Stan Functions Reference
Version 2.29

Stan Development Team
Contents

Overview ix

Built-In Functions 1

1. Void Functions 2
 1.1 Print statement 2
 1.2 Reject statement 2

2. Integer-Valued Basic Functions 4
 2.1 Integer-valued arithmetic operators 4
 2.2 Absolute functions 6
 2.3 Bound functions 7
 2.4 Size functions 7

3. Real-Valued Basic Functions 8
 3.1 Vectorization of real-valued functions 8
 3.2 Mathematical constants 13
 3.3 Special values 14
 3.4 Log probability function 14
 3.5 Logical functions 15
 3.6 Real-valued arithmetic operators 19
 3.7 Step-like functions 21
 3.8 Power and logarithm functions 23
 3.9 Trigonometric functions 24
 3.10 Hyperbolic trigonometric functions 25
 3.11 Link functions 26
 3.12 Probability-related functions 26
 3.13 Combinatorial functions 28
 3.14 Composed functions 34
 3.15 Special functions 37

4. Complex-Valued Basic Functions 38
4.1 Complex assignment and promotion 38
4.2 Complex constructors and accessors 38
4.3 Complex arithmetic operators 39
4.4 Complex comparison operators 41
4.5 Complex (compound) assignment operators 41
4.6 Complex special functions 42
4.7 Complex exponential and power functions 43
4.8 Complex trigonometric functions 44
4.9 Complex hyperbolic trigonometric functions 45

5. Array Operations 47
5.1 Reductions 47
5.2 Array size and dimension function 50
5.3 Array broadcasting 51
5.4 Array concatenation 53
5.5 Sorting functions 53
5.6 Reversing functions 54

6. Matrix Operations 56
6.1 Integer-valued matrix size functions 56
6.2 Matrix arithmetic operators 57
6.3 Transposition operator 60
6.4 Elementwise functions 61
6.5 Dot products and specialized products 63
6.6 Reductions 66
6.7 Broadcast functions 69
6.8 Diagonal matrix functions 70
6.9 Container construction functions 71
6.10 Slicing and blocking functions 73
6.11 Matrix concatenation 75
6.12 Special matrix functions 77
6.13 Gaussian Process Covariance Functions 78
6.14 Linear algebra functions and solvers 85
6.15 Sort functions 91
6.16 Reverse functions 92
7. **Sparse Matrix Operations** 94
 7.1 Compressed row storage 94
 7.2 Conversion functions 95
 7.3 Sparse matrix arithmetic 96

8. **Mixed Operations** 97

9. **Compound Arithmetic and Assignment** 101
 9.1 Compound addition and assignment 101
 9.2 Compound subtraction and assignment 102
 9.3 Compound multiplication and assignment 103
 9.4 Compound division and assignment 103
 9.5 Compound elementwise multiplication and assignment 104
 9.6 Compound elementwise division and assignment 104

10. **Higher-Order Functions** 106
 10.1 Algebraic equation solver 106
 10.2 Ordinary differential equation (ODE) solvers 109
 10.3 Differential-Algebraic equation (DAE) solver 114
 10.4 1D integrator 117
 10.5 Reduce-sum function 119
 10.6 Map-rect function 121

11. **Deprecated Functions** 123
 11.1 multiply_log and binomial_coefficient_log functions 123
 11.2 get_lp() function 123
 11.3 abs(real x) function 123
 11.4 Integer division with operator/ 123
 11.5 integrate_ode_rk45, integrate_ode_adams, integrate_ode_bdf ODE Integrators 124
 11.6 Exponentiated quadratic covariance functions 127

12. **Removed Functions** 129

13. **Conventions for Probability Functions** 130
 13.1 Suffix marks type of function 130
 13.2 Argument order and the vertical bar 130
Discrete Distributions 136

14. Binary Distributions 137
 14.1 Bernoulli distribution 137
 14.2 Bernoulli distribution, logit parameterization 138
 14.3 Bernoulli-logit generalized linear model (Logistic Regression) 139

15. Bounded Discrete Distributions 142
 15.1 Binomial distribution 142
 15.2 Binomial distribution, logit parameterization 143
 15.3 Beta-binomial distribution 144
 15.4 Hypergeometric distribution 146
 15.5 Categorical distribution 147
 15.6 Categorical logit generalized linear model (softmax regression) 148
 15.7 Discrete range distribution 150
 15.8 Ordered logistic distribution 151
 15.9 Ordered logistic generalized linear model (ordinal regression) 152
 15.10 Ordered probit distribution 154

16. Unbounded Discrete Distributions 156
 16.1 Negative binomial distribution 156
 16.2 Negative binomial distribution (alternative parameterization) 157
 16.3 Negative binomial distribution (log alternative parameterization) 159
 16.4 Negative-binomial-2-log generalized linear model (negative binomial regression) 160
 16.5 Poisson distribution 162
 16.6 Poisson distribution, log parameterization 163
 16.7 Poisson-log generalized linear model (Poisson regression) 164
17. Multivariate Discrete Distributions 167
 17.1 Multinomial distribution 167
 17.2 Multinomial distribution, logit parameterization 168

Continuous Distributions 170

18. Unbounded Continuous Distributions 171
 18.1 Normal distribution 171
 18.2 Normal-id generalized linear model (linear regression) 173
 18.3 Exponentially modified normal distribution 177
 18.4 Skew normal distribution 178
 18.5 Student-t distribution 179
 18.6 Cauchy distribution 181
 18.7 Double exponential (Laplace) distribution 182
 18.8 Logistic distribution 183
 18.9 Gumbel distribution 184
 18.10 Skew double exponential distribution 186

19. Positive Continuous Distributions 188
 19.1 Lognormal distribution 188
 19.2 Chi-square distribution 189
 19.3 Inverse chi-square distribution 190
 19.4 Scaled inverse chi-square distribution 191
 19.5 Exponential distribution 192
 19.6 Gamma distribution 193
 19.7 Inverse gamma Distribution 194
 19.8 Weibull distribution 196
 19.9 Frechet distribution 197
 19.10 Rayleigh distribution 198
 19.11 Log-logistic distribution 199

20. Positive Lower-Bounded Distributions 201
 20.1 Pareto distribution 201
 20.2 Pareto type 2 distribution 202
 20.3 Wiener First Passage Time Distribution 203
21. Continuous Distributions on [0, 1] 205
 21.1 Beta distribution 205
 21.2 Beta proportion distribution 206

22. Circular Distributions 208
 22.1 Von Mises distribution 208

23. Bounded Continuous Distributions 211
 23.1 Uniform distribution 211

24. Distributions over Unbounded Vectors 213
 24.1 Multivariate normal distribution 213
 24.2 Multivariate normal distribution, precision parameterization 215
 24.3 Multivariate normal distribution, Cholesky parameterization 217
 24.4 Multivariate Gaussian process distribution 219
 24.5 Multivariate Gaussian process distribution, Cholesky parameterization 220
 24.6 Multivariate Student-t distribution 221
 24.7 Gaussian dynamic linear models 223

25. Simplex Distributions 225
 25.1 Dirichlet distribution 225

26. Correlation Matrix Distributions 228
 26.1 LKJ correlation distribution 228
 26.2 Cholesky LKJ correlation distribution 229

27. Covariance Matrix Distributions 231
 27.1 Wishart distribution 231
 27.2 Inverse Wishart distribution 232

Additional Distributions 233

28. Hidden Markov Models 234
 28.1 Stan functions 234

Appendix 236

29. Mathematical Functions 237
Overview

This is the reference for the functions defined in the Stan math library and available in the Stan programming language.

The Stan project comprises a domain-specific language for probabilistic programming, a differentiable mathematics and probability library, algorithms for Bayesian posterior inference and posterior analysis, along with interfaces and analysis tools in all of the popular data analysis languages.

In addition to this reference manual, there is a user's guide and a language reference manual for the Stan language and algorithms. The Stan User's Guide provides example models and programming techniques for coding statistical models in Stan. The Stan Reference Manual specifies the Stan programming language and inference algorithms.

There is also a separate installation and getting started guide for each of the Stan interfaces (R, Python, Julia, Stata, MATLAB, Mathematica, and command line).

Interfaces and platforms

Stan runs under Windows, Mac OS X, and Linux.

Stan uses a domain-specific programming language that is portable across data analysis languages. Stan has interfaces for R, Python, Julia, MATLAB, Mathematica, Stata, and the command line, as well as an alternative language interface in Scala. See the web site https://mc-stan.org for interface-specific links and getting started instructions

Web site

The official resource for all things related to Stan is the web site:

https://mc-stan.org

The web site links to all of the packages comprising Stan for both users and developers. This is the place to get started with Stan. Find the interface in the language you want to use and follow the download, installation, and getting started instructions.
GitHub organization

Stan’s source code and much of the developer process is hosted on GitHub. Stan’s organization is:

https://github.com/stan-dev

Each package has its own repository within the stan-dev organization. The web site is also hosted and managed through GitHub. This is the place to peruse the source code, request features, and report bugs. Much of the ongoing design discussion is hosted on the GitHub Wiki.

Forums

Stan hosts message boards for discussing all things related to Stan.

https://discourse.mc-stan.org

This is the place to ask questions about Stan, including modeling, programming, and installation.

Licensing

• **Computer code:** BSD 3-clause license

The core C++ code underlying Stan, including the math library, language, and inference algorithms, is licensed under the BSD 3-clause license as detailed in each repository and on the web site along with the distribution links.

• **Logo:** Stan logo usage guidelines

Acknowledgements

The Stan project could not exist without the generous grant funding of many grant agencies to the participants in the project. For more details of direct funding for the project, see the web site and project pages of the Stan developers.

The Stan project could also not exist without the generous contributions of its users in reporting and in many cases fixing bugs in the code and its documentation. We used to try to list all of those who contributed patches and bug reports for the manual here, but when that number passed into the hundreds, it became too difficult to manage
reliably. Instead, we will defer to GitHub (link above), where all contributions to the project are made and tracked.

Finally, we should all thank the Stan developers, without whom this project could not exist. We used to try and list the developers here, but like the bug reporters, once the list grew into the dozens, it became difficult to track. Instead, we will defer to the Stan web page and GitHub itself for a list of core developers and all developer contributions respectively.
Built-In Functions
1. Void Functions

Stan does not technically support functions that do not return values. It does support two types of statements, one printing and one for rejecting outputs.

Although `print` and `reject` appear to have the syntax of functions, they are actually special kinds of statements with slightly different form and behavior than other functions. First, they are the constructs that allow a variable number of arguments. Second, they are the only constructs to accept string literals (e.g., "hello world") as arguments. Third, they have no effect on the log density function and operate solely through side effects.

The special keyword `void` is used for their return type because they behave like variadic functions with void return type, even though they are special kinds of statements.

1.1. Print statement

Printing has no effect on the model’s log probability function. Its sole purpose is the side effect (i.e., an effect not represented in a return value) of arguments being printed to whatever the standard output stream is connected to (e.g., the terminal in command-line Stan or the R console in RStan).

```plaintext
void print(T1 x1,..., TN xN)
```

Print the values denoted by the arguments x1 through xN on the output message stream. There are no spaces between items in the print, but a line feed (LF; Unicode U+000A; C++ literal '\n') is inserted at the end of the printed line. The types T1 through TN can be any of Stan’s built-in numerical types or double quoted strings of characters (bytes).

Available since 2.1

1.2. Reject statement

The reject statement has the same syntax as the print statement, accepting an arbitrary number of arguments of any type (including string literals). The effect of executing a reject statement is to throw an exception internally that terminates the current iteration with a rejection (the behavior of which will depend on the algorithmic context in which it occurs).
void reject(T1 x1, ..., TN xN)
Reject the current iteration and print the values denoted by the arguments x1 through xN on the output message stream. There are no spaces between items in the print, but a line feed (LF; Unicode U+000A; C++ literal '\n') is inserted at the end of the printed line. The types T1 through TN can be any of Stan’s built-in numerical types or double quoted strings of characters (bytes).

Available since 2.18
2. Integer-Valued Basic Functions

This chapter describes Stan’s built-in function that take various types of arguments and return results of type integer.

2.1. Integer-valued arithmetic operators

Stan’s arithmetic is based on standard double-precision C++ integer and floating-point arithmetic. If the arguments to an arithmetic operator are both integers, as in 2 + 2, integer arithmetic is used. If one argument is an integer and the other a floating-point value, as in 2.0 + 2 and 2 + 2.0, then the integer is promoted to a floating point value and floating-point arithmetic is used.

Integer arithmetic behaves slightly differently than floating point arithmetic. The first difference is how overflow is treated. If the sum or product of two integers overflows the maximum integer representable, the result is an undesirable wraparound behavior at the bit level. If the integers were first promoted to real numbers, they would not overflow a floating-point representation. There are no extra checks in Stan to flag overflows, so it is up to the user to make sure it does not occur.

Secondly, because the set of integers is not closed under division and there is no special infinite value for integers, integer division implicitly rounds the result. If both arguments are positive, the result is rounded down. For example, 1 / 2 evaluates to 0 and 5 / 3 evaluates to 1.

If one of the integer arguments to division is negative, the latest C++ specification (C++11), requires rounding toward zero. This would have 1 / 2 and -1 / 2 evaluate to 0, -7 / 2 evaluate to -3, and 7 / 2 evaluate to 3. Before the C++11 specification, the behavior was platform dependent, allowing rounding up or down. All compilers recent enough to be able to deal with Stan’s templating should follow the C++11 specification, but it may be worth testing if you are not sure and plan to use integer division with negative values.

Unlike floating point division, where 1.0 / 0.0 produces the special positive infinite value, integer division by zero, as in 1 / 0, has undefined behavior in the C++ standard. For example, the clang++ compiler on Mac OS X returns 3764, whereas the g++ compiler throws an exception and aborts the program with a warning. As with overflow, it is up to the user to make sure integer divide-by-zero does not occur.
Binary infix operators

Operators are described using the C++ syntax. For instance, the binary operator of addition, written $X + Y$, would have the Stan signature `int operator+(int, int)` indicating it takes two real arguments and returns a real value. As noted previously, the value of integer division is platform-dependent when rounding is platform dependent before C++11; the descriptions below provide the C++11 definition.

```cpp
int operator+(int x, int y)
The sum of the addends x and y

operator+(x, y) = (x + y)
```

Available since 2.0

```cpp
int operator-(int x, int y)
The difference between the minuend x and subtrahend y

operator-(x, y) = (x − y)
```

Available since 2.0

```cpp
int operator*(int x, int y)
The product of the factors x and y

operator*(x, y) = (x × y)
```

Available since 2.0

```cpp
int operator/(int x, int y)
The integer quotient of the dividend x and divisor y

operator/(x, y) = \begin{cases} 
[x/y] & \text{if } x/y \geq 0 \\
-\lfloor-x/y\rfloor & \text{if } x/y < 0 
\end{cases}
```

deprecated; - use operator\%/\% instead.

Available since 2.0, deprecated in 2.24

```cpp
int operator\%/\%(int x, int y)
The integer quotient of the dividend x and divisor y

operator\%/\%(x, y) = \begin{cases} 
[x/y] & \text{if } x/y \geq 0 \\
-\lfloor-x/y\rfloor & \text{if } x/y < 0 
\end{cases}
```
CHAPTER 2. INTEGER-VALUED BASIC FUNCTIONS

Available since 2.24

\texttt{int operator\%(int x, int y)}

\(x \mod y\), which is the positive remainder after dividing \(x\) by \(y\). If both \(x\) and \(y\) are non-negative, so is the result; otherwise, the sign of the result is platform dependent.

\[\text{operator\%(}x, y) = x \mod y = x - y \times \lfloor x/y \rfloor \]

Available since 2.13

Unary prefix operators

\texttt{int operator-(int x)}

The negation of the subtrahend \(x\) \[\text{operator-(}x) = -x \]

Available since 2.0

\texttt{int operator+(int x)}

This is a no-op.

\[\text{operator+}(x) = x \]

Available since 2.0

2.2. Absolute functions

\texttt{R abs(T x)}

absolute value of \(x\)

Available since 2.0

\texttt{int int_step(int x)}

\texttt{int int_step(real x)}

Return the step function of \(x\) as an integer,

\[\text{int_step}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \text{ or } x \text{ is } NaN \end{cases} \]

\textit{Warning:} \texttt{int_step(0)} and \texttt{int_step(NaN)} return 0 whereas \texttt{step(0)} and \texttt{step(NaN)} return 1.
2.3. **BOUND FUNCTIONS**

See the warning in section step functions about the dangers of step functions applied to anything other than data.

Available since 2.0

2.3. Bound functions

int min(int x, int y)

Return the minimum of x and y.

\[
\min(x, y) = \begin{cases}
 x & \text{if } x < y \\
 y & \text{otherwise}
\end{cases}
\]

Available since 2.0

int max(int x, int y)

Return the maximum of x and y.

\[
\max(x, y) = \begin{cases}
 x & \text{if } x > y \\
 y & \text{otherwise}
\end{cases}
\]

Available since 2.0

2.4. Size functions

int size(int x)

int size(real x)

Return the size of x which for scalar-valued x is 1

Available since 2.26
3. Real-Valued Basic Functions

This chapter describes built-in functions that take zero or more real or integer arguments and return real values.

3.1. Vectorization of real-valued functions

Although listed in this chapter, many of Stan’s built-in functions are vectorized so that they may be applied to any argument type. The vectorized form of these functions is not any faster than writing an explicit loop that iterates over the elements applying the function—it’s just easier to read and write and less error prone.

Unary function vectorization

Many of Stan’s unary functions can be applied to any argument type. For example, the exponential function, \(\exp \), can be applied to real arguments or arrays of real arguments. Other than for integer arguments, the result type is the same as the argument type, including dimensionality and size. Integer arguments are first promoted to real values, but the result will still have the same dimensionality and size as the argument.

Real and real array arguments

When applied to a simple real value, the result is a real value. When applied to arrays, vectorized functions like \(\exp() \) are defined elementwise. For example,

```cpp
// declare some variables for arguments
real x0;
array[5] real x1;
array[4, 7] real x2;
// ...

// declare some variables for results
real y0;
array[5] real y1;
array[4, 7] real y2;
// ...

// calculate and assign results
```
3.1. VECTORIZATION OF REAL-VALUED FUNCTIONS

\[
y_0 = \exp(x_0);
y_1 = \exp(x_1);
y_2 = \exp(x_2);
\]

When \(\exp \) is applied to an array, it applies elementwise. For example, the statement above,
\[
y_2 = \exp(x_2);
\]
produces the same result for \(y_2 \) as the explicit loop
\[
\text{for } (i \text{ in } 1:4) \{
 \text{for } (j \text{ in } 1:7) \{
 y_2[i, j] = \exp(x_2[i, j]);
 \}
\}
\]

Vector and matrix arguments

Vectorized functions also apply elementwise to vectors and matrices. For example,
\[
\text{vector}[5] \ xv;
\text{row_vector}[7] \ xrv;
\text{matrix}[10, 20] \ xm;
\]
\[
\text{vector}[5] \ yv;
\text{row_vector}[7] \ yrv;
\text{matrix}[10, 20] \ ym;
\]
\[
yv = \exp(xv);
yrv = \exp(xrv);
ym = \exp(xm);
\]

Arrays of vectors and matrices work the same way. For example,
\[
\text{array}[12] \ \text{matrix}[17, 93] \ u;
\]
\[
\text{array}[12] \ \text{matrix}[17, 93] \ z;
\]
\[
z = \exp(u);
\]
After this has been executed, \(z[i, j, k] \) will be equal to \(\exp(u[i, j, k]) \).

Integer and integer array arguments

Integer arguments are promoted to real values in vectorized unary functions. Thus if \(n \) is of type \(\text{int} \), \(\exp(n) \) is of type \(\text{real} \). Arrays work the same way, so that if \(n2 \) is a one dimensional array of integers, then \(\exp(n2) \) will be a one-dimensional array of reals with the same number of elements as \(n2 \). For example,

```plaintext
array[23] int n1;
array[23] real z1;
z1 = exp(n1);
```

It would be illegal to try to assign \(\exp(n1) \) to an array of integers; the return type is a real array.

Binary function vectorization

Like the unary functions, many of Stan's binary functions have been vectorized, and can be applied elementwise to combinations of both scalars or container types.

Scalar and scalar array arguments

When applied to two scalar values, the result is a scalar value. When applied to two arrays, or combination of a scalar value and an array, vectorized functions like \(\text{pow()} \) are defined elementwise. For example,

```plaintext
// declare some variables for arguments
real x00;
real x01;
array[5] real x10;
array[5] real x11;
array[4, 7] real x20;
array[4, 7] real x21;
// ...

// declare some variables for results
real y0;
array[5] real y1;
array[4, 7] real y2;
// ...
```
3.1. VECTORIZATION OF REAL-VALUED FUNCTIONS

```cpp
// calculate and assign results
y0 = pow(x00, x01);
y1 = pow(x10, x11);
y2 = pow(x20, x21);
```

When `pow` is applied to two arrays, it applies elementwise. For example, the statement above,

```cpp
y2 = pow(x20, x21);
```

produces the same result for `y2` as the explicit loop

```cpp
for (i in 1:4) {
    for (j in 1:7) {
        y2[i, j] = pow(x20[i, j], x21[i, j]);
    }
}
```

Alternatively, if a combination of an array and a scalar are provided, the scalar value is broadcast to be applied to each value of the array. For example, the following statement:

```cpp
y2 = pow(x20, x00);
```

produces the same result for `y2` as the explicit loop:

```cpp
for (i in 1:4) {
    for (j in 1:7) {
        y2[i, j] = pow(x20[i, j], x00);
    }
}
```

Vector and matrix arguments

Vectorized binary functions also apply elementwise to vectors and matrices, and to combinations of these with scalar values. For example,

```cpp
real x00;
vector[5] xv00;
vector[5] xv01;
row_vector[7] xrv;
matrix[10, 20] xm;
```
Arrays of vectors and matrices work the same way. For example,

```
array[12] matrix[17, 93] u;

array[12] matrix[17, 93] z;

z = pow(u, x00);
```

After this has been executed, $z[i, j, k]$ will be equal to $\text{pow}(u[i, j, k], x00)$.

Input & return types

Vectorised binary functions require that both inputs, unless one is a real, be containers of the same type and size. For example, the following statements are legal:

```
vector[5] xv;
row_vector[7] xrv;
matrix[10, 20] xm;

vector[5] yv = pow(xv, xv)
row_vector[7] yrv = pow(xrv, xrv)
matrix[10, 20] = pow(xm, xm)
```

But the following statements are not:

```
vector[5] xv;
vector[7] xv2;
row_vector[5] xrv;

// Cannot mix different types
vector[5] yv = pow(xv, xrv)
```
3.2. MATHEMATICAL CONSTANTS

```cpp
// Cannot mix different sizes of the same type
vector[5] yv = pow(xv, xv2)
```

While the vectorized binary functions generally require the same input types, the only exception to this is for binary functions that require one input to be an integer and the other to be a real (e.g., bessel_first_kind). For these functions, one argument can be a container of any type while the other can be an integer array, as long as the dimensions of both are the same. For example, the following statements are legal:

```cpp
vector[5] xv;
matrix[5, 5] xm;
array[5] int xi;
array[5, 5] int xii;

vector[5] yv = bessel_first_kind(xi, xv);
matrix[5, 5] ym = bessel_first_kind(xii, xm);
```

Whereas these are not:

```cpp
vector[5] xv;
matrix[5, 5] xm;
array[7] int xi;

// Dimensions of containers do not match
vector[5] yv = bessel_first_kind(xi, xv);

// Function requires first argument be an integer type
matrix[5, 5] ym = bessel_first_kind(xm, xm);
```

3.2. Mathematical constants

Constants are represented as functions with no arguments and must be called as such. For instance, the mathematical constant π must be written in a Stan program as `pi()`.

```cpp
real pi()
\pi, \text{ the ratio of a circle’s circumference to its diameter}

Available since 2.0

real e()
```
e, the base of the natural logarithm

\textit{Available since 2.0}

\begin{verbatim}
real sqrt2()
\end{verbatim}

The square root of 2

\textit{Available since 2.0}

\begin{verbatim}
real log2()
\end{verbatim}

The natural logarithm of 2

\textit{Available since 2.0}

\begin{verbatim}
real log10()
\end{verbatim}

The natural logarithm of 10

\textit{Available since 2.0}

3.3. Special values

\begin{verbatim}
real not_a_number()
\end{verbatim}

Not-a-number, a special non-finite real value returned to signal an error

\textit{Available since 2.0}

\begin{verbatim}
real positive_infinity()
\end{verbatim}

Positive infinity, a special non-finite real value larger than all finite numbers

\textit{Available since 2.0}

\begin{verbatim}
real negative_infinity()
\end{verbatim}

Negative infinity, a special non-finite real value smaller than all finite numbers

\textit{Available since 2.0}

\begin{verbatim}
real machine_precision()
\end{verbatim}

The smallest number \(x \) such that \((x + 1) \neq 1 \) in floating-point arithmetic on the current hardware platform

\textit{Available since 2.0}

3.4. Log probability function

The basic purpose of a Stan program is to compute a log probability function and its derivatives. The log probability function in a Stan model outputs the log density on the unconstrained scale. A log probability accumulator starts at zero and is then incremented in various ways by a Stan program. The variables are first transformed from unconstrained to constrained, and the log Jacobian determinant added to the log probability accumulator. Then the model block is executed on the constrained parameters, with each sampling statement (\(\sim \)) and log probability
increment statement (increment_log_prob) adding to the accumulator. At the end of the model block execution, the value of the log probability accumulator is the log probability value returned by the Stan program.

Stan provides a special built-in function target() that takes no arguments and returns the current value of the log probability accumulator.\footnote{This function used to be called get lp(), but that name has been deprecated; using it will print a warning. The function get lp() will be removed in Stan 2.32.0.} This function is primarily useful for debugging purposes, where for instance, it may be used with a print statement to display the log probability accumulator at various stages of execution to see where it becomes ill defined.

real target()
Return the current value of the log probability accumulator.

Available since 2.10

real get_lp()
Return the current value of the log probability accumulator; deprecated; - use target() instead.

Available since 2.5, scheduled for removal in 2.32.0

Both target and the deprecated get lp act like other functions ending in _lp, meaning that they may only may only be used in the model block.

3.5. Logical functions

Like C++, BUGS, and R, Stan uses 0 to encode false, and 1 to encode true. Stan supports the usual boolean comparison operations and boolean operators. These all have the same syntax and precedence as in C++; for the full list of operators and precedences, see the reference manual.

Comparison operators

All comparison operators return boolean values, either 0 or 1. Each operator has two signatures, one for integer comparisons and one for floating-point comparisons. Comparing an integer and real value is carried out by first promoting the integer value.

int operator<(int x, int y)

int operator<(real x, real y)
Return 1 if \(x \) is less than \(y \) and 0 otherwise.

\[
\text{operator}\ <(x, y) = \begin{cases}
1 & \text{if } x < y \\
0 & \text{otherwise}
\end{cases}
\]

Available since 2.0

\text{int operator}\ <(\text{int } x, \text{ int } y)

\text{int operator}\ <=(\text{real } x, \text{ real } y)

Return 1 if \(x \) is less than or equal \(y \) and 0 otherwise.

\[
\text{operator}\ <=(x, y) = \begin{cases}
1 & \text{if } x \leq y \\
0 & \text{otherwise}
\end{cases}
\]

Available since 2.0

\text{int operator}\ <=(\text{int } x, \text{ int } y)

\text{int operator}\ > (\text{int } x, \text{ int } y)

\text{int operator}\ > (\text{real } x, \text{ real } y)

Return 1 if \(x \) is greater than \(y \) and 0 otherwise.

\[
\text{operator}\ > = \begin{cases}
1 & \text{if } x > y \\
0 & \text{otherwise}
\end{cases}
\]

Available since 2.0

\text{int operator}\ >= (\text{int } x, \text{ int } y)

\text{int operator}\ >= (\text{real } x, \text{ real } y)

Return 1 if \(x \) is greater than or equal to \(y \) and 0 otherwise.

\[
\text{operator}\ >= = \begin{cases}
1 & \text{if } x \geq y \\
0 & \text{otherwise}
\end{cases}
\]

Available since 2.0

\text{int operator}\ == (\text{int } x, \text{ int } y)
3.5. LOGICAL FUNCTIONS

int operator==(real x, real y)
Return 1 if x is equal to y and 0 otherwise.

\[
\text{operator}==(x, y) = \begin{cases}
1 & \text{if } x = y \\
0 & \text{otherwise}
\end{cases}
\]

Available since 2.0

int operator!=(int x, int y)

int operator!=(real x, real y)
Return 1 if x is not equal to y and 0 otherwise.

\[
\text{operator!}==(x, y) = \begin{cases}
1 & \text{if } x \neq y \\
0 & \text{otherwise}
\end{cases}
\]

Available since 2.0

Boolean operators

Boolean operators return either 0 for false or 1 for true. Inputs may be any real or integer values, with non-zero values being treated as true and zero values treated as false. These operators have the usual precedences, with negation (not) binding the most tightly, conjunction the next and disjunction the weakest; all of the operators bind more tightly than the comparisons. Thus an expression such as \(!a \&\& b\) is interpreted as \((!a) \&\& b\), and \(a < b \mid\mid c >= d \&\& e != f\) as \((a < b) \mid\mid (((c >= d) \&\& (e != f)))\).

int operator!(int x)

int operator!(real x)
Return 1 if x is zero and 0 otherwise.

\[
\text{operator!}(x) = \begin{cases}
0 & \text{if } x \neq 0 \\
1 & \text{if } x = 0
\end{cases}
\]

Available since 2.0

int operator&&(int x, int y)
int operator&&(real x, real y)
Return 1 if x is unequal to 0 and y is unequal to 0.

\[
\text{operator} && (x, y) = \begin{cases}
1 & \text{if } x \neq 0 \text{ and } y \neq 0 \\
0 & \text{otherwise}
\end{cases}
\]

Available since 2.0

int operator||(int x, int y)

int operator||(real x, real y)
Return 1 if x is unequal to 0 or y is unequal to 0.

\[
\text{operator} || (x, y) = \begin{cases}
1 & \text{if } x \neq 0 \text{ or } y \neq 0 \\
0 & \text{otherwise}
\end{cases}
\]

Available since 2.0

Boolean operator short circuiting

Like in C++, the boolean operators && and || and are implemented to short circuit directly to a return value after evaluating the first argument if it is sufficient to resolve the result. In evaluating \(a || b \), if \(a \) evaluates to a value other than zero, the expression returns the value 1 without evaluating the expression \(b \). Similarly, evaluating \(a && b \) first evaluates \(a \), and if the result is zero, returns 0 without evaluating \(b \).

Logical functions

The logical functions introduce conditional behavior functionally and are primarily provided for compatibility with BUGS and JAGS.

real step(real x)
Return 1 if \(x \) is positive and 0 otherwise.

\[
\text{step}(x) = \begin{cases}
0 & \text{if } x < 0 \\
1 & \text{otherwise}
\end{cases}
\]

Warning: int_step(0) and int_step(NaN) return 0 whereas step(0) and step(NaN) return 1.
The step function is often used in BUGS to perform conditional operations. For instance, step(a - b) evaluates to 1 if a is greater than b and evaluates to 0 otherwise. step is a step-like functions; see the warning in section step functions applied to expressions dependent on parameters.

Available since 2.0

```cpp
int is_inf(real x)
```
Return 1 if x is infinite (positive or negative) and 0 otherwise.

Available since 2.5

```cpp
int is_nan(real x)
```
Return 1 if x is NaN and 0 otherwise.

Available since 2.5

Care must be taken because both of these indicator functions are step-like and thus can cause discontinuities in gradients when applied to parameters; see section step-like functions for details.

3.6. Real-valued arithmetic operators

The arithmetic operators are presented using C++ notation. For instance `operator+(x, y)` refers to the binary addition operator and `operator-(x)` to the unary negation operator. In Stan programs, these are written using the usual infix and prefix notations as `x + y` and `-x`, respectively.

Binary infix operators

```cpp
real operator+(real x, real y)
```
Return the sum of x and y.

\[(x + y) = \text{operator}+(x, y) = x + y\]

Available since 2.0

```cpp
real operator-(real x, real y)
```
Return the difference between x and y.

\[(x - y) = \text{operator}-(x, y) = x - y\]

Available since 2.0
real \texttt{operator\textbullet}(\texttt{real } x, \texttt{real } y)
Return the product of \(x \) and \(y \).

\[(x \times y) = \texttt{operator\textbullet}(x, y) = xy\]

\textit{Available since 2.0}

real \texttt{operator\textdiv}(\texttt{real } x, \texttt{real } y)
Return the quotient of \(x \) and \(y \).

\[(x / y) = \texttt{operator\textdiv}(x, y) = \frac{x}{y}\]

\textit{Available since 2.0}

real \texttt{operator\^\textcircled{}}(\texttt{real } x, \texttt{real } y)
Return \(x \) raised to the power of \(y \).

\[(x^y) = \texttt{operator\^\textcircled{}}(x, y) = x^y\]

\textit{Available since 2.5}

\textbf{Unary prefix operators}

real \texttt{operator\textbar}(\texttt{real } x)
Return the negation of the subtrahend \(x \).

\[\texttt{operator\textbar}(x) = (-x)\]

\textit{Available since 2.0}

real \texttt{operator\texttildelow}(\texttt{real } x)
Return the value of \(x \).

\[\texttt{operator\texttildelow}(x) = x\]

\textit{Available since 2.0}
3.7. Step-like functions

Warning: These functions can seriously hinder sampling and optimization efficiency for gradient-based methods (e.g., NUTS, HMC, BFGS) if applied to parameters (including transformed parameters and local variables in the transformed parameters or model block). The problem is that they break gradients due to discontinuities coupled with zero gradients elsewhere. They do not hinder sampling when used in the data, transformed data, or generated quantities blocks.

Absolute value functions

R \texttt{fabs(T x)}

absolute value of x

Available since 2.0, vectorized in 2.13

real \texttt{fdim(real x, real y)}

Return the positive difference between x and y, which is \(x - y \) if \(x \) is greater than \(y \) and 0 otherwise; see warning above.

\[
\texttt{fdim}(x, y) = \begin{cases}
 x - y & \text{if } x \geq y \\
 0 & \text{otherwise}
\end{cases}
\]

Available since 2.0

R \texttt{fdim(T1 x, T2 y)}

Vectorized implementation of the \texttt{fdim} function

Available since 2.25

Bounds functions

real \texttt{fmin(real x, real y)}

Return the minimum of \(x \) and \(y \); see warning above.

\[
\texttt{fmin}(x, y) = \begin{cases}
 x & \text{if } x \leq y \\
 y & \text{otherwise}
\end{cases}
\]

Available since 2.0

R \texttt{fmin(T1 x, T2 y)}

Vectorized implementation of the \texttt{fmin} function

Available since 2.25
real fmax(real x, real y)
Return the maximum of x and y; see warning above.

\[
fmax(x, y) = \begin{cases}
 x & \text{if } x \geq y \\
 y & \text{otherwise}
\end{cases}
\]

Available since 2.0

R fmax(T1 x, T2 y)
Vectorized implementation of the fmax function
Available since 2.25

Arithmetic functions

real fmod(real x, real y)
Return the real value remainder after dividing x by y; see warning above.

\[
fmod(x, y) = x - \left\lfloor \frac{x}{y} \right\rfloor \cdot y
\]

The operator \(\lfloor u \rfloor \) is the floor operation; see below.
Available since 2.0

R fmod(T1 x, T2 y)
Vectorized implementation of the fmod function
Available since 2.25

Rounding functions

Warning: Rounding functions convert real values to integers. Because the output is an integer, any gradient information resulting from functions applied to the integer is not passed to the real value it was derived from. With MCMC sampling using HMC or NUTS, the MCMC acceptance procedure will correct for any error due to poor gradient calculations, but the result is likely to be reduced acceptance probabilities and less efficient sampling.

The rounding functions cannot be used as indices to arrays because they return real values. Stan may introduce integer-valued versions of these in the future, but as of now, there is no good workaround.

R floor(T x)
floor of x, which is the largest integer less than or equal to x, converted to a real
value; see warning at start of section step-like functions
Available since 2.0, vectorized in 2.13

\texttt{R ceil(T x)}

ceiling of \(x\), which is the smallest integer greater than or equal to \(x\), converted to a real value; see warning at start of section step-like functions
Available since 2.0, vectorized in 2.13

\texttt{R round(T x)}

nearest integer to \(x\), converted to a real value; see warning at start of section step-like functions
Available since 2.0, vectorized in 2.13

\texttt{R trunc(T x)}

integer nearest to but no larger in magnitude than \(x\), converted to a double value; see warning at start of section step-like functions
Available since 2.0, vectorized in 2.13

\section{3.8. Power and logarithm functions}

\texttt{R sqrt(T x)}

square root of \(x\)
Available since 2.0, vectorized in 2.13

\texttt{R cbrt(T x)}

cube root of \(x\)
Available since 2.0, vectorized in 2.13

\texttt{R square(T x)}

square of \(x\)
Available since 2.0, vectorized in 2.13

\texttt{R exp(T x)}

natural exponential of \(x\)
Available since 2.0, vectorized in 2.13

\texttt{R exp2(T x)}

base-2 exponential of \(x\)
Available since 2.0, vectorized in 2.13

\texttt{R log(T x)}

natural logarithm of \(x\)
Available since 2.0, vectorized in 2.13
CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

\(R \log_2(T \ x) \)

base-2 logarithm of \(x \)

Available since 2.0, vectorized in 2.13

\(R \log_{10}(T \ x) \)

base-10 logarithm of \(x \)

Available since 2.0, vectorized in 2.13

\(\text{real pow(\text{real } x, \text{real } y)} \)

Return \(x \) raised to the power of \(y \).

\[\text{pow}(x, y) = x^y \]

Available since 2.0

\(R \ \text{pow}(T1 \ x, T2 \ y) \)

Vectorized implementation of the \text{pow} function

Available since 2.25

\(R \ \text{inv}(T \ x) \)

inverse of \(x \)

Available since 2.0, vectorized in 2.13

\(R \ \text{inv_sqrt}(T \ x) \)

inverse of the square root of \(x \)

Available since 2.0, vectorized in 2.13

\(R \ \text{inv_square}(T \ x) \)

inverse of the square of \(x \)

Available since 2.0, vectorized in 2.13

3.9. Trigonometric functions

\(\text{real hypot(\text{real } x, \text{real } y)} \)

Return the length of the hypotenuse of a right triangle with sides of length \(x \) and \(y \).

\[\text{hypot}(x, y) = \begin{cases}
\sqrt{x^2 + y^2} & \text{if } x, y \geq 0 \\
\text{NaN} & \text{otherwise}
\end{cases} \]

Available since 2.0

\(R \ \text{hypot}(T1 \ x, T2 \ y) \)

Vectorized implementation of the \text{hypot} function

Available since 2.25
3.10. HYPERBOLIC TRIGONOMETRIC FUNCTIONS

\(R \cos(T \ x) \)

cosine of the angle \(x \) (in radians)

Available since 2.0, vectorized in 2.13

\(R \sin(T \ x) \)

sine of the angle \(x \) (in radians)

Available since 2.0, vectorized in 2.13

\(R \tan(T \ x) \)

tangent of the angle \(x \) (in radians)

Available since 2.0, vectorized in 2.13

\(R \acos(T \ x) \)

principal arc (inverse) cosine (in radians) of \(x \)

Available since 2.0, vectorized in 2.13

\(R \asin(T \ x) \)

principal arc (inverse) sine (in radians) of \(x \)

Available since 2.0

\(R \atan(T \ x) \)

principal arc (inverse) tangent (in radians) of \(x \), with values from \(-\pi/2\) to \(\pi/2\)

Available since 2.0, vectorized in 2.13

\(\text{real } \atan2(\text{real } y, \text{real } x) \)

Return the principal arc (inverse) tangent (in radians) of \(y \) divided by \(x \),

\[
\atan2(y, x) = \arctan\left(\frac{y}{x}\right)
\]

Available since 2.0, vectorized in 2.13

3.10. Hyperbolic trigonometric functions

\(R \cosh(T \ x) \)

hyperbolic cosine of \(x \) (in radians)

Available since 2.0, vectorized in 2.13

\(R \sinh(T \ x) \)

hyperbolic sine of \(x \) (in radians)

Available since 2.0, vectorized in 2.13

\(R \tanh(T \ x) \)

hyperbolic tangent of \(x \) (in radians)

Available since 2.0, vectorized in 2.13
\texttt{R\ acosh(T \ x)}
inverse hyperbolic cosine (in radians)
\textit{Available since 2.0, vectorized in 2.13}

\texttt{R\ asinh(T \ x)}
inverse hyperbolic cosine (in radians)
\textit{Available since 2.0, vectorized in 2.13}

\texttt{R\ atanh(T \ x)}
inverse hyperbolic tangent (in radians) of \(x \)
\textit{Available since 2.0, vectorized in 2.13}

3.11. Link functions

The following functions are commonly used as link functions in generalized linear models. The function \(\Phi \) is also commonly used as a link function (see section probability-related functions).

\texttt{R logit(T \ x)}
log odds, or logit, function applied to \(x \)
\textit{Available since 2.0, vectorized in 2.13}

\texttt{R\ inv_logit(T \ x)}
logistic sigmoid function applied to \(x \)
\textit{Available since 2.0, vectorized in 2.13}

\texttt{R\ inv_cloglog(T \ x)}
inverse of the complementary log-log function applied to \(x \)
\textit{Available since 2.0, vectorized in 2.13}

3.12. Probability-related functions

Normal cumulative distribution functions

The error function \(\text{erf} \) is related to the standard normal cumulative distribution function \(\Phi \) by scaling. See section normal distribution for the general normal cumulative distribution function (and its complement).

\texttt{R\ erf(T \ x)}
error function, also known as the Gauss error function, of \(x \)
\textit{Available since 2.0, vectorized in 2.13}

\texttt{R\ erfc(T \ x)}
complementary error function of \(x \)
3.12. PROBABILITY-RELATED FUNCTIONS

Available since 2.0, vectorized in 2.13

R inv_erfc(T x)
inverse of the complementary error function of x
Available since 2.29, vectorized in 2.29

R Phi(T x)
standard normal cumulative distribution function of x
Available since 2.0, vectorized in 2.13

R inv_Phi(T x)
Return the value of the inverse standard normal cdf Φ^{-1} at the specified quantile x. The details of the algorithm can be found in (Wichura 1988). Quantile arguments below 1e-16 are untested; quantiles above 0.999999999 result in increasingly large errors.
Available since 2.0, vectorized in 2.13

R Phi_approx(T x)
fast approximation of the unit (may replace Phi for probit regression with maximum absolute error of 0.00014, see (Bowling et al. 2009) for details)
Available since 2.0, vectorized in 2.13

Other probability-related functions

real binary_log_loss(int y, real y_hat)
Return the log loss function for for predicting $\hat{y} \in [0, 1]$ for boolean outcome $y \in \{0, 1\}$.

$$\text{binary_log_loss}(y, \hat{y}) = \begin{cases} -\log{\hat{y}} & \text{if } y = 0 \\ -\log(1 - \hat{y}) & \text{otherwise} \end{cases}$$

Available since 2.0

R binary_log_loss(T1 x, T2 y)
Vectorized implementation of the binary_log_loss function
Available since 2.25

real owens_t(real h, real a)
Return the Owen’s T function for the probability of the event $X > h$ and $0 < Y < aX$ where X and Y are independent standard normal random variables.

$$\text{owens_t}(h, a) = \frac{1}{2\pi} \int_0^a \frac{\exp\left(-\frac{1}{2}h^2(1 + x^2)\right)}{1 + x^2} \, dx$$
Available since 2.25

R owens_t(T1 x, T2 y)
Vectorized implementation of the `owens_t` function

Available since 2.25

3.13. Combinatorial functions

real beta(real alpha, real beta)
Return the beta function applied to alpha and beta. The beta function, B(α, β), computes the normalizing constant for the beta distribution, and is defined for α > 0 and β > 0. See section appendix for definition of B(α, β).

Available since 2.25

R beta(T1 x, T2 y)
Vectorized implementation of the `beta` function

Available since 2.25

real inc_beta(real alpha, real beta, real x)
Return the regularized incomplete beta function up to x applied to alpha and beta. See section appendix for a definition.

Available since 2.10

real lbeta(real alpha, real beta)
Return the natural logarithm of the beta function applied to alpha and beta. The beta function, B(α, β), computes the normalizing constant for the beta distribution, and is defined for α > 0 and β > 0.

\[
 lbeta(\alpha, \beta) = \log \Gamma(a) + \log \Gamma(b) - \log \Gamma(a + b)
\]

See section appendix for definition of B(α, β).

Available since 2.0

R lbeta(T1 x, T2 y)
Vectorized implementation of the `lbeta` function

Available since 2.25

R tgamma(T x)
Gamma function applied to x. The gamma function is the generalization of the factorial function to continuous variables, defined so that Γ(n + 1) = n!. See for a full definition of Γ(x). The function is defined for positive numbers and non-integral negative numbers.

