and model parameter values for each sampling iteration.

```
-8.76921,0.796814,0.813694,1,1,0,9.75854,0.535093
-6.79143,0.979604,0.813694,1,3,0,9.13092,0.214431
-6.79451,0.955359,0.813694,2,3,0,7.19149,0.289341
```

Timing information

Upon successful completion, the sampler writes timing information to the output CSV file as a series of final comment lines:

```
# Elapsed Time: 0.005 seconds (Warm-up)
# 0.002 seconds (Sampling)
# 0.007 seconds (Total)
#
```

Diagnostic CSV output file

The diagnostic file contains the following:

- Initial comment rows listing full CmdStan argument configuration.
- Header row
- Data rows containing warmup draws, if run with option save_warmup=1
- · Sampling draws
- Comment rows giving timing information

The columns in this file contain, in order:

- all sampler parameters
- all model parameter estimates (on the unconstrained scale)
- the latent Hamiltonian for each parameter
- the gradient for each parameters

The labels for the latent Hamiltonian columns are the parameter column label with prefix p_{\perp} and the labels for the gradient columns are the parameter column label with prefix g_{\perp} .

These are the column labels from the file bernoulli_diagnostic.csv:

```
lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,
```

Profiling CSV output file

The profiling information is stored in a plain CSV format with no meta information in the comments.

Each row represents timing information collected in a profile statement for a given thread. It is possible that some profile statements have only one entry (if they were only executed by one thread) and others have multiple entries (if they were executed by multiple threads).

The columns are as follows:

- name, The name of the profile statement that is being timed
- thread_id, The thread that executed the profile statement
- total_time, The combined time spent executing statements inside the profile which includes calculation with and without automatic differentiation

- forward_time, The time spent in the profile statement during the forward pass of a reverse mode automatic differentiation calculation or during a cauculation without automatic differentiation
- reverse_time, The time spent in the profile statement during the reverse (backward) pass of reverse mode automatic differentiation
- chain_stack, The number of objects allocated on the chaining automatic differentiation stack. There is a function call for each of these objects in the reverse pass
- no_chain_stack, The number of objects allocated on the non-chaining automatic differentiation stack
- autodiff_calls, The total number of times the profile statement was executed with automatic differentiation
- no_autodiff_calls The total number of times the profile statement was executed without automatic differentiation

21.3. Optimization output

- · Config as comments
- · Header row
- · Penalized maximum likelihood estimate

21.4. Variational inference output

- Config as comments
- · Header row
- Adaptation as comments
- · Variational estimate
- · Sample draws from estimate of the posterior

21.5. Generate quantities outputs

- Header row
- · Quantities of interest

21.6. Diagnose method outputs

- · Header row
- Gradients

22. JSON Format for CmdStan

CmdStan can use JSON format for input data for both model data and parameters. Model data is read in by the model constructor. Model parameters are used to initialize the sampler and optimizer.

22.1. Creating JSON files

You can create the JSON file yourself using the guidelines below, but a more convenient way to create a JSON file for use with CmdStan is to use the write_stan_json() function provided by the CmdStanR interface.

22.2. JSON syntax summary

JSON is a data interchange notation, defined by an EMCA standard. JSON data files must in Unicode. JSON data is a series of structural tokens, literal tokens, and values:

- Structural tokens are the left and right curly bracket {}, left and right square bracket [], the semicolon;, and the comma,.
- Literal tokens must always be in lowercase. There are three literal tokens: true, false, null.
- A primitive value is a single token which is either a literal, a string, or a number.
- A string consists of zero or more Unicode characters enclosed in double quotes, e.g. "foo". A backslash is used to escape the double quote character as well as the backslash itself. JSON allows the use of Unicode character escapes, e.g. "\\uHHHH" where HHHH is the Unicode code point in hex.
- Numbers are represented using either decimal notation or scientific notation. The following are examples of numbers: 17, 17.2, -17.2, -17.2e8, 17.2e-8. There is no distincition between integer and real numbers in the JSON format other than whether they have periods or scientific notation.
- The special floating point values for positive infinity, negative infinity, and nota-number can be represented in multiple ways. Positive infinity can be represented as the string "Inf", the string "Infinity", or the atom Infinity. Negative infinity can be represented as the string "-Inf", the string "-Infinity", or the atom -Infinity. Not-a-number can be represented as the string "NaN" or the atom NaN. These values may be mixed with other numerical types.