Available since 2.0, vectorized in 2.13
3.13. COMBINATORIAL FUNCTIONS

R lgamma(T x)
natural logarithm of the gamma function applied to x,
Available since 2.0, vectorized in 2.15

R digamma(T x)
digamma function applied to x. The digamma function is the derivative of the natural logarithm of the Gamma function. The function is defined for positive numbers and non-integral negative numbers
Available since 2.0, vectorized in 2.13

R trigamma(T x)
trigamma function applied to x. The trigamma function is the second derivative of the natural logarithm of the Gamma function
Available since 2.0, vectorized in 2.13

real lmgamma(int n, real x)
Return the natural logarithm of the multivariate gamma function Γ_n with n dimensions applied to x.

\[
\text{lmgamma}(n, x) = \begin{cases}
\frac{n(n-1)}{4} \log \pi + \sum_{j=1}^{n} \log \Gamma \left(x + \frac{1-j}{2} \right) & \text{if } x \not\in \{ \ldots, -3, -2, -1, 0 \} \\
\text{error} & \text{otherwise}
\end{cases}
\]

Available since 2.0

R lmgamma(T1 x, T2 y)
Vectorized implementation of the lmgamma function
Available since 2.25

real gamma_p(real a, real z)
Return the normalized lower incomplete gamma function of a and z defined for positive a and nonnegative z.

\[
\text{gamma}_p(a, z) = \begin{cases}
\frac{1}{\Gamma(a)} \int_0^z t^{a-1} e^{-t} \, dt & \text{if } a > 0, z \geq 0 \\
\text{error} & \text{otherwise}
\end{cases}
\]

Available since 2.0

R gamma_p(T1 x, T2 y)
Vectorized implementation of the gamma_p function
Available since 2.25

real gamma_q(real a, real z)
Return the normalized upper incomplete gamma function of a and z defined for
positive a and nonnegative z.

$$\text{gamma}_q(a, z) = \begin{cases} \frac{1}{\Gamma(a)} \int_z^\infty t^{a-1} e^{-t} \, dt & \text{if } a > 0, z \geq 0 \\ \text{error} & \text{otherwise} \end{cases}$$

Available since 2.0

R \texttt{gamma_q(T1 x, T2 y)}
Vectorized implementation of the \texttt{gamma_q} function

Available since 2.25

\texttt{real binomial_coefficient_log(real x, real y)}

\textbf{Warning:} This function is deprecated and should be replaced with \texttt{lchoose}. Return the natural logarithm of the binomial coefficient of x and y. For non-negative integer inputs, the binomial coefficient function is written as $\binom{x}{y}$ and pronounced “x choose y.” This function generalizes to real numbers using the gamma function. For $0 \leq y \leq x$,

$$\text{binomial_coefficient_log}(x, y) = \log \Gamma(x + 1) - \log \Gamma(y + 1) - \log \Gamma(x - y + 1).$$

Available since 2.0, deprecated since 2.10, scheduled for removal in 2.32

R \texttt{binomial_coefficient_log(T1 x, T2 y)}
Vectorized implementation of the \texttt{binomial_coefficient_log} function

Available since 2.25

\texttt{int choose(int x, int y)}
Return the binomial coefficient of x and y. For non-negative integer inputs, the binomial coefficient function is written as $\binom{x}{y}$ and pronounced “x choose y.” In its the antilog of the \texttt{lchoose} function but returns an integer rather than a real number with no non-zero decimal places. For $0 \leq y \leq x$, the binomial coefficient function can be defined via the factorial function

$$\choose(x, y) = \frac{x!}{(y!) (x-y)!}.$$

Available since 2.14

R \texttt{choose(T1 x, T2 y)}
Vectorized implementation of the \texttt{choose} function

Available since 2.25
real **bessel_first_kind**(int v, real x)

Return the Bessel function of the first kind with order v applied to x.

\[
\text{bessel_first_kind}(v, x) = J_v(x),
\]

where

\[
J_v(x) = \left(\frac{1}{2}x\right)^v \sum_{k=0}^{\infty} \frac{(-1/4x^2)^k}{k! \Gamma(v+k+1)}
\]

Available since 2.5

R **bessel_first_kind**(T1 x, T2 y)

Vectorized implementation of the bessel_first_kind function

Available since 2.25

real **bessel_second_kind**(int v, real x)

Return the Bessel function of the second kind with order v applied to x defined for positive x and v. For \(x, v > 0\),

\[
\text{bessel_second_kind}(v, x) = \begin{cases}
Y_v(x) & \text{if } x > 0 \\
\text{error} & \text{otherwise}
\end{cases}
\]

where

\[
Y_v(x) = \frac{J_v(x) \cos(v\pi) - J_{-v}(x)}{\sin(v\pi)}
\]

Available since 2.5

R **bessel_second_kind**(T1 x, T2 y)

Vectorized implementation of the bessel_second_kind function

Available since 2.25

real **modified_bessel_first_kind**(int v, real z)

Return the modified Bessel function of the first kind with order v applied to z defined for all z and integer v.

\[
\text{modified_bessel_first_kind}(v, z) = I_v(z)
\]

where

\[
I_v(z) = \left(\frac{1}{2}z\right)^v \sum_{k=0}^{\infty} \frac{(1/4z^2)^k}{k! \Gamma(v+k+1)}
\]

Available since 2.1
\textbf{CHAPTER 3. REAL-VALUED BASIC FUNCTIONS}

\texttt{R \texttt{modified_bessel_first_kind}(T1 \ x, \ T2 \ y)}

Vectorized implementation of the \texttt{modified_bessel_first_kind} function
\textit{Available since 2.25}

\texttt{R \texttt{log_modified_bessel_first_kind}(real \ v, \ real \ z)}

Return the log of the modified Bessel function of the first kind. \(v \) does not have to be an integer.
\textit{Available since 2.26}

\texttt{R \texttt{log_modified_bessel_first_kind}(T1 \ x, \ T2 \ y)}

Vectorized implementation of the \texttt{log_modified_bessel_first_kind} function
\textit{Available since 2.26}

\texttt{R \texttt{modified_bessel_second_kind}(int \ v, \ real \ z)}

Return the modified Bessel function of the second kind with order \(v \) applied to \(z \) defined for positive \(z \) and integer \(v \).

\[
\text{modified_bessel_second_kind}(v, z) = \begin{cases}
K_v(z) & \text{if } z > 0 \\
\text{error} & \text{if } z \leq 0
\end{cases}
\]

where
\[
K_v(z) = \frac{\pi}{2} \cdot \frac{I_{-v}(z) - I_v(z)}{\sin(v\pi)}
\]

\textit{Available since 2.1}

\texttt{R \texttt{modified_bessel_second_kind}(T1 \ x, \ T2 \ y)}

Vectorized implementation of the \texttt{modified_bessel_second_kind} function
\textit{Available since 2.25}

\texttt{R \texttt{falling_factorial}(real \ x, \ real \ n)}

Return the falling factorial of \(x \) with power \(n \) defined for positive \(x \) and real \(n \).

\[
\text{falling_factorial}(x, n) = \begin{cases}
(x)_n & \text{if } x > 0 \\
\text{error} & \text{if } x \leq 0
\end{cases}
\]

where
\[
(x)_n = \frac{\Gamma(x + 1)}{\Gamma(x - n + 1)}
\]

\textit{Available since 2.0}
3.13. COMBINATORIAL FUNCTIONS

\texttt{R falling_factorial(T1 x, T2 y)}
Vectorized implementation of the \texttt{falling_factorial} function
\textit{Available since 2.25}

\texttt{real lchoose(real x, real y)}
Return the natural logarithm of the generalized binomial coefficient of x and y. For non-negative integer inputs, the binomial coefficient function is written as \(\binom{x}{y} \) and pronounced “x choose y.” This function generalizes to real numbers using the gamma function. For \(0 \leq y \leq x \),

\[
\text{binomial_coefficient_log}(x, y) = \log \Gamma(x + 1) - \log \Gamma(y + 1) - \log \Gamma(x - y + 1).
\]
\textit{Available since 2.10}

\texttt{R lchoose(T1 x, T2 y)}
Vectorized implementation of the \texttt{lchoose} function
\textit{Available since 2.29}

\texttt{real log_falling_factorial(real x, real n)}
Return the log of the falling factorial of x with power n defined for positive x and real n.

\[
\text{log_falling_factorial}(x, n) = \begin{cases}
\log(x)_n & \text{if } x > 0 \\
\text{error} & \text{if } x \leq 0
\end{cases}
\]
\textit{Available since 2.0}

\texttt{real rising_factorial(real x, int n)}
Return the rising factorial of x with power n defined for positive x and integer n.

\[
\text{rising_factorial}(x, n) = \begin{cases}
 x^{(n)} & \text{if } x > 0 \\
\text{error} & \text{if } x \leq 0
\end{cases}
\]

where

\[
x^{(n)} = \frac{\Gamma(x + n)}{\Gamma(x)}
\]
\textit{Available since 2.20}

\texttt{R rising_factorial(T1 x, T2 y)}
Vectorized implementation of the \texttt{rising_factorial} function
\textit{Available since 2.25}
real log_rising_factorial(real x, real n)
Return the log of the rising factorial of x with power n defined for positive x and real n.
\[
\log_{\text{rising}}(x, n) = \begin{cases}
\log x^{(n)} & \text{if } x > 0 \\
\text{error} & \text{if } x \leq 0
\end{cases}
\]

Available since 2.0

R log_rising_factorial(T1 x, T2 y)
Vectorized implementation of the log_rising_factorial function
Available since 2.25

3.14. Composed functions

The functions in this section are equivalent in theory to combinations of other functions. In practice, they are implemented to be more efficient and more numerically stable than defining them directly using more basic Stan functions.

R expm1(T x)
natural exponential of x minus 1
Available since 2.0, vectorized in 2.13

real fma(real x, real y, real z)
Return z plus the result of x multiplied by y.
\[
fma(x, y, z) = (x \times y) + z
\]

Available since 2.0

real multiply_log(real x, real y)
Warning: This function is deprecated and should be replaced with lmultiply.
Return the product of x and the natural logarithm of y.
\[
multiply_{\text{log}}(x, y) = \begin{cases}
0 & \text{if } x = y = 0 \\
x \log y & \text{if } x, y \neq 0 \\
\text{NaN} & \text{otherwise}
\end{cases}
\]

Available since 2.0, deprecated since 2.10, scheduled for removal in 2.32

R multiply_log(T1 x, T2 y)
Vectorized implementation of the multiply_log function
Available since 2.25
real ldexp(real x, int y)
Return the product of x and two raised to the y power.

\[
\text{ldexp}(x, y) = x \cdot 2^y
\]

Available since 2.25

R ldexp(T1 x, T2 y)
Vectorized implementation of the ldexp function

Available since 2.25

real lmultiply(real x, real y)
Return the product of x and the natural logarithm of y.

\[
\text{lmultiply}(x, y) = \begin{cases}
0 & \text{if } x = y = 0 \\
x \log y & \text{if } x, y \neq 0 \\
\text{NaN} & \text{otherwise}
\end{cases}
\]

Available since 2.10

R lmultiply(T1 x, T2 y)
Vectorized implementation of the lmultiply function

Available since 2.25

R log1p(T x)
natural logarithm of 1 plus x
Available since 2.0, vectorized in 2.13

R log1m(T x)
natural logarithm of 1 minus x
Available since 2.0, vectorized in 2.13

R log1p_exp(T x)

natural logarithm of one plus the natural exponentiation of x
Available since 2.0, vectorized in 2.13

R log1m_exp(T x)

logarithm of one minus the natural exponentiation of x
Available since 2.0, vectorized in 2.13

real log_diff_exp(real x, real y)
Return the natural logarithm of the difference of the natural exponentiation of x and
the natural exponentiation of y.

$$
\text{log_diff_exp}(x, y) = \begin{cases}
\log(\exp(x) - \exp(y)) & \text{if } x > y \\
\text{NaN} & \text{otherwise}
\end{cases}
$$

Available since 2.0

R \text{log_diff_exp}(T1 \ x, T2 \ y)
Vectorized implementation of the log_diff_exp function

Available since 2.25

real \text{log_mix}(\text{real } \theta, \text{real } \text{lp1}, \text{real } \text{lp2})
Return the log mixture of the log densities lp1 and lp2 with mixing proportion theta, defined by

$$
\text{log_mix}(\theta, \lambda_1, \lambda_2) = \log(\theta \exp(\lambda_1) + (1 - \theta) \exp(\lambda_2)) \\
= \log\text{_sum_exp}(\log(\theta) + \lambda_1, \log(1 - \theta) + \lambda_2).
$$

Available since 2.6

real \text{log_sum_exp}(\text{real } x, \text{real } y)
Return the natural logarithm of the sum of the natural exponentiation of x and the natural exponentiation of y.

$$
\text{log_sum_exp}(x, y) = \log(\exp(x) + \exp(y))
$$

Available since 2.0

R \text{log_inv_logit}(T \ x)
natural logarithm of the inverse logit function of x
Available since 2.0, vectorized in 2.13

R \text{log_inv_logit_diff}(T1 \ x, T2 \ y)
natural logarithm of the difference of the inverse logit function of x and the inverse logit function of y
Available since 2.25

R \text{log1m_inv_logit}(T \ x)
natural logarithm of 1 minus the inverse logit function of x
Available since 2.0, vectorized in 2.13
3.15. **Special functions**

R `lambert_w0(T x)`

Implementation of the W_0 branch of the Lambert W function, i.e., solution to the function $W_0(x) \exp^{W_0(x)} = x$

Available since 2.25

R `lambert_wm1(T x)`

Implementation of the W_{-1} branch of the Lambert W function, i.e., solution to the function $W_{-1}(x) \exp^{W_{-1}(x)} = x$

Available since 2.25
4. Complex-Valued Basic Functions

This chapter describes built-in functions that operate on complex numbers, either as an argument type or a return type. This includes the arithmetic operators generalized to complex numbers.

4.1. Complex assignment and promotion

Just as integers may be assigned to real variables, real variables may be assigned to complex numbers, with the result being a zero imaginary component.

```c
int n = 5; // n = 5
real x = a; // x = 5.0
complex z1 = n; // z = 5.0 + 0.0i
complex z2 = x; // z = 5.0 + 0.0i
```

Complex function arguments

Function arguments of type `int` or `real` may be promoted to type `complex`. The complex version of functions in this chapter are only used if one of the arguments is complex. For example, if `z` is complex, then `pow(z, 2)` will call the complex version of the power function and the integer 2 will be promoted to a complex number with a real component of 2 and an imaginary component of 0. The same goes for binary operators like addition and subtraction, where `z + 2` will be legal and produce a complex result. Functions such as `arg` and `conj` that are only available for complex numbers can accept integer or real arguments, promoting them to `complex` before applying the function.

4.2. Complex constructors and accessors

Complex constructors

Variables and constants of type `complex` are constructed from zero, one, or two real numbers.

```c
complex z1 = to_complex(); // z1 = 0.0 + 0.0i
real re = -2.9;
complex z2 = to_complex(re); // z2 = -2.9 + 0.0i
```
real im = 1.3;
complex z3 = to_complex(re, im); // z3 = -2.9 + 1.3i

complex to_complex()
Return complex number with real part 0.0 and imaginary part 0.0.
Available since 2.28

complex to_complex(real re)
Return complex number with real part re and imaginary part 0.0.
Available since 2.28

complex to_complex(real re, real im)
Return complex number with real part re and imaginary part im.
Available since 2.28

Complex accessors
Given a complex number, its real and imaginary parts can be extracted with the following functions.

real get_real(complex z)
Return the real part of the complex number z.
Available since 2.28

real get_imag(complex z)
Return the imaginary part of the complex number z.
Available since 2.28

4.3. Complex arithmetic operators
The arithmetic operators have the same precedence for complex and real arguments. The complex form of an operator will be selected if at least one of its argument is of type complex. If there are two arguments and only one is of type complex, then the other will be promoted to type complex before performing the operation.

Unary operators

complex operator+(complex z)
Return the complex argument z,

\[+z = z. \]

Available since 2.28
complex operator-(complex z)
 Return the negation of the complex argument z, which for \(z = x + yi \) is
 \[-z = -x - yi.\]

Available since 2.28

Binary operators

complex operator+(complex x, complex y)
 Return the sum of x and y,
 \[(x + y) = \text{operator+}(x, y) = x + y.\]

Available since 2.28

complex operator-(complex x, complex y)
 Return the difference between x and y,
 \[(x - y) = \text{operator-}(x, y) = x - y.\]

Available since 2.28

complex operator*(complex x, complex y)
 Return the product of x and y,
 \[(x \times y) = \text{operator*}(x, y) = x \times y.\]

Available since 2.28

complex operator/(complex x, complex y)
 Return the quotient of x and y,
 \[(x/y) = \text{operator/}(x, y) = \frac{x}{y}\]

Available since 2.28

complex operator^ (complex x, complex y)
 Return x raised to the power of y,
 \[(x^y) = \text{operator}^ (x, y) = \exp(y \log(x)).\]

Available since 2.28
4.4. **Complex comparison operators**

Complex numbers are equal if and only if both their real and imaginary components are equal. That is, the conditional

\[
z_1 \ == \ z_2
\]

is equivalent to

\[
\text{get_real}(z_1) \ == \ \text{get_real}(z_2) \ &\& \ \text{get_imag}(z_1) \ == \ \text{get_imag}(z_2)
\]

As with other complex functions, if one of the arguments is of type `real` or `int`, it will be promoted to type `complex` before comparison. For example, if \(z \) is of type `complex`, then \(z \ == \ 0 \) will be true if \(z \) has real component equal to 0.0 and complex component equal to 0.0.

Warning: As with real values, it is usually a mistake to compare complex numbers for equality because their parts are implemented using floating-point arithmetic, which suffers from precision errors, rendering algebraically equivalent expressions not equal after evaluation.

\[
\text{int operator==}(\text{complex } x, \text{complex } y)
\]

Return 1 if \(x \) is equal to \(y \) and 0 otherwise,

\[
(x \ == \ y) \ = \ \text{operator==}(x, y) = \begin{cases}
1 & \text{if } x = y, \text{ and} \\
0 & \text{otherwise.}
\end{cases}
\]

Available since 2.28

\[
\text{int operator!=}(\text{complex } x, \text{complex } y)
\]

Return 1 if \(x \) is not equal to \(y \) and 0 otherwise,

\[
(x \ != \ y) \ = \ \text{operator!=}(x, y) = \begin{cases}
1 & \text{if } x \neq y, \text{ and} \\
0 & \text{otherwise.}
\end{cases}
\]

Available since 2.28

4.5. **Complex (compound) assignment operators**

The assignment operator only serves as a component in the assignment statement and is thus not technically a function in the Stan language. With that caveat, it is documented here for completeness.
Assignment of complex numbers works elementwise. If an expression of type `int` or `real` is assigned to a complex number, it will be promoted before assignment as if calling `to_complex()`, so that the imaginary component is 0.0.

```c
void operator=(complex x, complex y)
y = x; assigns a (copy of) the value of y to x.
Available since 2.28
```

```c
void operator+=(complex x, complex y)
x += y; is equivalent to x = x + y;
Available since 2.28
```

```c
void operator-=(complex x, complex y)
x -= y; is equivalent to x = x - y;
Available since 2.28
```

```c
void operator*=(complex x, complex y)
x *= y; is equivalent to x = x * y;
Available since 2.28
```

```c
void operator/=(complex x, complex y)
x /= y; is equivalent to x = x / y;
Available since 2.28
```

4.6. Complex special functions

The following functions are specific to complex numbers other than absolute value, which has a specific meaning for complex numbers.

```c
real abs(complex z)
Return the absolute value of z, also known as the modulus or magnitude, which for \( z = x + yi \) is

\[
abs(z) = \sqrt{x^2 + y^2}.
\]

Available since 2.28
```

```c
real arg(complex z)
Return the phase angle (in radians) of z, which for \( z = x + yi \) is

\[
arg(z) = \text{atan2}(y, x) = \text{atan}(y/x).
\]

Available since 2.28
```
4.7. **COMPLEX EXPONENTIAL AND POWER FUNCTIONS**

real **norm**(complex z)

Return the Euclidean norm of \(z \), which is its absolute value squared, and which for \(z = x + yi \) is

\[
\text{norm}(z) = \text{abs}^2(z) = x^2 + y^2.
\]

Available since 2.28

complex **conj**(complex z)

Return the complex conjugate of \(z \), which negates the imaginary component, so that if \(z = x + yi \),

\[
\text{conj}(z) = x - yi.
\]

Available since 2.28

complex **proj**(complex z)

Return the projection of \(z \) onto the Riemann sphere, which for \(z = x + yi \) is

\[
\text{proj}(z) = \begin{cases}
 z & \text{if } z \text{ is finite, and} \\
 0 + \text{sign}(y)i & \text{otherwise},
\end{cases}
\]

where sign\((y)\) is -1 if \(y \) is negative and 1 otherwise.

Available since 2.28

complex **polar**(real r, real theta)

Return the complex number with magnitude (absolute value) \(r \) and phase angle \(\theta \).

Available since 2.28

4.7. Complex exponential and power functions

The exponential, log, and power functions may be supplied with complex arguments with specialized meanings that generalize their real counterparts. These versions are only called when the argument is complex.

complex **exp**(complex z)

Return the complex natural exponential of \(z \), which for \(z = x + yi \) is

\[
\exp z = \exp(x)\cis(y) = \exp(x)(\cos(y) + i\sin(y)).
\]

Available since 2.28
complex log(complex z)
Return the complex natural logarithm of z, which for \(z = \text{polar}(r, \theta) \) is
\[
\log z = \log r + \theta i.
\]

Available since 2.28

complex log10(complex z)
Return the complex common logarithm of z,
\[
\log_{10} z = \frac{\log z}{\log 10}.
\]

Available since 2.28

complex pow(complex x, complex y)
Return x raised to the power of y,
\[
pow(x, y) = \exp(y \log(x)).
\]

Available since 2.28

complex sqrt(complex x)
Return the complex square root of x with branch cut along the negative real axis. For finite inputs, the result will be in the right half-plane.

Available since 2.28

4.8. Complex trigonometric functions

The standard trigonometric functions are supported for complex numbers.

complex cos(complex z)
Return the complex cosine of z, which is
\[
\cos(z) = \cosh(z i) = \frac{\exp(zi) + \exp(-zi)}{2}.
\]

Available since 2.28

complex sin(complex z)
Return the complex sine of z,
\[
\sin(z) = -\sinh(z i) i = \frac{\exp(zi) - \exp(-zi)}{2i}.
\]
4.9. **COMPLEX HYPERBOLIC TRIGONOMETRIC FUNCTIONS**

Available since 2.28

complex tan(complex z)

Return the complex tangent of z,

\[
\tan(z) = -\tanh(zi) i = \frac{(\exp(-zi) - \exp(zi)) i}{\exp(-zi) + \exp(zi)}.
\]

Available since 2.28

complex acos(complex z)

Return the complex arc (inverse) cosine of z,

\[
\acos(z) = \frac{1}{2} \pi + \log(zi + \sqrt{1 - z^2}) i.
\]

Available since 2.28

complex asin(complex z)

Return the complex arc (inverse) sine of z,

\[
\asin(z) = -\log(zi + \sqrt{1 - z^2}) i.
\]

Available since 2.28

complex atan(complex z)

Return the complex arc (inverse) tangent of z,

\[
\atan(z) = -\frac{1}{2} (\log(1 - zi) - \log(1 + zi)) i.
\]

Available since 2.28

4.9. Complex hyperbolic trigonometric functions

The standard hyperbolic trigonometric functions are supported for complex numbers.

complex cosh(complex z)

Return the complex hyperbolic cosine of z,

\[
cosh(z) = \frac{\exp(z) + \exp(-z)}{2}.
\]
Available since 2.28

```cpp
complex sinh(complex z)
```
Return the complex hyperbolic sine of z,

\[
\sinh(z) = \frac{\exp(z) - \exp(-z)}{2}.
\]

Available since 2.28

```cpp
complex tanh(complex z)
```
Return the complex hyperbolic tangent of z,

\[
\tanh(z) = \frac{\sinh(z)}{\cosh(z)} = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}.
\]

Available since 2.28

```cpp
complex acosh(complex z)
```
Return the complex hyperbolic arc (inverse) cosine of z,

\[
\text{acosh}(z) = \log(z + \sqrt{(z + 1)(z - 1)}).
\]

Available since 2.28

```cpp
complex asinh(complex z)
```
Return the complex hyperbolic arc (inverse) sine of z,

\[
\text{asinh}(z) = \log(z + \sqrt{1 + z^2}).
\]

Available since 2.28

```cpp
complex atanh(complex z)
```
Return the complex hyperbolic arc (inverse) tangent of z,

\[
\text{atanh}(z) = \frac{\log(1 + z) - \log(1 - z)}{2}.
\]
5. **Array Operations**

5.1. **Reductions**

The following operations take arrays as input and produce single output values. The boundary values for size 0 arrays are the unit with respect to the combination operation (min, max, sum, or product).

Minimum and maximum

real min(array[] real x)

The minimum value in x, or $+\infty$ if x is size 0.

Available since 2.0

int min(array[] int x)

The minimum value in x, or error if x is size 0.

Available since 2.0

real max(array[] real x)

The maximum value in x, or $-\infty$ if x is size 0.

Available since 2.0

int max(array[] int x)

The maximum value in x, or error if x is size 0.

Available since 2.0

Sum, product, and log sum of exp

int sum(array[] int x)

The sum of the elements in x, defined for x of size N by

$$
\text{sum}(x) = \begin{cases}
\sum_{n=1}^{N} x_n & \text{if } N > 0 \\
0 & \text{if } N = 0
\end{cases}
$$

Available since 2.1

real sum(array[] real x)

The sum of the elements in x; see definition above.

Available since 2.0
real prod(array[] real x)
The product of the elements in x, or 1 if x is size 0.

Available since 2.0

real prod(array[] int x)
The product of the elements in x,

\[
\text{product}(x) = \begin{cases}
\prod_{n=1}^{N} x_n & \text{if } N > 0 \\
1 & \text{if } N = 0
\end{cases}
\]

Available since 2.0

real log_sum_exp(array[] real x)
The natural logarithm of the sum of the exponentials of the elements in x, or \(-\infty\) if the array is empty.

Available since 2.0

Sample mean, variance, and standard deviation

The sample mean, variance, and standard deviation are calculated in the usual way. For i.i.d. draws from a distribution of finite mean, the sample mean is an unbiased estimate of the mean of the distribution. Similarly, for i.i.d. draws from a distribution of finite variance, the sample variance is an unbiased estimate of the variance.\(^1\) The sample deviation is defined as the square root of the sample deviation, but is not unbiased.

real mean(array[] real x)
The sample mean of the elements in x. For an array \(x\) of size \(N > 0\),

\[
\text{mean}(x) = \bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n.
\]

It is an error to the call the mean function with an array of size 0.

Available since 2.0

real variance(array[] real x)
The sample variance of the elements in x. For \(N > 0\),

\[
\text{variance}(x) = \begin{cases}
\frac{1}{N-1} \sum_{n=1}^{N} (x_n - \bar{x})^2 & \text{if } N > 1 \\
0 & \text{if } N = 1
\end{cases}
\]

\(^1\)Dividing by \(N\) rather than \((N - 1)\) produces a maximum likelihood estimate of variance, which is biased to underestimate variance.
It is an error to call the variance function with an array of size 0.
Available since 2.0

real sd(array[] real x)
The sample standard deviation of elements in x.

\[
sd(x) = \begin{cases}
\sqrt{\text{variance}(x)} & \text{if } N > 1 \\
0 & \text{if } N = 0
\end{cases}
\]

It is an error to call the sd function with an array of size 0.
Available since 2.0

Euclidean distance and squared distance

real distance(vector x, vector y)
The Euclidean distance between x and y, defined by

\[
distance(x, y) = \sqrt{\sum_{n=1}^{N}(x_n - y_n)^2}
\]

where N is the size of x and y. It is an error to call distance with arguments of unequal size.
Available since 2.2

real distance(vector x, row_vector y)
The Euclidean distance between x and y
Available since 2.2

real distance(row_vector x, vector y)
The Euclidean distance between x and y
Available since 2.2

real distance(row_vector x, row_vector y)
The Euclidean distance between x and y
Available since 2.2

real squared_distance(vector x, vector y)
The squared Euclidean distance between x and y, defined by

\[
squared_distance(x, y) = distance(x, y)^2 = \sum_{n=1}^{N}(x_n - y_n)^2,
\]

where N is the size of x and y. It is an error to call squared_distance with arguments of unequal size.
Available since 2.7
real squared_distance(vector x, row_vector y)
The squared Euclidean distance between x and y
Available since 2.26

real squared_distance(row_vector x, vector y)
The squared Euclidean distance between x and y
Available since 2.26

real squared_distance(row_vector x, row_vector y)
The Euclidean distance between x and y
Available since 2.26

Quantile

Produces sample quantiles corresponding to the given probabilities. The smallest
observation corresponds to a probability of 0 and the largest to a probability of 1.

Implements algorithm 7 from Hyndman, R. J. and Fan, Y., Sample quantiles in
Statistical Packages (R’s default quantile function).

real quantile(data array[] real x, data real p)
The p-th quantile of x
Available since 2.27

array[] real quantile(data array[] real x, data array[] real p)
An array containing the quantiles of x given by the array of probabilities p
Available since 2.27

5.2. Array size and dimension function

The size of an array or matrix can be obtained using the dims() function. The
dims() function is defined to take an argument consisting of any variable with up
to 8 array dimensions (and up to 2 additional matrix dimensions) and returns an
array of integers with the dimensions. For example, if two variables are declared as
follows,

array[7, 8, 9] real x;

then calling dims(x) or dims(y) returns an integer array of size 3 containing the
elements 7, 8, and 9 in that order.

The size() function extracts the number of elements in an array. This is just the
top-level elements, so if the array is declared as
5.3. ARRAY BROADCASTING

array[M, N] real a;

the size of a is M.

The function num_elements, on the other hand, measures all of the elements, so that the array a above has $M \times N$ elements.

The specialized functions rows() and cols() should be used to extract the dimensions of vectors and matrices.

array[] int dims(T x)
Return an integer array containing the dimensions of x; the type of the argument T can be any Stan type with up to 8 array dimensions.

Available since 2.0

int num_elements(array[] T x)
Return the total number of elements in the array x including all elements in contained arrays, vectors, and matrices. T can be any array type. For example, if x is of type array[4, 3] real then num_elements(x) is 12, and if y is declared as array[5] matrix[3, 4] y, then size(y) evaluates to 60.

Available since 2.5

int size(array[] T x)
Return the number of elements in the array x; the type of the array T can be any type, but the size is just the size of the top level array, not the total number of elements contained. For example, if x is of type array[4, 3] real then size(x) is 4.

Available since 2.0

5.3. Array broadcasting

The following operations create arrays by repeating elements to fill an array of a specified size. These operations work for all input types T, including reals, integers, vectors, row vectors, matrices, or arrays.

array[] T rep_array(T x, int n)
Return the n array with every entry assigned to x.

Available since 2.0

array[,] T rep_array(T x, int m, int n)
Return the m by n array with every entry assigned to x.

Available since 2.0

array[,][] T rep_array(T x, int k, int m, int n)
Return the \(k \) by \(m \) by \(n \) array with every entry assigned to \(x \).

Available since 2.0

For example, `rep_array(1.0, 5)` produces a real array (type `array[5] real`) of size 5 with all values set to 1.0. On the other hand, `rep_array(1, 5)` produces an integer array (type `array[5] int`) of size 5 with all values set to 1. This distinction is important because it is not possible to assign an integer array to a real array. For example, the following example contrasts legal with illegal array creation and assignment

```plaintext
array[5] real y;
array[5] int x;

x = rep_array(1, 5);  // ok
y = rep_array(1.0, 5);  // ok

x = rep_array(1.0, 5);  // illegal
y = rep_array(1, 5);  // illegal

x = y;  // illegal
y = x;  // illegal
```

If the value being repeated \(v \) is a vector (i.e., \(T \) is vector), then `rep_array(v, 27)` is a size 27 array consisting of 27 copies of the vector \(v \).

```plaintext
vector[5] v;

a = rep_array(v, 3);  // fill a with copies of v
a[2, 4] = 9.0;  // v[4], a[1, 4], a[3, 4] unchanged
```

If the type \(T \) of \(x \) is itself an array type, then the result will be an array with one, two, or three added dimensions, depending on which of the `rep_array` functions is called. For instance, consider the following legal code snippet.

```plaintext
array[5, 6] real a;
array[3, 4, 5, 6] real b;

b = rep_array(a, 3, 4);  // make (3 x 4) copies of a
b[1, 1, 1, 1] = 27.9;  // a[1, 1] unchanged
```

After the assignment to \(b \), the value for \(b[j, k, m, n] \) is equal to \(a[m, n] \) where it
is defined, for j in $1:3$, k in $1:4$, m in $1:5$, and n in $1:6$.

5.4. Array concatenation

\[T \text{append_array}(T \ x, \ T \ y) \]

Return the concatenation of two arrays in the order of the arguments. T must be an N-dimensional array of any Stan type (with a maximum N of 7). All dimensions but the first must match.

Available since 2.18

For example, the following code appends two three dimensional arrays of matrices together. Note that all dimensions except the first match. Any mismatches will cause an error to be thrown.

```stan
array[2, 1, 7] matrix[4, 6] x1;
array[3, 1, 7] matrix[4, 6] x2;
array[5, 1, 7] matrix[4, 6] x3;
x3 = append_array(x1, x2);
```

5.5. Sorting functions

Sorting can be used to sort values or the indices of those values in either ascending or descending order. For example, if v is declared as a real array of size 3, with values

\[v = (1, -10.3, 20.987), \]

then the various sort routines produce

\[
\begin{align*}
sort_{\text{asc}}(v) &= (-10.3, 1, 20.987) \\
sort_{\text{desc}}(v) &= (20.987, 1, -10.3) \\
sort_{\text{indices_asc}}(v) &= (2, 1, 3) \\
sort_{\text{indices_desc}}(v) &= (3, 1, 2)
\end{align*}
\]

```stan
array[] real sort_asc(array[] real v)
Sort the elements of v in ascending order
*Available since 2.0*

array[] int sort_asc(array[] int v)
Sort the elements of v in ascending order
*Available since 2.0*
```
array[] real sort_desc(array[] real v)
Sort the elements of v in descending order
Available since 2.0

array[] int sort_desc(array[] int v)
Sort the elements of v in descending order
Available since 2.0

array[] int sort_indices_asc(array[] real v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending order.
Available since 2.3

array[] int sort_indices_asc(array[] int v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending order.
Available since 2.3

array[] int sort_indices_desc(array[] real v)
Return an array of indices between 1 and the size of v, sorted to index v in descending order.
Available since 2.3

array[] int sort_indices_desc(array[] int v)
Return an array of indices between 1 and the size of v, sorted to index v in descending order.
Available since 2.3

int rank(array[] real v, int s)
Number of components of v less than v[s]
Available since 2.0

int rank(array[] int v, int s)
Number of components of v less than v[s]
Available since 2.0

5.6. Reversing functions

Stan provides functions to create a new array by reversing the order of elements in an existing array. For example, if v is declared as a real array of size 3, with values

\[v = (1, -10.3, 20.987), \]
then

\[
\text{reverse}(v) = (20.987, -10.3, 1).
\]

\textbf{array\[]} T \textbf{reverse}(\text{array\[]} T v)

Return a new array containing the elements of the argument in reverse order.

\textit{Available since 2.23}
6. Matrix Operations

6.1. Integer-valued matrix size functions

int num_elements(vector x)
The total number of elements in the vector x (same as function rows)
Available since 2.5

int num_elements(row_vector x)
The total number of elements in the vector x (same as function cols)
Available since 2.5

int num_elements(matrix x)
The total number of elements in the matrix x. For example, if x is a 5×3 matrix, then num_elements(x) is 15
Available since 2.5

int rows(vector x)
The number of rows in the vector x
Available since 2.0

int rows(row_vector x)
The number of rows in the row vector x, namely 1
Available since 2.0

int rows(matrix x)
The number of rows in the matrix x
Available since 2.0

int cols(vector x)
The number of columns in the vector x, namely 1
Available since 2.0

int cols(row_vector x)
The number of columns in the row vector x
Available since 2.0

int cols(matrix x)
The number of columns in the matrix x
Available since 2.0
6.2. MATRIX ARITHMETIC OPERATORS

int size(vector x)
The size of x, i.e., the number of elements
Available since 2.26

int size(row_vector x)
The size of x, i.e., the number of elements
Available since 2.26

int size(matrix x)
The size of the matrix x. For example, if x is a 5×3 matrix, then size(x) is 15
Available since 2.26

6.2. Matrix arithmetic operators

Stan supports the basic matrix operations using infix, prefix and postfix operations. This section lists the operations supported by Stan along with their argument and result types.

Negation prefix operators

vector operator-(vector x)
The negation of the vector x.
Available since 2.0

row_vector operator-(row_vector x)
The negation of the row vector x.
Available since 2.0

matrix operator-(matrix x)
The negation of the matrix x.
Available since 2.0

Infix matrix operators

vector operator+(vector x, vector y)
The sum of the vectors x and y.
Available since 2.0

row_vector operator+(row_vector x, row_vector y)
The sum of the row vectors x and y.
Available since 2.0

matrix operator+(matrix x, matrix y)
The sum of the matrices x and y
Available since 2.0

`vector operator-(vector x, vector y)`
The difference between the vectors x and y.

`row_vector operator-(row_vector x, row_vector y)`
The difference between the row vectors x and y

`matrix operator-(matrix x, matrix y)`
The difference between the matrices x and y

`vector operator*(real x, vector y)`
The product of the scalar x and vector y

`row_vector operator*(real x, row_vector y)`
The product of the scalar x and the row vector y

`matrix operator*(real x, matrix y)`
The product of the scalar x and the matrix y

`vector operator*(vector x, real y)`
The product of the scalar y and vector x

`matrix operator*(vector x, row_vector y)`
The product of the vector x and row vector y

`row_vector operator*(row_vector x, real y)`
The product of the scalar y and row vector x

`real operator*(row_vector x, vector y)`
The product of the row vector x and vector y

`row_vector operator*(row_vector x, matrix y)`
The product of the row vector x and matrix y
6.2. MATRIX ARITHMETIC OPERATORS

matrix operator*(matrix x, real y)
The product of the scalar y and matrix x
Available since 2.0

vector operator*(matrix x, vector y)
The product of the matrix x and vector y
Available since 2.0

matrix operator*(matrix x, matrix y)
The product of the matrices x and y
Available since 2.0

Broadcast infix operators

vector operator+(vector x, real y)
The result of adding y to every entry in the vector x
Available since 2.0

vector operator+(real x, vector y)
The result of adding x to every entry in the vector y
Available since 2.0

row_vector operator+(row_vector x, real y)
The result of adding y to every entry in the row vector x
Available since 2.0

row_vector operator+(real x, row_vector y)
The result of adding x to every entry in the row vector y
Available since 2.0

matrix operator+(matrix x, real y)
The result of adding y to every entry in the matrix x
Available since 2.0

matrix operator+(real x, matrix y)
The result of adding x to every entry in the matrix y
Available since 2.0

vector operator-(vector x, real y)
The result of subtracting y from every entry in the vector x
Available since 2.0

vector operator-(real x, vector y)
The result of adding x to every entry in the negation of the vector y
Available since 2.0

\textbf{row_vector operator-\((\text{row_vector } x, \text{ real } y)\)}
The result of subtracting \(y \) from every entry in the row vector \(x \)

Available since 2.0

\textbf{row_vector operator-\((\text{real } x, \text{ row_vector } y)\)}
The result of adding \(x \) to every entry in the negation of the row vector \(y \)

Available since 2.0

\textbf{matrix operator-\((\text{matrix } x, \text{ real } y)\)}
The result of subtracting \(y \) from every entry in the matrix \(x \)

Available since 2.0

\textbf{matrix operator-\((\text{real } x, \text{ matrix } y)\)}
The result of adding \(x \) to every entry in negation of the matrix \(y \)

Available since 2.0

\textbf{vector operator/\((\text{vector } x, \text{ real } y)\)}
The result of dividing each entry in the vector \(x \) by \(y \)

Available since 2.0

\textbf{row_vector operator/\((\text{row_vector } x, \text{ real } y)\)}
The result of dividing each entry in the row vector \(x \) by \(y \)

Available since 2.0

\textbf{matrix operator/\((\text{matrix } x, \text{ real } y)\)}
The result of dividing each entry in the matrix \(x \) by \(y \)

Available since 2.0

\section{6.3. Transposition operator}

Matrix transposition is represented using a postfix operator.

\textbf{matrix operator'\((\text{matrix } x)\)}
The transpose of the matrix \(x \), written as \(x' \)

Available since 2.0

\textbf{row_vector operator'\((\text{vector } x)\)}
The transpose of the vector \(x \), written as \(x' \)

Available since 2.0

\textbf{vector operator'\((\text{row_vector } x)\)}
The transpose of the row vector \(x \), written as \(x' \)

Available since 2.0
6.4. Elementwise functions

Elementwise functions apply a function to each element of a vector or matrix, returning a result of the same shape as the argument. There are many functions that are vectorized in addition to the ad hoc cases listed in this section; see section function vectorization for the general cases.

- **vector operator.*(vector x, vector y)**
 - The elementwise product of \(y \) and \(x \)
 - *Available since 2.0*

- **row_vector operator.*(row_vector x, row_vector y)**
 - The elementwise product of \(y \) and \(x \)
 - *Available since 2.0*

- **matrix operator.*(matrix x, matrix y)**
 - The elementwise product of \(y \) and \(x \)
 - *Available since 2.0*

- **vector operator./\(vector x, vector y \)**
 - The elementwise quotient of \(y \) and \(x \)
 - *Available since 2.0*

- **vector operator./\(vector x, real y \)**
 - The elementwise quotient of \(y \) and \(x \)
 - *Available since 2.4*

- **vector operator./\(real x, vector y \)**
 - The elementwise quotient of \(y \) and \(x \)
 - *Available since 2.4*

- **row_vector operator./\(row_vector x, row_vector y \)**
 - The elementwise quotient of \(y \) and \(x \)
 - *Available since 2.0*

- **row_vector operator./\(row_vector x, real y \)**
 - The elementwise quotient of \(y \) and \(x \)
 - *Available since 2.4*

- **row_vector operator./\(real x, row_vector y \)**
 - The elementwise quotient of \(y \) and \(x \)
 - *Available since 2.4*

- **matrix operator./\(matrix x, matrix y \)**
 - The elementwise quotient of \(y \) and \(x \)
 - *Available since 2.4*
Available since 2.0

\texttt{matrix operator./(matrix x, real y)}
The elementwise quotient of \(y\) and \(x\)

Available since 2.4

\texttt{matrix operator./(real x, matrix y)}
The elementwise quotient of \(y\) and \(x\)

Available since 2.4

\texttt{vector operator.^(vector x, vector y)}
The elementwise power of \(y\) and \(x\)

Available since 2.24

\texttt{vector operator.^(vector x, real y)}
The elementwise power of \(y\) and \(x\)

Available since 2.24

\texttt{vector operator.^(real x, vector y)}
The elementwise power of \(y\) and \(x\)

Available since 2.24

\texttt{row_vector operator.^(row_vector x, row_vector y)}
The elementwise power of \(y\) and \(x\)

Available since 2.24

\texttt{row_vector operator.^(row_vector x, real y)}
The elementwise power of \(y\) and \(x\)

Available since 2.24

\texttt{row_vector operator.^(real x, row_vector y)}
The elementwise power of \(y\) and \(x\)

Available since 2.24

\texttt{matrix operator.^\, (matrix x, matrix y)}
The elementwise power of \(y\) and \(x\)

Available since 2.24

\texttt{matrix operator.^\, (matrix x, real y)}
The elementwise power of \(y\) and \(x\)

Available since 2.24

\texttt{matrix operator.^\, (real x, matrix y)}
The elementwise power of \(y\) and \(x\)

Available since 2.24
6.5. **Dot products and specialized products**

```plaintext
real dot_product(vector x, vector y)
The dot product of x and y
Available since 2.0

real dot_product(vector x, row_vector y)
The dot product of x and y
Available since 2.0

real dot_product(row_vector x, vector y)
The dot product of x and y
Available since 2.0

real dot_product(row_vector x, row_vector y)
The dot product of x and y
Available since 2.0

row_vector columns_dot_product(vector x, vector y)
The dot product of the columns of x and y
Available since 2.0

row_vector columns_dot_product(row_vector x, row_vector y)
The dot product of the columns of x and y
Available since 2.0

row_vector columns_dot_product(matrix x, matrix y)
The dot product of the columns of x and y
Available since 2.0

vector rows_dot_product(vector x, vector y)
The dot product of the rows of x and y
Available since 2.0

vector rows_dot_product(row_vector x, row_vector y)
The dot product of the rows of x and y
Available since 2.0

vector rows_dot_product(matrix x, matrix y)
The dot product of the rows of x and y
Available since 2.0

real dot_self(vector x)
The dot product of the vector x with itself
Available since 2.0
```
real \texttt{dot_self}(\texttt{row_vector} x)
The dot product of the row vector \(x\) with itself
\textit{Available since 2.0}

\texttt{row_vector columns_dot_self}(\texttt{vector} x)
The dot product of the columns of \(x\) with themselves
\textit{Available since 2.0}

\texttt{row_vector columns_dot_self}(\texttt{row_vector} x)
The dot product of the columns of \(x\) with themselves
\textit{Available since 2.0}

\texttt{row_vector columns_dot_self}(\texttt{matrix} x)
The dot product of the columns of \(x\) with themselves
\textit{Available since 2.0}

\texttt{vector rows_dot_self}(\texttt{vector} x)
The dot product of the rows of \(x\) with themselves
\textit{Available since 2.0}

\texttt{vector rows_dot_self}(\texttt{row_vector} x)
The dot product of the rows of \(x\) with themselves
\textit{Available since 2.0}

\texttt{vector rows_dot_self}(\texttt{matrix} x)
The dot product of the rows of \(x\) with themselves
\textit{Available since 2.0}

\textbf{Specialized products}

\texttt{matrix tcrossprod}(\texttt{matrix} x)
The product of \(x\) postmultiplied by its own transpose, similar to the \texttt{tcrossprod}(x)
function in R. The result is a symmetric matrix \(xx^\top\).
\textit{Available since 2.0}

\texttt{matrix crossprod}(\texttt{matrix} x)
The product of \(x\) premultiplied by its own transpose, similar to the \texttt{crossprod}(x)
function in R. The result is a symmetric matrix \(x^\top x\).
\textit{Available since 2.0}

The following functions all provide shorthand forms for common expressions, which
are also much more efficient.