- A complex scalar is represented as a two-element array consisting of its real component followed by its imaginary component. For example, the complex number 2.3 1.83i would be represented in JSON as the two-element array [2.3, -1.83].
- A JSON array is an ordered, comma-separated list of zero or more JSON values enclosed in square brackets. The elements of an array can be of any type. The following are examples of arrays: [], [1], [0.2, "-inf", true].
- Vectors and row vectors in JSON are representing as arrays of their elements. For example, both the vector $\begin{bmatrix} 1 & 2 \end{bmatrix}^T$ and the row vector $\begin{bmatrix} 1 & 2 \end{bmatrix}$ are represented by the JSON array $\begin{bmatrix} 1 & 2 \end{bmatrix}$.
- Complex vectors are represented as arrays of two-element arrays. For example, the complex vector $[2.3-1.83i \quad -4.8+2i]^{\top}$ is represented as [[2.3, -1.83], [-4.8, 2]] in JSON. A complex row vector has the same representation as its transpose (the vector with the same elements).
- Matrices are represented as arrays of their row vectors. For example, the 2×3 matrix

$$\begin{bmatrix} 1 & 2.7 & -9.8 \\ 4.2 & 1.8 & -7.3 \end{bmatrix}$$

is represented in JSON as [[1, 2.7, -9.8], [4.2, 1.8, -7.3]].

• Complex matrices are also represented as arrays of their row vectors. For example, the 2×3 complex matrix

$$\begin{bmatrix} 1+2i & 3-4.2i & 13.1+2.7i \\ 3.1 & -5i & 0 \end{bmatrix}$$

would be represented in JSON as [[[1, 2], [3, -4.2], [13.1, 2.7]], [[3.1, 0], [0, -5], [0, 0]]].

- A name-value pair consists of a string followed by a colon followed by a value, either primitive or compound.
- A JSON object is a comma-separated series of zero or more name-value pairs enclosed in curly brackets. Each name-value pair is a member of the object. Membership is unordered. Member names are not required to be unique. The following are examples of objects: { }, {"foo": null}, {"bar": 17, "baz": [14,15,16.6] }.

22.3. Stan data types in JSON notation

Stan follows the JSON standard. A Stan input file in JSON notation consists of single JSON object which contains zero or more name-value pairs. This structure corresponds to a Python data dictionary object. The following is an example of JSON data for the simple Bernoulli example model:

```
\{ "N" : 10, "v" : [0,1,0,0,0,0,0,0,0,1] \}
```

Matrix data and multi-dimensional arrays are indexed in row-major order. For a Stan program which has data block:

```
data {
  int d1;
  int d2;
  int d3;
  array[d1, d2, d3] int ar;
}
```

the following JSON input would be valid:

JSON ignores whitespace. In the above examples, the spaces and newlines are only used to improve readability and can be omitted.

All data inputs are encoded as name-value pairs. The following table provides more examples of JSON data. The left column contains a Stan data variable declaration and the right column contains valid JSON data inputs.

```
Stan declaration JSON encoding

int i "i": 17

real a "a" : 17

"a" : 17.2

"a" : "NaN"

"a" : "+inf"

"a" : "-inf"
```

Stan declaration JSON encoding "z": [1, -2.3] complex z array[5] int "a" : [1, 2, 3, 4, 5] array[5] real a "a" : [1, 2, 3.3, "NaN", 5] "b" : [[1, -2.3], [4.9, 0]]array[2] complex b vector[5] a "a" : [1, 2, 3.3, "NaN", 5] "a" : [1, 2, 3.3, "NaN", 5] row vector[5] a matrix[2, 3] a "a" : [[1, 2, 3], [4, 5, 6]] "c" : [[-1.2, 3.3], [4.8, 1.9], [2.3, 0]] complex_vector[2] c "c" : [[-1.2, 3.3], [4.8, 1.9], [2.3, 0]]complex row vector[2] c complex matrix[2, 3] d "d" : [[[1, 1], [2, 2], [3, 3]], [4, 4], [5, 5], [6, 6]]]