\texttt{matrix quad_form}(\texttt{matrix} A, \texttt{matrix} B)
The quadratic form, i.e., $B' * A * B$.

Available since 2.0

real quad_form(matrix A, vector B)

The quadratic form, i.e., $B' * A * B$.

Available since 2.0

matrix quad_form_diag(matrix m, vector v)

The quadratic form using the column vector v as a diagonal matrix, i.e., $\text{diag_matrix}(v) * m * \text{diag_matrix}(v)$.

Available since 2.3

matrix quad_form_diag(matrix m, row_vector rv)

The quadratic form using the row vector rv as a diagonal matrix, i.e., $\text{diag_matrix}(rv) * m * \text{diag_matrix}(rv)$.

Available since 2.3

matrix quad_form_sym(matrix A, matrix B)

Similarly to quad_form, gives $B' * A * B$, but additionally checks if A is symmetric and ensures that the result is also symmetric.

Available since 2.3

real quad_form_sym(matrix A, vector B)

Similarly to quad_form, gives $B' * A * B$, but additionally checks if A is symmetric and ensures that the result is also symmetric.

Available since 2.3

real trace_quad_form(matrix A, matrix B)

The trace of the quadratic form, i.e., $\text{trace}(B' * A * B)$.

Available since 2.0

real trace_gen_quad_form(matrix D, matrix A, matrix B)

The trace of a generalized quadratic form, i.e., $\text{trace}(D * B' * A * B)$.

Available since 2.0

matrix multiply_lower_tri_self_transpose(matrix x)

The product of the lower triangular portion of x (including the diagonal) times its own transpose; that is, if L is a matrix of the same dimensions as x with $L(m,n)$ equal to $x(m,n)$ for $n \leq m$ and $L(m,n)$ equal to 0 if $n > m$, the result is the symmetric matrix LL^\top. This is a specialization of tcrossprod(x) for lower-triangular matrices. The input matrix does not need to be square.

Available since 2.0

matrix diag_pre_multiply(vector v, matrix m)
Return the product of the diagonal matrix formed from the vector \(v \) and the matrix \(m \), i.e., \(\text{diag_matrix}(v) \times m \).

Available since 2.0

matrix diag_pre_multiply(row_vector rv, matrix m)
Return the product of the diagonal matrix formed from the vector \(rv \) and the matrix \(m \), i.e., \(\text{diag_matrix}(rv) \times m \).

Available since 2.0

matrix diag_post_multiply(matrix m, vector v)
Return the product of the matrix \(m \) and the diagonal matrix formed from the vector \(v \), i.e., \(m \times \text{diag_matrix}(v) \).

Available since 2.0

matrix diag_post_multiply(matrix m, row_vector rv)
Return the product of the matrix \(m \) and the diagonal matrix formed from the the row vector \(rv \), i.e., \(m \times \text{diag_matrix}(rv) \).

Available since 2.0

6.6. Reductions

Log sum of exponents

real log_sum_exp(vector x)
The natural logarithm of the sum of the exponentials of the elements in \(x \)

Available since 2.0

real log_sum_exp(row_vector x)
The natural logarithm of the sum of the exponentials of the elements in \(x \)

Available since 2.0

real log_sum_exp(matrix x)
The natural logarithm of the sum of the exponentials of the elements in \(x \)

Available since 2.0

Minimum and maximum

real min(vector x)
The minimum value in \(x \), or \(+\infty\) if \(x \) is empty

Available since 2.0

real min(row_vector x)
The minimum value in \(x \), or \(+\infty\) if \(x \) is empty

Available since 2.0
real \texttt{min(matrix } x) \\
The minimum value in \texttt{x}, or $+\infty$ if \texttt{x} is empty \\
\textit{Available since 2.0}

real \texttt{max(vector } x) \\
The maximum value in \texttt{x}, or $-\infty$ if \texttt{x} is empty \\
\textit{Available since 2.0}

real \texttt{max(row_vector } x) \\
The maximum value in \texttt{x}, or $-\infty$ if \texttt{x} is empty \\
\textit{Available since 2.0}

real \texttt{max(matrix } x) \\
The maximum value in \texttt{x}, or $-\infty$ if \texttt{x} is empty \\
\textit{Available since 2.0}

\textbf{Sums and products}

real \texttt{sum(vector } x) \\
The sum of the values in \texttt{x}, or 0 if \texttt{x} is empty \\
\textit{Available since 2.0}

real \texttt{sum(row_vector } x) \\
The sum of the values in \texttt{x}, or 0 if \texttt{x} is empty \\
\textit{Available since 2.0}

real \texttt{sum(matrix } x) \\
The sum of the values in \texttt{x}, or 0 if \texttt{x} is empty \\
\textit{Available since 2.0}

real \texttt{prod(vector } x) \\
The product of the values in \texttt{x}, or 1 if \texttt{x} is empty \\
\textit{Available since 2.0}

real \texttt{prod(row_vector } x) \\
The product of the values in \texttt{x}, or 1 if \texttt{x} is empty \\
\textit{Available since 2.0}

real \texttt{prod(matrix } x) \\
The product of the values in \texttt{x}, or 1 if \texttt{x} is empty \\
\textit{Available since 2.0}
Sample moments

Full definitions are provided for sample moments in section array reductions.

real mean(vector x)
The sample mean of the values in x; see section array reductions for details.
Available since 2.0

real mean(row_vector x)
The sample mean of the values in x; see section array reductions for details.
Available since 2.0

real mean(matrix x)
The sample mean of the values in x; see section array reductions for details.
Available since 2.0

real variance(vector x)
The sample variance of the values in x; see section array reductions for details.
Available since 2.0

real variance(row_vector x)
The sample variance of the values in x; see section array reductions for details.
Available since 2.0

real variance(matrix x)
The sample variance of the values in x; see section array reductions for details.
Available since 2.0

real sd(vector x)
The sample standard deviation of the values in x; see section array reductions for details.
Available since 2.0

real sd(row_vector x)
The sample standard deviation of the values in x; see section array reductions for details.
Available since 2.0

real sd(matrix x)
The sample standard deviation of the values in x; see section array reductions for details.
Available since 2.0
Quantile

Produces sample quantiles corresponding to the given probabilities. The smallest observation corresponds to a probability of 0 and the largest to a probability of 1.

Implements algorithm 7 from Hyndman, R. J. and Fan, Y., Sample quantiles in Statistical Packages (R’s default quantile function).

\[
\text{real quantile(data vector } x, \text{ data real } p) \\
\text{The } p\text{-th quantile of } x
\]

Available since 2.27

\[
\text{array[]{ real quantile(data vector } x, \text{ data array[] real } p) } \\
\text{An array containing the quantiles of } x \text{ given by the array of probabilities } p
\]

Available since 2.27

\[
\text{real quantile(data row_vector } x, \text{ data real } p) \\
\text{The } p\text{-th quantile of } x
\]

Available since 2.27

\[
\text{array[]{ real quantile(data row_vector } x, \text{ data array[] real } p) } \\
\text{An array containing the quantiles of } x \text{ given by the array of probabilities } p
\]

Available since 2.27

6.7. Broadcast functions

The following broadcast functions allow vectors, row vectors and matrices to be created by copying a single element into all of their cells. Matrices may also be created by stacking copies of row vectors vertically or stacking copies of column vectors horizontally.

\[
\text{vector rep_vector(real } x, \text{ int } m) \\
\text{Return the size } m \text{ (column) vector consisting of copies of } x.
\]

Available since 2.0

\[
\text{row_vector rep_row_vector(real } x, \text{ int } n) \\
\text{Return the size } n \text{ row vector consisting of copies of } x.
\]

Available since 2.0

\[
\text{matrix rep_matrix(real } x, \text{ int } m, \text{ int } n) \\
\text{Return the } m \text{ by } n \text{ matrix consisting of copies of } x.
\]

Available since 2.0

\[
\text{matrix rep_matrix(vector } v, \text{ int } n) \\
\text{Return the } m \text{ by } n \text{ matrix consisting of } n \text{ copies of the (column) vector } v \text{ of size } m.
\]
Available since 2.0

matrix rep_matrix(row_vector rv, int m)
Return the m by n matrix consisting of m copies of the row vector rv of size n.

Available since 2.0

Unlike the situation with array broadcasting (see section array broadcasting), where there is a distinction between integer and real arguments, the following two statements produce the same result for vector broadcasting; row vector and matrix broadcasting behave similarly.

```cpp
vector[3] x;
x = rep_vector(1, 3);
x = rep_vector(1.0, 3);
```

There are no integer vector or matrix types, so integer values are automatically promoted.

Symmetrization

matrix symmetrize_from_lower_tri(matrix A)

Construct a symmetric matrix from the lower triangle of A.

Available since 2.26

6.8. Diagonal matrix functions

matrix add_diag(matrix m, row_vector d)
Add row_vector d to the diagonal of matrix m.

Available since 2.21

matrix add_diag(matrix m, vector d)
Add vector d to the diagonal of matrix m.

Available since 2.21

matrix add_diag(matrix m, real d)
Add scalar d to every diagonal element of matrix m.

Available since 2.21

vector diagonal(matrix x)
The diagonal of the matrix x

Available since 2.0
matrix \texttt{diag_matrix}(\texttt{vector}\ \texttt{x})

The diagonal matrix with diagonal \texttt{x}

\textit{Available since 2.0}

Although the \texttt{diag_matrix} function is available, it is unlikely to ever show up in an efficient Stan program. For example, rather than converting a diagonal to a full matrix for use as a covariance matrix,

\begin{verbatim}
y \sim \text{multi_normal}(\mu, \text{diag_matrix}(\text{square}(\sigma)));\end{verbatim}

it is much more efficient to just use a univariate normal, which produces the same density,

\begin{verbatim}
y \sim \text{normal}(\mu, \sigma);\end{verbatim}

Rather than writing \texttt{m * diag_matrix(v)} where \texttt{m} is a matrix and \texttt{v} is a vector, it is much more efficient to write \texttt{diag_post_multiply(m, v)} (and similarly for pre-multiplication). By the same token, it is better to use \texttt{quad_form_diag(m, v)} rather than \texttt{quad_form(m, diag_matrix(v))}.

matrix \texttt{identity_matrix}(\texttt{int}\ k)

Create an identity matrix of size $k \times k$

\textit{Available since 2.26}

\\

6.9. \textbf{Container construction functions}

\texttt{array[]} \texttt{real linspaced_array}(\texttt{int n, data real lower, data real upper})

Create a real array of length \texttt{n} of equidistantly-spaced elements between \texttt{lower} and \texttt{upper}

\textit{Available since 2.24}

\texttt{array[]} \texttt{int linspaced_int_array}(\texttt{int n, int lower, int upper})

Create a regularly spaced, increasing integer array of length \texttt{n} between \texttt{lower} and \texttt{upper}, inclusively. If \texttt{(upper - lower) / (n - 1)} is less than one, repeat each output \texttt{(n - 1) / (upper - lower)} times. If neither \texttt{(upper - lower) / (n - 1)} or \texttt{(n - 1) / (upper - lower)} are integers, \texttt{upper} is reduced until one of these is true.

\textit{Available since 2.26}

\texttt{vector linspaced_vector}(\texttt{int n, data real lower, data real upper})

Create an \texttt{n}-dimensional vector of equidistantly-spaced elements between \texttt{lower} and \texttt{upper}

\textit{Available since 2.24}
row_vector linspaced_row_vector(int n, data real lower, data real upper)
Create an n-dimensional row-vector of equidistantly-spaced elements between lower and upper
Available since 2.24

array[] int one_hot_int_array(int n, int k)
Create a one-hot encoded int array of length n with array[k] = 1
Available since 2.26

array[] real one_hot_array(int n, int k)
Create a one-hot encoded real array of length n with array[k] = 1
Available since 2.24

vector one_hot_vector(int n, int k)
Create an n-dimensional one-hot encoded vector with vector[k] = 1
Available since 2.24

row_vector one_hot_row_vector(int n, int k)
Create an n-dimensional one-hot encoded row-vector with row_vector[k] = 1
Available since 2.24

array[] int ones_int_array(int n)
Create an int array of length n of all ones
Available since 2.26

array[] real ones_array(int n)
Create a real array of length n of all ones
Available since 2.26

vector ones_vector(int n)
Create an n-dimensional vector of all ones
Available since 2.26

row_vector ones_row_vector(int n)
Create an n-dimensional row-vector of all ones
Available since 2.26

array[] int zeros_int_array(int n)
Create an int array of length n of all zeros
Available since 2.26

array[] real zeros_array(int n)
Create a real array of length n of all zeros
6.10. Slicing and blocking functions

Stan provides several functions for generating slices or blocks or diagonal entries for matrices.

Columns and rows

vector col(matrix x, int n)
The n-th column of matrix x
Available since 2.0

row_vector row(matrix x, int m)
The m-th row of matrix x
Available since 2.0

The row function is special in that it may be used as an lvalue in an assignment statement (i.e., something to which a value may be assigned). The row function is also special in that the indexing notation x[m] is just an alternative way of writing row(x,m). The col function may not, be used as an lvalue, nor is there an indexing based shorthand for it.

Block operations

Matrix slicing operations

Block operations may be used to extract a sub-block of a matrix.

matrix block(matrix x, int i, int j, int n_rows, int n_cols)
Return the submatrix of x that starts at row i and column j and extends n_rows rows
and n_cols columns.

Available since 2.0

The sub-row and sub-column operations may be used to extract a slice of row or column from a matrix

```cpp
vector sub_col(matrix x, int i, int j, int n_rows)
```

Return the sub-column of x that starts at row i and column j and extends n_rows rows and 1 column.

Available since 2.0

```cpp
row_vector sub_row(matrix x, int i, int j, int n_cols)
```

Return the sub-row of x that starts at row i and column j and extends 1 row and n_cols columns.

Available since 2.0

Vector and array slicing operations

The head operation extracts the first n elements of a vector and the tail operation the last. The segment operation extracts an arbitrary subvector.

```cpp
vector head(vector v, int n)
```

Return the vector consisting of the first n elements of v.

Available since 2.0

```cpp
row_vector head(row_vector rv, int n)
```

Return the row vector consisting of the first n elements of rv.

Available since 2.0

```cpp
array[] T head(array[] T sv, int n)
```

Return the array consisting of the first n elements of sv; applies to up to three-dimensional arrays containing any type of elements T.

Available since 2.0

```cpp
vector tail(vector v, int n)
```

Return the vector consisting of the last n elements of v.

Available since 2.0

```cpp
row_vector tail(row_vector rv, int n)
```

Return the row vector consisting of the last n elements of rv.

Available since 2.0
array[] T tail(array[] T sv, int n)
Return the array consisting of the last n elements of sv; applies to up to
dimensional arrays containing any type of elements T.
Available since 2.0

vector segment(vector v, int i, int n)
Return the vector consisting of the n elements of v starting at i; i.e., elements i
through through i + n - 1.
Available since 2.0

row_vector segment(row_vector rv, int i, int n)
Return the row vector consisting of the n elements of rv starting at i; i.e., elements i
through through i + n - 1.
Available since 2.10

array[] T segment(array[] T sv, int i, int n)
Return the array consisting of the n elements of sv starting at i; i.e., elements i
through through i + n - 1. Applies to up to three-dimensional arrays containing any
type of elements T.
Available since 2.0

6.11. Matrix concatenation

Stan's matrix concatenation operations `append_col` and `append_row` are like the
operations `cbind` and `rbind` in R.

Horizontal concatenation

matrix append_col(matrix x, matrix y)
Combine matrices x and y by columns. The matrices must have the same number of
rows.
Available since 2.5

matrix append_col(matrix x, vector y)
Combine matrix x and vector y by columns. The matrix and the vector must have the same number of rows.
Available since 2.5

matrix append_col(vector x, matrix y)
Combine vector x and matrix y by columns. The vector and the matrix must have the same number of rows.
Available since 2.5
matrix `append_col(vector x, vector y)`
Combine vectors `x` and `y` by columns. The vectors must have the same number of rows.
Available since 2.5

`row_vector append_col(row_vector x, row_vector y)`
Combine row vectors `x` and `y` of any size into another row vector.
Available since 2.5

`row_vector append_col(real x, row_vector y)`
Append `x` to the front of `y`, returning another row vector.
Available since 2.12

`row_vector append_col(row_vector x, real y)`
Append `y` to the end of `x`, returning another row vector.
Available since 2.12

Vertical concatenation

`matrix append_row(matrix x, matrix y)`
Combine matrices `x` and `y` by rows. The matrices must have the same number of columns.
Available since 2.5

`matrix append_row(matrix x, row_vector y)`
Combine matrix `x` and row vector `y` by rows. The matrix and the row vector must have the same number of columns.
Available since 2.5

`matrix append_row(row_vector x, matrix y)`
Combine row vector `x` and matrix `y` by rows. The row vector and the matrix must have the same number of columns.
Available since 2.5

`matrix append_row(row_vector x, row_vector y)`
Combine row vectors `x` and `y` by row. The row vectors must have the same number of columns.
Available since 2.5

`vector append_row(vector x, vector y)`
Concatenate vectors `x` and `y` of any size into another vector.
Available since 2.5
vector **append_row**(real x, vector y)
Append x to the top of y, returning another vector.
Available since 2.12

vector **append_row**(vector x, real y)
Append y to the bottom of x, returning another vector.
Available since 2.12

6.12. Special matrix functions

Softmax

The softmax function maps $y \in \mathbb{R}^K$ to the K-simplex by

$$\text{softmax}(y) = \frac{\exp(y)}{\sum_{k=1}^{K} \exp(y_k)},$$

where $\exp(y)$ is the componentwise exponentiation of y. Softmax is usually calculated on the log scale,

$$\log \text{softmax}(y) = y - \log \sum_{k=1}^{K} \exp(y_k) = y - \log \text{sum}_\exp(y).$$

where the vector y minus the scalar $\log \text{sum}_\exp(y)$ subtracts the scalar from each component of y.

Stan provides the following functions for softmax and its log.

vector **softmax**(vector x)
The softmax of x
Available since 2.0

vector **log_softmax**(vector x)
The natural logarithm of the softmax of x
Available since 2.0

1The softmax function is so called because in the limit as $y_n \rightarrow \infty$ with y_m for $m \neq n$ held constant, the result tends toward the “one-hot” vector θ with $\theta_n = 1$ and $\theta_m = 0$ for $m \neq n$, thus providing a “soft” version of the maximum function.

Cumulative sums

The cumulative sum of a sequence x_1, \ldots, x_N is the sequence y_1, \ldots, y_N, where

$$y_n = \sum_{m=1}^{n} x_m.$$

array[] real cumulative_sum(array[] real x)
The cumulative sum of x
Available since 2.0
vector cumulative_sum(vector v)
The cumulative sum of v
Available since 2.0
row_vector cumulative_sum(row_vector rv)
The cumulative sum of rv
Available since 2.0

6.13. Gaussian Process Covariance Functions

The Gaussian process covariance functions compute the covariance between observations in an input data set or the cross-covariance between two input data sets.

For one dimensional GPs, the input data sets are arrays of scalars. The covariance matrix is given by $K_{ij} = k(x_i, x_j)$ (where x_i is the i^{th} element of the array x) and the cross-covariance is given by $K_{ij} = k(x_i, y_j)$.

For multi-dimensional GPs, the input data sets are arrays of vectors. The covariance matrix is given by $K_{ij} = k(x_i, x_j)$ (where x_i is the i^{th} vector in the array x) and the cross-covariance is given by $K_{ij} = k(x_i, y_j)$.

Exponentiated quadratic kernel

With magnitude σ and length scale l, the exponentiated quadratic kernel is:

$$k(x_i, x_j) = \sigma^2 \exp\left(-\frac{|x_i - x_j|^2}{2l^2}\right)$$

matrix gp_exp_quad_cov(array[] real x, real sigma, real length_scale)
Gaussian process covariance with exponentiated quadratic kernel in one dimension.

Available since 2.20

```plaintext
matrix gp_exp_quad_cov(array[] real x1, array[] real x2, real sigma, real length_scale)
```

Gaussian process cross-covariance of `x1` and `x2` with exponentiated quadratic kernel in one dimension.

Available since 2.20

```plaintext
matrix gp_exp_quad_cov(vectors x, real sigma, real length_scale)
```

Gaussian process covariance with exponentiated quadratic kernel in multiple dimensions.

Available since 2.20

```plaintext
matrix gp_exp_quad_cov(vectors x, real sigma, array[] real length_scale)
```

Gaussian process covariance with exponentiated quadratic kernel in multiple dimensions with a length scale for each dimension.

Available since 2.20

```plaintext
matrix gp_exp_quad_cov(vectors x1, vectors x2, real sigma, real length_scale)
```

Gaussian process cross-covariance of `x1` and `x2` with exponentiated quadratic kernel in multiple dimensions.

Available since 2.20

```plaintext
matrix gp_exp_quad_cov(vectors x1, vectors x2, real sigma, array[] real length_scale)
```

Gaussian process cross-covariance of `x1` and `x2` with exponentiated quadratic kernel in multiple dimensions with a length scale for each dimension.

Available since 2.20

```plaintext
matrix gp_exp_quad_cov(vectors x1, vectors x2, real sigma, array[] real length_scale)
```

Dot product kernel

With bias σ_0 the dot product kernel is:
\[k(x_i, x_j) = \sigma^2_0 + x_i^T x_j \]

matrix \textit{gp_dot_prod_cov}(\text{array[]} \text{real} \ x, \text{real} \ \sigma)

Gaussian process covariance with dot product kernel in one dimension.
\textit{Available since 2.20}

matrix \textit{gp_dot_prod_cov}(\text{array[]} \text{real} \ x_1, \text{array[]} \text{real} \ x_2, \text{real} \ \sigma)

Gaussian process cross-covariance of \textit{x}_1 and \textit{x}_2 with dot product kernel in one dimension.
\textit{Available since 2.20}

matrix \textit{gp_dot_prod_cov}(\text{vectors} \ x, \text{real} \ \sigma)

Gaussian process covariance with dot product kernel in multiple dimensions.
\textit{Available since 2.20}

matrix \textit{gp_dot_prod_cov}(\text{vectors} \ x_1, \text{vectors} \ x_2, \text{real} \ \sigma)

Gaussian process cross-covariance of \textit{x}_1 and \textit{x}_2 with dot product kernel in multiple dimensions.
\textit{Available since 2.20}

\textbf{Exponential kernel}

With magnitude \(\sigma \) and length scale \(l \), the exponential kernel is:

\[k(x_i, x_j) = \sigma^2 \exp \left(-\frac{|x_i - x_j|}{l}\right) \]

matrix \textit{gp_exponential_cov}(\text{array[]} \text{real} \ x, \text{real} \ \sigma, \text{real} \ \text{length_scale})

Gaussian process covariance with exponential kernel in one dimension.
\textit{Available since 2.20}
6.13. GAUSSIAN PROCESS COVARIANCE FUNCTIONS

matrix \textbf{gp_exponential_cov}(\text{array}[\] \text{real} \ x1, \text{array}[\] \text{real} \ x2, \text{real} \ \sigma, \text{real} \ \text{length_scale})

Gaussian process cross-covariance of \(x1 \) and \(x2 \) with exponential kernel in one dimension.
Available since 2.20

matrix \textbf{gp_exponential_cov}(\text{vectors} \ x, \text{real} \ \sigma, \text{real} \ \text{length_scale})

Gaussian process covariance with exponential kernel in multiple dimensions.
Available since 2.20

matrix \textbf{gp_exponential_cov}(\text{vectors} \ x, \text{real} \ \sigma, \text{array}[\] \text{real} \ \text{length_scale})

Gaussian process covariance with exponential kernel in multiple dimensions with a length scale for each dimension.
Available since 2.20

matrix \textbf{gp_exponential_cov}(\text{vectors} \ x1, \text{vectors} \ x2, \text{real} \ \sigma, \text{real} \ \text{length_scale})

Gaussian process cross-covariance of \(x1 \) and \(x2 \) with exponential kernel in multiple dimensions.
Available since 2.20

matrix \textbf{gp_exponential_cov}(\text{vectors} \ x1, \text{vectors} \ x2, \text{real} \ \sigma, \text{array}[\] \text{real} \ \text{length_scale})

Gaussian process cross-covariance of \(x1 \) and \(x2 \) with exponential kernel in multiple dimensions with a length scale for each dimension.
Available since 2.20

\textbf{Matern 3/2 kernel}

With magnitude \(\sigma \) and length scale \(l \), the Matern 3/2 kernel is:

\[
k(x_i, x_j) = \sigma^2 \left(1 + \sqrt{\frac{3}{l}} |x_i - x_j| \right) \exp \left(-\sqrt{\frac{3}{l}} |x_i - x_j| \right)
\]
matrix gp_matern32_cov(array[] real x, real sigma, real length_scale)

Gaussian process covariance with Matern 3/2 kernel in one dimension.
Available since 2.20

matrix gp_matern32_cov(array[] real x1, array[] real x2, real sigma, real length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 3/2 kernel in one dimension.
Available since 2.20

matrix gp_matern32_cov(vectors x, real sigma, real length_scale)

Gaussian process covariance with Matern 3/2 kernel in multiple dimensions.
Available since 2.20

matrix gp_matern32_cov(vectors x1, vectors x2, real sigma, real length_scale)

Gaussian process covariance with Matern 3/2 kernel in multiple dimensions with a length scale for each dimension.
Available since 2.20

matrix gp_matern32_cov(vectors x1, vectors x2, real sigma, array[] real length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 3/2 kernel in multiple dimensions.
Available since 2.20

matrix gp_matern32_cov(vectors x1, vectors x2, real sigma, array[] real length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 3/2 kernel in multiple dimensions with a length scale for each dimension.
Available since 2.20
6.13. GAUSSIAN PROCESS COVARIANCE FUNCTIONS

Matern 5/2 kernel

With magnitude σ and length scale l, the Matern 5/2 kernel is:

$$k(x_i, x_j) = \sigma^2 \left(1 + \frac{\sqrt{5}|x_i - x_j|}{l} + \frac{5|x_i - x_j|^2}{3l^2} \right) \exp \left(-\frac{\sqrt{5}|x_i - x_j|}{l} \right)$$

matrix gp_matern52_cov(array[] real x, real sigma, real length_scale)

Gaussian process covariance with Matern 5/2 kernel in one dimension.

Available since 2.20

matrix gp_matern52_cov(array[] real x1, array[] real x2, real sigma, real length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 5/2 kernel in one dimension.

Available since 2.20

matrix gp_matern52_cov(vectors x, real sigma, real length_scale)

Gaussian process covariance with Matern 5/2 kernel in multiple dimensions.

Available since 2.20

matrix gp_matern52_cov(vectors x, real sigma, array[] real length_scale)

Gaussian process covariance with Matern 5/2 kernel in multiple dimensions with a length scale for each dimension.

Available since 2.20

matrix gp_matern52_cov(vectors x1, vectors x2, real sigma, real length_scale)

Gaussian process cross-covariance of x1 and x2 with Matern 5/2 kernel in multiple dimensions.

Available since 2.20
matrix \texttt{gp_matern52_cov(vectors x1, vectors x2, real sigma, array[]
real length_scale)}

Gaussian process cross-covariance of x1 and x2 with Matern 5/2 kernel in multiple dimensions with a length scale for each dimension.

\textit{Available since 2.20}

Periodic kernel

With magnitude σ, length scale l, and period p, the periodic kernel is:

$$k(x_i, x_j) = \sigma^2 \exp \left(-2 \sin^2 \left(\frac{\pi |x_i - x_j|}{p} \right) \frac{l^2}{l^2} \right)$$

matrix \texttt{gp_periodic_cov(array[] real x, real sigma, real length_scale, real period)}

Gaussian process covariance with periodic kernel in one dimension.

\textit{Available since 2.20}

matrix \texttt{gp_periodic_cov(array[] real x1, array[] real x2, real sigma, real length_scale, real period)}

Gaussian process cross-covariance of x1 and x2 with periodic kernel in one dimension.

\textit{Available since 2.20}

matrix \texttt{gp_periodic_cov(vectors x, real sigma, real length_scale, real period)}

Gaussian process covariance with periodic kernel in multiple dimensions.

\textit{Available since 2.20}

matrix \texttt{gp_periodic_cov(vectors x1, vectors x2, real sigma, real length_scale, real period)}

Gaussian process cross-covariance of x1 and x2 with periodic kernel in multiple dimensions with a length scale for each dimension.
Matrix division operators and functions

In general, it is much more efficient and also more arithmetically stable to use matrix division than to multiply by an inverse. There are specialized forms for lower triangular matrices and for symmetric, positive-definite matrices.

Matrix division operators

- **row_vector operator/ (row_vector b, matrix A)**
 The right division of b by A; equivalently b * inverse(A)
 Available since 2.0

- **matrix operator/ (matrix B, matrix A)**
 The right division of B by A; equivalently B * inverse(A)
 Available since 2.5

- **vector operator\ (matrix A, vector b)**
 The left division of A by b; equivalently inverse(A) * b
 Available since 2.18

- **matrix operator\ (matrix A, matrix B)**
 The left division of A by B; equivalently inverse(A) * B
 Available since 2.18

Lower-triangular matrix division functions

There are four division functions which use lower triangular views of a matrix. The lower triangular view of a matrix tri(A) is used in the definitions and defined by

\[
\text{tri}(A)[m,n] = \begin{cases}
 A[m,n] & \text{if } m \geq n, \\
 0 & \text{otherwise}.
\end{cases}
\]

When a lower triangular view of a matrix is used, the elements above the diagonal are ignored.

- **vector mdivide_left_tri_low(matrix A, vector b)**
 The left division of b by a lower-triangular view of A; algebraically equivalent to
the less efficient and stable form $\text{inverse}(\text{tri}(A)) \ast b$, where $\text{tri}(A)$ is the lower-triangular portion of A with the above-diagonal entries set to zero.

Available since 2.12

\texttt{matrix mdivide_left_tri_low(matrix A, matrix B)}

The left division of B by a triangular view of A; algebraically equivalent to the less efficient and stable form $\text{inverse}(\text{tri}(A)) \ast B$, where $\text{tri}(A)$ is the lower-triangular portion of A with the above-diagonal entries set to zero.

Available since 2.5

\texttt{row_vector mdivide_right_tri_low(row_vector b, matrix A)}

The right division of b by a triangular view of A; algebraically equivalent to the less efficient and stable form $b \ast \text{inverse}(\text{tri}(A))$, where $\text{tri}(A)$ is the lower-triangular portion of A with the above-diagonal entries set to zero.

Available since 2.12

\texttt{matrix mdivide_right_tri_low(matrix B, matrix A)}

The right division of B by a triangular view of A; algebraically equivalent to the less efficient and stable form $B \ast \text{inverse}(\text{tri}(A))$, where $\text{tri}(A)$ is the lower-triangular portion of A with the above-diagonal entries set to zero.

Available since 2.5

\textbf{Symmetric positive-definite matrix division functions}

There are four division functions which are specialized for efficiency and stability for symmetric positive-definite matrix dividends. If the matrix dividend argument is not symmetric and positive definite, these will reject and print warnings.

\texttt{matrix mdivide_left_spd(matrix A, vector b)}

The left division of b by the symmetric, positive-definite matrix A; algebraically equivalent to the less efficient and stable form $\text{inverse}(A) \ast b$.

Available since 2.12

\texttt{vector mdivide_left_spd(matrix A, matrix B)}

The left division of B by the symmetric, positive-definite matrix A; algebraically equivalent to the less efficient and stable form $\text{inverse}(A) \ast B$.

Available since 2.12

\texttt{row_vector mdivide_right_spd(row_vector b, matrix A)}

The right division of b by the symmetric, positive-definite matrix A; algebraically equivalent to the less efficient and stable form $b \ast \text{inverse}(A)$.

Available since 2.12
6.14. LINEAR ALGEBRA FUNCTIONS AND SOLVERS

matrix mdivide_right_spd(matrix B, matrix A)
The right division of B by the symmetric, positive-definite matrix A; algebraically equivalent to the less efficient and stable form \(B \times \text{inverse}(A) \).
Available since 2.12

Matrix exponential
The exponential of the matrix \(A \) is formally defined by the convergent power series:

\[
e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}
\]

matrix matrix_exp(matrix A)
The matrix exponential of \(A \)
Available since 2.13

matrix matrix_exp_multiply(matrix A, matrix B)
The multiplication of matrix exponential of \(A \) and matrix \(B \); algebraically equivalent to the less efficient form \(\text{matrix_exp}(A) \times B \).
Available since 2.18

matrix scale_matrix_exp_multiply(real t, matrix A, matrix B)
The multiplication of matrix exponential of \(tA \) and matrix \(B \); algebraically equivalent to the less efficient form \(\text{matrix_exp}(t \times A) \times B \).
Available since 2.18

Matrix power
Returns the \(n \)th power of the specific matrix:

\[
M^n = M_1 \times ... \times M_n
\]

matrix matrix_power(matrix A, int B)
Matrix \(A \) raised to the power \(B \).
Available since 2.24

Linear algebra functions

Trace

real trace(matrix A)
The trace of \(A \), or 0 if \(A \) is empty; \(A \) is not required to be diagonal
Available since 2.0
Determinants

\texttt{real determinant(matrix A)}

The determinant of A

\textit{Available since 2.0}

\texttt{real log_determinant(matrix A)}

The log of the absolute value of the determinant of A

\textit{Available since 2.0}

Inverses

It is almost never a good idea to use matrix inverses directly because they are both inefficient and arithmetically unstable compared to the alternatives. Rather than inverting a matrix \(m \) and post-multiplying by a vector or matrix \(a \), as in \(\text{inverse}(m) \times a \), it is better to code this using matrix division, as in \(m \div a \). The pre-multiplication case is similar, with \(b \times \text{inverse}(m) \) being more efficiently coded as \(b / m \). There are also useful special cases for triangular and symmetric, positive-definite matrices that use more efficient solvers.

\textbf{Warning:} The function \(\text{inv}(m) \) is the elementwise inverse function, which returns \(1 / m[i, j] \) for each element.

\texttt{matrix inverse(matrix A)}

Compute the inverse of A

\textit{Available since 2.0}

\texttt{matrix inverse_spd(matrix A)}

Compute the inverse of A where A is symmetric, positive definite. This version is faster and more arithmetically stable when the input is symmetric and positive definite.

\textit{Available since 2.0}

\texttt{matrix chol2inv(matrix L)}

Compute the inverse of the matrix whose cholesky factorization is \(L \). That is, for \(A = LL^T \), return \(A^{-1} \).

\textit{Available since 2.26}
Generalized Inverse

The generalized inverse M^+ of a matrix M is a matrix that satisfies $MM^+M = M$. For an invertible, square matrix M, M^+ is equivalent to M^{-1}. The dimensions of M^+ are equivalent to the dimensions of MT. The generalized inverse exists for any matrix, so the M may be singular or less than full rank.

Even though the generalized inverse exists for any arbitrary matrix, the derivatives of this function only exist on matrices of locally constant rank (Golub and Pereyra 1973), meaning, the derivatives do not exist if small perturbations make the matrix change rank. For example, considered the rank of the matrix A as a function of ϵ:

$$A = \begin{pmatrix} 1 + \epsilon & 2 & 1 \\ 2 & 4 & 2 \end{pmatrix}$$

When $\epsilon = 0$, A is rank 1 because the second row is twice the first (and so there is only one linearly independent row). If $\epsilon \neq 0$, the rows are no longer linearly dependent, and the matrix is rank 2. This matrix does not have locally constant rank at $\epsilon = 0$, and so the derivatives do not exist at zero. Because HMC depends on the derivatives existing, this lack of differentiability creates undefined behavior.

- **matrix generalized_inverse(matrix A)**
 - The generalized inverse of A
 - *Available since 2.26*

Eigendecomposition

- **vector eigenvalues_sym(matrix A)**
 - The vector of eigenvalues of a symmetric matrix A in ascending order
 - *Available since 2.0*

- **matrix eigenvectors_sym(matrix A)**
 - The matrix with the (column) eigenvectors of symmetric matrix A in the same order as returned by the function eigenvalues_sym
 - *Available since 2.0*

Because multiplying an eigenvector by -1 results in an eigenvector, eigenvectors returned by a decomposition are only identified up to a sign change. In order to compare the eigenvectors produced by Stan’s eigendecomposition to others, signs may need to be normalized in some way, such as by fixing the sign of a component, or doing comparisons allowing a multiplication by -1.
The condition number of a symmetric matrix is defined to be the ratio of the largest eigenvalue to the smallest eigenvalue. Large condition numbers lead to difficulty in numerical algorithms such as computing inverses, and thus known as “ill conditioned.” The ratio can even be infinite in the case of singular matrices (i.e., those with eigenvalues of 0).

QR decomposition

```c
matrix qr_thin_Q(matrix A)
```
The orthogonal matrix in the thin QR decomposition of A, which implies that the resulting matrix has the same dimensions as A

Available since 2.18

```c
matrix qr_thin_R(matrix A)
```
The upper triangular matrix in the thin QR decomposition of A, which implies that the resulting matrix is square with the same number of columns as A

Available since 2.18

```c
matrix qr_Q(matrix A)
```
The orthogonal matrix in the fat QR decomposition of A, which implies that the resulting matrix is square with the same number of rows as A

Available since 2.3

```c
matrix qr_R(matrix A)
```
The upper trapezoidal matrix in the fat QR decomposition of A, which implies that the resulting matrix will be rectangular with the same dimensions as A

Available since 2.3

The thin QR decomposition is always preferable because it will consume much less memory when the input matrix is large than will the fat QR decomposition. Both versions of the decomposition represent the input matrix as

\[A = QR. \]

Multiplying a column of an orthogonal matrix by \(-1\) still results in an orthogonal matrix, and you can multiply the corresponding row of the upper trapezoidal matrix by \(-1\) without changing the product. Thus, Stan adopts the normalization that the diagonal elements of the upper trapezoidal matrix are strictly positive and the columns of the orthogonal matrix are reflected if necessary. Also, these QR decomposition algorithms do not utilize pivoting and thus may be numerically unstable on input matrices that have less than full rank.
6.15. **SORT FUNCTIONS**

Cholesky decomposition

Every symmetric, positive-definite matrix (such as a correlation or covariance matrix) has a Cholesky decomposition. If Σ is a symmetric, positive-definite matrix, its Cholesky decomposition is the lower-triangular vector L such that

$$\Sigma = LL^\top.$$

matrix cholesky_decompose(matrix A)

The lower-triangular Cholesky factor of the symmetric positive-definite matrix A

Available since 2.0

Singular value decomposition

The matrix A can be decomposed into a diagonal matrix of singular values, D, and matrices of its left and right singular vectors, U and V,

$$A = UDV^T.$$

The matrices of singular vectors here are thin. That is for an N by P input A, $M = \min(N, P)$, U is size N by M and V is size P by M.

vector singular_values(matrix A)

The singular values of A in descending order

Available since 2.0

vector svd_U(matrix A)

The left-singular vectors of A

Available since 2.26

vector svd_V(matrix A)

The right-singular vectors of A

Available since 2.26

6.15. Sort functions

See the sorting functions section for examples of how the functions work.

vector sort_asc(vector v)

Sort the elements of v in ascending order

Available since 2.0
row_vector sort_asc(row_vector v)
Sort the elements of v in ascending order
Available since 2.0

vector sort_desc(vector v)
Sort the elements of v in descending order
Available since 2.0

row_vector sort_desc(row_vector v)
Sort the elements of v in descending order
Available since 2.0

array[] int sort_indices_asc(vector v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending order.
Available since 2.3

array[] int sort_indices_asc(row_vector v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending order.
Available since 2.3

array[] int sort_indices_desc(vector v)
Return an array of indices between 1 and the size of v, sorted to index v in descending order.
Available since 2.3

array[] int sort_indices_desc(row_vector v)
Return an array of indices between 1 and the size of v, sorted to index v in descending order.
Available since 2.3

int rank(vector v, int s)
Number of components of v less than v[s]
Available since 2.0

int rank(row_vector v, int s)
Number of components of v less than v[s]
Available since 2.0

6.16. Reverse functions

vector reverse(vector v)
Return a new vector containing the elements of the argument in reverse order.
Available since 2.23

`row_vector reverse(row_vector v)`

Return a new row vector containing the elements of the argument in reverse order.

Available since 2.23
7. Sparse Matrix Operations

For sparse matrices, for which many elements are zero, it is more efficient to use specialized representations to save memory and speed up matrix arithmetic (including derivative calculations). Given Stan’s implementation, there is substantial space (memory) savings by using sparse matrices. Because of the ease of optimizing dense matrix operations, speed improvements only arise at 90% or even greater sparsity; below that level, dense matrices are faster but use more memory.

Because of this speedup and space savings, it may even be useful to read in a dense matrix and convert it to a sparse matrix before multiplying it by a vector. This chapter covers a very specific form of sparsity consisting of a sparse matrix multiplied by a dense vector.

7.1. Compressed row storage

Sparse matrices are represented in Stan using compressed row storage (CSR). For example, the matrix

\[
A = \begin{bmatrix}
19 & 27 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 52 \\
81 & 0 & 95 & 33
\end{bmatrix}
\]

is translated into a vector of the non-zero real values, read by row from the matrix \(A\),

\[
w(A) = [19 \ 27 \ 52 \ 81 \ 95 \ 33]^T,
\]

an array of integer column indices for the values,

\[
v(A) = [1 \ 2 \ 4 \ 1 \ 3 \ 4],
\]

and an array of integer indices indicating where in \(w(A)\) a given row’s values start,

\[
u(A) = [1 \ 3 \ 3 \ 4 \ 7],
\]

with a padded value at the end to guarantee that

\[
u(A)[n + 1] - u(A)[n]
\]

is the number of non-zero elements in row \(n\) of the matrix (here 2, 0, 1, and 3). Note that because the second row has no non-zero elements both the second and third
elements of \(u(A) \) correspond to the third element of \(w(A) \), which is 52. The values \((w(A), v(A), u(A))\) are sufficient to reconstruct \(A \).

The values are structured so that there is a real value and integer column index for each non-zero entry in the array, plus one integer for each row of the matrix, plus one for padding. There is also underlying storage for internal container pointers and sizes. The total memory usage is roughly \(12K + M \) bytes plus a small constant overhead, which is often considerably fewer bytes than the \(M \times N \) required to store a dense matrix. Even more importantly, zero values do not introduce derivatives under multiplication or addition, so many storage and evaluation steps are saved when sparse matrices are multiplied.

7.2. Conversion functions

Conversion functions between dense and sparse matrices are provided.