Empty arrays in JSON

JSON notation is not able to distinguish between multi-dimensional arrays where any dimension is 0, e.g., a 2-D array with dimensions (1,0), i.e., an array which contains a single array which is empty, has JSON representation []. To see how this works, consider the following Stan program data block:

```
data {
   int d;
   array[d] int ar_1d;
   array[d, d] int ar_2d;
   array[d, d, d] int ar_3d;
}
```

In the case where variable d is 1, all arrays will contain a single value. If array variable ar_d1 contains value 7, 2-D array variable ar_d2 contains (an array which contains) value 8, and 3-D array variable ar_d3 contains (an array which contains an array which contains) value 9, the JSON representation is:

```
{ "ar_d1" : [7],
```

```
"ar_d2" : [[8]],
"ar_d3" : [[[9]]]
}
```

However, in the case where variable d is 0, ar_d1 is empty, i.e., it contains no values, as is ar_d2, ar_d3, and the JSON representation is

```
{ "d" : 0,
   "ar_d1" : [],
   "ar_d2" : [],
   "ar_d3" : []
}
```

23. RDump Format for CmdStan

NOTE: Although the RDump format is still supported, I/O with JSON is faster and recommended. See the chapter on JSON for more details.

RDump format can be used to represent values for Stan variables. This format was introduced in SPLUS and is used in R, JAGS, and in BUGS (but with a different ordering).

A dump file is structured as a sequence of variable definitions. Each variable is defined in terms of its dimensionality and its values. There are three kinds of variable declarations: - scalars - sequences - general arrays

23.1. Creating dump files

Dump files can be created from R using RStan, via the rstan package function stan_rdump. Stan RDump files must be created via stan_rdump and not by R's native dump function because R's dump function uses a richer syntax than is supported by the underlying Stan i/o libraries.

23.2. Scalar variables

A simple scalar value can be thought of as having an empty list of dimensions. Its declaration in the dump format follows the SPLUS assignment syntax. For example, the following would constitute a valid dump file defining a single scalar variable y with value 17.2:

23.3. Sequence variables

One-dimensional arrays may be specified directly using the SPLUS sequence notation. The following example defines an integer-value and a real-valued sequence.

$$n \leftarrow c(1,2,3) y \leftarrow c(2.0,3.0,9.7)$$

Arrays are provided without a declaration of dimensionality because the reader just counts the number of entries to determine the size of the array.

Sequence variables may alternatively be represented with R's colon-based notation. For instance, the first example above could equivalently be written as

The sequence denoted by 1:3 is of length 3, running from 1 to 3 inclusive. The colon notation allows sequences going from high to low. The following are equivalent:

```
n <- 2:-2
n <- c(2,1,0,-1,-2)
```

As a special case, a sequence of zeros can also be represented in the dump format by integer(x) and double(x), for type int and double, respectively. Here x is a non-negative integer to specify the length. If x is 0, it can be omitted. The following are some examples.

```
x1 <- integer()
x2 <- integer(0)
x3 <- integer(2)
y1 <- double()
y2 <- double(0)
y3 <- double(2)</pre>
```

23.4. Array variables

For more than one dimension, the dump format uses a dimensionality specification. For example, the following defines a 2×3 array:

```
y \leftarrow structure(c(1,2,3,4,5,6), .Dim = c(2,3))
```

Data is stored column-major, thus the values for y will be:

```
y[1, 1] = 1

y[1, 2] = 3

y[1, 3] = 5

y[2, 1] = 2

y[2, 2] = 4

y[2, 3] = 6
```

The structure keyword just wraps a sequence of values and a dimensionality declaration, which is itself just a sequence of non-negative integer values. The product of the dimensions must equal the length of the array.

If the values happen to form a contiguous sequence of integers, they may be written with colon notation. Thus the example above is equivalent to the following.

```
y \leftarrow structure(1:6, .Dim = c(2,3))
```

Sequence notation can be used within any call to the generic c() function in R. In the above example, c(2,3) could be written as c(2:3).