Dense to sparse conversion

Converting a dense matrix \(m \) to a sparse representation produces a vector \(w \) and two integer arrays, \(u \) and \(v \).

```c
vector csr_extract_w(matrix a)
Return non-zero values in matrix a; see section compressed row storage.
Available since 2.8
```

```c
array[] int csr_extract_v(matrix a)
Return column indices for values in csr_extract_w(a); see compressed row storage.
Available since 2.8
```

```c
array[] int csr_extract_u(matrix a)
Return array of row starting indices for entries in csr_extract_w(a) followed by the size of csr_extract_w(a) plus one; see section compressed row storage.
Available since 2.8
```

Sparse to dense conversion

To convert a sparse matrix representation to a dense matrix, there is a single function.

```c
matrix csr_to_dense_matrix(int m, int n, vector w, array[] int v, array[] int u)
Return dense \( m \times n \) matrix with non-zero matrix entries \( w \), column indices \( v \), and row starting indices \( u \); the vector \( w \) and array \( v \) must be the same size (corresponding to the total number of nonzero entries in the matrix), array \( v \) must have index values
bounded by m, array u must have length equal to m + 1 and contain index values
bounded by the number of nonzeros (except for the last entry, which must be equal
to the number of nonzeros plus one). See section compressed row storage for more
details.
*Available since 2.10*

### 7.3. Sparse matrix arithmetic

**Sparse matrix multiplication**

The only supported operation is the multiplication of a sparse matrix $A$ and a dense
vector $b$ to produce a dense vector $Ab$. Multiplying a dense row vector $b$ and a sparse
matrix $A$ can be coded using transposition as

$$bA = (A^T b^T)^T,$$

but care must be taken to represent $A^T$ rather than $A$ as a sparse matrix.

```c
vector csr_matrix_times_vector(int m, int n, vector w, array[] int v,
array[] int u, vector b)
Multiply the m x n matrix represented by values w, column indices v, and row start
indices u by the vector b; see compressed row storage.
Available since 2.18```
8. Mixed Operations

These functions perform conversions between Stan containers matrix, vector, row vector and arrays.

matrix to_matrix(matrix m)
Return the matrix m itself.
Available since 2.3

matrix to_matrix(vector v)
Convert the column vector v to a size(v) by 1 matrix.
Available since 2.3

matrix to_matrix(row_vector v)
Convert the row vector v to a 1 by size(v) matrix.
Available since 2.3

matrix to_matrix(matrix m, int m, int n)
Convert a matrix m to a matrix with m rows and n columns filled in column-major order.
Available since 2.15

matrix to_matrix(vector v, int m, int n)
Convert a vector v to a matrix with m rows and n columns filled in column-major order.
Available since 2.15

matrix to_matrix(row_vector v, int m, int n)
Convert a row_vector a to a matrix with m rows and n columns filled in column-major order.
Available since 2.15

matrix to_matrix(matrix m, int m, int n, int col_major)
Convert a matrix m to a matrix with m rows and n columns filled in row-major order if col_major equals 0 (otherwise, they get filled in column-major order).
Available since 2.15

matrix to_matrix(vector v, int m, int n, int col_major)
Convert a vector v to a matrix with m rows and n columns filled in row-major order
if col_major equals 0 (otherwise, they get filled in column-major order).

Available since 2.15

\texttt{matrix to_matrix(row_vector v, int m, int n, int col_major)}

Convert a row_vector a to a matrix with m rows and n columns filled in row-major order if col_major equals 0 (otherwise, they get filled in column-major order).

Available since 2.15

\texttt{matrix to_matrix(array[] real a, int m, int n)}

Convert a one-dimensional array a to a matrix with m rows and n columns filled in column-major order.

Available since 2.15

\texttt{matrix to_matrix(array[] int a, int m, int n)}

Convert a one-dimensional array a to a matrix with m rows and n columns filled in column-major order.

Available since 2.15

\texttt{matrix to_matrix(array[] real a, int m, int n, int col_major)}

Convert a one-dimensional array a to a matrix with m rows and n columns filled in row-major order if col_major equals 0 (otherwise, they get filled in column-major order).

Available since 2.15

\texttt{matrix to_matrix(array[] int a, int m, int n, int col_major)}

Convert a one-dimensional array a to a matrix with m rows and n columns filled in row-major order if col_major equals 0 (otherwise, they get filled in column-major order).

Available since 2.15

\texttt{matrix to_matrix(array[] row_vector vs)}

Convert a one-dimensional array of row vectors to a matrix, where the size of the array is the number of rows of the resulting matrix and the length of row vectors is the number of columns.

Available since 2.28

\texttt{matrix to_matrix(array[,] real a)}

Convert the two dimensional array a to a matrix with the same dimensions and indexing order.

Available since 2.3

\texttt{matrix to_matrix(array[,] int a)}

Convert the two dimensional array a to a matrix with the same dimensions and
indexing order. If any of the dimensions of a are zero, the result will be a 0×0 matrix.

Available since 2.3

\texttt{vector to_vector(matrix m)}

Convert the matrix m to a column vector in column-major order.

Available since 2.0

\texttt{vector to_vector(vector v)}

Return the column vector v itself.

Available since 2.3

\texttt{vector to_vector(row_vector v)}

Convert the row vector v to a column vector.

Available since 2.3

\texttt{vector to_vector(array[] real a)}

Convert the one-dimensional array a to a column vector.

Available since 2.3

\texttt{vector to_vector(array[] int a)}

Convert the one-dimensional integer array a to a column vector.

Available since 2.3

\texttt{row_vector to_row_vector(matrix m)}

Convert the matrix m to a row vector in column-major order.

Available since 2.3

\texttt{row_vector to_row_vector(vector v)}

Convert the column vector v to a row vector.

Available since 2.3

\texttt{row_vector to_row_vector(row_vector v)}

Return the row vector v itself.

Available since 2.3

\texttt{row_vector to_row_vector(array[] real a)}

Convert the one-dimensional array a to a row vector.

Available since 2.3

\texttt{row_vector to_row_vector(array[] int a)}

Convert the one-dimensional array a to a row vector.

Available since 2.3
array[,,] real to_array_2d(matrix m)
Convert the matrix m to a two dimensional array with the same dimensions and
indexing order.
Available since 2.3

array[] real to_array_1d(vector v)
Convert the column vector v to a one-dimensional array.
Available since 2.3

array[] real to_array_1d(row_vector v)
Convert the row vector v to a one-dimensional array.
Available since 2.3

array[] real to_array_1d(matrix m)
Convert the matrix m to a one-dimensional array in column-major order.
Available since 2.3

array[] real to_array_1d(array[...] real a)
Convert the array a (of any dimension up to 10) to a one-dimensional array in
row-major order.
Available since 2.3

array[] int to_array_1d(array[...] int a)
Convert the array a (of any dimension up to 10) to a one-dimensional array in
row-major order.
Available since 2.3
9. Compound Arithmetic and Assignment

Compound arithmetic and assignment statements combine an arithmetic operation and assignment,

\[x = x \text{ op } y; \]

replacing them with the compound form

\[x \text{ op=} y; \]

For example, \(x = x + 1 \) may be replaced with \(x += 1 \).

The signatures of the supported compound arithmetic and assignment operations are as follows.

9.1. Compound addition and assignment

```cpp
void operator+=(int x, int y)  \-comment x += y is equivalent to x = x + y.
Available since 2.17
```

```cpp
void operator+=(real x, real y)  \-comment x += y is equivalent to x = x + y.
Available since 2.17
```

```cpp
void operator+=(vector x, real y)  \-comment x += y is equivalent to x = x + y.
Available since 2.17
```

```cpp
void operator+=(row_vector x, real y)  \-comment x += y is equivalent to x = x + y.
Available since 2.17
```

```cpp
void operator+=(matrix x, real y)  \-comment x += y is equivalent to x = x + y.
Available since 2.17
```

```cpp
void operator+=(vector x, vector y)  \-comment x += y is equivalent to x = x + y.
Available since 2.17
```


void operator+=(row_vector x, row_vector y)
\(x += y\) is equivalent to \(x = x + y\).
Available since 2.17

void operator+=(matrix x, matrix y)
\(x += y\) is equivalent to \(x = x + y\).
Available since 2.17

9.2. Compound subtraction and assignment

void operator-=(int x, int y)
\(x -= y\) is equivalent to \(x = x - y\).
Available since 2.17

void operator-=(real x, real y)
\(x -= y\) is equivalent to \(x = x - y\).
Available since 2.17

void operator-=(vector x, real y)
\(x -= y\) is equivalent to \(x = x - y\).
Available since 2.17

void operator-=(row_vector x, real y)
\(x -= y\) is equivalent to \(x = x - y\).
Available since 2.17

void operator-=(matrix x, real y)
\(x -= y\) is equivalent to \(x = x - y\).
Available since 2.17

void operator-=(vector x, vector y)
\(x -= y\) is equivalent to \(x = x - y\).
Available since 2.17

void operator-=(row_vector x, row_vector y)
\(x -= y\) is equivalent to \(x = x - y\).
Available since 2.17

void operator-=(matrix x, matrix y)
\(x -= y\) is equivalent to \(x = x - y\).
Available since 2.17
9.3. Compound multiplication and assignment

```cpp
void operator*=(int x, int y)
x *= y is equivalent to x = x * y.
Available since 2.17
```

```cpp
void operator*=(real x, real y)
x *= y is equivalent to x = x * y.
Available since 2.17
```

```cpp
void operator*=(vector x, real y)
x *= y is equivalent to x = x * y.
Available since 2.17
```

```cpp
void operator*=(row_vector x, real y)
x *= y is equivalent to x = x * y.
Available since 2.17
```

```cpp
void operator*=(matrix x, real y)
x *= y is equivalent to x = x * y.
Available since 2.17
```

```cpp
void operator*=(row_vector x, matrix y)
x *= y is equivalent to x = x * y.
Available since 2.17
```

```cpp
void operator*=(matrix x, matrix y)
x *= y is equivalent to x = x * y.
Available since 2.17
```

9.4. Compound division and assignment

```cpp
void operator/=(int x, int y)
x /= y is equivalent to x = x / y.
Available since 2.17
```

```cpp
void operator/=(real x, real y)
x /= y is equivalent to x = x / y.
Available since 2.17
```

```cpp
void operator/=(vector x, real y)
x /= y is equivalent to x = x / y.
Available since 2.17
```
void operator/=(row_vector x, real y)
 x /= y is equivalent to x = x / y.
 Available since 2.17

void operator/=(matrix x, real y)
 x /= y is equivalent to x = x / y.
 Available since 2.17

9.5. Compound elementwise multiplication and assignment

void operator.*=(vector x, vector y)
 x .*= y is equivalent to x = x .* y.
 Available since 2.17

void operator.*=(row_vector x, row_vector y)
 x .*= y is equivalent to x = x .* y.
 Available since 2.17

void operator.*=(matrix x, matrix y)
 x .*= y is equivalent to x = x .* y.
 Available since 2.17

9.6. Compound elementwise division and assignment

void operator./=(vector x, vector y)
 x ./= y is equivalent to x = x ./ y.
 Available since 2.17

void operator./=(row_vector x, row_vector y)
 x ./= y is equivalent to x = x ./ y.
 Available since 2.17

void operator./=(matrix x, matrix y)
 x ./= y is equivalent to x = x ./ y.
 Available since 2.17

void operator./=(vector x, real y)
 x ./= y is equivalent to x = x ./ y.
 Available since 2.17

void operator./=(row_vector x, real y)
 x ./= y is equivalent to x = x ./ y.
 Available since 2.17
void operator./(matrix x, real y)
x ./ y is equivalent to x = x ./ y.
Available since 2.17
10. Higher-Order Functions

Stan provides a few higher-order functions that act on other functions. In all cases, the function arguments to the higher-order functions are defined as functions within the Stan language and passed by name to the higher-order functions.

10.1. Algebraic equation solver

Stan provides two built-in algebraic equation solvers, respectively based on Powell’s and Newton’s methods. The Newton method constitutes a more recent addition to Stan; its use is recommended for most problems. Although they look like other function applications, algebraic solvers are special in two ways.

First, an algebraic solver is a higher-order function, i.e. it takes another function as one of its arguments. Other functions in Stan which share this feature are the ordinary differential equation solvers (see section Ordinary Differential Equation (ODE) Solvers). Ordinary Stan functions do not allow functions as arguments.

Second, some of the arguments of the algebraic solvers are restricted to data only expressions. These expressions must not contain variables other than those declared in the data or transformed data blocks. Ordinary Stan functions place no restriction on the origin of variables in their argument expressions.

Specifying an algebraic equation as a function

An algebraic system is specified as an ordinary function in Stan within the function block. The algebraic system function must have this signature:

```
vector algebra_system(vector y, vector theta,
  data array[] real x_r, array[] int x_i)
```

The algebraic system function should return the value of the algebraic function which goes to 0, when we plug in the solution to the algebraic system.

The argument of this function are:

- \(y \), the unknowns we wish to solve for
- \(\theta \), parameter values used to evaluate the algebraic system
- \(x_r \), data values used to evaluate the algebraic system
10.1. ALGEBRAIC EQUATION SOLVER

- x_i, integer data used to evaluate the algebraic system

The algebraic system function separates parameter values, θ, from data values, x_r, for efficiency in propagating the derivatives through the algebraic system.

Call to the algebraic solver

```plaintext
vector algebra_solver(function algebra_system, vector y_guess, vector theta, data array[] real x_r, array[] int x_i)
Solves the algebraic system, given an initial guess, using the Powell hybrid algorithm.
Available since 2.17
```

```plaintext
vector algebra_solver(function algebra_system, vector y_guess, vector theta, data array[] real x_r, array[] int x_i, data real rel_tol, data real f_tol, int max_steps)
Solves the algebraic system, given an initial guess, using the Powell hybrid algorithm with additional control parameters for the solver.
Available since 2.17
```

Note: In future releases, the function `algebra_solver` will be deprecated and replaced with `algebra_solver_powell`.

```plaintext
vector algebra_solver_newton(function algebra_system, vector y_guess, vector theta, data array[] real x_r, array[] int x_i)
Solves the algebraic system, given an initial guess, using Newton's method.
Available since 2.24
```

```plaintext
vector algebra_solver_newton(function algebra_system, vector y_guess, vector theta, data array[] real x_r, array[] int x_i, data real rel_tol, data real f_tol, int max_steps)
Solves the algebraic system, given an initial guess, using Newton's method with additional control parameters for the solver.
Available since 2.24
```

Arguments to the algebraic solver

The arguments to the algebraic solvers are as follows:

- `algebra_system`: function literal referring to a function specifying the system of algebraic equations with signature `(vector, vector, array[] real, array[] int):vector`. The arguments represent (1) unknowns, (2) parameters, (3) real data, and (4) integer data, and the return value contains the
value of the algebraic function, which goes to 0 when we plug in the solution to the algebraic system,

- \(y_{\text{guess}} \): initial guess for the solution, type \text{vector},
- \(\theta \): parameters only, type \text{vector},
- \(x_r \): real data only, type \text{array[]} \real, and
- \(x_i \): integer data only, type \text{array[]} \int.

For more fine-grained control of the algebraic solver, these parameters can also be provided:

- \(\text{rel}_\text{tol} \): relative tolerance for the algebraic solver, type \text{real}, data only,
- \(\text{function}_\text{tol} \): function tolerance for the algebraic solver, type \text{real}, data only,
- \(\text{max}_\text{num}_\text{steps} \): maximum number of steps to take in the algebraic solver, type \text{int}, data only.

\textit{Return value}

The return value for the algebraic solver is an object of type \text{vector}, with values which, when plugged in as \(y \) make the algebraic function go to 0.

\textit{Sizes and parallel arrays}

Certain sizes have to be consistent. The initial guess, return value of the solver, and return value of the algebraic function must all be the same size.

The parameters, real data, and integer data will be passed from the solver directly to the system function.

\textit{Algorithmic details}

Stan offers two algebraic solvers: \texttt{algebra_solver} and \texttt{algebra_solver_newton}. \texttt{algebra_solver} is based on the Powell hybrid method (Powell 1970), which in turn uses first-order derivatives. The Stan code builds on the implementation of the hybrid solver in the unsupported module for nonlinear optimization problems of the
10.2. ORDINARY DIFFERENTIAL EQUATION (ODE) SOLVERS

Eigen library (Guennebaud, Jacob, et al. 2010). This solver is in turn based on the algorithm developed for the package MINPACK-1 (Jorge J. More 1980).

`algebra_solver_newton`, uses Newton’s method, also a first-order derivative based numerical solver. The Stan code builds on the implementation in KINSOL from the SUNDIALS suite (Hindmarsh et al. 2005). For many problems, we find that `algebra_solver_newton` is faster than Powell’s method. If however Newton’s method performs poorly, either failing to or requiring an excessively long time to converge, the user should be prepared to switch to `algebra_solver`.

For both solvers, the Jacobian of the solution with respect to auxiliary parameters is computed using the implicit function theorem. Intermediate Jacobians (of the algebraic function’s output with respect to the unknowns y and with respect to the auxiliary parameters theta) are computed using Stan’s automatic differentiation.

10.2. Ordinary differential equation (ODE) solvers

Stan provides several higher order functions for solving initial value problems specified as Ordinary Differential Equations (ODEs).

Solving an initial value ODE means given a set of differential equations \(y'(t, \theta) = f(t, y, \theta) \) and initial conditions \(y(t_0, \theta) \), solving for \(y \) at a sequence of times \(t_0 < t_1 < t_2, \ldots < t_n \). \(f(t, y, \theta) \) is referred to here as the ODE system function.

\(f(t, y, \theta) \) will be defined as a function with a certain signature and provided along with the initial conditions and output times to one of the ODE solver functions.

To make it easier to write ODEs, the solve functions take extra arguments that are passed along unmodified to the user-supplied system function. Because there can be any number of these arguments and they can be of different types, they are denoted below as \(\ldots \). The types of the arguments represented by \(\ldots \) in the ODE solve function call must match the types of the arguments represented by \(\ldots \) in the user-supplied system function.

Non-stiff solver

```plaintext
array[] vector ode_rk45(function ode, vector initial_state, real initial_time, array[] real times, \ldots)
```

Solves the ODE system for the times provided using the Dormand-Prince algorithm, a 4th/5th order Runge-Kutta method.

Available since 2.24

```plaintext
array[] vector ode_rk45_tol(function ode, vector initial_state, real initial_time, array[] real times, \ldots)
```
real initial_time, array[] real times, data real rel_tol, data real abs_tol, int max_num_steps, ...)
Solves the ODE system for the times provided using the Dormand-Prince algorithm, a 4th/5th order Runge-Kutta method with additional control parameters for the solver.

Available since 2.24

array[] vector ode_ckrk(function ode, vector initial_state, real initial_time, array[] real times, ...)
Solves the ODE system for the times provided using the Cash-Karp algorithm, a 4th/5th order explicit Runge-Kutta method.

Available since 2.27

array[] vector ode_ckrk_tol(function ode, vector initial_state, real initial_time, array[] real times, data real rel_tol, data real abs_tol, int max_num_steps, ...)
Solves the ODE system for the times provided using the Cash-Karp algorithm, a 4th/5th order explicit Runge-Kutta method with additional control parameters for the solver.

Available since 2.27

array[] vector ode_adams(function ode, vector initial_state, real initial_time, array[] real times, ...)
Solves the ODE system for the times provided using the Adams-Moulton method.

Available since 2.24

array[] vector ode_adams_tol(function ode, vector initial_state, real initial_time, array[] real times, data real rel_tol, data real abs_tol, int max_num_steps, ...)
Solves the ODE system for the times provided using the Adams-Moulton method with additional control parameters for the solver.

Available since 2.24

Stiff solver

array[] vector ode_bdf(function ode, vector initial_state, real initial_time, array[] real times, ...)
Solves the ODE system for the times provided using the backward differentiation formula (BDF) method.

Available since 2.24

array[] vector ode_bdf_tol(function ode, vector initial_state, real
initial_time, array[] real times, data real rel_tol, data real abs_tol, int max_num_steps, ...)

Solves the ODE system for the times provided using the backward differentiation formula (BDF) method with additional control parameters for the solver.

Available since 2.24

Adjoint solver

array[] vector ode_adjoint_tol_ctl(function ode, vector initial_state, real initial_time, array[] real times, data real rel_tol_forward, data vector abs_tol_forward, data real rel_tol_backward, data vector abs_tol_backward, int max_num_steps, int num_steps_between_checkpoints, int interpolation_polynomial, int solver_forward, int solver_backward, ...)

Solves the ODE system for the times provided using the adjoint ODE solver method from CVODES. The adjoint ODE solver requires a checkpointed forward in time ODE integration, a backwards in time integration that makes uses of an interpolated version of the forward solution, and the solution of a quadrature problem (the number of which depends on the number of parameters passed to the solve). The tolerances and numeric methods used for the forward solve, backward solve, quadratures, and interpolation can all be configured.

Available since 2.27

ODE system function

The first argument to one of the ODE solvers is always the ODE system function. The ODE system function must have a vector return type, and the first two arguments must be a real and vector in that order. These two arguments are followed by the variadic arguments that are passed through from the ODE solve function call:

```plaintext
vector ode(real time, vector state, ...)
```

The ODE system function should return the derivative of the state with respect to time at the time and state provided. The length of the returned vector must match the length of the state input into the function.

The arguments to this function are:

- _time_, the time to evaluate the ODE system
- _state_, the state of the ODE system at the time specified
• . . . , sequence of arguments passed unmodified from the ODE solve function call. The types here must match the types in the . . . arguments of the ODE solve function call.

Arguments to the ODE solvers

The arguments to the ODE solvers in both the stiff and non-stiff solvers are the same. The arguments to the adjoint ODE solver are different; see Arguments to the adjoint ODE solvers.

- \textit{ode}: ODE system function,
- \textit{initial_state}: initial state, type \texttt{vector},
- \textit{initial_time}: initial time, type \texttt{real},
- \textit{times}: solution times, type \texttt{array[] real},
- . . . : sequence of arguments that will be passed through unmodified to the ODE system function. The types here must match the types in the . . . arguments of the ODE system function.

For the versions of the \textit{ode} solver functions ending in _\texttt{tol}, these three parameters must be provided after \textit{times} and before the . . . arguments:

- \texttt{data rel_tol}: relative tolerance for the ODE solver, type \texttt{real}, data only,
- \texttt{data abs_tol}: absolute tolerance for the ODE solver, type \texttt{real}, data only, and
- \texttt{max_num_steps}: maximum number of steps to take between output times in the ODE solver, type \texttt{int}, data only.

Because the tolerances are data arguments, they must be defined in either the data or transformed data blocks. They cannot be parameters, transformed parameters or functions of parameters or transformed parameters.

Arguments to the adjoint ODE solver

The arguments to the adjoint ODE solver are different from those for the other functions (for those see Arguments to the adjoint ODE solvers).

- \textit{ode}: ODE system function,
- \textit{initial_state}: initial state, type \texttt{vector},
- \textit{initial_time}: initial time, type \texttt{real},
• **times**: solution times, type array[] real,

• data `rel_tol_forward`: Relative tolerance for forward solve, type real, data only,

• data `abs_tol_forward`: Absolute tolerance vector for each state for forward solve, type vector, data only,

• data `rel_tol_backward`: Relative tolerance for backward solve, type real, data only,

• data `abs_tol_backward`: Absolute tolerance vector for each state for backward solve, type vector, data only,

• data `rel_tol_quadrature`: Relative tolerance for backward quadrature, type real, data only,

• data `abs_tol_quadrature`: Absolute tolerance for backward quadrature, type real, data only,

• data `max_num_steps`: Maximum number of time-steps to take in integrating the ODE solution between output time points for forward and backward solve, type int, data only,

• data `num_steps_between_checkpoints`: number of steps between checkpointing forward solution, type int, data only,

• `interpolation_polynomial`: can be 1 for hermite or 2 for polynomial interpolation method of CVODES, type int, data only,

• `solver_forward`: solver used for forward ODE problem: 1=Adams (non-stiff), 2=BDF (stiff), type int, data only,

• `solver_backward`: solver used for backward ODE problem: 1=Adams (non-stiff), 2=BDF (stiff), type int, data only.

• \ldots : sequence of arguments that will be passed through unmodified to the ODE system function. The types here must match the types in the \ldots arguments of the ODE system function.

Because the tolerances are data arguments, they must be defined in either the data or transformed data blocks. They cannot be parameters, transformed parameters or functions of parameters or transformed parameters.
Return values

The return value for the ODE solvers is an array of vectors (type \texttt{array[\ldots] vector}), one vector representing the state of the system at every time in specified in the \texttt{times} argument.

Array and vector sizes

The sizes must match, and in particular, the following groups are of the same size:

- state variables passed into the system function, derivatives returned by the system function, initial state passed into the solver, and length of each vector in the output,
- number of solution times and number of vectors in the output.

10.3. Differential-Algebraic equation (DAE) solver

Stan provides two higher order functions for solving initial value problems specified as Differential-Algebraic Equations (DAEs) with index-1 (Serban et al. 2021).

Solving an initial value DAE means given a set of residual functions \(r(y'(t, \theta), y(t, \theta), t) \) and initial conditions \((y(t_0, \theta), y'(t_0, \theta)) \), solving for \(y \) at a sequence of times \(t_0 < t_1 \leq t_2, \ldots \leq t_n \). The residual function \(r(y', y, t, \theta) \) will be defined as a function with a certain signature and provided along with the initial conditions and output times to one of the DAE solver functions.

Similar to ODE solvers, the DAE solver function takes extra arguments that are passed along unmodified to the user-supplied system function. Because there can be any number of these arguments and they can be of different types, they are denoted below as \ldots, and the types of these arguments, also represented by \ldots in the DAE solver call, must match the types of the arguments represented by \ldots in the user-supplied system function.

The DAE solver

\begin{verbatim}
array[\ldots] vector \space \texttt{dae}\texttt{(function residual, vector initial_state, vector initial_state_derivative, real initial_time, array[\ldots] real times, \ldots)}
\end{verbatim}

Solves the DAE system using the backward differentiation formula (BDF) method (Serban et al. 2021).

\textit{Available since 2.29}
array[] vector dae_tol(function residual, vector initial_state, vector initial_state_derivative, real initial_time, array[] real times, data real rel_tol, data real abs_tol, int max_num_steps, ...) Solves the DAE system for the times provided using the backward differentiation formula (BDF) method with additional control parameters for the solver.
Available since 2.29

DAE system function

The first argument to the DAE solver is the DAE residual function. The DAE residual function must have a `vector` return type, and the first three arguments must be a `real`, `vector`, and `vector`, in that order. These three arguments are followed by the variadic arguments that are passed through from the DAE solver function call:

```
vector residual(real time, vector state, vector state_derivative, ...)  
```

The DAE residual function should return the residuals at the time and state provided. The length of the returned vector must match the length of the state input into the function.

The arguments to this function are:

- `time`, the time to evaluate the DAE system
- `state`, the state of the DAE system at the time specified
- `state_derivative`, the time derivatives of the state of the DAE system at the time specified
- `...`, sequence of arguments passed unmodified from the DAE solve function call. The types here must match the types in the `...` arguments of the DAE solve function call.

Arguments to the DAE solver

The arguments to the DAE solver are

- `residual`: DAE residual function,
- `initial_state`: initial state, type `vector`,
- `initial_state_derivative`: time derivative of the initial state, type `vector`,
- `initial_time`: initial time, type `real`,
- `times`: solution times, type `array[] real`,
- `...`: additional control parameters for the solver.
• ...: sequence of arguments that will be passed through unmodified to the DAE residual function. The types here must match the types in the ... arguments of the DAE residual function.

For dae_tol, the following three parameters must be provided after times and before the ... arguments:

- data rel_tol: relative tolerance for the DAE solver, type real, data only,
- data abs_tol: absolute tolerance for the DAE solver, type real, data only, and
- max_num_steps: maximum number of steps to take between output times in the DAE solver, type int, data only.

Because the tolerances are data arguments, they must be supplied as primitive numerics or defined in either the data or transformed data blocks. They cannot be parameters, transformed parameters or functions of parameters or transformed parameters.

Consistency of the initial conditions

The user is responsible to ensure the residual function becomes zero at the initial time, \(t_0 \), when the arguments initial_state and initial_state_derivative are introduced as state and state_derivative, respectively.

Return values

The return value for the DAE solvers is an array of vectors (type array[] vector), one vector representing the state of the system at every time specified in the times argument.

Array and vector sizes

The sizes must match, and in particular, the following groups are of the same size:

- state variables and state derivatives passed into the residual function, the residual returned by the residual function, initial state and initial state derivatives passed into the solver, and length of each vector in the output,
- number of solution times and number of vectors in the output.
10.4. 1D Integrator

Stan provides a built-in mechanism to perform 1D integration of a function via quadrature methods.

It operates similarly to the algebraic solver and the ordinary differential equations solver in that it allows as an argument a function.

Like both of those utilities, some of the arguments are limited to data only expressions. These expressions must not contain variables other than those declared in the data or transformed data blocks.

Specifying an integrand as a function

Performing a 1D integration requires the integrand to be specified somehow. This is done by defining a function in the Stan functions block with the special signature:

```plaintext
real integrand(real x, real xc, array[] real theta, array[] real x_r, array[] int x_i)
```

The function should return the value of the integrand evaluated at the point x.

The argument of this function are:

- \(x\), the independent variable being integrated over
- \(xc\), a high precision version of the distance from \(x\) to the nearest endpoint in a definite integral (for more into see section Precision Loss).
- \(theta\), parameter values used to evaluate the integral
- \(x_r\), data values used to evaluate the integral
- \(x_i\), integer data used to evaluate the integral

Like algebraic solver and the differential equations solver, the 1D integrator separates parameter values, \(theta\), from data values, \(x_r\).

Call to the 1D integrator

```plaintext
real integrate_1d (function integrand, real a, real b, array[] real theta, array[] real x_r, array[] int x_i)
```

Integrates the integrand from \(a\) to \(b\).

Available since 2.23

```plaintext
real integrate_1d (function integrand, real a, real b, array[] real theta, array[] real x_r, array[] int x_i, real relative_tolerance)
```
Integrates the integrand from a to b with the given relative tolerance.

Available since 2.23

Arguments to the 1D integrator

The arguments to the 1D integrator are as follows:

- **integrand**: function literal referring to a function specifying the integrand with signature `(real, real, array[] real, array[] real, array[] int):real` The arguments represent
 - (1) where integrand is evaluated,
 - (2) distance from evaluation point to integration limit for definite integrals,
 - (3) parameters,
 - (4) real data
 - (5) integer data, and the return value is the integrand evaluated at the given point,

- **a**: left limit of integration, may be negative infinity, type `real`,
- **b**: right limit of integration, may be positive infinity, type `real`,
- **theta**: parameters only, type `array[] real`,
- **x_r**: real data only, type `array[] real`,
- **x_i**: integer data only, type `array[] int`.

A `relative_tolerance` argument can optionally be provided for more control over the algorithm:

- **relative_tolerance**: relative tolerance for the 1d integrator, type `real`, data only.

Return value

The return value for the 1D integrator is a `real`, the value of the integral.

Zero-crossing integrals

For numeric stability, integrals on the (possibly infinite) interval (a, b) that cross zero are split into two integrals, one from $(a, 0)$ and one from $(0, b)$. Each integral is separately integrated to the given `relative_tolerance`.
10.5. REDUCE-SUM FUNCTION

Precision loss near limits of integration in definite integrals

When integrating certain definite integrals, there can be significant precision loss in evaluating the integrand near the endpoints. This has to do with the breakdown in precision of double precision floating point values when adding or subtracting a small number from a number much larger than it in magnitude (for instance, \(1.0 - x\)). \(xc\) (as passed to the integrand) is a high-precision version of the distance between \(x\) and the definite integral endpoints and can be used to address this issue. More information (and an example where this is useful) is given in the User’s Guide. For zero crossing integrals, \(xc\) will be a high precision version of the distance to the endpoints of the two smaller integrals. For any integral with an endpoint at negative infinity or positive infinity, \(xc\) is set to NaN.

Algorithmic details

Internally the 1D integrator uses the double-exponential methods in the Boost 1D quadrature library. Boost in turn makes use of quadrature methods developed in (Takahasi and Mori 1974), (Mori 1978), (Bailey, Jeyabalan, and Li 2005), and (Tanaka et al. 2009).

The gradients of the integral are computed in accordance with the Leibniz integral rule. Gradients of the integrand are computed internally with Stan’s automatic differentiation.

10.5. Reduce-sum function

Stan provides a higher-order reduce function for summation. A function which returns a scalar \(g: \text{U} \rightarrow \text{real}\) is mapped to every element of a list of type \(\text{array[]} \text{U}, \{ \text{x1, x2, ...} \}\) and all the results are accumulated,

\[g(x1) + g(x2) + ...\]

For efficiency reasons the reduce function doesn’t work with the element-wise evaluated function \(g\) itself, but instead works through evaluating partial sums, \(f: \text{array[]} \text{U} \rightarrow \text{real}\), where:

\[
\begin{align*}
 f(\{ \text{x1} \}) &= g(x1) \\
 f(\{ \text{x1, x2} \}) &= g(x1) + g(x2) \\
 f(\{ \text{x1, x2, ...} \}) &= g(x1) + g(x2) + ...
\end{align*}
\]

Mathematically the summation reduction is associative and forming arbitrary partial sums in an arbitrary order will not change the result. However, floating point
Numerics on computers only have a limited precision such that associativity does not hold exactly. This implies that the order of summation determines the exact numerical result. For this reason, the higher-order reduce function is available in two variants:

- **reduce_sum**: Automatically choose partial sums partitioning based on a dynamic scheduling algorithm.
- **reduce_sum_static**: Compute the same sum as reduce_sum, but partition the input in the same way for given data set (in reduce_sum this partitioning might change depending on computer load). This should result in stable numerical evaluations.

Specifying the reduce-sum function

The higher-order reduce function takes a partial sum function \(f \), an array argument \(x \) (with one array element for each term in the sum), a recommended \(\text{grainsize} \), and a set of shared arguments. This representation allows parallelization of the resultant sum.

\[
\text{real reduce_sum}(F \ f, \ \text{array}[\] \ T \ x, \ \text{int} \ \text{grainsize}, \ T1 \ s1, \ T2 \ s2, \ldots) \\
\text{real reduce_sum_static}(F \ f, \ \text{array}[\] \ T \ x, \ \text{int} \ \text{grainsize}, \ T1 \ s1, \ T2 \ s2, \ldots)
\]

Returns the equivalent of \(f(x, 1, \text{size}(x), s1, s2, \ldots) \), but computes the result in parallel by breaking the array \(x \) into independent partial sums. \(s1, s2, \ldots \) are shared between all terms in the sum.

Available since 2.23

- \(f \): function literal referring to a function specifying the partial sum operation. Refer to the partial sum function.
- \(x \): array of \(T \), one for each term of the reduction, \(T \) can be any type,
- \(\text{grainsize} \): For reduce_sum, \(\text{grainsize} \) is the recommended size of the partial sum (\(\text{grainsize} = 1 \) means pick totally automatically). For reduce_sum_static, \(\text{grainsize} \) determines the maximum size of the partial sums, type \text{int},
- \(s1 \): first (optional) shared argument, type \(T1 \), where \(T1 \) can be any type
- \(s2 \): second (optional) shared argument, type \(T2 \), where \(T2 \) can be any type,
- \(\ldots \): remainder of shared arguments, each of which can be any type.
10.6. MAP-RECT FUNCTION

The partial sum function

The partial sum function must have the following signature where the type T, and the types of all the shared arguments (T1, T2, ...) match those of the original reduce_sum (reduce_sum_static) call.

(array[] T x_subset, int start, int end, T1 s1, T2 s2, ...):real

The partial sum function returns the sum of the start to end terms (inclusive) of the overall calculations. The arguments to the partial sum function are:

- \textit{x_subset}, the subset of \textit{x} a given partial sum is responsible for computing, type array[] T, where T matches the type of \textit{x} in reduce_sum (reduce_sum_static)
- \textit{start}, the index of the first term of the partial sum, type int
- \textit{end}, the index of the last term of the partial sum (inclusive), type int
- \textit{s1}, first shared argument, type T1, matching type of \textit{s1} in reduce_sum (reduce_sum_static)
- \textit{s2}, second shared argument, type T2, matching type of \textit{s2} in reduce_sum (reduce_sum_static)
- ... , remainder of shared arguments, with types matching those in reduce_sum (reduce_sum_static)

10.6. Map-rect function

Stan provides a higher-order map function. This allows map-reduce functionality to be coded in Stan as described in the user’s guide.

Specifying the mapped function

The function being mapped must have a signature identical to that of the function \textit{f} in the following declaration.

```plaintext
vector f(vector phi, vector theta,
        data array[] real x_r, data array[] int x_i);
```

The map function returns the sequence of results for the particular shard being evaluated. The arguments to the mapped function are:

- \textit{phi}, the sequence of parameters shared across shards
- \textit{theta}, the sequence of parameters specific to this shard
• \(x_r \), sequence of real-valued data
• \(x_i \), sequence of integer data

All input for the mapped function must be packed into these sequences and all output from the mapped function must be packed into a single vector. The vector of output from each mapped function is concatenated into the final result.

Rectangular map

The rectangular map function operates on rectangular (not ragged) data structures, with parallel data structures for job-specific parameters, job-specific real data, and job-specific integer data.

```markdown
vector map_rect(F f, vector phi, array[] vector theta, data array[,,] real x_r, data array[,,] int x_i)
```

Return the concatenation of the results of applying the function \(f \), of type \((vector, vector, array[] real, array[] int):vector\) elementwise, i.e., \(f(phi, theta[n], x_r[n], x_i[n]) \) for each \(n \) in \(1:N \), where \(N \) is the size of the parallel arrays of job-specific/local parameters \(theta \), real data \(x_r \), and integer data \(x_r \). The shared/global parameters \(phi \) are passed to each invocation of \(f \).

Available since 2.18
11. Deprecated Functions

This appendix lists currently deprecated functionality along with how to replace it. Starting in Stan 2.29, deprecated functions with drop in replacements (such as the renaming of get_lp or multiply_log) will be removed 3 versions later e.g., functions deprecated in Stan 2.20 will be removed in Stan 2.23 and placed in Removed Functions. The Stan compiler can automatically update these on the behalf of the user.

11.1. multiply_log and binomial_coefficient_log functions

Deprecated: Currently two non-conforming functions ending in suffix _log.

Replacement: Replace `multiply_log(...)` with `lmultiply(...)`. Replace `binomial_coefficient_log(...)` with `lchoose(...)`.

Scheduled Removal: Stan 2.32

11.2. get_lp() function

Deprecated: The built-in no-argument function `get_lp()` is deprecated.

Replacement: Use the no-argument function `target()` instead.

Scheduled Removal: Stan 2.32

11.3. abs(real x) function

Deprecated: Use of the abs function with real-valued arguments is deprecated; use functions `fabs` instead.

11.4. Integer division with operator/

Deprecated: Using `/` with two integer arguments is interpreted as integer floor division, such that

\[
\frac{1}{2} = 0
\]

This is deprecated due to its confusion with real-valued division, where
1.0/2.0 = 0.5

Replacement: Use the integer division operator `operator%/%` instead.

11.5. `integrate_ode_rk45`, `integrate_ode_adams`, `integrate_ode_bdf` ODE Integrators

These ODE integrator functions have been replaced by those described in:

Specifying an ordinary differential equation as a function

A system of ODEs is specified as an ordinary function in Stan within the functions block. The ODE system function must have this function signature:

```
array[] real ode(real time, array[] real state, array[] real theta, array[] real x_r, array[] int x_i);
```

The ODE system function should return the derivative of the state with respect to time at the time provided. The length of the returned real array must match the length of the state input into the function.

The arguments to this function are:

- `time`, the time to evaluate the ODE system
- `state`, the state of the ODE system at the time specified
- `theta`, parameter values used to evaluate the ODE system
- `x_r`, data values used to evaluate the ODE system
- `x_i`, integer data values used to evaluate the ODE system.

The ODE system function separates parameter values, `theta`, from data values, `x_r`, for efficiency in computing the gradients of the ODE.

Non-stiff solver

```
array[,] real integrate_ode_rk45(function ode, array[] real initial_state, real initial_time, array[] real times, array[] real theta, array[] real x_r, array[] int x_i)
```

Solves the ODE system for the times provided using the Dormand-Prince algorithm, a 4th/5th order Runge-Kutta method.

Available since 2.10, deprecated in 2.24
11.5. INTEGRATE_ODE_RK45, INTEGRATE_ODE_ADAMS, INTEGRATE_ODE_BDF ODE INTEGRATORS

array[,] real integrate_ode_rk45(function ode, array[,] real initial_state, real initial_time, array[,] real times, array[,] real theta, array[,] real x_r, array[,] int x_i, real rel_tol, real abs_tol, int max_num_steps)

Solves the ODE system for the times provided using the Dormand-Prince algorithm, a 4th/5th order Runge-Kutta method with additional control parameters for the solver.

Available since 2.10, deprecated in 2.24

array[,] real integrate_ode(function ode, array[,] real initial_state, real initial_time, array[,] real times, array[,] real theta, array[,] real x_r, array[,] int x_i)

Solves the ODE system for the times provided using the Dormand-Prince algorithm, a 4th/5th order Runge-Kutta method.

Available since 2.10, deprecated in 2.24

array[,] real integrate_ode_adams(function ode, array[,] real initial_state, real initial_time, array[,] real times, array[,] real theta, data array[,] real x_r, data array[,] int x_i)

Solves the ODE system for the times provided using the Adams-Moulton method.

Available since 2.23, deprecated in 2.24

array[,] real integrate_ode_adams(function ode, array[,] real initial_state, real initial_time, array[,] real times, array[,] real theta, data array[,] real x_r, data array[,] int x_i, data real rel_tol, data real abs_tol, data int max_num_steps)

Solves the ODE system for the times provided using the Adams-Moulton method with additional control parameters for the solver.

Available since 2.23, deprecated in 2.24

Stiff solver

array[,] real integrate_ode_bdf(function ode, array[,] real initial_state, real initial_time, array[,] real times, array[,] real theta, data array[,] real x_r, data array[,] int x_i)

Solves the ODE system for the times provided using the backward differentiation formula (BDF) method.

Available since 2.10, deprecated in 2.24

array[,] real integrate_ode_bdf(function ode, array[,] real initial_state, real initial_time, array[,] real times, array[,] real theta, data array[,] real x_r, data array[,] int x_i, data real
rel_tol, data real abs_tol, data int max_num_steps)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method with additional control parameters for the solver.
Available since 2.10, deprecated in 2.24

Arguments to the ODE solvers
The arguments to the ODE solvers in both the stiff and non-stiff cases are as follows.

- **ode**: function literal referring to a function specifying the system of differential
equations with signature:

\[(\text{real}, \text{array}[] \text{ real}, \text{array}[] \text{ real}, \text{data array}[] \text{ real}, \text{data array}[] \text{ int}):\text{array}[] \text{ real}\)

The arguments represent (1) time, (2) system state, (3) parameters, (4) real data,
and (5) integer data, and the return value contains the derivatives with respect to
time of the state,

- **initial_state**: initial state, type \text{array}[] \text{ real},
- **initial_time**: initial time, type \text{int} or \text{real},
- **times**: solution times, type \text{array}[] \text{ real},
- **theta**: parameters, type \text{array}[] \text{ real},
- **data } x_r**: real data, type \text{array}[] \text{ real}, data only, and
- **data } x_i**: integer data, type \text{array}[] \text{ int}, data only.

For more fine-grained control of the ODE solvers, these parameters can also be
provided:

- **data rel_tol**: relative tolerance for the ODE solver, type \text{real}, data only,
- **data abs_tol**: absolute tolerance for the ODE solver, type \text{real}, data only,
and
- **data max_num_steps**: maximum number of steps to take in the ODE solver,
type \text{int}, data only.

Return values
The return value for the ODE solvers is an array of type \text{array}[,,] \text{ real}, with values
consisting of solutions at the specified times.
11.6. Exponentiated quadratic covariance functions

These covariance functions have been replaced by those described in:

With magnitude α and length scale l, the exponentiated quadratic kernel is:

$$k(x_i, x_j) = \alpha^2 \exp \left(-\frac{1}{2\rho^2} \sum_{d=1}^{D} (x_{i,d} - x_{j,d})^2 \right)$$

matrix cov_exp_quad(row_vectors x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.
Available since 2.16, deprecated since 2.20, scheduled for removal in 2.32

matrix cov_exp_quad(vectors x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.
Available since 2.16, deprecated since 2.20, scheduled for removal in 2.32

matrix cov_exp_quad(array[] real x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.
Available since 2.16, deprecated since 2.20, scheduled for removal in 2.32

matrix cov_exp_quad(row_vectors x1, row_vectors x2, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.
Available since 2.18, deprecated since 2.20, scheduled for removal in 2.32

matrix cov_exp_quad(vectors x1, vectors x2, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.
Available since 2.18, deprecated since 2.20, scheduled for removal in 2.32
matrix cov_exp_quad(array[] real x1, array[] real x2, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.
Available since 2.18, deprecated since 2.20, scheduled for removal in 2.32
12. Removed Functions

Functions which once existed in the Stan language and have since been replaced or removed will be listed here.

As of the current version of Stan, there are no such functions.
13. Conventions for Probability Functions

Functions associated with distributions are set up to follow the same naming conventions for both built-in distributions and for user-defined distributions.

13.1. Suffix marks type of function

The suffix is determined by the type of function according to the following table.