The generalization of column-major indexing is last-index major indexing. Arrays of more than two dimensions are written in a last-index major form. For example,

```
z \leftarrow structure(1:24, .Dim = c(2,3,4))
```

produces a three-dimensional int (assignable to real) array z with values:

```
z[1, 1, 1] = 1
z[2, 1, 1] = 2
z[1, 2, 1] = 3
z[2, 2, 1] = 4
z[1, 3, 1] = 5
z[2, 3, 1] = 6
z[1, 1, 2] = 7
z[2, 1, 2] = 8
z[1, 2, 2] = 9
z[2, 2, 2] = 10
z[1, 3, 2] = 11
z[2, 3, 2] = 12
z[1, 1, 3] = 13
z[2, 1, 3] = 14
z[1, 2, 3] = 15
z[2, 2, 3] = 16
z[1, 3, 3] = 17
z[2, 3, 3] = 18
z[1, 1, 4] = 19
z[2, 1, 4] = 20
z[1, 2, 4] = 21
z[2, 2, 4] = 22
z[1, 3, 4] = 23
z[2, 3, 4] = 24
```

If the underlying 3-D array is stored as a 1-D array in last-index major format, the innermost array elements will be contiguous.

The sequence of values inside structure can also be integer(x) or double(x). In particular, if one or more dimensions is zero, integer() can be put inside structure. For instance, the following example is supported by the dump format.

```
y <- structure(integer(), .Dim = c(2,0))
```

23.5. Matrix- and vector-valued variables

The dump format for matrices and vectors, including arrays of matrices and vectors, is the same as that for arrays of the same shape.

Vector dump format

The following three declarations have the same dump format for their data.

```
array[K] real a;
vector[K] b;
row_vector[K] c;
```

Matrix dump format

The following declarations have the same dump format.

```
array[M, N] real a;
matrix[M, N] b;
```

Arrays of vectors and matrices

The key to understanding arrays is that the array indexing comes before any of the container indexing. That is, an array of vectors is just that: each array element is a vector. See the chapter on array and matrix types in the user's guide section of the language manual for more information.

For the dump data format, the following declarations have the same arrangement.

```
array[M, N] real a;
matrix[M, N] b;
array[M] vector[N] c;
array[M] row_vector[N] d;
```

Similarly, the following also have the same dump format.

```
array[P, M, N] real a;
array[P] matrix[M, N] b;
array[P, M] vector[N] c;
array[P, M] row_vector[N] d;
```

23.6. Complex-valued variables

At this time, there is no support for complex number input through the R dump format. As an alternative, the JSON input format supports complex numbers.

23.7. Integer- and real-valued variables

There is no declaration in a dump file that distinguishes integer versus continuous values. If a value in a dump file's definition of a variable contains a decimal point

(e.g., 132.3) or uses scientific notation (e.g., 1.323e2), Stan assumes that the values are real.

For a single value, if there is no decimal point, it may be assigned to an int or real variable in Stan. An array value may only be assigned to an int array if there is no decimal point or scientific notation in any of the values. This convention is compatible with the way R writes data.

The following dump file declares an integer value for y.

This definition can be used for a Stan variable y declared as real or as int. Assigning an integer value to a real variable automatically promotes the integer value to a real value.

Integer values may optionally be followed by L or 1, denoting long integer values. The following example, where the type is explicit, is equivalent to the above.

The following dump file provides a real value for y.

$$y < -2.0$$

Even though this is a round value, the occurrence of the decimal point in the value, 2.0, causes Stan to infer that y is real valued. This dump file may only be used for variables y declared as real in Stan.

Scientific notation

Numbers written in scientific notation may only be used for real values in Stan. R will write out the integer one million as 1e + 06.

Infinite and not-a-number values

Stan's reader supports infinite and not-a-number values for scalar quantities (see the section of the reference manual section of the language manual for more information on Stan's numerical data types). Both infinite and not-a-number values are supported by Stan's dump-format readers.