<table>
<thead>
<tr>
<th>function</th>
<th>outcome</th>
<th>suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>log probability mass function</td>
<td>discrete</td>
<td>_lpmf</td>
</tr>
<tr>
<td>log probability density function</td>
<td>continuous</td>
<td>_lpdf</td>
</tr>
<tr>
<td>log cumulative distribution function</td>
<td>any</td>
<td>_lcdf</td>
</tr>
<tr>
<td>log complementary cumulative distribution function</td>
<td>any</td>
<td>_lccdf</td>
</tr>
<tr>
<td>random number generator</td>
<td>any</td>
<td>_rng</td>
</tr>
</tbody>
</table>

For example, **normal_lpdf** is the log of the normal probability density function (pdf) and **bernoulli_lpmf** is the log of the bernoulli probability mass function (pmf). The log of the corresponding cumulative distribution functions (cdf) use the same suffix, **normal_lcdf** and **bernoulli_lcdf**.

13.2. Argument order and the vertical bar

Each probability function has a specific outcome value and a number of parameters. Following conditional probability notation, probability density and mass functions use a vertical bar to separate the outcome from the parameters of the distribution. For example, **normal_lpdf(y | mu, sigma)** returns the value of mathematical formula \(\log \text{Normal}(y | \mu, \sigma) \). Cumulative distribution functions separate the outcome from the parameters in the same way (e.g., **normal_lcdf(y_low | mu, sigma)**).

13.3. Sampling notation

The notation

\[y \sim \text{normal}(\mu, \sigma); \]
provides the same (proportional) contribution to the model log density as the explicit target density increment,

\[
\text{target} += \text{normal}_lpdf(y \mid \mu, \sigma);
\]

In both cases, the effect is to add terms to the target log density. The only difference is that the example with the sampling (~) notation drops all additive constants in the log density; the constants are not necessary for any of Stan’s sampling, approximation, or optimization algorithms.

13.4. Finite inputs

All of the distribution functions are configured to throw exceptions (effectively rejecting samples or optimization steps) when they are supplied with non-finite arguments. The two cases of non-finite arguments are the infinite values and not-a-number value—these are standard in floating-point arithmetic.

13.5. Boundary conditions

Many distributions are defined with support or constraints on parameters forming an open interval. For example, the normal density function accepts a scale parameter \(\sigma > 0 \). If \(\sigma = 0 \), the probability function will throw an exception.

This is true even for (complementary) cumulative distribution functions, which will throw exceptions when given input that is out of the support.

13.6. Pseudorandom number generators

For most of the probability functions, there is a matching pseudorandom number generator (PRNG) with the suffix _rng. For example, the function `normal_rng(real, real)` accepts two real arguments, an unconstrained location \(\mu \) and positive scale \(\sigma > 0 \), and returns an unconstrained pseudorandom value drawn from \(\text{Normal}(\mu, \sigma) \).

There are also vectorized forms of random number generators which return more than one random variate at a time.

Restricted to transformed data and generated quantities

Unlike regular functions, the PRNG functions may only be used in the transformed data or generated quantities blocks.

Limited vectorization

Unlike the probability functions, only some of the PRNG functions are vectorized.
13.7. Cumulative distribution functions

For most of the univariate probability functions, there is a corresponding cumulative distribution function, log cumulative distribution function, and log complementary cumulative distribution function.

For a univariate random variable Y with probability function $p_Y(y | \theta)$, the cumulative distribution function (CDF) F_Y is defined by

$$F_Y(y) = \Pr[Y \leq y] = \int_{-\infty}^{y} p(y | \theta) \, dy.$$

The complementary cumulative distribution function (CCDF) is defined as

$$\Pr[Y > y] = 1 - F_Y(y).$$

The reason to use CCDFs instead of CDFs in floating-point arithmetic is that it is possible to represent numbers very close to 0 (the closest you can get is roughly 10^{-300}), but not numbers very close to 1 (the closest you can get is roughly $1 - 10^{-15}$).

In Stan, there is a cumulative distribution function for each probability function. For instance, `normal_cdf(y, mu, sigma)` is defined by

$$\int_{-\infty}^{y} \text{Normal}(y | \mu, \sigma) \, dy.$$

There are also log forms of the CDF and CCDF for most univariate distributions. For example, `normal_lcdf(y | mu, sigma)` is defined by

$$\log \left(\int_{-\infty}^{y} \text{Normal}(y | \mu, \sigma) \, dy \right)$$

and `normal_lccdf(y | mu, sigma)` is defined by

$$\log \left(1 - \int_{-\infty}^{y} \text{Normal}(y | \mu, \sigma) \, dy \right).$$

13.8. Vectorization

Stan’s univariate log probability functions, including the log density functions, log mass functions, log CDFs, and log CCDFs, all support vectorized function application, with results defined to be the sum of the elementwise application of the function. Some of the PRNG functions support vectorization, see section vectorized PRNG functions for more details.
In all cases, matrix operations are at least as fast and usually faster than loops and vectorized log probability functions are faster than their equivalent form defined with loops. This isn’t because loops are slow in Stan, but because more efficient automatic differentiation can be used. The efficiency comes from the fact that a vectorized log probability function only introduces one new node into the expression graph, thus reducing the number of virtual function calls required to compute gradients in C++, as well as from allowing caching of repeated computations.

Stan also overloads the multivariate normal distribution, including the Cholesky-factor form, allowing arrays of row vectors or vectors for the variate and location parameter. This is a huge savings in speed because the work required to solve the linear system for the covariance matrix is only done once.

Stan also overloads some scalar functions, such as \log and \exp, to apply to vectors (arrays) and return vectors (arrays). These vectorizations are defined elementwise and unlike the probability functions, provide only minimal efficiency speedups over repeated application and assignment in a loop.

Vectorized function signatures

Vectorized scalar arguments

The normal probability function is specified with the signature

```
normal_lpdf(reals | reals, reals);
```

The pseudotype `reals` is used to indicate that an argument position may be vectorized. Argument positions declared as `reals` may be filled with a real, a one-dimensional array, a vector, or a row-vector. If there is more than one array or vector argument, their types can be anything but their size must match. For instance, it is legal to use `normal_lpdf(row_vector | vector, real)` as long as the vector and row vector have the same size.

Vectorized vector and row vector arguments

The multivariate normal distribution accepting vector or array of vector arguments is written as

```
multi_normal_lpdf(vectors | vectors, matrix);
```

These arguments may be row vectors, column vectors, or arrays of row vectors or column vectors.
Vectorized integer arguments

The pseudotype `ints` is used for vectorized integer arguments. Where it appears either an integer or array of integers may be used.

Evaluating vectorized log probability functions

The result of a vectorized log probability function is equivalent to the sum of the evaluations on each element. Any non-vector argument, namely `real` or `int`, is repeated. For instance, if `y` is a vector of size `N`, `mu` is a vector of size `N`, and `sigma` is a scalar, then

```plaintext
ll = normal_lpdf(y | mu, sigma);
```

is just a more efficient way to write

```plaintext
ll = 0;
for (n in 1:N) {
  ll = ll + normal_lpdf(y[n] | mu[n], sigma);
}
```

With the same arguments, the vectorized sampling statement

```plaintext
y ~ normal(mu, sigma);
```

has the same effect on the total log probability as

```plaintext
for (n in 1:N) {
  y[n] ~ normal(mu[n], sigma);
}
```

Evaluating vectorized PRNG functions

Some PRNG functions accept sequences as well as scalars as arguments. Such functions are indicated by argument pseudotypes `reals` or `ints`. In cases of sequence arguments, the output will also be a sequence. For example, the following is allowed in the transformed data and generated quantities blocks.

```plaintext
vector[3] mu = // ...
array[3] real x = normal_rng(mu, 3);
```
13.8. VECTORIZATION

Argument types

In the case of PRNG functions, arguments marked `ints` may be integers or integer arrays, whereas arguments marked `reals` may be integers or reals, integer or real arrays, vectors, or row vectors.

<table>
<thead>
<tr>
<th>pseudotype</th>
<th>allowable PRNG arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ints</td>
<td>int, array[], int</td>
</tr>
<tr>
<td>reals</td>
<td>int, array[], int, real, array[], real, vector, row_vector</td>
</tr>
</tbody>
</table>

Dimension matching

In general, if there are multiple non-scalar arguments, they must all have the same dimensions, but need not have the same type. For example, the `normal_rng` function may be called with one vector argument and one real array argument as long as they have the same number of elements.

```plaintext
vector[3] mu = // ...
array[3] real sigma = // ...
array[3] real x = normal_rng(mu, sigma);
```

Return type

The result of a vectorized PRNG function depends on the size of the arguments and the distribution’s support. If all arguments are scalars, then the return type is a scalar. For a continuous distribution, if there are any non-scalar arguments, the return type is a real array (array[] real) matching the size of any of the non-scalar arguments, as all non-scalar arguments must have matching size. Discrete distributions return `ints` and continuous distributions return `reals`, each of appropriate size. The symbol R denotes such a return type.
Discrete Distributions
14. Binary Distributions

Binary probability distributions have support on \{0, 1\}, where 1 represents the value true and 0 the value false.

14.1. Bernoulli distribution

Probability mass function

If \(\theta \in [0, 1] \), then for \(y \in \{0, 1\}, \)

\[
\text{Bernoulli}(y \mid \theta) = \begin{cases}
\theta & \text{if } y = 1, \text{ and } \\
1 - \theta & \text{if } y = 0.
\end{cases}
\]

Sampling statement

\(y \sim \text{bernoulli}(\text{theta}) \)

Increment target log probability density with \(\text{bernoulli}_\text{lupmf}(y \mid \text{theta}) \).

Available since 2.0

Stan Functions

- \texttt{real bernoulli_lpmf(ints y \mid reals theta)}

 The log Bernoulli probability mass of \(y \) given chance of success \(\text{theta} \)

 Available since 2.12

- \texttt{real bernoulli_lupmf(ints y \mid reals theta)}

 The log Bernoulli probability mass of \(y \) given chance of success \(\text{theta} \) dropping constant additive terms

 Available since 2.25

- \texttt{real bernoulli_cdf(ints y, reals theta)}

 The Bernoulli cumulative distribution function of \(y \) given chance of success \(\text{theta} \)

 Available since 2.0

- \texttt{real bernoulli_lcdf(ints y \mid reals theta)}

 The log of the Bernoulli cumulative distribution function of \(y \) given chance of success \(\text{theta} \)

 Available since 2.12
real `bernoulli_lccdf`\(\text{(ints y | reals theta)}\)

The log of the Bernoulli complementary cumulative distribution function of \(y\) given chance of success \(\theta\)

Available since 2.12

\[\text{R bernoulli_rng}(\text{reals theta}) \]

Generate a Bernoulli variate with chance of success \(\theta\); may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

14.2. Bernoulli distribution, logit parameterization

Stan also supplies a direct parameterization in terms of a logit-transformed chance-of-success parameter. This parameterization is more numerically stable if the chance-of-success parameter is on the logit scale, as with the linear predictor in a logistic regression.

Probability mass function

If \(\alpha \in \mathbb{R}\), then for \(y \in \{0, 1\},\)

\[
\text{BernoulliLogit}(y | \alpha) = \text{Bernoulli}(y | \log\text{it}^{-1}(\alpha)) = \begin{cases} \log\text{it}^{-1}(\alpha) & \text{if } y = 1, \\
1 - \log\text{it}^{-1}(\alpha) & \text{if } y = 0. \end{cases}
\]

Sampling statement

\(y \sim \text{bernoulli_logit}(\alpha)\)

Increment target log probability density with `bernoulli_logit_lupmf(y | alpha)`.

Available since 2.0

Stan Functions

```stan
real `bernoulli_logit_lpmf`\(\text{(ints y | reals alpha)}\)

The log Bernoulli probability mass of \(y\) given chance of success \(\text{inv_logit}(\alpha)\)

*Available since 2.12*

real `bernoulli_logit_lupmf`\(\text{(ints y | reals alpha)}\)

The log Bernoulli probability mass of \(y\) given chance of success \(\text{inv_logit}(\alpha)\) dropping constant additive terms

*Available since 2.25*
14.3. Bernoulli-logit generalized linear model (Logistic Regression)

Stan also supplies a single function for a generalized linear model with Bernoulli likelihood and logit link function, i.e. a function for a logistic regression. This provides a more efficient implementation of logistic regression than a manually written regression in terms of a Bernoulli likelihood and matrix multiplication.

Probability mass function

If \( x \in \mathbb{R}^{n \times m}, \alpha \in \mathbb{R}^{n}, \beta \in \mathbb{R}^{m} \), then for \( y \in \{0, 1\}^{n} \),

\[
\text{BernoulliLogitGLM}(y \mid x, \alpha, \beta) = \prod_{1 \leq i \leq n} \text{Bernoulli}(y_{i} \mid \text{logit}^{-1}(\alpha_{i} + x_{i} \cdot \beta))
\]

\[
= \prod_{1 \leq i \leq n} \left\{ \begin{array}{ll}
\text{logit}^{-1}(\alpha_{i} + \sum_{1 \leq j \leq m} x_{ij} \cdot \beta_{j}) & \text{if } y_{i} = 1, \text{ and} \\
1 - \text{logit}^{-1}(\alpha_{i} + \sum_{1 \leq j \leq m} x_{ij} \cdot \beta_{j}) & \text{if } y_{i} = 0.
\end{array} \right.
\]

Sampling statement

\( y \sim \text{bernoulli_logit_glm}(x, \alpha, \beta) \)

Increment target log probability density with \( \text{bernoulli_logit_glm_lupmf}(y \mid x, \alpha, \beta) \).

Available since 2.25

Stan Functions

\[
\text{real } \text{bernoulli_logit_glm_lpmf}(\text{int } y \mid \text{matrix } x, \text{real } \alpha, \text{vector } \beta)
\]

The log Bernoulli probability mass of \( y \) given chance of success \( \text{inv_logit}(\alpha + x \ast \beta) \).

Available since 2.23

\[
\text{real } \text{bernoulli_logit_glm_lupmf}(\text{int } y \mid \text{matrix } x, \text{real } \alpha, \text{vector } \beta)
\]
The log Bernoulli probability mass of $y$ given chance of success $\text{inv}_\logit(\alpha + x \ast \beta)$ dropping constant additive terms.

Available since 2.25

```
real bernoulli_logit_glm_lpmf(int y | matrix x, vector alpha, vector beta)
The log Bernoulli probability mass of y given chance of success $\text{inv}_\logit(\alpha + x \ast \beta)$.
Available since 2.23
```

```
real bernoulli_logit_glm_lumf(int y | matrix x, vector alpha, vector beta)
The log Bernoulli probability mass of y given chance of success $\text{inv}_\logit(\alpha + x \ast \beta)$ dropping constant additive terms.
Available since 2.25
```

```
real bernoulli_logit_glm_lpmf(array[] int y | row_vector x, real alpha, vector beta)
The log Bernoulli probability mass of y given chance of success $\text{inv}_\logit(\alpha + x \ast \beta)$.
Available since 2.23
```

```
real bernoulli_logit_glm_lupmf(array[] int y | row_vector x, real alpha, vector beta)
The log Bernoulli probability mass of y given chance of success $\text{inv}_\logit(\alpha + x \ast \beta)$ dropping constant additive terms.
Available since 2.25
```

```
real bernoulli_logit_glm_lpmf(array[] int y | row_vector x, vector alpha, vector beta)
The log Bernoulli probability mass of y given chance of success $\text{inv}_\logit(\alpha + x \ast \beta)$.
Available since 2.23
```

```
real bernoulli_logit_glm_lupmf(array[] int y | row_vector x, vector alpha, vector beta)
The log Bernoulli probability mass of y given chance of success $\text{inv}_\logit(\alpha + x \ast \beta)$ dropping constant additive terms.
Available since 2.25
```

```
real bernoulli_logit_glm_lpmf(array[] int y | matrix x, real alpha, vector beta)
The log Bernoulli probability mass of y given chance of success $\text{inv}_\logit(\alpha + x \ast \beta)$.
```
x * beta).

Available since 2.18

real bernoulli_logit_glm_lupmf(array[] int y | matrix x, real alpha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha + x * beta) dropping constant additive terms.
Available since 2.25

real bernoulli_logit_glm_lpmf(array[] int y | matrix x, vector alpha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha + x * beta).
Available since 2.18

real bernoulli_logit_glm_lupmf(array[] int y | matrix x, vector alpha, vector beta)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha + x * beta) dropping constant additive terms.
Available since 2.25

array[] int bernoulli_logit_glm_rng(matrix x, vector alpha, vector beta)
Generate an array of Bernoulli variates with chances of success inv_logit(alpha + x * beta); may only be used in transformed data and generated quantities blocks. Available since 2.29

array[] int bernoulli_logit_glm_rng(row_vector x, vector alpha, vector beta)
Generate an array of Bernoulli variates with chances of success inv_logit(alpha + x * beta); may only be used in transformed data and generated quantities blocks. Available since 2.29
15. Bounded Discrete Distributions

Bounded discrete probability functions have support on \(\{0, \ldots, N\}\) for some upper bound \(N\).

15.1. Binomial distribution

Probability mass function

Suppose \(N \in \mathbb{N}\) and \(\theta \in [0, 1]\), and \(n \in \{0, \ldots, N\}\).

\[
\text{Binomial}(n \mid N, \theta) = \binom{N}{n} \theta^n (1 - \theta)^{N-n}.
\]

Log probability mass function

\[
\log \text{Binomial}(n \mid N, \theta) = \log \Gamma(N + 1) - \log \Gamma(n + 1) - \log \Gamma(N - n + 1) - n \log \theta + (N - n) \log (1 - \theta),
\]

Gradient of log probability mass function

\[
\frac{\partial}{\partial \theta} \log \text{Binomial}(n \mid N, \theta) = \frac{n}{\theta} - \frac{N - n}{1 - \theta}
\]

Sampling statement

\(n \sim \text{binomial}(N, \theta)\)

Increment target log probability density with \text{binomial_lupmf}(n \mid N, \theta).

Available since 2.0

Stan functions

\text{real} \ \text{binomial_lpmf}(\text{ints} \ n \mid \text{ints} \ N, \text{reals} \ \theta)\]

The log binomial probability mass of \(n\) successes in \(N\) trials given chance of success \(\theta\).

Available since 2.12
real binomial_lupmf(ints n | ints N, reals theta)
The log binomial probability mass of n successes in N trials given chance of success
theta dropping constant additive terms
Available since 2.25

real binomial_cdf(ints n, ints N, reals theta)
The binomial cumulative distribution function of n successes in N trials given chance
of success theta
Available since 2.0

real binomial_lcdf(ints n | ints N, reals theta)
The log of the binomial cumulative distribution function of n successes in N trials
given chance of success theta
Available since 2.12

real binomial_lccdf(ints n | ints N, reals theta)
The log of the binomial complementary cumulative distribution function of n suc-
cesses in N trials given chance of success theta
Available since 2.12

R binomial_rng(ints N, reals theta)
Generate a binomial variate with N trials and chance of success theta; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.
Available since 2.18

15.2. Binomial distribution, logit parameterization
Stan also provides a version of the binomial probability mass function distribution
with the chance of success parameterized on the unconstrained logistic scale.

Probability mass function
Suppose $N \in \mathbb{N}$, $\alpha \in \mathbb{R}$, and $n \in \{0, \ldots, N\}$. Then

$$\text{BinomialLogit}(n \mid N, \alpha) = \text{Binomial}(n \mid N, \logit^{-1}(\alpha))$$

$$= \binom{N}{n} \left(\logit^{-1}(\alpha)\right)^n \left(1 - \logit^{-1}(\alpha)\right)^{N-n}.$$
Log probability mass function

\[
\log \text{BinomialLogit}(n \mid N, \alpha) = \log \Gamma(N + 1) - \log \Gamma(n + 1) - \log \Gamma(N - n + 1) \\
+ n \log \logit^{-1}(\alpha) + (N - n) \log \left(1 - \logit^{-1}(\alpha)\right).
\]

Gradient of log probability mass function

\[
\frac{\partial}{\partial \alpha} \log \text{BinomialLogit}(n \mid N, \alpha) = \frac{n}{\logit^{-1}(-\alpha)} - \frac{N - n}{\logit^{-1}(\alpha)}
\]

Sampling statement

\(n \sim \text{binomial_logit}(N, \alpha)\)

Increment target log probability density with \(\text{binomial_logit_lupmf}(n \mid N, \alpha)\).

Available since 2.0

Stan functions

\text{real } \text{binomial_logit_lpmf}(\text{ints } n \mid \text{ints } N, \text{reals } \alpha)\]

The log binomial probability mass of \(n\) successes in \(N\) trials given logit-scaled chance of success \(\alpha\).

Available since 2.12

\text{real } \text{binomial_logit_lupmf}(\text{ints } n \mid \text{ints } N, \text{reals } \alpha)\]

The log binomial probability mass of \(n\) successes in \(N\) trials given logit-scaled chance of success \(\alpha\) dropping constant additive terms.

Available since 2.25

15.3. Beta-binomial distribution

Probability mass function

If \(N \in \mathbb{N}, \alpha \in \mathbb{R}^+, \text{ and } \beta \in \mathbb{R}^+, \text{ then for } n \in 0, \ldots, N,\)

\[
\text{BetaBinomial}(n \mid N, \alpha, \beta) = \binom{N}{n} \frac{B(n + \alpha, N - n + \beta)}{B(\alpha, \beta)},
\]
where the beta function \( B(u, v) \) is defined for \( u \in \mathbb{R}^+ \) and \( v \in \mathbb{R}^+ \) by

\[
B(u, v) = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u + v)}.
\]

**Sampling statement**

\[ n \sim \text{beta_binomial}(N, \alpha, \beta) \]

Increment target log probability density with \( \text{beta_binomial_lupmf}(n \mid N, \alpha, \beta) \).

*Available since 2.0*

**Stan functions**

- **real beta_binomial_lpmf(ints n | ints N, reals alpha, reals beta)**
The log beta-binomial probability mass of \( n \) successes in \( N \) trials given prior success count (plus one) of \( \alpha \) and prior failure count (plus one) of \( \beta \)

*Available since 2.12*

- **real beta_binomial_lupmf(ints n | ints N, reals alpha, reals beta)**
The log beta-binomial probability mass of \( n \) successes in \( N \) trials given prior success count (plus one) of \( \alpha \) and prior failure count (plus one) of \( \beta \) dropping constant additive terms

*Available since 2.25*

- **real beta_binomial_cdf(ints n, ints N, reals alpha, reals beta)**
The beta-binomial cumulative distribution function of \( n \) successes in \( N \) trials given prior success count (plus one) of \( \alpha \) and prior failure count (plus one) of \( \beta \)

*Available since 2.0*

- **real beta_binomial_lcdf(ints n | ints N, reals alpha, reals beta)**
The log of the beta-binomial cumulative distribution function of \( n \) successes in \( N \) trials given prior success count (plus one) of \( \alpha \) and prior failure count (plus one) of \( \beta \)

*Available since 2.12*

- **real beta_binomial_lccdf(ints n | ints N, reals alpha, reals beta)**
The log of the beta-binomial complementary cumulative distribution function of \( n \) successes in \( N \) trials given prior success count (plus one) of \( \alpha \) and prior failure count (plus one) of \( \beta \)

*Available since 2.12*
R `beta_binomial_rng(ints N, reals alpha, reals beta)`
Generate a beta-binomial variate with N trials, prior success count (plus one) of alpha, and prior failure count (plus one) of beta; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

*Available since 2.18*

### 15.4. Hypergeometric distribution

**Probability mass function**

If \(a \in \mathbb{N}, b \in \mathbb{N},\) and \(N \in \{0, \ldots, a+b\}\), then for \(n \in \{\max(0, N-b), \ldots, \min(a, N)\}\),

\[
\text{Hypergeometric}(n \mid N, a, b) = \binom{a}{n} \binom{b}{N-n} / \binom{a+b}{N}.
\]

**Sampling statement**

\(n \sim \text{hypergeometric}(N, a, b)\)

Increment target log probability density with `hypergeometric_lupmf(n \mid N, a, b)`.

*Available since 2.0*

**Stan functions**

- `real hypergeometric_lpmf(int n \mid int N, int a, int b)`
  The log hypergeometric probability mass of \(n\) successes in \(N\) trials given total success count of \(a\) and total failure count of \(b\)

  *Available since 2.12*

- `real hypergeometric_lupmf(int n \mid int N, int a, int b)`
  The log hypergeometric probability mass of \(n\) successes in \(N\) trials given total success count of \(a\) and total failure count of \(b\) dropping constant additive terms

  *Available since 2.25*

- `int hypergeometric_rng(int N, int a, int b)`
  Generate a hypergeometric variate with \(N\) trials, total success count of \(a\), and total failure count of \(b\); may only be used in transformed data and generated quantities blocks

  *Available since 2.18*
15.5. Categorical distribution

Probability mass functions

If \( N \in \mathbb{N}, N > 0 \), and if \( \theta \in \mathbb{R}^N \) forms an \( N \)-simplex (i.e., has nonnegative entries summing to one), then for \( y \in \{1, \ldots, N\} \),

\[
\text{Categorical}(y \mid \theta) = \theta_y.
\]

In addition, Stan provides a log-odds scaled categorical distribution,

\[
\text{CategoricalLogit}(y \mid \beta) = \text{Categorical}(y \mid \text{softmax}(\beta)).
\]

See the definition of softmax for the definition of the softmax function.

Sampling statement

\[
y \sim \text{categorical}(\theta)
\]

Increment target log probability density with \( \text{categorical\_lupmf}(y \mid \theta) \) dropping constant additive terms.

Available since 2.0

Sampling statement

\[
y \sim \text{categorical\_logit}(\beta)
\]

Increment target log probability density with \( \text{categorical\_logit\_lupmf}(y \mid \beta) \).

Available since 2.4

Stan functions

All of the categorical distributions are vectorized so that the outcome \( y \) can be a single integer (type int) or an array of integers (type array[] int).

\[
\text{real categorical\_lpmf(ints y \mid vector theta)}
\]

The log categorical probability mass function with outcome(s) \( y \) in \( 1 : N \) given \( N \)-vector of outcome probabilities \( \theta \). The parameter \( \theta \) must have non-negative entries that sum to one, but it need not be a variable declared as a simplex.

Available since 2.12

\[
\text{real categorical\_lupmf(ints y \mid vector theta)}
\]

The log categorical probability mass function with outcome(s) \( y \) in \( 1 : N \) given \( N \)-vector of outcome probabilities \( \theta \) dropping constant additive terms. The
parameter theta must have non-negative entries that sum to one, but it need not be a variable declared as a simplex.

*Available since 2.25*

```stan
real categorical_logit_lpmf(ints y | vector beta)
The log categorical probability mass function with outcome(s) y in 1 : N given
log-odds of outcomes beta.
Available since 2.12

```stan
real categorical_logit_lupmf(ints y | vector beta)
The log categorical probability mass function with outcome(s) y in 1 : N given
log-odds of outcomes beta dropping constant additive terms.
*Available since 2.25*

```stan
int categorical_rng(vector theta)
Generate a categorical variate with N-simplex distribution parameter theta; may
only be used in transformed data and generated quantities blocks
Available since 2.0

```stan
int categorical_logit_rng(vector beta)
Generate a categorical variate with outcome in range 1 : N from log-odds vector
beta; may only be used in transformed data and generated quantities blocks
*Available since 2.16*

### 15.6. Categorical logit generalized linear model (softmax regression)

Stan also supplies a single function for a generalized linear model with categorical
likelihood and logit link function, i.e. a function for a softmax regression. This
provides a more efficient implementation of softmax regression than a manually
written regression in terms of a Categorical likelihood and matrix multiplication.

Note that the implementation does not put any restrictions on the coefficient matrix
\( \beta \). It is up to the user to use a reference category, a suitable prior or some other

**Probability mass functions**

If \( N, M, K \in \mathbb{N}, N, M, K > 0 \), and if \( x \in \mathbb{R}^{M \times K}, \alpha \in \mathbb{R}^N, \beta \in \mathbb{R}^{K \times N} \), then for
\( y \in \{1, \ldots, N\}^M \),

\[
\text{CategoricalLogitGLM}(y \mid x, \alpha, \beta) = \prod_{1 \leq i \leq M} \text{CategoricalLogit}(y_i \mid \alpha + x_i \cdot \beta) = \prod_{1 \leq i \leq M} \text{CategoricalLogit}(y_i \mid \alpha + x_i \cdot \beta)
\]
See the definition of softmax for the definition of the softmax function.

**Sampling statement**

\[ y \sim \text{categorical_logit_glm}(x, \alpha, \beta) \]

Increment target log probability density with \( \text{categorical_logit_glm_lupmf}(y | x, \alpha, \beta) \).

*Available since 2.23*

**Stan functions**

```stan
real \text{categorical_logit_glm_lpmf}(\text{int } y | \text{row_vector } x, \text{vector } \alpha, \text{matrix } \beta)
```

The log categorical probability mass function with outcome \( y \) in \( 1:N \) given \( N \)-vector of log-odds of outcomes \( \alpha + x \beta \).

*Available since 2.23*

```stan
real \text{categorical_logit_glm_lupmf}(\text{int } y | \text{row_vector } x, \text{vector } \alpha, \text{matrix } \beta)
```

The log categorical probability mass function with outcome \( y \) in \( 1:N \) given \( N \)-vector of log-odds of outcomes \( \alpha + x \beta \) dropping constant additive terms.

*Available since 2.25*

```stan
real \text{categorical_logit_glm_lpmf}(\text{int } y | \text{matrix } x, \text{vector } \alpha, \text{matrix } \beta)
```

The log categorical probability mass function with outcomes \( y \) in \( 1:N \) given \( N \)-vector of log-odds of outcomes \( \alpha + x \beta \).

*Available since 2.23*

```stan
real \text{categorical_logit_glm_lupmf}(\text{int } y | \text{matrix } x, \text{vector } \alpha, \text{matrix } \beta)
```

The log categorical probability mass function with outcomes \( y \) in \( 1:N \) given \( N \)-vector of log-odds of outcomes \( \alpha + x \beta \) dropping constant additive terms.

*Available since 2.25*

```stan
real \text{categorical_logit_glm_lpmf}(\text{array[] int } y | \text{row_vector } x, \text{vector } \alpha, \text{matrix } \beta)
```

The log categorical probability mass function with outcomes \( y \) in \( 1:N \) given \( N \)-vector of log-odds of outcomes \( \alpha + x \beta \).

*Available since 2.23*
real categorical_logit_glm_lupmf(array[] int y | row_vector x, vector alpha, matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given N-vector of log-odds of outcomes alpha + x * beta dropping constant additive terms. Available since 2.25

real categorical_logit_glm_lpmf(array[] int y | matrix x, vector alpha, matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given N-vector of log-odds of outcomes alpha + x * beta. Available since 2.23

real categorical_logit_glm_lupmf(array[] int y | matrix x, vector alpha, matrix beta)
The log categorical probability mass function with outcomes y in 1 : N given N-vector of log-odds of outcomes alpha + x * beta dropping constant additive terms. Available since 2.25

15.7. Discrete range distribution

Probability mass functions
If \( l, u \in \mathbb{Z} \) are lower and upper bounds \( (l \leq u) \), then for any integer \( y \in \{l, \ldots, u\} \),

\[
\text{DiscreteRange}(y \mid l, u) = \frac{1}{u - l + 1}.
\]

Sampling statement
\( y \sim \text{discrete_range}(l, u) \)
Increment the target log probability density with \( \text{discrete_range_lupmf}(y \mid l, u) \) dropping constant additive terms. Available since 2.26

Stan functions
All of the discrete range distributions are vectorized so that the outcome y and the bounds l, u can be a single integer (type int) or an array of integers (type array[] int).
15.8. ORDERED LOGISTIC DISTRIBUTION

real discrete_range_lpmf(ints y | ints l, ints u)
The log probability mass function with outcome(s) y in l : u.
Available since 2.26

real discrete_range_lupmf(ints y | ints l, ints u)
The log probability mass function with outcome(s) y in l : u dropping constant
additive terms.
Available since 2.26

real discrete_range_cdf(ints y, ints l, ints u)
The discrete range cumulative distribution function for the given y, lower and upper
bounds.
Available since 2.26

real discrete_range_lcdf(ints y | ints l, ints u)
The log of the discrete range cumulative distribution function for the given y, lower
and upper bounds.
Available since 2.26

real discrete_range_lccdf(ints y | ints l, ints u)
The log of the discrete range complementary cumulative distribution function for
the given y, lower and upper bounds.
Available since 2.26

int discrete_range_rng(ints l, ints u)
Generate a discrete variate between the given lower and upper bounds; may only be
used in transformed data and generated quantities blocks.
Available since 2.26

15.8. Ordered logistic distribution

Probability mass function

If $K \in \mathbb{N}$ with $K > 2$, $c \in \mathbb{R}^{K-1}$ such that $c_k < c_{k+1}$ for $k \in \{1, \ldots, K - 2\}$, and
$\eta \in \mathbb{R}$, then for $k \in \{1, \ldots, K\}$,

$$\text{OrderedLogistic}(k \mid \eta, c) = \begin{cases} 1 - \logit^{-1}(\eta - c_1) & \text{if } k = 1, \\ \logit^{-1}(\eta - c_{k-1}) - \logit^{-1}(\eta - c_k) & \text{if } 1 < k < K, \text{ and} \\ \logit^{-1}(\eta - c_{K-1}) - 0 & \text{if } k = K. \end{cases}$$

The $k = K$ case is written with the redundant subtraction of zero to illustrate the
parallelism of the cases; the $k = 1$ and $k = K$ edge cases can be subsumed into the
general definition by setting $c_0 = -\infty$ and $c_K = +\infty$ with $\logit^{-1}(\infty) = 0$ and $\logit^{-1}(\infty) = 1$.

**Sampling statement**

\[ k \sim \text{ordered_logistic}(\eta, c) \]

Increment target log probability density with $\text{ordered_logistic_lupmf}(k \mid \eta, c)$.

*Available since 2.0*

**Stan functions**

real $\text{ordered_logistic_lpmf}(\text{ints} \ k \mid \text{vector} \ \eta, \ \text{vectors} \ c)$

The log ordered logistic probability mass of $k$ given linear predictors $\eta$, and cutpoints $c$.

*Available since 2.18*

real $\text{ordered_logistic_lupmf}(\text{ints} \ k \mid \text{vector} \ \eta, \ \text{vectors} \ c)$

The log ordered logistic probability mass of $k$ given linear predictors $\eta$, and cutpoints $c$ dropping constant additive terms.

*Available since 2.25*

int $\text{ordered_logistic_rng}(\text{real} \ \eta, \ \text{vector} \ c)$

Generate an ordered logistic variate with linear predictor $\eta$ and cutpoints $c$; may only be used in transformed data and generated quantities blocks.

*Available since 2.0*

### 15.9. Ordered logistic generalized linear model (ordinal regression)

**Probability mass function**

If $N, M, K \in \mathbb{N}$ with $N, M > 0$, $K > 2$, $c \in \mathbb{R}^{K-1}$ such that $c_k < c_{k+1}$ for $k \in \{1, \ldots, K - 2\}$, and $x \in \mathbb{R}^{N \times M}$, $\beta \in \mathbb{R}^M$, then for $y \in \{1, \ldots, K\}^N$,

\[
\text{OrderedLogisticGLM}(y \mid x, \beta, c) = \prod_{1 \leq i \leq N} \text{OrderedLogistic}(y_i \mid x_i \cdot \beta, c) = \prod_{1 \leq i \leq N} \begin{cases} 
1 - \logit^{-1}(x_i) & \text{if } y = 1 \\
\logit^{-1}(x_i) - \logit^{-1}(x_\cdot) & \text{if } 1 < y < K \\
\logit^{-1}(x_\cdot) & \text{if } y = K
\end{cases}
\]
The $k = K$ case is written with the redundant subtraction of zero to illustrate the parallelism of the cases; the $y = 1$ and $y = K$ edge cases can be subsumed into the general definition by setting $c_0 = -\infty$ and $c_K = +\infty$ with $\text{logit}^{-1}(-\infty) = 0$ and $\text{logit}^{-1}(\infty) = 1$.

**Sampling statement**

$$y \sim \text{ordered_logistic_glm}(x, \beta, c)$$

Increment target log probability density with $\text{ordered_logistic_lupmf}(y \mid x, \beta, c)$.

*Available since 2.23*

**Stan functions**

```stan
real ordered_logistic_glm_lpmf(int y | row_vector x, vector beta, vector c)
The log ordered logistic probability mass of y, given linear predictors $x \ast \beta$, and cutpoints c. The cutpoints c must be ordered.

Available since 2.23

real ordered_logistic_glm_lupmf(int y | row_vector x, vector beta, vector c)
The log ordered logistic probability mass of y, given linear predictors $x \ast \beta$, and cutpoints c dropping constant additive terms. The cutpoints c must be ordered.

Available since 2.25

real ordered_logistic_glm_lpmf(int y | matrix x, vector beta, vector c)
The log ordered logistic probability mass of y, given linear predictors $x \ast \beta$, and cutpoints c. The cutpoints c must be ordered.

Available since 2.23

real ordered_logistic_glm_lupmf(int y | matrix x, vector beta, vector c)
The log ordered logistic probability mass of y, given linear predictors $x \ast \beta$, and cutpoints c dropping constant additive terms. The cutpoints c must be ordered.

Available since 2.25

real ordered_logistic_glm_lpmf(array[] int y | row_vector x, vector beta, vector c)
The log ordered logistic probability mass of y, given linear predictors $x \ast \beta$, and
cutpoints \(c \). The cutpoints \(c \) must be ordered.

Available since 2.23

real \(\text{ordered_logistic glm lupmf}(\text{array[]} \text{int } y | \text{row_vector } x, \text{vector } \beta, \text{vector } c) \)

The log ordered logistic probability mass of \(y \), given linear predictors \(x \ast \beta \), and cutpoints \(c \) dropping constant additive terms. The cutpoints \(c \) must be ordered.

Available since 2.25

real \(\text{ordered_logistic glm lpmf}(\text{array[]} \text{int } y | \text{matrix } x, \text{vector } \beta, \text{vector } c) \)

The log ordered logistic probability mass of \(y \), given linear predictors \(x \ast \beta \), and cutpoints \(c \). The cutpoints \(c \) must be ordered.

Available since 2.23

real \(\text{ordered_logistic glm lupmf}(\text{array[]} \text{int } y | \text{matrix } x, \text{vector } \beta, \text{vector } c) \)

The log ordered logistic probability mass of \(y \), given linear predictors \(x \ast \beta \), and cutpoints \(c \) dropping constant additive terms. The cutpoints \(c \) must be ordered.

Available since 2.25

15.10. Ordered probit distribution

Probability mass function

If \(K \in \mathbb{N} \) with \(K > 2 \), \(c \in \mathbb{R}^{K-1} \) such that \(c_k < c_{k+1} \) for \(k \in \{1, \ldots, K-2\} \), and \(\eta \in \mathbb{R} \), then for \(k \in \{1, \ldots, K\} \),

\[
\text{OrderedProbit}(k \mid \eta, c) = \begin{cases}
1 - \Phi(\eta - c_1) & \text{if } k = 1, \\
\Phi(\eta - c_{k-1}) - \Phi(\eta - c_k) & \text{if } 1 < k < K, \text{ and} \\
\Phi(\eta - c_{K-1}) - 0 & \text{if } k = K.
\end{cases}
\]

The \(k = K \) case is written with the redundant subtraction of zero to illustrate the parallelism of the cases; the \(k = 1 \) and \(k = K \) edge cases can be subsumed into the general definition by setting \(c_0 = -\infty \) and \(c_K = +\infty \) with \(\Phi(-\infty) = 0 \) and \(\Phi(\infty) = 1 \).

Sampling statement

\(k \sim \text{ordered_probit}(\eta, c) \)

Increment target log probability density with \(\text{ordered_probit_lupmf}(k \mid \eta, c) \).
Available since 2.19

Stan functions

real ordered_probit_lpmf(ints k | vector eta, vectors c)
The log ordered probit probability mass of k given linear predictors eta, and cutpoints c.

Available since 2.18

real ordered_probit_lupmf(ints k | vector eta, vectors c)
The log ordered probit probability mass of k given linear predictors eta, and cutpoints c dropping constant additive terms.

Available since 2.25

real ordered_probit_lpmf(ints k | real eta, vectors c)
The log ordered probit probability mass of k given linear predictor eta, and cutpoints c.

Available since 2.19

real ordered_probit_lupmf(ints k | real eta, vectors c)
The log ordered probit probability mass of k given linear predictor eta, and cutpoints c dropping constant additive terms.

Available since 2.19

int ordered_probit_rng(real eta, vector c)
Generate an ordered probit variate with linear predictor eta and cutpoints c; may only be used in transformed data and generated quantities blocks

Available since 2.18
16. Unbounded Discrete Distributions

The unbounded discrete distributions have support over the natural numbers (i.e., the non-negative integers).

16.1. Negative binomial distribution

For the negative binomial distribution Stan uses the parameterization described in Gelman et al. (2013). For alternative parameterizations, see section negative binomial glm.

Probability mass function

If $\alpha \in \mathbb{R}^+$ and $\beta \in \mathbb{R}^+$, then for $n \in \mathbb{N}$,

$$\text{NegBinomial}(n \mid \alpha, \beta) = \binom{n + \alpha - 1}{\alpha - 1} \left(\frac{\beta}{\beta + 1} \right)^\alpha \left(\frac{1}{\beta + 1} \right)^n.$$

The mean and variance of a random variable $n \sim \text{NegBinomial}(\alpha, \beta)$ are given by

$$\mathbb{E}[n] = \frac{\alpha}{\beta} \quad \text{and} \quad \text{Var}[n] = \frac{\alpha}{\beta^2} (\beta + 1).$$

Sampling statement

$n \sim \text{neg_binomial}(\alpha, \beta)$

Increment target log probability density with $\text{neg_binomial_lupmf}(n \mid \alpha, \beta)$.

Available since 2.0

Stan functions

real $\text{neg_binomial_lpmf}(\text{ints } n \mid \text{reals } alpha, \text{reals } beta)$
The log negative binomial probability mass of n given shape $alpha$ and inverse scale $beta$

Available since 2.12

real $\text{neg_binomial_lupmf}(\text{ints } n \mid \text{reals } alpha, \text{reals } beta)$
The log negative binomial probability mass of n given shape $alpha$ and inverse scale
beta dropping constant additive terms

Available since 2.25

real neg_binomial_cdf(ints n, reals alpha, reals beta)
The negative binomial cumulative distribution function of \(n \) given shape alpha and inverse scale beta

Available since 2.0

real neg_binomial_lcdf(ints n | reals alpha, reals beta)
The log of the negative binomial cumulative distribution function of \(n \) given shape alpha and inverse scale beta

Available since 2.12

real neg_binomial_lccdf(ints n | reals alpha, reals beta)
The log of the negative binomial complementary cumulative distribution function of \(n \) given shape alpha and inverse scale beta

Available since 2.12

R neg_binomial_rng(reals alpha, reals beta)
Generate a negative binomial variate with shape alpha and inverse scale beta; may only be used in transformed data and generated quantities blocks. alpha / beta must be less than \(2^{29} \). For a description of argument and return types, see section vectorized function signatures.

Available since 2.18

16.2. **Negative binomial distribution (alternative parameterization)**

Stan also provides an alternative parameterization of the negative binomial distribution directly using a mean (i.e., location) parameter and a parameter that controls overdispersion relative to the square of the mean. Section combinatorial functions, below, provides a second alternative parameterization directly in terms of the log mean.

Probability mass function

The first parameterization is for \(\mu \in \mathbb{R}^+ \) and \(\phi \in \mathbb{R}^+ \), which for \(n \in \mathbb{N} \) is defined as

\[
\text{NegBinomial2}(n | \mu, \phi) = \binom{n + \phi - 1}{n} \left(\frac{\mu}{\mu + \phi} \right)^n \left(\frac{\phi}{\mu + \phi} \right)^\phi.
\]
The mean and variance of a random variable \(n \sim \text{NegBinomial2}(n \mid \mu, \phi) \) are

\[
\mathbb{E}[n] = \mu \quad \text{and} \quad \text{Var}[n] = \mu + \frac{\mu^2}{\phi}.
\]

Recall that Poisson(\(\mu \)) has variance \(\mu \), so \(\mu^2/\phi > 0 \) is the additional variance of the negative binomial above that of the Poisson with mean \(\mu \). So the inverse of parameter \(\phi \) controls the overdispersion, scaled by the square of the mean, \(\mu^2 \).

Sampling statement

\(n \sim \text{neg_binomial_2}(\mu, \phi) \)

Increment target log probability density with \(\text{neg_binomial_2_lupmf}(n \mid \mu, \phi) \).