Value	Preferred Form	Alternative Forms
positive infinity negative infinity not a number	-Inf	Infinity, infinity -Infinity, -infinity

These strings are not case sensitive, so inf may also be used for positive infinity, or NAN for not-a-number.

23.8. Quoted variable names

In order to support JAGS data files, variables may be double quoted. For instance, the following definition is legal in a dump file.

```
"y" <- c(1,2,3) \end{Verbatim}
```

23.9. Line breaks

The line breaks in a dump file are required to be consistent with the way R reads in data. Both of the following declarations are legal.

```
y <- 2
y <-
3
```

Also following R, breaking before the assignment arrow are not allowed, so the following is invalid.

```
y
<- 2 # Syntax Error
```

Lines may also be broken in the middle of sequences declared using the c(...) notation., as well as between the comma following a sequence definition and the dimensionality declaration. For example, the following declaration of a $2 \times 2 \times 3$ array is valid.

```
y <-
structure(c(1,2,3,
4,5,6,7,8,9,10,11,
12), .Dim = c(2,2,
3))
```

Because there are no decimal points in the values, the resulting dump file may be used for three-dimensional array variables declared as int or real.

23.10. BNF grammar for dump data

A more precise definition of the dump data format is provided by the following (mildly templated) Backus-Naur form grammar.

The template parameters T will be set to either int or real. Because Stan allows promotion of integer values to real values, an integer sequence specification in the dump data format may be assigned to either an integer- or real-based variable in Stan.

24. Using external C++ code

The --allow-undefined flag can be passed to the call to stanc, which will allow undefined functions in the Stan language to be parsed without an error. We can then include a definition of the function in a C++ header file.

This requires specifying two makefile variables:

- STANCFLAGS=--allow-undefined
- USER_HEADER=<header_file.hpp>, where <header_file.hpp> is the name of a header file that defines a function with the same name and a compatible signature. This function can appear in the global namespace or in the model namespace, which is defined as the name of the model (either the file name, or the --name argument to stanc) followed by namespace.

This is an advanced feature which is only recommended to users familiar with the internals of Stan's Math library. Most existing C++ code will need to be modified to work with Stan, to varying degrees.

As an example, consider the following variant of the Bernoulli example

```
functions {
  real make_odds(data real theta);
}
data {
  int<lower=0> N:
  array[N] int<lower=0, upper=1> y;
}
parameters {
  real<lower=0, upper=1> theta;
}
model {
  theta ~ beta(1, 1); // uniform prior on interval 0, 1
  y ~ bernoulli(theta);
}
generated quantities {
  real odds;
  odds = make odds(theta);
}
```

Here the make_odds function is declared but not defined, which would ordinarily result in a parser error. However, if you put STANCFLAGS = --allow-undefined into the make/local file or into the stanc call, then the stanc compiler will translate this program to C++, but the generated C++ code will not compile unless you write a file such as examples/bernoulli/make odds.hpp with the following lines

```
#include <ostream>
double make_odds(const double& theta, std::ostream *pstream__) {
  return theta / (1 - theta);
}
```

The signature for this function needs to fulfill all the usages in the C++ class emitted by stanc. The pstream__ argument is mandatory in the signature but need not be used if your function does not print any output. Because make_odds was declared with a data argument and only used in generated quantites, a signature which accepts and returns double is acceptable. Functions which will have parameters passed as input in the transformed parameters or model blocks will require the ability to accept Stan's autodiff types. If you wish to autodiff through this function, the simplest option is to make it a template, like

```
template <typename T>
T make_odds(const T &theta, std::ostream *pstream__)
{
    return theta / (1 - theta);
}
```

Given the above, the following make invocation should work

> make STANCFLAGS=--allow-undefined USER_HEADER=examples/bernoulli/make_odds

Alternatively, you could put STANCFLAGS and USER_HEADER into the make/local file instead of specifying them on the command-line.

If the function were more complicated and involved functions in the Stan Math Library, then you would need to add #include <stan/model/model_header.hpp> and prefix the function calls with stan::math::.

24.1. Derivative specializations

External C++ functions are currently the only way to encode a function with a known analytic gradient outside the Stan Math Library. This is done very similarly to how a function would be added to the Math library with a reverse-mode specialization. The following code is adapted from the Stan Math documentation.

Suppose you have the following (nonsensical) model which relies on a function called my_dot_self. We will implement this as a copy of the built-in dot_self function.

```
functions {
 // both overloads end up using the same C++ template
 real my_dot_self(vector theta);
 real my_dot_self(row_vector theta);
}
data {
 int<lower=0> N;
 vector[N] input_data;
}
transformed data {
 // no autodiff for data - will call using doubles
 real ds = my_dot_self(input_data);
}
parameters {
 row_vector[N] thetas;
model {
 thetas \sim normal(0,1);
 // autodiff - will call using stan::math::var types
 input_data ~ normal(thetas, my_dot_self(thetas));
}
```

If you wanted to autodiff through this function, the following header would suffice¹:

```
#include <stan/model/model_header.hpp>
#include <ostream>

template <typename EigVec, stan::require_eigen_vector_t<EigVec> * = nullptr>
inline stan::value_type_t<EigVec> my_dot_self(const EigVec &x, std::ostream)
{
    const auto &x_ref = stan::math::to_ref(x);
    stan::value_type_t<EigVec> sum_x = 0.0;
    for (int i = 0; i < x.size(); ++i)
    {
}</pre>
```

¹Details of programming in the Stan Math style are omitted from this section, it is presented only as an example

```
sum_x += x_ref.coeff(i) * x_ref.coeff(i);
}
return sum_x;
}
```

However, we know the derivative of this function directly. To leverage this, we could use a more complicated form which has two function templates that differentiate themselves based on whether or not derivatives are required:

```
#include <stan/model/model_header.hpp>
#include <ostream>
template <typename EigVec, stan::require_eigen_vector_t<EigVec> * = nullptr,
          stan::require not st var<EigVec> * = nullptr>
inline double my_dot_self(const EigVec &x, std::ostream *pstream__)
{
    auto x_ref = stan::math::to_ref(x);
    double sum = 0.0;
    for (int i = 0; i < x.size(); ++i)</pre>
    {
        sum += x_ref.coeff(i) * x_ref.coeff(i);
    return sum;
}
template <typename EigVec, stan::require_eigen_vt<stan::is_var, EigVec> * =
inline stan::math::var my_dot_self(const EigVec &v, std::ostream *pstream__)
{
   // (1) put v into our memory arena
    stan::arena t<EigVec> arena v(v);
   // (2) calculate forward pass using
    // (3) the .val() method for matrices of var types
    stan::math::var res = my_dot_self(arena_v.val(), pstream__);
    // (4) Place a callback for the reverse pass on the callback stack.
    stan::math::reverse_pass_callback(
        [res, arena_v]() mutable
        { arena_v.adj() += 2.0 * res.adj() * arena_v.val(); });
    return res;
}
```

For more details about how to write C++ code using the Stan Math Library, see the Math library documentation at https://mc-stan.org/math/ or the paper at https://arxiv.org/abs/1509.07164.

24.2. Special functions: RNGs, distributions, editing target Some functions have special meanings in Stan and place additional requirements on their signatures if used in external C++.

- RNGs must end with _rng. They will be passed a "base RNG object" as the second to last argument, before the pointer to the ostream. We recommend making this a template, since it may change, but at the moment it is always a boost::random::ecuyer1988 object.
- Functions which edit the target directly must end with _1p and will be passed a reference to 1p__ and a reference to a stan::math::accumulator object as the final parameters before the ostream pointer. They are also expected to have a boolean template parameter propto__ which controls whether or not constant terms can be dropped.
- Probability distributions must end with _lpdf or _lpmf and will be passed a
 boolean template parameter propto__ which controls whether or not constant
 terms can be dropped.

Bibliography

Betancourt, Michael. 2017. "A Conceptual Introduction to Hamiltonian Monte Carlo." *arXiv* 1701.02434. https://arxiv.org/abs/1701.02434.

Kucukelbir, Alp, Rajesh Ranganath, Andrew Gelman, and David M. Blei. 2015. "Automatic Variational Inference in Stan." *arXiv* 1506.03431. http://arxiv.org/abs/1506.03431.