Available since 2.3

Stan functions

- **real neg_binomial_2_lpmf(ints n | reals mu, reals phi)**
 The negative binomial probability mass of \(n \) given location \(\mu \) and precision \(\phi \).
 Available since 2.20

- **real neg_binomial_2_lupmf(ints n | reals mu, reals phi)**
 The negative binomial probability mass of \(n \) given location \(\mu \) and precision \(\phi \) dropping constant additive terms.
 Available since 2.25

- **real neg_binomial_2_cdf(ints n, reals mu, reals phi)**
 The negative binomial cumulative distribution function of \(n \) given location \(\mu \) and precision \(\phi \).
 Available since 2.6

- **real neg_binomial_2_lcdf(ints n | reals mu, reals phi)**
 The log of the negative binomial cumulative distribution function of \(n \) given location \(\mu \) and precision \(\phi \).
 Available since 2.12

- **real neg_binomial_2_lccdf(ints n | reals mu, reals phi)**
 The log of the negative binomial complementary cumulative distribution function of \(n \) given location \(\mu \) and precision \(\phi \).
 Available since 2.12

- **R neg_binomial_2_rng(reals mu, reals phi)**
 Generate a negative binomial variate with location \(\mu \) and precision \(\phi \); may only
be used in transformed data and generated quantities blocks. \(\mu \) must be less than \(2^{29} \). For a description of argument and return types, see section vectorized function signatures.

Available since 2.18

16.3. Negative binomial distribution (log alternative parameterization)

Related to the parameterization in section negative binomial, alternative parameterization, the following parameterization uses a log mean parameter \(\eta = \log(\mu) \), defined for \(\eta \in \mathbb{R}, \phi \in \mathbb{R}^+ \), so that for \(n \in \mathbb{N} \),

\[
\text{NegBinomial2Log}(n \mid \eta, \phi) = \text{NegBinomial2}(n \mid \exp(\eta), \phi).
\]

This alternative may be used for sampling, as a function, and for random number generation, but as of yet, there are no CDFs implemented for it. This is especially useful for log-linear negative binomial regressions.

Sampling statement

\[
\text{n ~ neg_binomial_2_log(eta, phi)}
\]

Increment target log probability density with \(\text{neg_binomial_2_log_lupmf(n \mid eta, phi)} \).

Available since 2.3

Stan functions

\[
\text{real neg_binomial_2_log_lpmf(ints n \mid reals eta, reals phi)}
\]

The log negative binomial probability mass of \(n \) given log-location \(\eta \) and inverse overdispersion parameter \(\phi \).

Available since 2.20

\[
\text{real neg_binomial_2_log_lupmf(ints n \mid reals eta, reals phi)}
\]

The log negative binomial probability mass of \(n \) given log-location \(\eta \) and inverse overdispersion parameter \(\phi \) dropping constant additive terms.

Available since 2.25

\[
\text{R neg_binomial_2_log_rng(reals eta, reals phi)}
\]

Generate a negative binomial variate with log-location \(\eta \) and inverse overdispersion control \(\phi \); may only be used in transformed data and generated quantities blocks. \(\eta \) must be less than \(29 \log 2 \). For a description of argument and return
16.4. **Negative-binomial-2-log generalized linear model (negative binomial regression)**

Stan also supplies a single function for a generalized linear model with negative binomial likelihood and log link function, i.e. a function for a negative binomial regression. This provides a more efficient implementation of negative binomial regression than a manually written regression in terms of a negative binomial likelihood and matrix multiplication.

Probability mass function

If \(x \in \mathbb{R}^{n \times m} \), \(\alpha \in \mathbb{R}^n \), \(\beta \in \mathbb{R}^m \), \(\phi \in \mathbb{R}^+ \), then for \(y \in \mathbb{N}^n \),

\[
\text{NegBinomial2LogGLM}(y \mid x, \alpha, \beta, \phi) = \prod_{1 \leq i \leq n} \text{NegBinomial2}(y_i \mid \exp(\alpha_i + x_i \cdot \beta), \phi).
\]

Sampling statement

\(y \sim \text{neg_binomial_2_log_glm}(x, \alpha, \beta, \phi) \)

Increment target log probability density with \(\text{neg_binomial_2_log_glm_lupmf}(y \mid x, \alpha, \beta, \phi) \).

Stan functions

- `real neg_binomial_2_log_glm_lpmf(int y | matrix x, real alpha, vector beta, real phi)`
 The log negative binomial probability mass of \(y \) given log-location \(\alpha + x \cdot \beta \) and inverse overdispersion parameter \(\phi \).
 Available since 2.23

- `real neg_binomial_2_log_glm_lupmf(int y | matrix x, real alpha, vector beta, real phi)`
 The log negative binomial probability mass of \(y \) given log-location \(\alpha + x \cdot \beta \) and inverse overdispersion parameter \(\phi \) dropping constant additive terms.
 Available since 2.25

- `real neg_binomial_2_log_glm_lpmf(int y | matrix x, vector alpha, vector beta, real phi)`
The log negative binomial probability mass of \(y\) given log-location \(\alpha + x \cdot \beta\) and inverse overdispersion parameter \(\phi\).

Available since 2.23

```plaintext
real neg_binomial_2_log_glm_lupmf(int y | matrix x, vector alpha, vector beta, real phi)
```
The log negative binomial probability mass of \(y\) given log-location \(\alpha + x \cdot \beta\) and inverse overdispersion parameter \(\phi\) dropping constant additive terms.

Available since 2.25

```plaintext
real neg_binomial_2_log_glm_lpmf(array[] int y | row_vector x, real alpha, vector beta, real phi)
```
The log negative binomial probability mass of \(y\) given log-location \(\alpha + x \cdot \beta\) and inverse overdispersion parameter \(\phi\).

Available since 2.23

```plaintext
real neg_binomial_2_log_glm_lupmf(array[] int y | row_vector x, real alpha, vector beta, real phi)
```
The log negative binomial probability mass of \(y\) given log-location \(\alpha + x \cdot \beta\) and inverse overdispersion parameter \(\phi\) dropping constant additive terms.

Available since 2.25

```plaintext
real neg_binomial_2_log_glm_lpmf(array[] int y | row_vector x, vector alpha, vector beta, real phi)
```
The log negative binomial probability mass of \(y\) given log-location \(\alpha + x \cdot \beta\) and inverse overdispersion parameter \(\phi\).

Available since 2.23

```plaintext
real neg_binomial_2_log_glm_lupmf(array[] int y | row_vector x, vector alpha, vector beta, real phi)
```
The log negative binomial probability mass of \(y\) given log-location \(\alpha + x \cdot \beta\) and inverse overdispersion parameter \(\phi\) dropping constant additive terms.

Available since 2.25

```plaintext
real neg_binomial_2_log_glm_lpmf(array[] int y | matrix x, real alpha, vector beta, real phi)
```
The log negative binomial probability mass of \(y\) given log-location \(\alpha + x \cdot \beta\) and inverse overdispersion parameter \(\phi\).

Available since 2.18

```plaintext
real neg_binomial_2_log_glm_lupmf(array[] int y | matrix x, real alpha, vector beta, real phi)
```
The log negative binomial probability mass of \(y\) given log-location \(\alpha + x \cdot \beta\) and inverse overdispersion parameter \(\phi\).
beta and inverse overdispersion parameter phi dropping constant additive terms.

Available since 2.25

real neg_binomial_2_log_glm_lpmf(array[] int y | matrix x, vector alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x * beta and inverse overdispersion parameter phi.

Available since 2.18

real neg_binomial_2_log_glm_lupmf(array[] int y | matrix x, vector alpha, vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha + x * beta and inverse overdispersion parameter phi dropping constant additive terms.

Available since 2.25

16.5. Poisson distribution

Probability mass function

If \(\lambda \in \mathbb{R}^+ \), then for \(n \in \mathbb{N} \),

\[
\text{Poisson}(n|\lambda) = \frac{1}{n!} \lambda^n \exp(-\lambda).
\]

Sampling statement

\[n \sim \text{poisson}(\lambda) \]

Increment target log probability density with \(\text{poisson_lupmf}(n | \lambda) \).

Available since 2.0

Stan functions

real poisson_lpmf(ints n | reals lambda)
The log Poisson probability mass of n given rate lambda

Available since 2.12

real poisson_lupmf(ints n | reals lambda)
The log Poisson probability mass of n given rate lambda dropping constant additive terms

Available since 2.25

real poisson_cdf(ints n, reals lambda)
The Poisson cumulative distribution function of n given rate lambda

Available since 2.0
real poisson_lcdf(ints n | reals lambda)
The log of the Poisson cumulative distribution function of n given rate lambda
Available since 2.12

real poisson_lccdf(ints n | reals lambda)
The log of the Poisson complementary cumulative distribution function of n given rate lambda
Available since 2.12

R poisson_rng(reals lambda)
Generate a Poisson variate with rate lambda; may only be used in transformed data
and generated quantities blocks. lambda must be less than 2^{30}. For a description of
argument and return types, see section vectorized function signatures.
Available since 2.18

16.6. Poisson distribution, log parameterization

Stan also provides a parameterization of the Poisson using the log rate $\alpha = \log \lambda$ as
a parameter. This is useful for log-linear Poisson regressions so that the predictor
does not need to be exponentiated and passed into the standard Poisson probability
function.

Probability mass function

If $\alpha \in \mathbb{R}$, then for $n \in \mathbb{N}$,

$$\text{PoissonLog}(n|\alpha) = \frac{1}{n!} \exp(n\alpha - \exp(\alpha)).$$

Sampling statement

$n \sim \text{poisson} _\text{log}(\alpha)$

Increment target log probability density with poisson_log_lupmf(n | alpha).
Available since 2.0

Stan functions

real poisson_log_lpmf(ints n | reals alpha)
The log Poisson probability mass of n given log rate alpha
Available since 2.12

real poisson_log_lupmf(ints n | reals alpha)
The log Poisson probability mass of n given log rate alpha dropping constant additive
16.7. Poisson-log generalized linear model (Poisson regression)

Stan also supplies a single function for a generalized linear model with Poisson likelihood and log link function, i.e. a function for a Poisson regression. This provides a more efficient implementation of Poisson regression than a manually written regression in terms of a Poisson likelihood and matrix multiplication.

Probability mass function

If \(x \in \mathbb{R}^{n \times m}, \alpha \in \mathbb{R}^n, \beta \in \mathbb{R}^m \), then for \(y \in \mathbb{N}^n \),

\[
\text{PoissonLogGLM}(y|x, \alpha, \beta) = \prod_{1 \leq i \leq n} \text{Poisson}(y_i|\exp(\alpha_i + x_i \cdot \beta)).
\]

Sampling statement

\(y \sim \text{poisson_log_glm}(x, \alpha, \beta) \)

Increment target log probability density with \(\text{poisson_log_glm_lupmf}(y \mid x, \alpha, \beta) \).

Stan functions

- `real poisson_log_glm_lpmf(int y | matrix x, real alpha, vector beta)`
 The log Poisson probability mass of \(y \) given the log-rate \(\alpha + x \ast \beta \).

 Available since 2.23

- `real poisson_log_glm_lupmf(int y | matrix x, real alpha, vector beta)`
 The log Poisson probability mass of \(y \) given the log-rate \(\alpha + x \ast \beta \) dropping constant additive terms.

 Available since 2.25

- `real poisson_log_glm_lpmf(int y | matrix x, vector alpha, vector beta)`
The log Poisson probability mass of y given the log-rate $\alpha + x \cdot \beta$.
\textit{Available since 2.23}

\begin{verbatim}
real poisson_log_glm_lupmf(int y | matrix x, vector alpha, vector beta)
\end{verbatim}

The log Poisson probability mass of y given the log-rate $\alpha + x \cdot \beta$ dropping constant additive terms.
\textit{Available since 2.25}

\begin{verbatim}
real poisson_log_glm_lpmf(array[] int y | row_vector x, real alpha, vector beta)
\end{verbatim}

The log Poisson probability mass of y given the log-rate $\alpha + x \cdot \beta$.
\textit{Available since 2.23}

\begin{verbatim}
real poisson_log_glm_lupmf(array[] int y | row_vector x, real alpha, vector beta)
\end{verbatim}

The log Poisson probability mass of y given the log-rate $\alpha + x \cdot \beta$ dropping constant additive terms.
\textit{Available since 2.25}

\begin{verbatim}
real poisson_log_glm_lpmf(array[] int y | row_vector x, vector alpha, vector beta)
\end{verbatim}

The log Poisson probability mass of y given the log-rate $\alpha + x \cdot \beta$.
\textit{Available since 2.23}

\begin{verbatim}
real poisson_log_glm_lupmf(array[] int y | row_vector x, vector alpha, vector beta)
\end{verbatim}

The log Poisson probability mass of y given the log-rate $\alpha + x \cdot \beta$ dropping constant additive terms.
\textit{Available since 2.25}

\begin{verbatim}
real poisson_log_glm_lpmf(array[] int y | matrix x, real alpha, vector beta)
\end{verbatim}

The log Poisson probability mass of y given the log-rate $\alpha + x \cdot \beta$.
\textit{Available since 2.18}

\begin{verbatim}
real poisson_log_glm_lupmf(array[] int y | matrix x, real alpha, vector beta)
\end{verbatim}

The log Poisson probability mass of y given the log-rate $\alpha + x \cdot \beta$ dropping constant additive terms.
\textit{Available since 2.25}

\begin{verbatim}
real poisson_log_glm_lpmf(array[] int y | matrix x, vector alpha,
vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta.
Available since 2.18

real poisson_log_glm_lupmf(array[] int y | matrix x, vector alpha, vector beta)
The log Poisson probability mass of y given the log-rate alpha + x * beta dropping constant additive terms.
Available since 2.25
17. Multivariate Discrete Distributions

The multivariate discrete distributions are over multiple integer values, which are expressed in Stan as arrays.

17.1. Multinomial distribution

Probability mass function

If \(K \in \mathbb{N}, N \in \mathbb{N} \), and \(\theta \in K\)-simplex, then for \(y \in \mathbb{N}^K \) such that \(\sum_{k=1}^{K} y_k = N \),

\[
\text{Multinomial}(y|\theta) = \binom{N}{y_1, \ldots, y_K} \prod_{k=1}^{K} \theta_k^{y_k},
\]

where the multinomial coefficient is defined by

\[
\binom{N}{y_1, \ldots, y_K} = \frac{N!}{\prod_{k=1}^{K} y_k!}.
\]

Sampling statement

\(y \sim \text{multinomial}(\theta) \)

Increment target log probability density with \(\text{multinomial_lpmf}(y \mid \theta) \).

Available since 2.0

Stan functions

\[
\text{real } \text{multinomial_lpmf}(\text{array[] int } y \mid \text{vector } \theta)
\]

The log multinomial probability mass function with outcome array \(y \) of size \(K \) given the \(K\)-simplex distribution parameter \(\theta \) and (implicit) total count \(N = \text{sum}(y) \).

Available since 2.12

\[
\text{real } \text{multinomial_lupmf}(\text{array[] int } y \mid \text{vector } \theta)
\]

The log multinomial probability mass function with outcome array \(y \) of size \(K \) given the \(K\)-simplex distribution parameter \(\theta \) and (implicit) total count \(N = \text{sum}(y) \) dropping constant additive terms.

Available since 2.25
array[] int multinomial_rng(vector theta, int N)
Generate a multinomial variate with simplex distribution parameter theta and total count N; may only be used in transformed data and generated quantities blocks
Available since 2.8

17.2. Multinomial distribution, logit parameterization

Stan also provides a version of the multinomial probability mass function distribution with the K-simplex for the event count probabilities per category given on the unconstrained logistic scale.

Probability mass function

If $K \in \mathbb{N}$, $N \in \mathbb{N}$, and $\text{softmax}^{-1}(\theta) \in K$-simplex, then for $y \in \mathbb{N}^K$ such that $\sum_{k=1}^{K} y_k = N$,

$$
\text{MultinomialLogit}(y|\theta) = \text{Multinomial}(y|\text{softmax}^{-1}(\theta)) = \binom{N}{y_1, \ldots, y_K} \prod_{k=1}^{K} [\text{softmax}^{-1}(\theta)_k]^{y_k}
$$

where the multinomial coefficient is defined by

$$
\binom{N}{y_1, \ldots, y_K} = \frac{N!}{\prod_{k=1}^{K} y_k !}.
$$

Sampling statement

$$
y \sim \text{multinomial_logit}(\theta)
$$

Increment target log probability density with $\text{multinomial_logit_lupmf}(y | \theta)$.
Available since 2.24

Stan functions

real multinomial_logit_lpmf(array[] int y | vector theta)
The log multinomial probability mass function with outcome array y of size K given the K-simplex distribution parameter $\text{softmax}^{-1}(\theta)$ and (implicit) total count $N = \text{sum}(y)$
Available since 2.24

real multinomial_logit_lupmf(array[] int y | vector theta)
The log multinomial probability mass function with outcome array y of size K given
the K-simplex distribution parameter $\text{softmax}^{-1}(\theta)$ and (implicit) total count $N = \sum(y)$ dropping constant additive terms

Available since 2.25

```cpp
array[] int multinomial_logit_rng(vector theta, int N)
```
Generate a multinomial variate with simplex distribution parameter $\text{softmax}^{-1}(\theta)$ and total count N; may only be used in transformed data and generated quantities blocks

Available since 2.24
Continuous Distributions
18. Unbounded Continuous Distributions

The unbounded univariate continuous probability distributions have support on all real numbers.

18.1. Normal distribution

Probability density function

If $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, then for $y \in \mathbb{R}$,

$$\text{Normal}(y|\mu, \sigma) = \frac{1}{\sqrt{2\pi} \sigma} \exp \left(-\frac{1}{2} \left(\frac{y - \mu}{\sigma} \right)^2 \right).$$

Sampling statement

$y \sim \text{normal}(\text{mu}, \text{sigma})$

Increment target log probability density with $\text{normal_lupdf}(y \mid \text{mu}, \text{sigma})$.

Available since 2.0

Stan functions

real $\text{normal_lpdf}(\text{reals y} \mid \text{reals mu, reals sigma})$

The log of the normal density of y given location μ and scale σ

Available since 2.12

real $\text{normal_lupdf}(\text{reals y} \mid \text{reals mu, reals sigma})$

The log of the normal density of y given location μ and scale σ dropping constant additive terms.

Available since 2.25

real $\text{normal_cdf}(\text{reals y, reals mu, reals sigma})$

The cumulative normal distribution of y given location μ and scale σ; normal_cdf will underflow to 0 for $\frac{y-\mu}{\sigma}$ below -37.5 and overflow to 1 for $\frac{y-\mu}{\sigma}$ above 8.25; the function Phi_approx is more robust in the tails, but must be scaled and translated for anything other than a standard normal.

Available since 2.0
real normal_lcdf(reals y | reals mu, reals sigma)
The log of the cumulative normal distribution of y given location mu and scale sigma; normal_lcdf will underflow to $-\infty$ for $\frac{y-\mu}{\sigma}$ below -37.5 and overflow to 0 for $\frac{y-\mu}{\sigma}$ above 8.25; log(\Phi_{\text{approx}}(...) is more robust in the tails, but must be scaled and translated for anything other than a standard normal.
Available since 2.12

real normal_lccdf(reals y | reals mu, reals sigma)
The log of the complementary cumulative normal distribution of y given location mu and scale sigma; normal_lccdf will overflow to 0 for $\frac{y-\mu}{\sigma}$ below -37.5 and underflow to $-\infty$ for $\frac{y-\mu}{\sigma}$ above 8.25; log1m(\Phi_{\text{approx}}(...) is more robust in the tails, but must be scaled and translated for anything other than a standard normal.
Available since 2.15

R normal_rng(reals mu, reals sigma)
Generate a normal variate with location mu and scale sigma; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.
Available since 2.18

Standard normal distribution

The standard normal distribution is so-called because its parameters are the units for their respective operations—the location (mean) is zero and the scale (standard deviation) one. The standard normal is parameter-free, and the unit parameters allow considerable simplification of the expression for the density.

\[
\text{StdNormal}(y) = \text{Normal}(y | 0, 1) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{y^2}{2} \right).
\]

Up to a proportion on the log scale, where Stan computes,

\[
\log \text{Normal}(y | 0, 1) = -\frac{y^2}{2} + \text{const}.
\]

With no logarithm, no subtraction, and no division by a parameter, the standard normal log density is much more efficient to compute than the normal log density with constant location 0 and scale 1.

Sampling statement

\[y \sim \text{std_normal}() \]
Increment target log probability density with std_normal_lupdf(y).
Available since 2.19
Stan functions

real std_normal_lpdf(reals y)
The standard normal (location zero, scale one) log probability density of y.
Available since 2.18

real std_normal_lupdf(reals y)
The standard normal (location zero, scale one) log probability density of y dropping constant additive terms.
Available since 2.25

real std_normal_cdf(reals y)
The cumulative standard normal distribution of y; std_normal_cdf will underflow to 0 for y below -37.5 and overflow to 1 for y above 8.25; the function Phi_approx is more robust in the tails.
Available since 2.21

real std_normal_lcdf(reals y)
The log of the cumulative standard normal distribution of y; std_normal_lcdf will underflow to $-\infty$ for y below -37.5 and overflow to 0 for y above 8.25; \(\log(\Phi_{\text{approx}}(\ldots))\) is more robust in the tails.
Available since 2.21

real std_normal_lccdf(reals y)
The log of the complementary cumulative standard normal distribution of y; std_normal_lccdf will overflow to 0 for y below -37.5 and underflow to $-\infty$ for y above 8.25; \(\log1m(\Phi_{\text{approx}}(\ldots))\) is more robust in the tails.
Available since 2.21

real std_normal_rng()
Generate a normal variate with location zero and scale one; may only be used in transformed data and generated quantities blocks.
Available since 2.21

18.2. Normal-id generalized linear model (linear regression)

Stan also supplies a single function for a generalized linear model with normal likelihood and identity link function, i.e. a function for a linear regression. This provides a more efficient implementation of linear regression than a manually written regression in terms of a normal likelihood and matrix multiplication.
Probability distribution function

If \(x \in \mathbb{R}^{n \times m}, \alpha \in \mathbb{R}^n, \beta \in \mathbb{R}^m, \sigma \in \mathbb{R}^+ \), then for \(y \in \mathbb{R}^n \),

\[
\text{NormalIdGLM}(y \mid x, \alpha, \beta, \sigma) = \prod_{1 \leq i \leq n} \text{Normal}(y_i \mid \alpha_i + x_i \cdot \beta, \sigma).
\]

Sampling statement

\(y \sim \text{normal_id_glm}(x, \alpha, \beta, \sigma) \)

Increment target log probability density with \(\text{normal_id_glm_lupdf}(y \mid x, \alpha, \beta, \sigma) \).

Available since 2.19

Stan functions

\begin{align*}
\text{real} & \quad \text{normal_id_glm_lpdf}(\text{real } y \mid \text{matrix } x, \text{real } \alpha, \text{vector } \beta, \text{real } \sigma) \\
& \quad \text{The log normal probability density of } y \text{ given location } \alpha + x \cdot \beta \text{ and scale } \\
& \quad \text{sigma.} \\
& \quad \text{Available since 2.29}
\end{align*}

\begin{align*}
\text{real} & \quad \text{normal_id_glm_lupdf}(\text{real } y \mid \text{matrix } x, \text{real } \alpha, \text{vector } \beta, \\
& \quad \text{real } \sigma) \\
& \quad \text{The log normal probability density of } y \text{ given location } \alpha + x \cdot \beta \text{ and scale } \\
& \quad \text{sigma dropping constant additive terms.} \\
& \quad \text{Available since 2.29}
\end{align*}

\begin{align*}
\text{real} & \quad \text{normal_id_glm_lpdf}(\text{real } y \mid \text{matrix } x, \text{vector } \alpha, \text{vector } \beta, \\
& \quad \text{real } \sigma) \\
& \quad \text{The log normal probability density of } y \text{ given location } \alpha + x \cdot \beta \text{ and scale } \\
& \quad \text{sigma.} \\
& \quad \text{Available since 2.29}
\end{align*}

\begin{align*}
\text{real} & \quad \text{normal_id_glm_lupdf}(\text{real } y \mid \text{matrix } x, \text{vector } \alpha, \text{vector } \\
& \quad \beta, \text{real } \sigma) \\
& \quad \text{The log normal probability density of } y \text{ given location } \alpha + x \cdot \beta \text{ and scale } \\
& \quad \text{sigma dropping constant additive terms.} \\
& \quad \text{Available since 2.29}
\end{align*}

\begin{align*}
\text{real} & \quad \text{normal_id_glm_lpdf}(\text{real } y \mid \text{matrix } x, \text{real } \alpha, \text{vector } \beta, \\
& \quad \text{vector } \sigma) \\
& \quad \text{The log normal probability density of } y \text{ given location } \alpha + x \cdot \beta \text{ and scale } \\
& \quad \text{sigma.}
\end{align*}
The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ.

Available since 2.23

```c
real normal_id_glm_lupdf(real y | matrix x, real alpha, vector beta, vector sigma)
```

The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ dropping constant additive terms.

Available since 2.25

```c
real normal_id_glm_lpdf(real y | matrix x, vector alpha, vector beta, vector sigma)
```

The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ.

Available since 2.23

```c
real normal_id_glm_lupdf(real y | matrix x, vector alpha, vector beta, vector sigma)
```

The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ dropping constant additive terms.

Available since 2.25

```c
real normal_id_glm_lpdf(vector y | row_vector x, real alpha, vector beta, real sigma)
```

The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ.

Available since 2.29

```c
real normal_id_glm_lpdf(vector y | row_vector x, real alpha, vector beta, real sigma)
```

The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ dropping constant additive terms.

Available since 2.29

```c
real normal_id_glm_lpdf(vector y | row_vector x, vector alpha, vector beta, real sigma)
```

The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ.

Available since 2.29

```c
real normal_id_glm_lupdf(vector y | row_vector x, vector alpha, vector beta, real sigma)
```

The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ dropping constant additive terms.
sigma dropping constant additive terms.

Available since 2.29

real normal_id_glm_lpdf(vector y | matrix x, real alpha, vector beta, real sigma)
The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ.

Available since 2.23

real normal_id_glm_lupdf(vector y | matrix x, real alpha, vector beta, real sigma)
The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ dropping constant additive terms.

Available since 2.23

real normal_id_glm_lpdf(vector y | matrix x, vector alpha, vector beta, real sigma)
The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ.

Available since 2.23

real normal_id_glm_lupdf(vector y | matrix x, vector alpha, vector beta, real sigma)
The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ dropping constant additive terms.

Available since 2.23

real normal_id_glm_lpdf(vector y | matrix x, real alpha, vector beta, vector sigma)
The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ.

Available since 2.20

real normal_id_glm_lupdf(vector y | matrix x, real alpha, vector beta, vector sigma)
The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ dropping constant additive terms.

Available since 2.25

real normal_id_glm_lpdf(vector y | matrix x, vector alpha, vector beta, vector sigma)
The log normal probability density of y given location $\alpha + x \ast \beta$ and scale σ.

Available since 2.25
18.3. Exponentially modified normal distribution

Probability density function

If $\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}^+$, and $\lambda \in \mathbb{R}^+$, then for $y \in \mathbb{R}$,

$$\text{ExpModNormal}(y|\mu,\sigma,\lambda) = \frac{\lambda}{2} \exp \left(\frac{\lambda}{2} (2\mu + \lambda \sigma^2 - 2y) \right) \text{erfc} \left(\frac{\mu + \lambda \sigma^2 - y}{\sqrt{2} \sigma} \right).$$

Sampling statement

$y \sim \text{exp_mod_normal}(\mu, \sigma, \lambda)$

Increment target log probability density with \text{exp_mod_normal_lupdf}(y | \mu, \sigma, \lambda).

Available since 2.0

Stan functions

real \text{exp_mod_normal_lpdf}(\text{reals } y | \text{reals } mu, \text{reals } sigma, \text{reals } lambda)

The log of the exponentially modified normal density of y given location μ, scale σ, and shape λ

Available since 2.18

real \text{exp_mod_normal_lupdf}(\text{reals } y | \text{reals } mu, \text{reals } sigma, \text{reals } lambda)

The log of the exponentially modified normal density of y given location μ, scale σ, and shape λ dropping constant additive terms

Available since 2.25

real \text{exp_mod_normal_cdf}(\text{reals } y, \text{reals } mu, \text{reals } sigma, \text{reals } lambda)

The exponentially modified normal cumulative distribution function of y given
location mu, scale sigma, and shape lambda

Available since 2.0

```stan
real exp_mod_normal_lcdf(reals y | reals mu, reals sigma, reals lambda)
The log of the exponentially modified normal cumulative distribution function of y
given location mu, scale sigma, and shape lambda

*Available since 2.18*

```stan
real exp_mod_normal_lccdf(reals y | reals mu, reals sigma, reals lambda)
The log of the exponentially modified normal complementary cumulative distribution
function of y given location mu, scale sigma, and shape lambda

Available since 2.18

```stan
R exp_mod_normal_rng(reals mu, reals sigma, reals lambda)
Generate a exponentially modified normal variate with location mu, scale sigma,
and shape lambda; may only be used in transformed data and generated quantities
blocks. For a description of argument and return types, see section vectorized PRNG
functions.

*Available since 2.18*

## 18.4. Skew normal distribution

### Probability density function

If $\xi \in \mathbb{R}$, $\omega \in \mathbb{R}^+$, and $\alpha \in \mathbb{R}$, then for $y \in \mathbb{R}$,

$$
\text{SkewNormal}(y \mid \xi, \omega, \alpha) = \frac{1}{\omega \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{y - \xi}{\omega}\right)^2\right) \left(1 + \text{erf}\left(\alpha \left(\frac{y - \xi}{\omega \sqrt{2}}\right)\right)\right).
$$

### Sampling statement

```stan
y ~ skew_normal(xi, omega, alpha)
```

Increment target log probability density with `skew_normal_lupdf(y \mid xi, omega, alpha)`.

*Available since 2.0*

### Stan functions

```stan
real skew_normal_lpdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal density of y given location xi, scale omega, and shape
```
alpha
Available since 2.16

real skew_normal_lupdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal density of y given location xi, scale omega, and shape
alpha dropping constant additive terms
Available since 2.25

real skew_normal_cdf(reals y, reals xi, reals omega, reals alpha)
The skew normal distribution function of y given location xi, scale omega, and shape
alpha
Available since 2.16

real skew_normal_lcdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal cumulative distribution function of y given location xi,
scale omega, and shape alpha
Available since 2.18

real skew_normal_lccdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal complementary cumulative distribution function of y
given location xi, scale omega, and shape alpha
Available since 2.18

R skew_normal_rng(reals xi, reals omega, real alpha)
Generate a skew normal variate with location xi, scale omega, and shape alpha; may
only be used in transformed data and generated quantities blocks. For a description
of argument and return types, see section vectorized PRNG functions.
Available since 2.18

18.5. Student-t distribution

Probability density function

If $\nu \in \mathbb{R}^+$, $\mu \in \mathbb{R}$, and $\sigma \in \mathbb{R}^+$, then for $y \in \mathbb{R}$,

$$\text{StudentT}(y|\nu, \mu, \sigma) = \frac{\Gamma((\nu + 1)/2)}{\Gamma(\nu/2)} \frac{1}{\sqrt{\nu \pi} \sigma} \left(1 + \frac{1}{\nu} \left(\frac{y - \mu}{\sigma}\right)^2\right)^{-(\nu+1)/2}.$$

Sampling statement

$y \sim \text{student_t}(\nu, \mu, \sigma)$
Increment target log probability density with `student_t_lupdf(y | nu, mu, sigma)`.

*Available since 2.0*

**Stan functions**

```stan
real student_t_lpdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t density of y given degrees of freedom nu, location mu, and scale sigma
Available since 2.12
```

```stan
real student_t_lupdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t density of y given degrees of freedom nu, location mu, and scale sigma dropping constant additive terms
Available since 2.25
```

```stan
real student_t_cdf(reals y, reals nu, reals mu, reals sigma)
The Student-t cumulative distribution function of y given degrees of freedom nu, location mu, and scale sigma
Available since 2.0
```

```stan
real student_t_lcdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t cumulative distribution function of y given degrees of freedom nu, location mu, and scale sigma
Available since 2.12
```

```stan
real student_t_lccdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t complementary cumulative distribution function of y given degrees of freedom nu, location mu, and scale sigma
Available since 2.12
```

```stan
R student_t_rng(reals nu, reals mu, reals sigma)
Generate a Student-t variate with degrees of freedom nu, location mu, and scale sigma; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.
Available since 2.18
18.6. Cauchy distribution

Probability density function
If $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, then for $y \in \mathbb{R}$,

$$
\text{Cauchy}(y|\mu, \sigma) = \frac{1}{\pi \sigma} \frac{1}{1 + ((y - \mu)/\sigma)^2}.
$$

Sampling statement

$y \sim \text{cauchy}(\mu, \sigma)$

Increment target log probability density with $\text{cauchy}_\text{lupdf}(y \mid \mu, \sigma)$.

Available since 2.0

Stan functions

real $\text{cauchy}_\text{lpdf}(\text{reals } y \mid \text{reals } \mu, \text{reals } \sigma)$
The log of the Cauchy density of y given location μ and scale σ

Available since 2.12

real $\text{cauchy}_\text{lupdf}(\text{reals } y \mid \text{reals } \mu, \text{reals } \sigma)$
The log of the Cauchy density of y given location μ and scale σ dropping constant additive terms

Available since 2.25

real $\text{cauchy}_\text{cdf}(\text{reals } y, \text{reals } \mu, \text{reals } \sigma)$
The Cauchy cumulative distribution function of y given location μ and scale σ

Available since 2.0

real $\text{cauchy}_\text{lcdf}(\text{reals } y \mid \text{reals } \mu, \text{reals } \sigma)$
The log of the Cauchy cumulative distribution function of y given location μ and scale σ

Available since 2.12

real $\text{cauchy}_\text{lccdf}(\text{reals } y \mid \text{reals } \mu, \text{reals } \sigma)$
The log of the Cauchy complementary cumulative distribution function of y given location μ and scale σ

Available since 2.12

R $\text{cauchy}_\text{rng}(\text{reals } \mu, \text{reals } \sigma)$
Generate a Cauchy variate with location μ and scale σ; may only be used in transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.

Available since 2.18

18.7. Double exponential (Laplace) distribution

Probability density function

If \(\mu \in \mathbb{R} \) and \(\sigma \in \mathbb{R}^+ \), then for \(y \in \mathbb{R} \),

\[
\text{DoubleExponential}(y|\mu,\sigma) = \frac{1}{2\sigma} \exp\left(-\frac{|y-\mu|}{\sigma}\right).
\]

Note that the double exponential distribution is parameterized in terms of the scale, in contrast to the exponential distribution (see section exponential distribution), which is parameterized in terms of inverse scale.

The double-exponential distribution can be defined as a compound exponential-normal distribution (Ding and Blitzstein 2018). Using the inverse scale parameterization for the exponential distribution, and the standard deviation parameterization for the normal distribution, one can write

\[
\alpha \sim \text{Exponential}\left(\frac{1}{2\sigma^2}\right)
\]

and

\[
\beta | \alpha \sim \text{Normal}(\mu, \sqrt{\alpha}),
\]

then

\[
\beta \sim \text{DoubleExponential}(\mu, \sigma).
\]

This may be used to code a non-centered parameterization by taking

\[
\beta_{\text{raw}} \sim \text{Normal}(0, 1)
\]

and defining

\[
\beta = \mu + \alpha \beta_{\text{raw}}.
\]

Sampling statement

\[
y \sim \text{double_exponential}(\mu, \sigma)
\]

Increment target log probability density with double_exponential_lupdf(y | mu, sigma).

Available since 2.0
18.8. LOGISTIC DISTRIBUTION

Stan functions

real double_exponential_lpdf(reals y | reals mu, reals sigma)
The log of the double exponential density of y given location mu and scale sigma
Available since 2.12

real double_exponential_lupdf(reals y | reals mu, reals sigma)
The log of the double exponential density of y given location mu and scale sigma
dropping constant additive terms
Available since 2.25

real double_exponential_cdf(reals y, reals mu, reals sigma)
The double exponential cumulative distribution function of y given location mu and
scale sigma
Available since 2.0

real double_exponential_lcdf(reals y | reals mu, reals sigma)
The log of the double exponential cumulative distribution function of y given location
mu and scale sigma
Available since 2.12

real double_exponential_lccdf(reals y | reals mu, reals sigma)
The log of the double exponential complementary cumulative distribution function
of y given location mu and scale sigma
Available since 2.12

R double_exponential_rng(reals mu, reals sigma)
Generate a double exponential variate with location mu and scale sigma; may only
be used in transformed data and generated quantities blocks. For a description of
argument and return types, see section vectorized PRNG functions.
Available since 2.18

18.8. Logistic distribution

Probability density function

If $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, then for $y \in \mathbb{R}$,

$$
\text{Logistic}(y|\mu, \sigma) = \frac{1}{\sigma} \exp\left(-\frac{y - \mu}{\sigma}\right) \left(1 + \exp\left(-\frac{y - \mu}{\sigma}\right)\right)^{-2}.
$$

Sampling statement

$y \sim \text{logistic}(\mu, \sigma)$
Increment target log probability density with `logistic_lupdf(y | mu, sigma)`.
Available since 2.0

Stan functions

```stan
real logistic_lpdf(reals y | reals mu, reals sigma)
The log of the logistic density of y given location mu and scale sigma
*Available since 2.12*
```

```stan
real logistic_lupdf(reals y | reals mu, reals sigma)
The log of the logistic density of y given location mu and scale sigma dropping constant additive terms
*Available since 2.25*
```

```stan
real logistic_cdf(reals y, reals mu, reals sigma)
The logistic cumulative distribution function of y given location mu and scale sigma
*Available since 2.0*
```

```stan
real logistic_lcdf(reals y | reals mu, reals sigma)
The log of the logistic cumulative distribution function of y given location mu and scale sigma
*Available since 2.12*
```

```stan
real logistic_lccdf(reals y | reals mu, reals sigma)
The log of the logistic complementary cumulative distribution function of y given location mu and scale sigma
*Available since 2.12*
```

```stan
R logistic_rng(reals mu, reals sigma)
Generate a logistic variate with location mu and scale sigma; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.
*Available since 2.18*
```

18.9. Gumbel distribution

Probability density function

If $\mu \in \mathbb{R}$ and $\beta \in \mathbb{R}^+$, then for $y \in \mathbb{R}$,

$$
\text{Gumbel}(y|\mu, \beta) = \frac{1}{\beta} \exp \left(- \frac{y - \mu}{\beta} - \exp \left(- \frac{y - \mu}{\beta} \right) \right).
$$
18.9. GUMBEL DISTRIBUTION

Sampling statement

\[y \sim \text{gumbel}(\mu, \beta) \]

Increment target log probability density with \(\text{gumbel}_\text{lupdf}(y \mid \mu, \beta) \).

Available since 2.0

Stan functions

- `real gumbel_lpdf(reals y | reals mu, reals beta)`
The log of the gumbel density of \(y \) given location \(\mu \) and scale \(\beta \)
Available since 2.12

- `real gumbel_lupdf(reals y | reals mu, reals beta)`
The log of the gumbel density of \(y \) given location \(\mu \) and scale \(\beta \) dropping constant additive terms
Available since 2.25

- `real gumbel_cdf(reals y, reals mu, reals beta)`
The gumbel cumulative distribution function of \(y \) given location \(\mu \) and scale \(\beta \)
Available since 2.0

- `real gumbel_lcdf(reals y | reals mu, reals beta)`
The log of the gumbel cumulative distribution function of \(y \) given location \(\mu \) and scale \(\beta \)
Available since 2.12

- `real gumbel_lccdf(reals y | reals mu, reals beta)`
The log of the gumbel complementary cumulative distribution function of \(y \) given location \(\mu \) and scale \(\beta \)
Available since 2.12

- `R gumbel_rng(reals mu, reals beta)`
Generate a gumbel variate with location \(\mu \) and scale \(\beta \); may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.
Available since 2.18
18.10. Skew double exponential distribution

Probability density function

If \(\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+ \) and \(\tau \in [0, 1] \), then for \(y \in \mathbb{R} \),

\[
\text{SkewDoubleExponential}(y|\mu, \sigma, \tau) = 2\tau(1-\tau)\sigma \exp \left[-\frac{2}{\sigma} \left((1-\tau) I(y < \mu)(\mu - y) + \tau I(y > \mu)(y - \mu) \right) \right]
\]

Sampling statement

\(y \sim \text{skew_double_exponential}(\mu, \sigma, \tau) \)

Increment target log probability density with \(\text{skew_double_exponential}(y \mid \mu, \sigma, \tau) \)

Available since 2.28

Stan functions

- real \(\text{skew_double_exponential_lpdf}(\text{reals } y \mid \text{reals } \mu, \text{reals } \sigma, \text{reals } \tau) \)
 The log of the skew double exponential density of \(y \) given location \(\mu \), scale \(\sigma \) and skewness \(\tau \)
 Available since 2.28

- real \(\text{skew_double_exponential_lupdf}(\text{reals } y \mid \text{reals } \mu, \text{reals } \sigma, \text{reals } \tau) \)
 The log of the skew double exponential density of \(y \) given location \(\mu \), scale \(\sigma \) and skewness \(\tau \) dropping constant additive terms
 Available since 2.28

- real \(\text{skew_double_exponential_cdf}(\text{reals } y, \text{reals } \mu, \text{reals } \sigma, \text{reals } \tau) \)
 The skew double exponential cumulative distribution function of \(y \) given location \(\mu \), scale \(\sigma \) and skewness \(\tau \)
 Available since 2.28

- real \(\text{skew_double_exponential_lcdf}(\text{reals } y \mid \text{reals } \mu, \text{reals } \sigma, \text{reals } \tau) \)
 The log of the skew double exponential cumulative distribution function of \(y \) given location \(\mu \), scale \(\sigma \) and skewness \(\tau \)
 Available since 2.28
real
\texttt{skew_double_exponential_lccdf}(\texttt{reals y | reals mu, reals sigma, reals tau})

The log of the skew double exponential complementary cumulative distribution function of y given location mu, scale sigma and skewness tau

\textit{Available since 2.28}

\texttt{R skew_double_exponential_rng}(\texttt{reals mu, reals sigma, reals tau})

Generate a skew double exponential variate with location mu, scale sigma and skewness tau; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

\textit{Available since 2.28}
19. Positive Continuous Distributions

The positive continuous probability functions have support on the positive real numbers.

19.1. Lognormal distribution

Probability density function

If $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, then for $y \in \mathbb{R}^+$,

$$
\text{LogNormal}(y|\mu, \sigma) = \frac{1}{\sqrt{2\pi} \sigma} \frac{1}{y} \exp\left(-\frac{1}{2} \left(\frac{\log y - \mu}{\sigma}\right)^2\right).
$$

Sampling statement

$y \sim \text{lognormal}(\mu, \sigma)$

Increment target log probability density with $\text{lognormal}_\text{lupdf}(y \mid \mu, \sigma)$.

Available since 2.0

Stan functions

- real $\text{lognormal}_\text{lpdf}(\text{reals } y \mid \text{reals } \mu, \text{reals } \sigma)$
 The log of the lognormal density of y given location μ and scale σ
 Available since 2.12

- real $\text{lognormal}_\text{lupdf}(\text{reals } y \mid \text{reals } \mu, \text{reals } \sigma)$
 The log of the lognormal density of y given location μ and scale σ dropping constant additive terms
 Available since 2.25

- real $\text{lognormal}_\text{cdf}(\text{reals } y, \text{reals } \mu, \text{reals } \sigma)$
 The cumulative lognormal distribution function of y given location μ and scale σ
 Available since 2.0

- real $\text{lognormal}_\text{lccdf}(\text{reals } y \mid \text{reals } \mu, \text{reals } \sigma)$
 The log of the lognormal cumulative distribution function of y given location μ
and scale sigma
Available since 2.12

real lognormal_lccdf(reals y | reals mu, reals sigma)
The log of the lognormal complementary cumulative distribution function of y given location mu and scale sigma
Available since 2.12

R lognormal_rng(reals mu, reals sigma)
Generate a lognormal variate with location mu and scale sigma; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.
Available since 2.22

19.2. Chi-square distribution

Probability density function
If $\nu \in \mathbb{R}^+$, then for $y \in \mathbb{R}^+$,

$$\text{ChiSquare}(y|\nu) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)} y^{\nu/2 - 1} \exp\left(-\frac{1}{2} y\right).$$

Sampling statement

$y \sim \text{chi}_\text{square}(nu)$

Increment target log probability density with $\text{chi}_\text{square}_\text{lupdf}(y \mid \nu)$.
Available since 2.0

Stan functions

real chi_square_lpdf(reals y | reals nu)
The log of the Chi-square density of y given degrees of freedom nu
Available since 2.12

real chi_square_lupdf(reals y | reals nu)
The log of the Chi-square density of y given degrees of freedom nu dropping constant additive terms
Available since 2.25

real chi_square_cdf(reals y, reals nu)
The Chi-square cumulative distribution function of y given degrees of freedom nu
Available since 2.0
real `chi_square_lcdf`(reals y | reals nu)
The log of the Chi-square cumulative distribution function of y given degrees of freedom nu
`Available since 2.12`

real `chi_square_lccdf`(reals y | reals nu)
The log of the complementary Chi-square cumulative distribution function of y given degrees of freedom nu
`Available since 2.12`

R `chi_square_rng`(reals nu)
Generate a Chi-square variate with degrees of freedom nu; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.
`Available since 2.18`

19.3. Inverse chi-square distribution

Probability density function

If \(\nu \in \mathbb{R}^+ \), then for \(y \in \mathbb{R}^+ \),

\[
\text{InvChiSquare}(y | \nu) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)} y^{-\nu/2-1} \exp \left(-\frac{1}{2} \frac{1}{y} \right).
\]

Sampling statement

\(y \sim \text{inv_chi_square}(\nu) \)

Increment target log probability density with `inv_chi_square_lupdf(y | nu)`.
`Available since 2.0`

Stan functions

real `inv_chi_square_lpdf`(reals y | reals nu)
The log of the inverse Chi-square density of y given degrees of freedom nu
`Available since 2.12`

real `inv_chi_square_lupdf`(reals y | reals nu)
The log of the inverse Chi-square density of y given degrees of freedom nu dropping constant additive terms
`Available since 2.25`
19.4. SCALED INVERSE CHI-SQUARE DISTRIBUTION

real inv_chi_square_cdf(reals y, reals nu)
The inverse Chi-squared cumulative distribution function of y given degrees of freedom nu
Available since 2.0

real inv_chi_square_lcdf(reals y | reals nu)
The log of the inverse Chi-squared cumulative distribution function of y given degrees of freedom nu
Available since 2.12

real inv_chi_square_lccdf(reals y | reals nu)
The log of the inverse Chi-squared complementary cumulative distribution function of y given degrees of freedom nu
Available since 2.12

R inv_chi_square_rng(reals nu)
Generate an inverse Chi-squared variate with degrees of freedom nu; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.
Available since 2.18

19.4. Scaled inverse chi-square distribution

Probability density function
If \(\nu \in \mathbb{R}^+ \) and \(\sigma \in \mathbb{R}^+ \), then for \(y \in \mathbb{R}^+ \),

\[
\text{ScaledInvChiSquare}(y | \nu, \sigma) = \frac{(\nu/2)^{\nu/2}}{\Gamma(\nu/2)} \sigma^{\nu} y^{-(\nu/2+1)} \exp\left(-\frac{1}{2} \frac{\nu \sigma^2}{y}\right).
\]

Sampling statement
\(y \sim \text{scaled_inv_chi_square}(nu, \sigma) \)
Increment target log probability density with \(\text{scaled_inv_chi_square_lupdf}(y | nu, \sigma) \).
Available since 2.0

Stan functions
real scaled_inv_chi_square_lpdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square density of y given degrees of freedom nu
and scale sigma

Available since 2.12

real scaled_inv_chi_square_lupdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square density of y given degrees of freedom nu and scale sigma dropping constant additive terms

Available since 2.25

real scaled_inv_chi_square_cdf(reals y, reals nu, reals sigma)
The scaled inverse Chi-square cumulative distribution function of y given degrees of freedom nu and scale sigma

Available since 2.0

real scaled_inv_chi_square_lcdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square cumulative distribution function of y given degrees of freedom nu and scale sigma

Available since 2.12

real scaled_inv_chi_square_lccdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square complementary cumulative distribution function of y given degrees of freedom nu and scale sigma

Available since 2.12

R scaled_inv_chi_square_rng(reals nu, reals sigma)
Generate a scaled inverse Chi-squared variate with degrees of freedom nu and scale sigma; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

19.5. Exponential distribution

Probability density function

If $\beta \in \mathbb{R}^+$, then for $y \in \mathbb{R}^+$,

$$\text{Exponential}(y | \beta) = \beta \exp(-\beta y).$$

Sampling statement

$$y \sim \text{exponential}(\beta)$$

Increment target log probability density with exponential_lupdf(y | beta).

Available since 2.0
19.6. **GAMMA DISTRIBUTION**

Stan functions

```stan
real exponential_lpdf(reals y | reals beta)
The log of the exponential density of y given inverse scale beta
Available since 2.12
```

```stan
real exponential_lupdf(reals y | reals beta)
The log of the exponential density of y given inverse scale beta dropping constant
additive terms
Available since 2.25
```

```stan
real exponential_cdf(reals y, reals beta)
The exponential cumulative distribution function of y given inverse scale beta
Available since 2.0
```

```stan
real exponential_lcdf(reals y | reals beta)
The log of the exponential cumulative distribution function of y given inverse scale beta
Available since 2.12
```

```stan
real exponential_lccdf(reals y | reals beta)
The log of the exponential complementary cumulative distribution function of y
given inverse scale beta
Available since 2.12
```

```stan
R exponential_rng(reals beta)
Generate an exponential variate with inverse scale beta; may only be used in
transformed data and generated quantities blocks. For a description of argument
and return types, see section vectorized PRNG functions.
Available since 2.18
```

19.6. Gamma distribution

Probability density function

If $\alpha \in \mathbb{R}^+$ and $\beta \in \mathbb{R}^+$, then for $y \in \mathbb{R}^+$,

$$
\text{Gamma}(y|\alpha, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} y^{\alpha-1} \exp(-\beta y).
$$

Sampling statement

```stan
y ~ gamma(alpha, beta)
```
Increment target log probability density with \(\text{gamma_lupdf}(y \mid \alpha, \beta)\).

Available since 2.0

Stan functions

\[
\text{real gamma_lpdf}\text{(reals y | reals alpha, reals beta)}
\]

The log of the gamma density of \(y\) given shape \(\alpha\) and inverse scale \(\beta\)

Available since 2.12

\[
\text{real gamma_lupdf}\text{(reals y | reals alpha, reals beta)}
\]

The log of the gamma density of \(y\) given shape \(\alpha\) and inverse scale \(\beta\) dropping constant additive terms

Available since 2.25

\[
\text{real gamma_cdf}\text{(reals y, reals alpha, reals beta)}
\]

The cumulative gamma distribution function of \(y\) given shape \(\alpha\) and inverse scale \(\beta\)

Available since 2.0

\[
\text{real gamma_lcdf}\text{(reals y | reals alpha, reals beta)}
\]

The log of the cumulative gamma distribution function of \(y\) given shape \(\alpha\) and inverse scale \(\beta\)

Available since 2.12

\[
\text{real gamma_lccdf}\text{(reals y | reals alpha, reals beta)}
\]

The log of the complementary cumulative gamma distribution function of \(y\) given shape \(\alpha\) and inverse scale \(\beta\)

Available since 2.12

\[
\text{R gamma_rng}\text{(reals alpha, reals beta)}
\]

Generate a gamma variate with shape \(\alpha\) and inverse scale \(\beta\); may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

19.7. Inverse gamma Distribution

Probability density function

If \(\alpha \in \mathbb{R}^+\) and \(\beta \in \mathbb{R}^+\), then for \(y \in \mathbb{R}^+\),

\[
\text{InvGamma}(y|\alpha, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} y^{-(\alpha+1)} \exp\left(-\beta \frac{1}{y}\right).
\]
19.7. INVERSE GAMMA DISTRIBUTION

Sampling statement

\[y \sim \text{inv_gamma}(\alpha, \beta) \]

Increment target log probability density with \(\text{inv_gamma_lupdf}(y \mid \alpha, \beta) \).

Available since 2.0

Stan functions

\[\text{real inv_gamma_lpdf}(\text{reals } y \mid \text{reals } \alpha, \text{reals } \beta) \]
The log of the inverse gamma density of \(y \) given shape \(\alpha \) and scale \(\beta \)

Available since 2.12

\[\text{real inv_gamma_lupdf}(\text{reals } y \mid \text{reals } \alpha, \text{reals } \beta) \]
The log of the inverse gamma density of \(y \) given shape \(\alpha \) and scale \(\beta \) dropping constant additive terms

Available since 2.25

\[\text{real inv_gamma_cdf}(\text{reals } y, \text{reals } \alpha, \text{reals } \beta) \]
The inverse gamma cumulative distribution function of \(y \) given shape \(\alpha \) and scale \(\beta \)

Available since 2.0

\[\text{real inv_gamma_lcdf}(\text{reals } y \mid \text{reals } \alpha, \text{reals } \beta) \]
The log of the inverse gamma cumulative distribution function of \(y \) given shape \(\alpha \) and scale \(\beta \)

Available since 2.12

\[\text{real inv_gamma_lccdf}(\text{reals } y \mid \text{reals } \alpha, \text{reals } \beta) \]
The log of the inverse gamma complementary cumulative distribution function of \(y \) given shape \(\alpha \) and scale \(\beta \)

Available since 2.12

\[\text{R inv_gamma_rng}(\text{reals } \alpha, \text{reals } \beta) \]
Generate an inverse gamma variate with shape \(\alpha \) and scale \(\beta \); may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18
19.8. Weibull distribution

Probability density function

If $\alpha \in \mathbb{R}^+$ and $\sigma \in \mathbb{R}^+$, then for $y \in [0, \infty)$,

$$\text{Weibull}(y|\alpha, \sigma) = \frac{\alpha}{\sigma} \left(\frac{y}{\sigma}\right)^{\alpha-1} \exp\left(-\left(\frac{y}{\sigma}\right)^\alpha\right).$$

Note that if $Y \sim \text{Weibull}(\alpha, \sigma)$, then $Y^{-1} \sim \text{Frechet}(\alpha, \sigma^{-1})$.

Sampling statement

$y \sim \text{weibull}(\alpha, \sigma)$

Increment target log probability density with $\text{weibull}_\text{lupdf}(y | \alpha, \sigma)$.

Available since 2.0

Stan functions

real $\text{weibull}_\text{lpdf}(\text{reals } y \mid \text{reals } \alpha, \text{reals } \sigma)$

The log of the Weibull density of y given shape α and scale σ

Available since 2.12

real $\text{weibull}_\text{lupdf}(\text{reals } y \mid \text{reals } \alpha, \text{reals } \sigma)$

The log of the Weibull density of y given shape α and scale σ dropping constant additive terms

Available since 2.25

real $\text{weibull}_\text{cdf}(\text{reals } y, \text{reals } \alpha, \text{reals } \sigma)$

The Weibull cumulative distribution function of y given shape α and scale σ

Available since 2.0

real $\text{weibull}_\text{lcdf}(\text{reals } y \mid \text{reals } \alpha, \text{reals } \sigma)$

The log of the Weibull cumulative distribution function of y given shape α and scale σ

Available since 2.12

real $\text{weibull}_\text{lccdf}(\text{reals } y \mid \text{reals } \alpha, \text{reals } \sigma)$

The log of the Weibull complementary cumulative distribution function of y given shape α and scale σ

Available since 2.12

R $\text{weibull}_\text{rng}(\text{reals } \alpha, \text{reals } \sigma)$

Generate a weibull variate with shape α and scale σ; may only be used in
transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

19.9. Frechet distribution

Probability density function

If \(\alpha \in \mathbb{R}^+ \) and \(\sigma \in \mathbb{R}^+ \), then for \(y \in \mathbb{R}^+ \),

\[
\text{Frechet}(y | \alpha, \sigma) = \frac{\alpha}{\sigma} \left(\frac{y}{\sigma} \right)^{-\alpha - 1} \exp \left(- \left(\frac{y}{\sigma} \right)^{-\alpha} \right).
\]

Note that if \(Y \propto \text{Frechet}(\alpha, \sigma) \), then \(Y^{-1} \propto \text{Weibull}(\alpha, \sigma^{-1}) \).

Sampling statement

\(y \sim \text{frechet}(\alpha, \sigma) \)

Increment target log probability density with \(\text{frechet_lupdf}(y | \alpha, \sigma) \).

Available since 2.5

Stan functions

real \text{frechet_lpdf}(\text{reals } y | \text{reals } \alpha, \text{reals } \sigma)

The log of the Frechet density of \(y \) given shape \(\alpha \) and scale \(\sigma \)

Available since 2.12

real \text{frechet_lupdf}(\text{reals } y | \text{reals } \alpha, \text{reals } \sigma)

The log of the Frechet density of \(y \) given shape \(\alpha \) and scale \(\sigma \) dropping constant additive terms

Available since 2.25

real \text{frechet_cdf}(\text{reals } y, \text{reals } \alpha, \text{reals } \sigma)

The Frechet cumulative distribution function of \(y \) given shape \(\alpha \) and scale \(\sigma \)

Available since 2.5

real \text{frechet_lcdf}(\text{reals } y | \text{reals } \alpha, \text{reals } \sigma)

The log of the Frechet cumulative distribution function of \(y \) given shape \(\alpha \) and scale \(\sigma \)

Available since 2.12

real \text{frechet_lccdf}(\text{reals } y | \text{reals } \alpha, \text{reals } \sigma)

The log of the Frechet complementary cumulative distribution function of \(y \) given
shape alpha and scale sigma
Available since 2.12

\texttt{frechet_rng}(\texttt{reals alpha}, \texttt{reals sigma})
Generate a Frechet variate with shape alpha and scale sigma; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.
Available since 2.18

19.10. Rayleigh distribution

Probability density function
If $\sigma \in \mathbb{R}^+$, then for $y \in [0, \infty)$,
$$\text{Rayleigh}(y|\sigma) = \frac{y}{\sigma^2} \exp(-y^2/2\sigma^2).$$

Sampling statement
$$y \sim \text{rayleigh}(sigma)$$
Increment target log probability density with \texttt{rayleigh_lupdf}(y \mid sigma).
Available since 2.0

Stan functions
\texttt{real rayleigh_lpdf}(\texttt{reals y} \mid \texttt{reals sigma})
The log of the Rayleigh density of y given scale sigma
Available since 2.12

\texttt{real rayleigh_lupdf}(\texttt{reals y} \mid \texttt{reals sigma})
The log of the Rayleigh density of y given scale sigma dropping constant additive terms
Available since 2.25

\texttt{real rayleigh_cdf}(\texttt{real y}, \texttt{real sigma})
The Rayleigh cumulative distribution of y given scale sigma
Available since 2.0

\texttt{real rayleigh_lcdf}(\texttt{real y} \mid \texttt{real sigma})
The log of the Rayleigh cumulative distribution of y given scale sigma
Available since 2.12
19.11. Log-logistic distribution

Probability density function

If $\alpha, \beta \in \mathbb{R}^+$, then for $y \in \mathbb{R}^+$,

$$\text{Log-Logistic}(y|\alpha, \beta) = \frac{\left(\frac{\beta}{\alpha}\right)(\frac{y}{\alpha})^{\beta-1}}{\left(1 + \left(\frac{y}{\alpha}\right)\beta\right)^2}.$$

Sampling statement

$y \sim \text{loglogistic}(\alpha, \beta)$

Increment target log probability density with unnormalized version of \text{loglogistic_lpdf}(y | \alpha, \beta)

Available since 2.29

Stan functions

\begin{align*}
\text{real \ loglogistic_lpdf}(\text{reals } y | \text{reals } \alpha, \text{reals } \beta) \\
\text{The log of the log-logistic density of } y \text{ given scale } \alpha \text{ and shape } \beta \\
\text{Available since 2.29}
\end{align*}

\begin{align*}
\text{real \ loglogistic_cdf}(\text{reals } y, \text{reals } \alpha, \text{reals } \beta) \\
\text{The log-logistic cumulative distribution function of } y \text{ given scale } \alpha \text{ and shape } \beta \\
\text{Available since 2.29}
\end{align*}

\begin{align*}
\text{R \ loglogistic_rng(\text{reals } \alpha, \text{reals } \beta)} \\
\text{Generate a log-logistic variate with scale } \alpha \text{ and shape } \beta; \text{ may only be used in transformed data and generated quantities blocks. For a description of argument}
\end{align*}
and return types, see section vectorized PRNG functions.

Available since 2.29
20. Positive Lower-Bounded Distributions

The positive lower-bounded probabilities have support on real values above some positive minimum value.

20.1. Pareto distribution

Probability density function

If $y_{\text{min}} \in \mathbb{R}^+$ and $\alpha \in \mathbb{R}^+$, then for $y \in \mathbb{R}^+$ with $y \geq y_{\text{min}}$,

$$
\text{Pareto}(y \mid y_{\text{min}}, \alpha) = \frac{\alpha y_{\text{min}}^\alpha}{y^{\alpha+1}}.
$$

Sampling statement

$y \sim \text{pareto}(y_{\text{min}}, \alpha)$

Increment target log probability density with $\text{pareto_lupdf}(y \mid y_{\text{min}}, \alpha)$.

Available since 2.0

Stan functions

real $\text{pareto_lpdf}(\text{reals \ } y \mid \text{reals \ } y_{\text{min}}, \text{reals \ } \alpha)$

The log of the Pareto density of y given positive minimum value y_{min} and shape alpha

Available since 2.12

real $\text{pareto_lupdf}(\text{reals \ } y \mid \text{reals \ } y_{\text{min}}, \text{reals \ } \alpha)$

The log of the Pareto density of y given positive minimum value y_{min} and shape alpha dropping constant additive terms

Available since 2.25

real $\text{pareto_cdf}(\text{reals \ } y, \text{reals \ } y_{\text{min}}, \text{reals \ } \alpha)$

The Pareto cumulative distribution function of y given positive minimum value y_{min} and shape alpha

Available since 2.0

real $\text{pareto_lcdf}(\text{reals \ } y \mid \text{reals \ } y_{\text{min}}, \text{reals \ } \alpha)$

The log of the Pareto cumulative distribution function of y given positive minimum

201
value y_min and shape alpha

\textit{Available since 2.12}

\texttt{real pareto_lccdf(reals y | reals y_min, reals alpha)}

The log of the Pareto complementary cumulative distribution function of y given positive minimum value y_min and shape alpha

\textit{Available since 2.12}

\texttt{R pareto_rng(reals y_min, reals alpha)}

Generate a Pareto variate with positive minimum value y_min and shape alpha; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

\textit{Available since 2.18}

20.2. Pareto type 2 distribution

Probability density function

If \(\mu \in \mathbb{R} \), \(\lambda \in \mathbb{R}^+ \), and \(\alpha \in \mathbb{R}^+ \), then for \(y \geq \mu \),

\[
\text{Pareto}_\text{Type}_2(y|\mu, \lambda, \alpha) = \frac{\alpha}{\lambda} \left(1 + \frac{y - \mu}{\lambda}\right)^{-(\alpha+1)}.
\]

Note that the Lomax distribution is a Pareto Type 2 distribution with \(\mu = 0 \).

Sampling statement

\(y \sim \text{pareto}_\text{type}_2(\mu, \lambda, \alpha) \)

Increment target log probability density with \texttt{pareto}_\text{type}_2_lupdf(y | \mu, \lambda, \alpha).

\textit{Available since 2.5}

Stan functions

\texttt{real pareto_type_2_lpdf(reals y | reals mu, reals lambda, reals alpha)}

The log of the Pareto Type 2 density of y given location mu, scale lambda, and shape alpha

\textit{Available since 2.18}

\texttt{real pareto_type_2_lupdf(reals y | reals mu, reals lambda, reals alpha)}
20.3. **WIENER FIRST PASSAGE TIME DISTRIBUTION**

The log of the Pareto Type 2 density of y given location μ, scale λ, and shape α dropping constant additive terms

Available since 2.25

```
real pareto_type_2_cdf(reals y, reals mu, reals lambda, reals alpha)
```

The Pareto Type 2 cumulative distribution function of y given location μ, scale λ, and shape α

Available since 2.5

```
real pareto_type_2_lcdf(reals y | reals mu, reals lambda, reals alpha)
```

The log of the Pareto Type 2 cumulative distribution function of y given location μ, scale λ, and shape α

Available since 2.18

```
real pareto_type_2_lccdf(reals y | reals mu, reals lambda, reals alpha)
```

The log of the Pareto Type 2 complementary cumulative distribution function of y given location μ, scale λ, and shape α

Available since 2.18

```
R pareto_type_2_rng(reals mu, reals lambda, reals alpha)
```

Generate a Pareto Type 2 variate with location μ, scale λ, and shape α; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

20.3. Wiener First Passage Time Distribution

Probability density function

If $\alpha \in \mathbb{R}^+$, $\tau \in \mathbb{R}^+$, $\beta \in [0, 1]$ and $\delta \in \mathbb{R}$, then for $y > \tau$,

$$
\text{Wiener}(y|\alpha, \tau, \beta, \delta) = \frac{\alpha^3}{(y - \tau)^{3/2}} \exp \left(-\delta \alpha \beta - \frac{\delta^2 (y - \tau)^2}{2} \right) \sum_{k=-\infty}^{\infty} (2k+\beta) \phi \left(\frac{2k \alpha + \beta}{\sqrt{y - \tau}} \right)
$$

where $\phi(x)$ denotes the standard normal density function; see (Feller 1968), (Navarro and Fuss 2009).

Sampling statement

```
y ~ wiener(alpha, tau, beta, delta)
```
Increment target log probability density with \(\text{wiener}_\text{lupdf}(y \mid \alpha, \tau, \beta, \delta) \).

Available since 2.7

Stan functions

```stan
real wiener_lpdf(reals y | reals alpha, reals tau, reals beta, reals delta)
The log of the Wiener first passage time density of \( y \) given boundary separation alpha, non-decision time \( \tau \), a-priori bias \( \beta \) and drift rate \( \delta \)
*Available since 2.18*

real wiener_lupdf(reals y | reals alpha, reals tau, reals beta, reals delta)
The log of the Wiener first passage time density of \( y \) given boundary separation alpha, non-decision time \( \tau \), a-priori bias \( \beta \) and drift rate \( \delta \) dropping constant additive terms
*Available since 2.25*

**boundaries**

Stan returns the first passage time of the accumulation process over the upper boundary only. To get the result for the lower boundary, use

\[
\text{wiener}(y \mid \alpha, \tau, 1 - \beta, -\delta)
\]

For more details, see the appendix of Vandekerckhove and Wabersich (2014).
21. Continuous Distributions on [0, 1]

The continuous distributions with outcomes in the interval [0, 1] are used to characterized bounded quantities, including probabilities.

21.1. Beta distribution

Probability density function

If $\alpha \in \mathbb{R}^+$ and $\beta \in \mathbb{R}^+$, then for $\theta \in (0, 1)$,

$$\text{Beta}(\theta | \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha-1} (1 - \theta)^{\beta-1},$$

where the beta function $B()$ is as defined in section combinatorial functions.

**Warning:** If $\theta = 0$ or $\theta = 1$, then the probability is 0 and the log probability is $-\infty$. Similarly, the distribution requires strictly positive parameters, $\alpha, \beta > 0$.

Sampling statement

theta ~ beta(alpha, beta)

Increment target log probability density with beta_lupdf(theta | alpha, beta).

*Available since 2.0*

Stan functions

real beta_lpdf(reals theta | reals alpha, reals beta)
The log of the beta density of theta in [0, 1] given positive prior successes (plus one) alpha and prior failures (plus one) beta

*Available since 2.12*

real beta_lupdf(reals theta | reals alpha, reals beta)
The log of the beta density of theta in [0, 1] given positive prior successes (plus one) alpha and prior failures (plus one) beta dropping constant additive terms

*Available since 2.25*

real beta_cdf(reals theta, reals alpha, reals beta)
The beta cumulative distribution function of theta in [0, 1] given positive prior
successes (plus one) alpha and prior failures (plus one) beta

Available since 2.0

real beta_lcdf(reals theta | reals alpha, reals beta)
The log of the beta cumulative distribution function of theta in \([0, 1]\) given positive prior successes (plus one) alpha and prior failures (plus one) beta

Available since 2.12

real beta_lccdf(reals theta | reals alpha, reals beta)
The log of the beta complementary cumulative distribution function of theta in \([0, 1]\) given positive prior successes (plus one) alpha and prior failures (plus one) beta

Available since 2.12

R beta_rng(reals alpha, reals beta)
Generate a beta variate with positive prior successes (plus one) alpha and prior failures (plus one) beta; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

Available since 2.18

### 21.2. Beta proportion distribution

#### Probability density function

If \(\mu \in (0, 1)\) and \(\kappa \in \mathbb{R}^+\), then for \(\theta \in (0, 1)\),

\[
\text{Beta}_\text{Proportion}(\theta | \mu, \kappa) = \frac{1}{B(\mu \kappa, (1 - \mu) \kappa)} \theta^{\mu \kappa - 1} (1 - \theta)^{(1 - \mu) \kappa - 1},
\]

where the beta function \(B()\) is as defined in section combinatorial functions.

**Warning:** If \(\theta = 0\) or \(\theta = 1\), then the probability is 0 and the log probability is \(-\infty\). Similarly, the distribution requires \(\mu \in (0, 1)\) and strictly positive parameter, \(\kappa > 0\).

#### Sampling statement

\(\text{theta } \sim \text{beta}_\text{proportion}(\text{mu}, \kappa)\)

Increment target log probability density with \(\text{beta}_\text{proportion}_\text{lupdf}(\text{theta} | \text{mu}, \kappa)\).

Available since 2.19
21.2. BETA PROPORTION DISTRIBUTION

Stan functions

`real beta_proportion_lpdf(reals theta | reals mu, reals kappa)`
The log of the beta_proportion density of \( \theta \) in \((0, 1)\) given mean \( \mu \) and precision \( \kappa \)
_Available since 2.19_

`real beta_proportion_lupdf(reals theta | reals mu, reals kappa)`
The log of the beta_proportion density of \( \theta \) in \((0, 1)\) given mean \( \mu \) and precision \( \kappa \) dropping constant additive terms
_Available since 2.25_

`real beta_proportion_lcdf(reals theta | reals mu, reals kappa)`
The log of the beta_proportion cumulative distribution function of \( \theta \) in \((0, 1)\) given mean \( \mu \) and precision \( \kappa \)
_Available since 2.18_

`real beta_proportion_lccdf(reals theta | reals mu, reals kappa)`
The log of the beta_proportion complementary cumulative distribution function of \( \theta \) in \((0, 1)\) given mean \( \mu \) and precision \( \kappa \)
_Available since 2.18_

`R beta_proportion_rng(reals mu, reals kappa)`
Generate a beta_proportion variate with mean \( \mu \) and precision \( \kappa \); may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.
_Available since 2.18_
22. Circular Distributions

Circular distributions are defined for finite values $y$ in any interval of length $2\pi$.

22.1. Von Mises distribution

Probability density function

If $\mu \in \mathbb{R}$ and $\kappa \in \mathbb{R}^+$, then for $y \in \mathbb{R}$,

$$
\text{VonMises}(y | \mu, \kappa) = \frac{\exp(\kappa \cos(y - \mu))}{2\pi I_0(\kappa)}.
$$

In order for this density to properly normalize, $y$ must be restricted to some interval $(c, c + 2\pi)$ of length $2\pi$, because

$$
\int_c^{c+2\pi} \text{VonMises}(y | \mu, \kappa) dy = 1.
$$

Similarly, if $\mu$ is a parameter, it will typically be restricted to the same range as $y$.

If $\kappa > 0$, a von Mises distribution with its $2\pi$ interval of support centered around its location $\mu$ will have a single mode at $\mu$; for example, restricting $y$ to $(-\pi, \pi)$ and taking $\mu = 0$ leads to a single local optimum at the mode $\mu$. If the location $\mu$ is not in the center of the support, the density is circularly translated and there will be a second local maximum at the boundary furthest from the mode. Ideally, the parameterization and support will be set up so that the bulk of the probability mass is in a continuous interval around the mean $\mu$.

For $\kappa = 0$, the Von Mises distribution corresponds to the circular uniform distribution with density $1/(2\pi)$ (independently of the values of $y$ or $\mu$).

Sampling statement

$y \sim \text{von_mises}(\mu, \kappa)$

Increment target log probability density with $\text{von_mises_lupdf}(y | \mu, \kappa)$.

Available since 2.0
Stan functions

R\texttt{von\_mises\_lpdf}(\text{reals } y \mid \text{reals } mu, \text{reals } kappa)
The log of the von mises density of $y$ given location $mu$ and scale $kappa$.
\textit{Available since 2.18}

R\texttt{von\_mises\_lupdf}(\text{reals } y \mid \text{reals } mu, \text{reals } kappa)
The log of the von mises density of $y$ given location $mu$ and scale $kappa$ dropping constant additive terms.
\textit{Available since 2.25}

R\texttt{von\_mises\_cdf}(\text{reals } y \mid \text{reals } mu, \text{reals } kappa)
The von mises cumulative distribution function of $y$ given location $mu$ and scale $kappa$.
\textit{Available since 2.29}

R\texttt{von\_mises\_lcdf}(\text{reals } y \mid \text{reals } mu, \text{reals } kappa)
The log of the von mises cumulative distribution function of $y$ given location $mu$ and scale $kappa$.
\textit{Available since 2.29}

R\texttt{von\_mises\_lccdf}(\text{reals } y \mid \text{reals } mu, \text{reals } kappa)
The log of the von mises complementary cumulative distribution function of $y$ given location $mu$ and scale $kappa$.
\textit{Available since 2.29}

R\texttt{von\_mises\_rng}(\text{reals } mu, \text{reals } kappa)
Generate a Von Mises variate with location $mu$ and scale $kappa$ (i.e. returns values in the interval $[(\mu \mod 2\pi) - \pi, (\mu \mod 2\pi) + \pi]$); may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.
\textit{Available since 2.18}

Numerical stability

Evaluating the Von Mises distribution for $\kappa > 100$ is numerically unstable in the current implementation. Nathanael I. Lichti suggested the following workaround on the Stan users group, based on the fact that as $\kappa \to \infty$,

\[
\text{VonMises}(y \mid \mu, \kappa) \to \text{Normal}(\mu, \sqrt{1/\kappa}).
\]

The workaround is to replace $y \sim \text{von\_mises}(mu,kappa)$ with
if (kappa < 100) {
  y ~ von_mises(mu, kappa);
} else {
  y ~ normal(mu, sqrt(1 / kappa));
}
23. **Bounded Continuous Distributions**

The bounded continuous probabilities have support on a finite interval of real numbers.

### 23.1. Uniform distribution

**Probability density function**

If $\alpha \in \mathbb{R}$ and $\beta \in (\alpha, \infty)$, then for $y \in [\alpha, \beta]$,

$$\text{Uniform}(y | \alpha, \beta) = \frac{1}{\beta - \alpha}.$$  

**Sampling statement**

$y \sim \text{uniform}(\alpha, \beta)$

Increment target log probability density with `uniform_lupdf(y | alpha, beta)`.

*Available since 2.0*

**Stan functions**

- `real uniform_lpdf(reals y | reals alpha, reals beta)`
  The log of the uniform density of $y$ given lower bound $\alpha$ and upper bound $\beta$
  
  *Available since 2.12*

- `real uniform_lupdf(reals y | reals alpha, reals beta)`
  The log of the uniform density of $y$ given lower bound $\alpha$ and upper bound $\beta$ dropping constant additive terms
  
  *Available since 2.25*

- `real uniform_cdf(reals y, reals alpha, reals beta)`
  The uniform cumulative distribution function of $y$ given lower bound $\alpha$ and upper bound $\beta$
  
  *Available since 2.0*

- `real uniform_lcdf(reals y | reals alpha, reals beta)`
  The log of the uniform cumulative distribution function of $y$ given lower bound $\alpha$ and upper bound $\beta$
  
  *Available since 2.12*
real `uniform_lccdf`(reals y | reals alpha, reals beta)
The log of the uniform complementary cumulative distribution function of y given lower bound alpha and upper bound beta

*Available since 2.12*

`R uniform_rng`(reals alpha, reals beta)
Generate a uniform variate with lower bound alpha and upper bound beta; may only be used in transformed data and generated quantities blocks. For a description of argument and return types, see section vectorized PRNG functions.

*Available since 2.18*
24. Distributions over Unbounded Vectors

The unbounded vector probability distributions have support on all of $\mathbb{R}^K$ for some fixed $K$.

24.1. Multivariate normal distribution

Probability density function

If $K \in \mathbb{N}$, $\mu \in \mathbb{R}^K$, and $\Sigma \in \mathbb{R}^{K \times K}$ is symmetric and positive definite, then for $y \in \mathbb{R}^K$,

$$
\text{MultiNormal}(y | \mu, \Sigma) = \frac{1}{(2\pi)^{K/2}} \frac{1}{\sqrt{|\Sigma|}} \exp\left(-\frac{1}{2} (y - \mu)^\top \Sigma^{-1} (y - \mu)\right),
$$

where $|\Sigma|$ is the absolute determinant of $\Sigma$.

Sampling statement

$y \sim \text{multi_normal}(\mu, \Sigma)$

Increment target log probability density with $\text{multi_normal_lupdf}(y | \mu, \Sigma)$.

Available since 2.0

Stan functions

The multivariate normal probability function is overloaded to allow the variate vector $y$ and location vector $\mu$ to be vectors or row vectors (or to mix the two types). The density function is also vectorized, so it allows arrays of row vectors or vectors as arguments; see section vectorized function signatures for a description of vectorization.

real $\text{multi_normal_lpdf}(\text{vectors } y \mid \text{vectors } \mu, \text{matrix } \Sigma)$

The log of the multivariate normal density of vector(s) $y$ given location vector(s) $\mu$ and covariance matrix $\Sigma$

Available since 2.12

real $\text{multi_normal_lupdf}(\text{vectors } y \mid \text{vectors } \mu, \text{matrix } \Sigma)$

The log of the multivariate normal density of vector(s) $y$ given location vector(s) $\mu$
and covariance matrix Sigma dropping constant additive terms

Available since 2.25

real multi_normal_lpdf(vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and covariance matrix Sigma

Available since 2.12

real multi_normal_lupdf(vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and covariance matrix Sigma dropping constant additive terms

Available since 2.25

real multi_normal_lpdf(row_vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and covariance matrix Sigma

Available since 2.12

real multi_normal_lupdf(row_vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and covariance matrix Sigma dropping constant additive terms

Available since 2.25

real multi_normal_lpdf(row_vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and covariance matrix Sigma

Available since 2.12

real multi_normal_lupdf(row_vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and covariance matrix Sigma dropping constant additive terms

Available since 2.25

Although there is a direct multi-normal RNG function, if more than one result is
required, it’s much more efficient to Cholesky factor the covariance matrix and call
multi_normal_cholesky_rng; see section multi-variate normal, cholesky parameterization.

vector multi_normal_rng(vector mu, matrix Sigma)
Generate a multivariate normal variate with location mu and covariance matrix Sigma; may only be used in transformed data and generated quantities blocks

Available since 2.0

vector multi_normal_rng(row_vector mu, matrix Sigma)
24.2. **MULTIVARIATE NORMAL DISTRIBUTION, PRECISION PARAMETERIZATION**

Generate a multivariate normal variate with location mu and covariance matrix Sigma; may only be used in transformed data and generated quantities blocks  

*Available since 2.18*

**vectors multi_normal_rng(vectors mu, matrix Sigma)**  
Generate an array of multivariate normal variates with locations mu and covariance matrix Sigma; may only be used in transformed data and generated quantities blocks  

*Available since 2.18*

**vectors multi_normal_rng(row_vectors mu, matrix Sigma)**  
Generate an array of multivariate normal variates with locations mu and covariance matrix Sigma; may only be used in transformed data and generated quantities blocks  

*Available since 2.18*

### 24.2. Multivariate normal distribution, precision parameterization

**Probability density function**

If \( K \in \mathbb{N}, \mu \in \mathbb{R}^K, \) and \( \Omega \in \mathbb{R}^{K \times K} \) is symmetric and positive definite, then for \( y \in \mathbb{R}^K, \)

\[
\text{MultiNormalPrecision}(y|\mu, \Omega) = \text{MultiNormal}(y|\mu, \Omega^{-1})
\]

**Sampling statement**

\( y \sim \text{multi_normal_prec}(\mu, \Omega) \)

Increment target log probability density with \( \text{multi_normal_prec_lupdf}(y \mid \mu, \Omega) \).  

*Available since 2.3*

**Stan functions**

**real multi_normal_prec_lpdf(vectors y \mid vectors mu, matrix Omega)**  
The log of the multivariate normal density of vector(s) \( y \) given location vector(s) \( mu \) and positive definite precision matrix Omega  

*Available since 2.18*

**real multi_normal_prec_lupdf(vectors y \mid vectors mu, matrix Omega)**  
The log of the multivariate normal density of vector(s) \( y \) given location vector(s) \( mu \) and positive definite precision matrix Omega dropping constant additive terms  

*Available since 2.25*
real `multi_normal_prec_lpdf(vectors y | row_vectors mu, matrix Omega)`
The log of the multivariate normal density of vector(s) y given location row vector(s) mu and positive definite precision matrix Omega

*Available since 2.18*

real `multi_normal_prec_lupdf(vectors y | row_vectors mu, matrix Omega)`
The log of the multivariate normal density of vector(s) y given location row vector(s) mu and positive definite precision matrix Omega dropping constant additive terms

*Available since 2.25*

real `multi_normal_prec_lpdf(row_vectors y | vectors mu, matrix Omega)`
The log of the multivariate normal density of row vector(s) y given location vector(s) mu and positive definite precision matrix Omega

*Available since 2.18*

real `multi_normal_prec_lupdf(row_vectors y | vectors mu, matrix Omega)`
The log of the multivariate normal density of row vector(s) y given location vector(s) mu and positive definite precision matrix Omega dropping constant additive terms

*Available since 2.25*

real `multi_normal_prec_lpdf(row_vectors y | row_vectors mu, matrix Omega)`
The log of the multivariate normal density of row vector(s) y given location row vector(s) mu and positive definite precision matrix Omega

*Available since 2.18*

real `multi_normal_prec_lupdf(row_vectors y | row_vectors mu, matrix Omega)`
The log of the multivariate normal density of row vector(s) y given location row vector(s) mu and positive definite precision matrix Omega dropping constant additive terms

*Available since 2.25*
24.3. **Multivariate normal distribution, Cholesky parameterization**

Probability density function

If $K \in \mathbb{N}$, $\mu \in \mathbb{R}^K$, and $L \in \mathbb{R}^{K \times K}$ is lower triangular and such that $LL^\top$ is positive definite, then for $y \in \mathbb{R}^K,$

$$\text{MultiNormalCholesky}(y|\mu, L) = \text{MultiNormal}(y|\mu, LL^\top).$$

If $L$ is lower triangular and $LL^{top}$ is a $K \times K$ positive definite matrix, then $L_{k,k}$ must be strictly positive for $k \in 1:K$. If an $L$ is provided that is not the Cholesky factor of a positive-definite matrix, the probability functions will raise errors.

**Sampling statement**

$$y \sim \text{multi_normal_cholesky}(\mu, L)$$

Increment target log probability density with \text{multi_normal_cholesky_lupdf}(y | \mu, L).

*Available since 2.0*

**Stan functions**

- real \text{multi_normal_cholesky_lpdf}(\text{vectors} y | \text{vectors} \mu, \text{matrix} L)
  - The log of the multivariate normal density of vector(s) $y$ given location vector(s) $\mu$ and lower-triangular Cholesky factor of the covariance matrix $L$
  - *Available since 2.18*

- real \text{multi_normal_cholesky_lupdf}(\text{vectors} y | \text{vectors} \mu, \text{matrix} L)
  - The log of the multivariate normal density of vector(s) $y$ given location vector(s) $\mu$ and lower-triangular Cholesky factor of the covariance matrix $L$ dropping constant additive terms
  - *Available since 2.25*

- real \text{multi_normal_cholesky_lpdf}(\text{vectors} y | \text{row_vectors} \mu, \text{matrix} L)
  - The log of the multivariate normal density of vector(s) $y$ given location row vector(s) $\mu$ and lower-triangular Cholesky factor of the covariance matrix $L$
  - *Available since 2.18*

- real \text{multi_normal_cholesky_lupdf}(\text{vectors} y | \text{row_vectors} \mu, \text{matrix} L)
  - The log of the multivariate normal density of vector(s) $y$ given location row vector(s) $\mu$ and lower-triangular Cholesky factor of the covariance matrix $L$ dropping
constant additive terms

*Available since 2.25*

**real multi_normal_cholesky_lpdf(row_vectors y | vectors mu, matrix L)**
The log of the multivariate normal density of row vector(s) y given location vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L

*Available since 2.18*

**real multi_normal_cholesky_lupdf(row_vectors y | vectors mu, matrix L)**
The log of the multivariate normal density of row vector(s) y given location vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L dropping constant additive terms

*Available since 2.25*

**real multi_normal_cholesky_lpdf(row_vectors y | row_vectors mu, matrix L)**
The log of the multivariate normal density of row vector(s) y given location row vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L

*Available since 2.18*

**real multi_normal_cholesky_lupdf(row_vectors y | row_vectors mu, matrix L)**
The log of the multivariate normal density of row vector(s) y given location row vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L dropping constant additive terms

*Available since 2.25*

**vector multi_normal_cholesky_rng(vector mu, matrix L)**
Generate a multivariate normal variate with location mu and lower-triangular Cholesky factor of the covariance matrix L; may only be used in transformed data and generated quantities blocks

*Available since 2.3*

**vector multi_normal_cholesky_rng(row_vector mu, matrix L)**
Generate a multivariate normal variate with location mu and lower-triangular Cholesky factor of the covariance matrix L; may only be used in transformed data and generated quantities blocks

*Available since 2.18*

**vectors multi_normal_cholesky_rng(vectors mu, matrix L)**
Generate an array of multivariate normal variates with locations mu and lower-triangular Cholesky factor of the covariance matrix L; may only be used in trans-
formed data and generated quantities blocks
Available since 2.18

vectors multi_normal_cholesky_rng(row_vectors mu, matrix L)
Generate an array of multivariate normal variates with locations mu and lower-
triangular Cholesky factor of the covariance matrix L; may only be used in trans-
formed data and generated quantities blocks
Available since 2.18

24.4. Multivariate Gaussian process distribution

Probability density function
If $K, N \in \mathbb{N}$, $\Sigma \in \mathbb{R}^{N \times N}$ is symmetric, positive definite kernel matrix and $w \in \mathbb{R}^K$ is a vector of positive inverse scales, then for $y \in \mathbb{R}^{K \times N}$,

$$\text{MultiGP}(y | \Sigma, w) = \prod_{i=1}^{K} \text{MultiNormal}(y_i | 0, w_i^{-1} \Sigma),$$

where $y_i$ is the $i$th row of $y$. This is used to efficiently handle Gaussian Processes with multi-variate outputs where only the output dimensions share a kernel function but vary based on their scale. Note that this function does not take into account the mean prediction.

Sampling statement

$y \sim \text{multi_gp}(\Sigma, w)$

Increment target log probability density with $\text{multi_gp_lupdf}(y \mid \Sigma, w)$.
Available since 2.3

Stan functions

real multi_gp_lpdf(matrix y | matrix Sigma, vector w)
The log of the multivariate GP density of matrix y given kernel matrix Sigma and inverses scales w
Available since 2.12

real multi_gp_lupdf(matrix y | matrix Sigma, vector w)
The log of the multivariate GP density of matrix y given kernel matrix Sigma and inverses scales w dropping constant additive terms
Available since 2.25
CHAPTER 24. DISTRIBUTIONS OVER UNBOUNDED VECTORS

24.5. Multivariate Gaussian process distribution, Cholesky parameterization

Probability density function

If $K, N \in \mathbb{N}$, $L \in \mathbb{R}^{N \times N}$ is lower triangular and such that $LL^\top$ is positive definite kernel matrix (implying $L_{n,n} > 0$ for $n \in 1:N$), and $w \in \mathbb{R}^K$ is a vector of positive inverse scales, then for $y \in \mathbb{R}^{K \times N}$,

$$\text{MultiGPCholesky}(y \mid L, w) = \prod_{i=1}^{K} \text{MultiNormal}(y_i \mid 0, w_i^{-1}LL^\top),$$

where $y_i$ is the $i$th row of $y$. This is used to efficiently handle Gaussian Processes with multi-variate outputs where only the output dimensions share a kernel function but vary based on their scale. If the model allows parameterization in terms of Cholesky factor of the kernel matrix, this distribution is also more efficient than MultiGP(). Note that this function does not take into account the mean prediction.

Sampling statement

$y \sim \text{multi_gp_cholesky}(L, w)$

Increment target log probability density with $\text{multi_gp_cholesky_lupdf}(y \mid L, w)$.

Available since 2.5

Stan functions

real $\text{multi_gp_cholesky_lpdf}(\text{matrix } y \mid \text{matrix } L, \text{vector } w)$

The log of the multivariate GP density of matrix $y$ given lower-triangular Cholesky factor of the kernel matrix $L$ and inverses scales $w$

Available since 2.12

real $\text{multi_gp_cholesky_lupdf}(\text{matrix } y \mid \text{matrix } L, \text{vector } w)$

The log of the multivariate GP density of matrix $y$ given lower-triangular Cholesky factor of the kernel matrix $L$ and inverses scales $w$ dropping constant additive terms

Available since 2.25
24.6. Multivariate Student-t distribution

Probability density function

If \( K \in \mathbb{N}, \nu \in \mathbb{R}^+, \mu \in \mathbb{R}^K, \) and \( \Sigma \in \mathbb{R}^{K \times K} \) is symmetric and positive definite, then for \( y \in \mathbb{R}^K, \)

\[
\text{MultiStudentT}(y \mid \nu, \mu, \Sigma) = \frac{1}{\pi^{K/2}} \frac{1}{\nu^{K/2}} \frac{\Gamma((\nu+K)/2)}{\Gamma(\nu/2)} \frac{1}{\sqrt{|\Sigma|}} \left( 1 + \frac{1}{\nu} (y - \mu) \Sigma^{-1} (y - \mu) \right)^{-(\nu+K)/2}.
\]

Sampling statement

\( y \sim \text{multi_student_t}(\nu, \mu, \Sigma) \)

Increment target log probability density with \( \text{multi_student_t_lupdf}(y \mid \nu, \mu, \Sigma) \).

Available since 2.0

Stan functions

real \( \text{multi_student_t_lpdf}(\text{vectors } y \mid \text{real } \nu, \text{vectors } \mu, \text{matrix } \Sigma) \)
The log of the multivariate Student-t density of vector(s) \( y \) given degrees of freedom \( \nu \), location vector(s) \( \mu \), and scale matrix \( \Sigma \)

Available since 2.18

real \( \text{multi_student_t_lupdf}(\text{vectors } y \mid \text{real } \nu, \text{vectors } \mu, \text{matrix } \Sigma) \)
The log of the multivariate Student-t density of vector(s) \( y \) given degrees of freedom \( \nu \), location vector(s) \( \mu \), and scale matrix \( \Sigma \) dropping constant additive terms

Available since 2.25

real \( \text{multi_student_t_lpdf}(\text{vectors } y \mid \text{real } \nu, \text{row_vectors } \mu, \text{matrix } \Sigma) \)
The log of the multivariate Student-t density of vector(s) \( y \) given degrees of freedom \( \nu \), location row vector(s) \( \mu \), and scale matrix \( \Sigma \)

Available since 2.18

real \( \text{multi_student_t_lupdf}(\text{vectors } y \mid \text{real } \nu, \text{row_vectors } \mu, \text{matrix } \Sigma) \)
The log of the multivariate Student-t density of vector(s) \( y \) given degrees of freedom \( \nu \), location row vector(s) \( \mu \), and scale matrix \( \Sigma \) dropping constant additive
real multi_student_t_lpdf(row_vectors y | real nu, vectors mu, matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of freedom nu, location vector(s) mu, and scale matrix Sigma
Available since 2.18

real multi_student_t_lupdf(row_vectors y | real nu, vectors mu, matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of freedom nu, location vector(s) mu, and scale matrix Sigma dropping constant additive terms
Available since 2.25

real multi_student_t_lpdf(row_vectors y | real nu, row_vectors mu, matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of freedom nu, location row vector(s) mu, and scale matrix Sigma
Available since 2.18

real multi_student_t_lupdf(row_vectors y | real nu, row_vectors mu, matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of freedom nu, location row vector(s) mu, and scale matrix Sigma dropping constant additive terms
Available since 2.25

vector multi_student_t_rng(real nu, vector mu, matrix Sigma)
Generate a multivariate Student-t variate with degrees of freedom nu, location mu, and scale matrix Sigma; may only be used in transformed data and generated quantities blocks
Available since 2.0

vector multi_student_t_rng(real nu, row_vector mu, matrix Sigma)
Generate a multivariate Student-t variate with degrees of freedom nu, location mu, and scale matrix Sigma; may only be used in transformed data and generated quantities blocks
Available since 2.18

vectors multi_student_t_rng(real nu, vectors mu, matrix Sigma)
Generate an array of multivariate Student-t variates with degrees of freedom nu,
locations mu, and scale matrix Sigma; may only be used in transformed data and generated quantities blocks

\[ \text{Available since 2.18} \]

vectors \text{multi\_student\_t\_rng}(\text{real nu, row\_vectors mu, matrix Sigma})

Generate an array of multivariate Student-\textit{t} variates with degrees of freedom \textit{nu}, locations \textit{mu}, and scale matrix \textit{Sigma}; may only be used in transformed data and generated quantities blocks

\[ \text{Available since 2.18} \]

### 24.7. Gaussian dynamic linear models

A Gaussian Dynamic Linear model is defined as follows, for \( t \in 1, \ldots, T \),

\[
\begin{align*}
y_t & \sim N(F'\theta_t, V) \\
\theta_t & \sim N(G\theta_{t-1}, W) \\
\theta_0 & \sim N(m_0, C_0)
\end{align*}
\]

where \( y \) is a \( n \times T \) matrix where rows are variables and columns are observations. These functions calculate the log-likelihood of the observations marginalizing over the latent states \( p(y|F, G, V, W, m_0, C_0) \). This log-likelihood is a system that is calculated using the Kalman Filter. If \( V \) is diagonal, then a more efficient algorithm which sequentially processes observations and avoids a matrix inversions can be used (Durbin and Koopman 2001, sec. 6.4).

**Sampling statement**

\[
y \sim \text{gaussian\_dlm\_obs}(F, G, V, W, m_0, C_0)
\]

Increment target log probability density with \text{gaussian\_dlm\_obs\_lupdf}(y \mid F, G, V, W, m_0, C_0).

\[ \text{Available since 2.0} \]

**Stan functions**

The following two functions differ in the type of their \( V \), the first taking a full observation covariance matrix \( V \) and the second a vector \( V \) representing the diagonal of the observation covariance matrix. The sampling statement defined in the previous section works with either type of observation \( V \).

\[
\text{real } \text{gaussian\_dlm\_obs\_lpdf}(\text{matrix } y \mid \text{matrix } F, \text{matrix } G, \text{matrix } V, \text{matrix } W, \text{vector } m_0, \text{matrix } C_0)
\]
The log of the density of the Gaussian Dynamic Linear model with observation matrix $y$ in which rows are variables and columns are observations, design matrix $F$, transition matrix $G$, observation covariance matrix $V$, system covariance matrix $W$, and the initial state is distributed normal with mean $m_0$ and covariance $C_0$.

*Available since 2.12*

```plaintext
real gaussian_dlm_obs_lupdf(matrix y | matrix F, matrix G, matrix V, matrix W, vector m0, matrix C0)
```

The log of the density of the Gaussian Dynamic Linear model with observation matrix $y$ in which rows are variables and columns are observations, design matrix $F$, transition matrix $G$, observation covariance matrix $V$, system covariance matrix $W$, and the initial state is distributed normal with mean $m_0$ and covariance $C_0$. This function drops constant additive terms.

*Available since 2.25*

```plaintext
real gaussian_dlm_obs_lpdf(matrix y | matrix F, matrix G, vector V, matrix W, vector m0, matrix C0)
```

The log of the density of the Gaussian Dynamic Linear model with observation matrix $y$ in which rows are variables and columns are observations, design matrix $F$, transition matrix $G$, observation covariance matrix with diagonal $V$, system covariance matrix $W$, and the initial state is distributed normal with mean $m_0$ and covariance $C_0$.

*Available since 2.12*

```plaintext
real gaussian_dlm_obs_lupdf(matrix y | matrix F, matrix G, vector V, matrix W, vector m0, matrix C0)
```

The log of the density of the Gaussian Dynamic Linear model with observation matrix $y$ in which rows are variables and columns are observations, design matrix $F$, transition matrix $G$, observation covariance matrix with diagonal $V$, system covariance matrix $W$, and the initial state is distributed normal with mean $m_0$ and covariance $C_0$. This function drops constant additive terms.

*Available since 2.25*
25. Simplex Distributions

The simplex probabilities have support on the unit $K$-simplex for a specified $K$. A $K$-dimensional vector $\theta$ is a unit $K$-simplex if $\theta_k \geq 0$ for $k \in \{1, \ldots, K\}$ and $\sum_{k=1}^{K} \theta_k = 1$.

25.1. Dirichlet distribution

Probability density function

If $K \in \mathbb{N}$ and $\alpha \in (\mathbb{R}^+)^K$, then for $\theta \in K$-simplex,

$$\text{Dirichlet}(\theta|\alpha) = \frac{\Gamma\left(\sum_{k=1}^{K} \alpha_k\right)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} \theta_k^{\alpha_k-1}.$$  

**Warning:** If any of the components of $\theta$ satisfies $\theta_i = 0$ or $\theta_i = 1$, then the probability is 0 and the log probability is $-\infty$. Similarly, the distribution requires strictly positive parameters, with $\alpha_i > 0$ for each $i$.

Meaning of Dirichlet parameters

A symmetric Dirichlet prior is $[\alpha, \ldots, \alpha]^\top$. To code this in Stan,

```stan
data {
 int<lower=1> K;
 real<lower=0> alpha;
}
generated quantities {
 vector[K] theta = dirichlet_rng(rep_vector(alpha, K));
}
```

Taking $K = 10$, here are the first five draws for $\alpha = 1$. For $\alpha = 1$, the distribution is uniform over simplexes.

1) 0.17 0.05 0.07 0.17 0.03 0.13 0.03 0.03 0.27 0.05
2) 0.08 0.02 0.12 0.07 0.52 0.01 0.07 0.04 0.01 0.06
3) 0.02 0.03 0.22 0.29 0.17 0.10 0.09 0.00 0.05 0.03
4) 0.04 0.03 0.21 0.13 0.04 0.01 0.10 0.04 0.22 0.18
5) 0.11 0.22 0.02 0.01 0.06 0.18 0.33 0.04 0.01 0.01
That does not mean it’s uniform over the marginal probabilities of each element. As the size of the simplex grows, the marginal draws become more and more concentrated below (not around) $1/K$. When one component of the simplex is large, the others must all be relatively small to compensate. For example, in a uniform distribution on $10$-simplexes, the probability that a component is greater than the mean of $1/10$ is only 39%. Most of the posterior marginal probability mass for each component is in the interval $(0, 0.1)$.

When the $\alpha$ value is small, the draws gravitate to the corners of the simplex. Here are the first five draws for $\alpha = 0.001$.

1) 3e-203 0e+00 2e-298 9e-106 1e+000 0e+00 0e+000 1e-047 0e+00 4e-279
2) 1e+000 0e+00 5e-279 2e-014 1e-275 0e+00 3e-285 9e-147 0e+00 0e+000
3) 1e-308 0e+00 1e-213 0e+000 0e+000 8e-75 0e+000 1e+000 4e-58 7e-112
4) 6e-166 5e-65 3e-068 3e-147 0e+000 1e+00 3e-249 0e+000 0e+00 0e+000
5) 2e-091 0e+00 0e+000 0e+000 0e+00 0e+000 1e+000 4e-312 1e+000 0e+00 0e+000

Each row denotes a draw. Each draw has a single value that rounds to one and other values that are very close to zero or rounded down to zero.

As $\alpha$ increases, the draws become increasingly uniform. For $\alpha = 1000$,

1) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
2) 0.10 0.10 0.09 0.10 0.10 0.10 0.11 0.10 0.10 0.10
3) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
4) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
5) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

**Sampling statement**

theta ~ dirichlet(alpha)

Increment target log probability density with `dirichlet_lupdf(theta | alpha)`.

*Available since 2.0*

**Stan functions**

```stan
real dirichlet_lpdf(vector theta | vector alpha)
The log of the Dirichlet density for simplex theta given prior counts (plus one) alpha
Available since 2.12
```

```stan
real dirichlet_lupdf(vector theta | vector alpha)
The log of the Dirichlet density for simplex theta given prior counts (plus one) alpha`
dropping constant additive terms

Available since 2.25

```plaintext
vector dirichlet_rng(vector alpha)
```

Generate a Dirichlet variate with prior counts (plus one) alpha; may only be used in transformed data and generated quantities blocks

Available since 2.0

26. Correlation Matrix Distributions

The correlation matrix distributions have support on the (Cholesky factors of) correlation matrices. A Cholesky factor L for a $K \times K$ correlation matrix Σ of dimension K has rows of unit length so that the diagonal of LL^\top is the unit K-vector. Even though models are usually conceptualized in terms of correlation matrices, it is better to operationalize them in terms of their Cholesky factors. If you are interested in the posterior distribution of the correlations, you can recover them in the generated quantities block via

```plaintext
generated quantities {
  corr_matrix[K] Sigma;
  Sigma = multiply_lower_tri_self_transpose(L);
}
```

26.1. LKJ correlation distribution

Probability density function

For $\eta > 0$, if Σ a positive-definite, symmetric matrix with unit diagonal (i.e., a correlation matrix), then

$$
\text{Lkj}\text{Corr}(\Sigma|\eta) \propto \det(\Sigma)^{(\eta-1)}.
$$

The expectation is the identity matrix for any positive value of the shape parameter η, which can be interpreted like the shape parameter of a symmetric beta distribution:

- if $\eta = 1$, then the density is uniform over correlation matrices of order K;
- if $\eta > 1$, the identity matrix is the modal correlation matrix, with a sharper peak in the density at the identity matrix for larger η; and
- for $0 < \eta < 1$, the density has a trough at the identity matrix.

- if η were an unknown parameter, the Jeffreys prior is proportional to
 \[
 \sqrt{2 \sum_{k=1}^{K-1} \left(\psi_1 \left(\eta + \frac{K-k-1}{2} \right) - 2\psi_1 \left(2\eta + K - k - 1 \right) \right)},
 \]
 where $\psi_1()$ is the trigamma function.

See (Lewandowski, Kurowicka, and Joe 2009) for definitions. However, it is much better computationally to work directly with the Cholesky factor of Σ, so this distribution should never be explicitly used in practice.
Sampling statement

\[y \sim \text{lkj_corr}(\eta) \]

Increment target log probability density with \(\text{lkj_corr_lupdf}(y \mid \eta) \).

Available since 2.3

Stan functions

\texttt{real \ lkj_corr_lpdf(matrix y \mid real \ eta)}

The log of the LKJ density for the correlation matrix \(y \) given nonnegative shape \(\eta \). \texttt{lkj_corr_cholesky_lpdf} is faster, more numerically stable, uses less memory, and should be preferred to this.

Available since 2.12

\texttt{real \ lkj_corr_lupdf(matrix y \mid real \ eta)}

The log of the LKJ density for the correlation matrix \(y \) given nonnegative shape \(\eta \) dropping constant additive terms. \texttt{lkj_corr_cholesky_lupdf} is faster, more numerically stable, uses less memory, and should be preferred to this.

Available since 2.25

\texttt{matrix \ lkj_corr_rng(int \ K, \ real \ eta)}

Generate a LKJ random correlation matrix of order \(K \) with shape \(\eta \); may only be used in transformed data and generated quantities blocks

Available since 2.0

26.2. Cholesky LKJ correlation distribution

Stan provides an implicit parameterization of the LKJ correlation matrix density in terms of its Cholesky factor, which you should use rather than the explicit parameterization in the previous section. For example, if \(L \) is a Cholesky factor of a correlation matrix, then

\[L \sim \text{lkj_corr_cholesky}(2.0); \quad \# \text{implies } L \ast L' \sim \text{lkj_corr}(2.0); \]

Because Stan requires models to have support on all valid constrained parameters, \(L \) will almost always\(^1\) be a parameter declared with the type of a Cholesky factor for a correlation matrix; for example,

\begin{verbatim}
parameters {
 cholesky_factor_corr[K] L; \# rather than corr_matrix[K] Sigma;
\}
\end{verbatim}

\(^1\)It is possible to build up a valid \(L \) within Stan, but that would then require Jacobian adjustments to imply the intended posterior.
CHAPTER 26. CORRELATION MATRIX DISTRIBUTIONS

Probability density function

For \(\eta > 0 \), if \(L \) is a \(K \times K \) lower-triangular Cholesky factor of a symmetric positive-definite matrix with unit diagonal (i.e., a correlation matrix), then

\[
\text{LkjCholesky}(L|\eta) \propto |J| \det(LL^\top)^{(\eta-1)} = \prod_{k=2}^{K} L^k_{kk}^{-k+2\eta-2}.
\]

See the previous section for details on interpreting the shape parameter \(\eta \). Note that even if \(\eta = 1 \), it is still essential to evaluate the density function because the density of \(L \) is not constant, regardless of the value of \(\eta \), even though the density of \(LL^\top \) is constant iff \(\eta = 1 \).

A lower triangular \(L \) is a Cholesky factor for a correlation matrix if and only if \(L_{k,k} > 0 \) for \(k \in 1:K \) and each row \(L_k \) has unit Euclidean length.

Sampling statement

\(L \sim \text{lkj_corr_cholesky}(\eta) \)

Increment target log probability density with \(\text{lkj_corr_cholesky_lupdf}(L | \eta) \).

Available since 2.4

Stan functions

\text{real } \text{lkj_corr_cholesky_lpdf}(\text{matrix } L | \text{real } \eta)

The log of the LKJ density for the lower-triangular Cholesky factor \(L \) of a correlation matrix given shape \(\eta \)

Available since 2.12

\text{real } \text{lkj_corr_cholesky_lupdf}(\text{matrix } L | \text{real } \eta)

The log of the LKJ density for the lower-triangular Cholesky factor \(L \) of a correlation matrix given shape \(\eta \) dropping constant additive terms

Available since 2.25

\text{matrix } \text{lkj_corr_cholesky_rng}(\text{int } K, \text{real } \eta)

Generate a random Cholesky factor of a correlation matrix of order \(K \) that is distributed LKJ with shape \(\eta \); may only be used in transformed data and generated quantities blocks

Available since 2.4
27. Covariance Matrix Distributions

The covariance matrix distributions have support on symmetric, positive-definite $K \times K$ matrices.

27.1. Wishart distribution

Probability density function

If $K \in \mathbb{N}$, $\nu \in (K - 1, \infty)$, and $S \in \mathbb{R}^{K \times K}$ is symmetric and positive definite, then for symmetric and positive-definite $W \in \mathbb{R}^{K \times K}$,

$$
\text{Wishart}(W|\nu, S) = \frac{1}{2^{\nu K/2}} \frac{1}{\Gamma_K\left(\frac{\nu}{2}\right)} |S|^{-\nu/2} |W|^{(\nu-K-1)/2} \exp\left(-\frac{1}{2} \text{tr}\left(S^{-1}W\right)\right),
$$

where $\text{tr}()$ is the matrix trace function, and $\Gamma_K()$ is the multivariate Gamma function,

$$
\Gamma_K(x) = \frac{1}{\pi^{K(K-1)/4}} \prod_{k=1}^{K} \Gamma\left(x + \frac{1-k}{2}\right).
$$

Sampling statement

$W \sim \text{wishart}(\nu, \Sigma)$

Increment target log probability density with $\text{wishart_lupdf}(W \mid \nu, \Sigma)$.

Available since 2.0

Stan functions

real $\text{wishart_lpdf}(\text{matrix } W \mid \text{real } \nu, \text{matrix } \Sigma)$

The log of the Wishart density for symmetric and positive-definite matrix W given degrees of freedom ν and symmetric and positive-definite scale matrix Σ

Available since 2.12

real $\text{wishart_lupdf}(\text{matrix } W \mid \text{real } \nu, \text{matrix } \Sigma)$

The log of the Wishart density for symmetric and positive-definite matrix W given degrees of freedom ν and symmetric and positive-definite scale matrix Σ dropping constant additive terms

Available since 2.25
matrix wishart_rng(real nu, matrix Sigma)
Generate a Wishart variate with degrees of freedom nu and symmetric and positive-
definite scale matrix Sigma; may only be used in transformed data and generated
quantities blocks
Available since 2.0

27.2. Inverse Wishart distribution

Probability density function

If \(K \in \mathbb{N}, \nu \in (K - 1, \infty) \), and \(S \in \mathbb{R}^{K \times K} \) is symmetric and positive definite, then for symmetric and positive-definite \(W \in \mathbb{R}^{K \times K} \),

\[
\text{InvWishart}(W | \nu, S) = \frac{1}{2^{\nu K/2}} \frac{1}{\Gamma_K(\nu/2)} |S|^\nu/2 |W|^{-(\nu+K+1)/2} \exp \left(-\frac{1}{2} \text{tr}(SW^{-1}) \right).
\]

Sampling statement

\(W \sim \text{inv_wishart}(\nu, Sigma) \)

Increment target log probability density with \(\text{inv_wishart_lupdf}(W \mid \nu, \Sigma) \).
Available since 2.0

Stan functions

real inv_wishart_lpdf(matrix W | real nu, matrix Sigma)
The log of the inverse Wishart density for symmetric and positive-definite matrix W
given degrees of freedom nu and symmetric and positive-definite scale matrix Sigma
Available since 2.12

real inv_wishart_lupdf(matrix W | real nu, matrix Sigma)
The log of the inverse Wishart density for symmetric and positive-definite matrix W
given degrees of freedom nu and symmetric and positive-definite scale matrix Sigma
dropping constant additive terms
Available since 2.25

matrix inv_wishart_rng(real nu, matrix Sigma)
Generate an inverse Wishart variate with degrees of freedom nu and symmetric and
positive-definite scale matrix Sigma; may only be used in transformed data and
generated quantities blocks
Available since 2.0
Additional Distributions
28. Hidden Markov Models

An elementary first-order Hidden Markov model is a probabilistic model over \(N \) observations, \(y_n \), and \(N \) hidden states, \(x_n \), which can be fully defined by the conditional distributions \(p(y_n \mid x_n, \phi) \) and \(p(x_n \mid x_{n-1}, \phi) \). Here we make the dependency on additional model parameters, \(\phi \), explicit. When \(x \) is continuous, the user can explicitly encode these distributions in Stan and use Markov chain Monte Carlo to integrate \(x \) out.

When each state \(x \) takes a value over a discrete and finite set, say \(\{1, 2, ..., K\} \), we can take advantage of the dependency structure to marginalize \(x \) and compute \(p(y \mid \phi) \). We start by defining the conditional observational distribution, stored in a \(K \times N \) matrix \(\omega \) with
\[
\omega_{kn} = p(y_n \mid x_n = k, \phi).
\]

Next, we introduce the \(K \times K \) transition matrix, \(\Gamma \), with
\[
\Gamma_{ij} = p(x_n = j \mid x_{n-1} = i, \phi).
\]

Each row defines a probability distribution and must therefore be a simplex (i.e. its components must add to 1). Currently, Stan only supports stationary transitions where a single transition matrix is used for all transitions. Finally we define the initial state \(K \)-vector \(\rho \), with
\[
\rho_k = p(x_0 = k \mid \phi).
\]

The Stan functions that support this type of model are special in that the user does not explicitly pass \(y \) and \(\phi \) as arguments. Instead, the user passes \(\log \omega \), \(\Gamma \), and \(\rho \), which in turn depend on \(y \) and \(\phi \).

28.1. Stan functions

```stan
real hmm_marginal(matrix log_omega, matrix Gamma, vector rho)
Returns the log probability density of \( y \), with \( x_n \) integrated out at each iteration.
Available since 2.24
```

The arguments represent (1) the log density of each output, (2) the transition matrix, and (3) the initial state vector.

- \texttt{log_omega}: \(\log \omega_{kn} = \log p(y_n \mid x_n = k, \phi) \), log density of each output,
• **Gamma**: $\Gamma_{ij} = p(x_n = j | x_{n-1} = i, \phi)$, the transition matrix,

• **rho**: $\rho_k = p(x_0 = k | \phi)$, the initial state probability.

array[] int hmm_latent_rng(matrix log_omega, matrix Gamma, vector rho)

Returns a length N array of integers over $\{1, ..., K\}$, sampled from the joint posterior distribution of the hidden states, $p(x | \phi, y)$. May be only used in transformed data and generated quantities.

Available since 2.24

matrix hmm_hidden_state_prob(matrix log_omega, matrix Gamma, vector rho)

Returns the matrix of marginal posterior probabilities of each hidden state value. This will be a $K \times N$ matrix. The n^{th} column is a simplex of probabilities for the n^{th} variable. Moreover, let A be the output. Then $A_{ij} = p(x_j = i | \phi, y)$. This function may only be used in transformed data and generated quantities.

Available since 2.24
Appendix
29. Mathematical Functions

This appendix provides the definition of several mathematical functions used throughout the manual.

29.1. Beta

The beta function, $B(a, b)$, computes the normalizing constant for the beta distribution, and is defined for $a > 0$ and $b > 0$ by

$$B(a, b) = \int_0^1 u^{a-1} (1 - u)^{b-1} du = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)},$$

where $\Gamma(x)$ is the Gamma function.

29.2. Incomplete beta

The incomplete beta function, $B(x; a, b)$, is defined for $x \in [0, 1]$ and $a, b \geq 0$ such that $a + b \neq 0$ by

$$B(x; a, b) = \int_0^x u^{a-1} (1 - u)^{b-1} du,$$

where $B(a, b)$ is the beta function defined in appendix. If $x = 1$, the incomplete beta function reduces to the beta function, $B(1; a, b) = B(a, b)$.

The regularized incomplete beta function divides the incomplete beta function by the beta function,

$$I_x(a, b) = \frac{B(x; a, b)}{B(a, b)}.$$

29.3. Gamma

The gamma function, $\Gamma(x)$, is the generalization of the factorial function to continuous variables, defined so that for positive integers n,

$$\Gamma(n + 1) = n!$$

Generalizing to all positive numbers and non-integer negative numbers,

$$\Gamma(x) = \int_0^{\infty} u^{x-1} \exp(-u) du.$$
29.4. Digamma

The digamma function \(\Psi \) is the derivative of the \(\log \Gamma \) function,

\[
\Psi(u) = \frac{d}{du} \log \Gamma(u) = \frac{1}{\Gamma(u)} \frac{d}{du} \Gamma(u).
\]
References

bernoulli_logit_glm_lupmf
(array[] int y | matrix x, real alpha, vector beta): real, 140
(array[] int y | row_vector x, real alpha, vector beta): real, 141
(int y | matrix x, real alpha, vector beta): real, 139
(int y | matrix x, vector alpha, vector beta): real, 140

bernoulli_logit_glm_rng
(matrix x, vector alpha, vector beta): array[] int, 141
(row_vector x, vector alpha, vector beta): array[] int, 141

bernoulli_logit_lpmf
(ints y | reals alpha): real, 138

bernoulli_logit_lupmf
(ints y | reals alpha): real, 138

bernoulli_rng
(ints y | reals theta): real, 137

bessel_first_kind
(T1 x, T2 y): R, 31
(int v, real x): real, 30

bessel_second_kind
(T1 x, T2 y): R, 31
(int v, real x): real, 31

beta
(T1 x, T2 y): R, 28
(real alpha, real beta): real, 28

beta_binomial
sampling statement, 145
(reals mu, reals kappa): R, 207
beta_rng
 (reals alpha, reals beta): R, 206
binary_log_loss
 (T1 x, T2 y): R, 27
 (int y, real y_hat): real, 27
binomia_cdf
 (ints n, ints N, reals theta): real, 143
binomia_lccdf
 (ints n | ints N, reals theta): real, 143
binomia_lcdf
 (ints n | ints N, reals theta): real, 143
binomia_lpmf
 (ints n | ints N, reals theta): real, 142
binomia_lupmf
 (ints n | ints N, reals theta): real, 142
binomial
 sampling statement, 142
binomial_coefficient_log
 (T1 x, T2 y): R, 30
 (real x, real y): real, 30
binomial_logit
 sampling statement, 144
binomial_logit_lpmf
 (ints n | ints N, reals alpha): real, 144
binomial_logit_lupmf
 (ints n | ints N, reals alpha): real, 144
binomial_rng
 (ints N, reals theta): R, 143
block
 (matrix x, int i, int j, int n_rows, int n_cols): matrix, 73
categorical
 sampling statement, 147
categorical_logit
 sampling statement, 147
categorical_logit_glm
 sampling statement, 149
categorical_logit_glm_lpmf
 (array[] int y | matrix x, vector alpha, matrix beta): real, 150
 (array[] int y | row_vector x, vector alpha, matrix beta): real, 149
categorical_logit_lpmf
 (ints y | vector beta): real, 148
categorical_logit_lupmf
 (ints y | vector beta): real, 148
categorical_logit_rng
 (vector theta): int, 148
categorical_lpmf
 (ints y | vector beta): real, 147
categorical_lupmf
 (ints y | vector beta): real, 147
categorical_rng
 (vector theta): int, 148
cauhcy
 sampling statement, 181
cauhcy_cdf
 (reals y, reals mu, reals sigma): real, 181
cauhy_lccdf
 (reals y | reals mu, reals sigma): real, 181
cauhy_lcdf
 (reals y | reals mu, reals sigma): real, 181
cauhy_lpdf
 (reals y | reals mu, reals sigma): real, 181
cauhy_lupdf
 (reals y | reals mu, reals sigma): real, 181
cauhy_rng
 (reals mu, reals sigma): R, 181
cbrt
 (T x): R, 23
ceil
 (T x): R, 23

chi_square
 sampling statement, 189

chi_square_cdf
 (reals y, reals nu): real, 189

chi_square_lccdf
 (reals y | reals nu): real, 190

chi_square_lcdf
 (reals y | reals nu): real, 189

chi_square_lpdf
 (reals y | reals nu): real, 189

chi_square lupdf
 (reals y | reals nu): real, 189

chi_square_rng
 (reals nu): R, 190

cholesky_decompose
 (matrix A): matrix, 91

crossprod
 (matrix x): matrix, 64

csr_extract_u
 (matrix A): array[] int, 95

cholesky_decompose
 (matrix A): matrix, 91

crossprod
 (matrix x): matrix, 64

csr_extract_v
 (matrix A): array[] int, 95

crossprod
 (row_vector x, row_vector y): row_vector, 63

csr_extract_w
 (matrix A): vector, 95

columns_dot_product
 (matrix x, matrix y): row_vector, 63

cumulative_sum
 (array[] real x): array[] real, 78

crossprod
 (matrix x): matrix, 64

csr_matrix_times_vector
 (int m, int n, vector w, array[] int v, array[] int u, vector b):
 vector, 96

cumulative_sum
 (row_vector rv): row_vector, 78

csr_to_dense_matrix
 (int m, int n, vector w, array[] int v, array[] int u):
 matrix, 95

dae
 (function residual, vector initial_state, vector initial_state_derivative,
 real initial_time, array[] real times, ...): array[] vector, 114

dae_tol
 (function residual, vector initial_state, vector initial_state_derivative,
 real initial_time, array[] real times, data real rel_tol, data real abs_tol, int max_num_steps, ...):
 array[] vector, 114

determinant
 (matrix A): real, 88
INDEX

245

diag_matrix
 (vector x): matrix, 70

diag_post_multiply
 (matrix m, row_vector rv): matrix, 66
 (matrix m, vector v): matrix, 66

diag_pre_multiply
 (row_vector rv, matrix m): matrix, 66
 (vector v, matrix m): matrix, 65

diagonal
 (matrix x): vector, 70

digamma
 (T x): R, 29

dims
 (T x): array[] int, 51

dirichlet
 sampling statement, 226

dirichlet_rng
 (vector alpha): vector, 227

discrete_range
 sampling statement, 150

discrete_range_cdf
 (ints n, ints N, reals theta): real, 151

discrete_range_lccdf
 (ints n | ints N, reals theta): real, 151

discrete_range_lcdf
 (ints n | ints N, reals theta): real, 151

discrete_range_lpmf
 (ints y | ints l, ints u): real, 150

discrete_range_lupmf
 (ints y | ints l, ints u): real, 151

discrete_range_rng
 (ints l, ints u): int, 151

distance
 (row_vector x, row_vector y): real, 49
 (row_vector x, vector y): real, 49
 (vector x, row_vector y): real, 49
 (vector x, vector y): real, 49

dot_product
 (row_vector x, row_vector y): real, 63
 (row_vector x, vector y): real, 63
 (vector x, row_vector y): real, 63
 (vector x, vector y): real, 63

dot_self
 (row_vector x): real, 63
 (vector x): real, 63

double_exponential
 sampling statement, 182

double_exponential_cdf
 (reals y, reals mu, reals sigma): real, 183

double_exponential_lccdf
 (reals y | reals mu, reals sigma): real, 183

double_exponential_lcdf
 (reals y | reals mu, reals sigma): real, 183

double_exponential_lpdf
 (reals y | reals mu, reals sigma): real, 183

double_exponential_lupdf
 (reals y | reals mu, reals sigma): real, 183

double_exponential_rng
 (reals mu, reals sigma): R, 183

e
 (): real, 13

eigenvalues_sym
 (matrix A): vector, 89

eigenvectors_sym
 (matrix A): matrix, 89

erf
 (T x): real, 26

erfc
 (T x): real, 26

exp
 (T x): real, 23

exp2
 (T x): real, 23

exp_mod_normal
 sampling statement, 177

exp_mod_normal_cdf
 (reals y, reals mu, reals sigma, reals lambda): real, 177

exp_mod_normal_lccdf
 (reals y | reals mu, reals sigma, reals lambda): real, 178

exp_mod_normal_lcdf
 (reals y | reals mu, reals sigma, reals lambda): real, 178

exp_mod_normal_rng
 (reals mu, reals sigma, reals lambda): R, 178

expm1
(T x): R, 34
exponential
 sampling statement, 192
exponential_cdf
 (reals y, reals beta): real, 193
exponential_lccdf
 (reals y | reals beta): real, 193
exponential_lcdf
 (reals y | reals beta): real, 193
exponential_lpdf
 (reals y | reals beta): real, 193
exponential_lupdf
 (reals y | reals beta): real, 193
exponential_rng
 (reals beta): R, 193
fabs
 (T x): R, 21
falling_factorial
 (T1 x, T2 y): R, 32
 (real x, real n): real, 32
fdim
 (T1 x, T2 y): R, 21
 (real x, real y): real, 21
floor
 (T x): R, 22
fma
 (real x, real y, real z): real, 34
fmax
 (T1 x, T2 y): R, 22
 (real x, real y): real, 21
fmin
 (T1 x, T2 y): R, 21
 (real x, real y): real, 21
fmod
 (T1 x, T2 y): R, 22
 (real x, real y): real, 22
frechet
 sampling statement, 197
frechet_cdf
 (reals y, reals alpha, reals sigma): real, 197
frechet_lccdf
 (reals y | reals alpha, reals sigma): real, 197
frechet_lcdf
 (reals y | reals alpha, reals sigma): real, 197
frechet_lpdf
 (reals y | reals alpha, reals sigma): real, 197
frechet_lupdf
 (reals y | reals alpha, reals sigma): real, 197
frechet_rng
 (reals alpha, reals sigma): R, 198
gamma
 sampling statement, 194
gamma_cdf
 (reals y, reals alpha, reals beta): real, 194
gamma_lccdf
 (reals y | reals alpha, reals beta): real, 194
gamma_lcdf
 (reals y | reals alpha, reals beta): real, 194
gamma_lpdf
 (reals y | reals alpha, reals beta): real, 194
gamma_lupdf
 (reals y | reals alpha, reals beta): real, 194
gamma_p
 (T1 x, T2 y): R, 29
 (real a, real z): real, 29
gamma_q
 (T1 x, T2 y): R, 30
 (real a, real z): real, 29
gamma_rng
 (reals alpha, reals beta): R, 194
gaussian_dlm_obs
 sampling statement, 223
gaussian_dlm_obs_lpdf
 (matrix y | matrix F, matrix G,
 matrix V, matrix W, vector m0,
 matrix C0): real, 223
 (matrix y | matrix F, matrix G,
 vector V, matrix W, vector m0,
 matrix C0): real, 224
gaussian_dlm_obs_lupdf
 (matrix y | matrix F, matrix G,
 matrix V, matrix W, vector m0,
 matrix C0): real, 224
generalized_inverse
(matrix A): matrix, 89

get_imag
(complex z): real, 39

get_lp
(): real, 15

get_real
(complex z): real, 39

gp_dot_prod_cov
(array[] real x, real sigma): matrix, 80
(array[] real x1, array[] real x2, real sigma): matrix, 80
(vectors x, real sigma): matrix, 80
(vectors x1, vectors x2, real sigma): matrix, 80

gp_exp_quad_cov
(array[] real x, real sigma, real length_scale): matrix, 78
(array[] real x1, array[] real x2, real sigma, real length_scale): matrix, 79
(vectors x, real sigma, array[] real length_scale): matrix, 79
(vectors x, real sigma, real length_scale): matrix, 79
(vectors x1, vectors x2, real sigma, array[] real length_scale): matrix, 79
(vectors x1, vectors x2, real sigma, real length_scale): matrix, 79

gp_exponential_cov
(array[] real x, real sigma, real length_scale): matrix, 80
(array[] real x1, array[] real x2, real sigma, real length_scale): matrix, 80
(vectors x, real sigma, array[] real length_scale): matrix, 81
(vectors x, real sigma, real length_scale): matrix, 81
(vectors x1, vectors x2, real sigma, array[] real length_scale): matrix, 81
(vectors x1, vectors x2, real sigma, real length_scale): matrix, 81

gp_matern32_cov
(array[] real x, real sigma, real length_scale): matrix, 82
(array[] real x1, array[] real x2, real sigma, real length_scale): matrix, 82
(vectors x, real sigma, array[] real length_scale): matrix, 82
(vectors x1, vectors x2, real sigma, array[] real length_scale): matrix, 82
(vectors x1, vectors x2, real sigma, real length_scale): matrix, 82

gp_matern52_cov
(array[] real x, real sigma, real length_scale): matrix, 83
(array[] real x1, array[] real x2, real sigma, real length_scale): matrix, 83
(vectors x, real sigma, array[] real length_scale): matrix, 83
(vectors x, real sigma, real length_scale): matrix, 83
(vectors x1, vectors x2, real sigma, array[] real length_scale): matrix, 83
(vectors x1, vectors x2, real sigma, real length_scale): matrix, 83

gp_periodic_cov
(array[] real x, real sigma, real length_scale, real period): matrix, 84
(array[] real x1, array[] real x2, real sigma, real length_scale, real period): matrix, 84
(vectors x, real sigma, real length_scale, real period): matrix, 84
(vectors x1, vectors x2, real sigma, real length_scale, real period): matrix, 84

gumbel
sampling statement, 185

gumbel_cdf
(reals y, reals mu, reals beta): real, 185

gumbel_lccdf
(reals y | reals mu, reals beta): real, 185

gumbel_lcdf
(reals y | reals mu, reals beta):
real, 185

\texttt{gumbel_lpdf}

\begin{verbatim}
 (reals y | reals mu, reals beta): real, 185
\end{verbatim}

\texttt{gumbel_lupdf}

\begin{verbatim}
 (reals y | reals mu, reals beta): real, 185
\end{verbatim}

\texttt{gumbel_rng}

\begin{verbatim}
 (reals mu, reals beta): R, 185
\end{verbatim}

\texttt{head}

\begin{verbatim}
 (array[] T sv, int n): array[], 74
 (row_vector rv, int n): row_vector, 74
 (vector v, int n): vector, 74
\end{verbatim}

\texttt{hmm_hidden_state_prob}

\begin{verbatim}
 (matrix log_omega, matrix Gamma, vector rho): matrix, 235
\end{verbatim}

\texttt{hmm_latent_rng}

\begin{verbatim}
 (matrix log_omega, matrix Gamma, vector rho): array[] int, 235
\end{verbatim}

\texttt{hmm_marginal}

\begin{verbatim}
 (matrix log_omega, matrix Gamma, vector rho): real, 234
\end{verbatim}

\texttt{hypergeometric}

\begin{verbatim}
 sampling statement, 146
\end{verbatim}

\texttt{hypergeometric_rng}

\begin{verbatim}
 (int N, int a, int2 b): int, 146
\end{verbatim}

\texttt{hypot}

\begin{verbatim}
 (T1 x, T2 y): R, 24
 (real x, real y): real, 24
\end{verbatim}

\texttt{identity_matrix_matrix}

\begin{verbatim}
 (int k): matrix, 71
\end{verbatim}

\texttt{inc_beta}

\begin{verbatim}
 (real alpha, real beta, real x): real, 28
\end{verbatim}

\texttt{int_step}

\begin{verbatim}
 (int x): int, 6
 (real x): int, 6
\end{verbatim}

\texttt{integrate_id}

\begin{verbatim}
 (function integrand, real a, real b, array[] real theta, array[]
 real x_r, array[] int x_i): real, 117
\end{verbatim}

\texttt{integrate_ode}

\begin{verbatim}
 (function ode, array[] real
 initial_state, real
 initial_time, array[] real
 times, array[] real theta, data
 array[] real x_r, array[] int
 x_i): array[], real, 125
\end{verbatim}

\texttt{integrate_ode_adams}

\begin{verbatim}
 (function ode, array[] real
 initial_state, real
 initial_time, array[] real
 times, array[] real theta, data
 array[] real x_r, data array[]
 int x_i): array[], real, 125
\end{verbatim}

\texttt{integrate_ode_bdf}

\begin{verbatim}
 (function ode, array[] real
 initial_state, real
 initial_time, array[] real
 times, array[] real theta, data
 array[] real x_r, data array[]
 int x_i): array[], real, 125
\end{verbatim}

\texttt{integrate_ode_rk45}

\begin{verbatim}
 (function ode, array[] real
 initial_state, real
 initial_time, array[] real
 times, array[] real theta, data
 array[] real x_r, array[] int
 x_i): array[], real, 124
\end{verbatim}

\texttt{integrate_ode_rk45}

\begin{verbatim}
 (function ode, array[] real
 initial_state, real
 initial_time, array[] real
 times, array[] real theta, data
 array[] real x_r, array[]
\end{verbatim}
int x_i, real rel_tol, real abs_tol, int max_num_steps):
 array[[], real, 124
inv
 (T x): R, 24
inv_chi_square
 sampling statement, 190
inv_chi_square_cdf
 (reals y, reals nu): real, 190
inv_chi_square_lccdf
 (reals y | reals nu): real, 191
inv_chi_square_lcdf
 (reals y | reals nu): real, 191
inv_chi_square_lpdf
 (reals y | reals nu): real, 190
inv_chi_square_lupdf
 (reals y | reals nu): real, 190
inv_chi_square_rng
 (reals nu): R, 191
inv_cloglog
 (T x): R, 26
inv_erfc
 (T x): R, 27
inv_gamma
 sampling statement, 195
inv_gamma_cdf
 (reals y, reals alpha, reals beta):
 real, 195
inv_gamma_lccdf
 (reals y | reals alpha, reals beta):
 real, 195
inv_gamma_lcdf
 (reals y | reals alpha, reals beta):
 real, 195
inv_gamma_lpdf
 (reals y | reals alpha, reals beta):
 real, 195
inv_gamma_lupdf
 (reals y | reals alpha, reals beta):
 real, 195
inv_gamma_rng
 (reals alpha, reals beta): R, 195
inv_logit
 (T x): R, 26
inv_phi
 (T x): R, 27
inv_sqrt
 (T x): R, 24
inv_square
 (T x): R, 24
inv_wishart
 sampling statement, 232
inv_wishart_lpdf
 (matrix W | real nu, matrix Sigma):
 real, 232
inv_wishart_lupdf
 (matrix W | real nu, matrix Sigma):
 real, 232
inv_wishart_rng
 (real nu, matrix Sigma): matrix, 232
inverse
 (matrix A): matrix, 88
inverse_spd
 (matrix A): matrix, 88
is_inf
 (real x): int, 19
is_nan
 (real x): int, 19
lambert_w0
 (T x): R, 37
lambert_wm1
 (T x): R, 37
lbeta
 (T1 x, T2 y): R, 28
 (real alpha, real beta): real, 28
lchoose
 (T1 x, T2 y): R, 33
 (real x, real y): real, 33
ldexp
 (T1 x, T2 y): R, 35
 (real x, int y): real, 34
lgamma
 (T x): R, 28
linspaced_array
 (int n, data real lower, data real upper):
 array[] real, 71
linspaced_int_array
 (int n, int lower, int upper):
 array[] real, 71
linspaced_row_vector
 (int n, data real lower, data real upper):
 row_vector, 71
linspaced_vector
 (int n, data real lower, data real upper):
 vector, 71
lkj_corr
 sampling statement, 229
lkj_corr_cholesky
sampling statement, 230

lkj_corr_cholesky_lpdf
(matrix L | real eta): real, 230

lkj_corr_cholesky_lupdf
(matrix L | real eta): real, 230

lkj_corr_cholesky_rng
(int K, real eta): matrix, 230

lkj_corr_lpdf
(matrix y | real eta): real, 229

lkj_corr_lupdf
(matrix y | real eta): real, 229

lkj_corr_rng
(int K, real eta): matrix, 229

lmgamma
(T1 x, T2 y): R, 29
(int n, real x): real, 29

lmultiply
(T1 x, T2 y): R, 35
(real x, real y): real, 35

log
(T x): R, 23
(complex z): complex, 43

log10
(): real, 14
(T x): R, 24
(complex z): complex, 44

log1m
(T x): R, 35

log1m_exp
(T x): R, 35

log1m_inv_logit
(T x): R, 36

log1p
(T x): R, 35

log1p_exp
(T x): R, 35

log2
(): real, 14
(T x): R, 23

log_determinant
(matrix A): real, 88

log_diff_exp
(T1 x, T2 y): R, 36
(real x, real y): real, 35

log_falling_factorial
(real x, real n): real, 33

log_inv_logit
(T x): R, 36

log_mix
(real theta, real lp1, real lp2): real, 36

log_modified_bessel_first_kind
(T1 x, T2 y): R, 32
(real v, real z): real, 32

log_rising_factorial
(T1 x, T2 y): R, 34
(real x, real n): real, 33

log_softmax
(vector x): vector, 77

log_sum_exp
(array[] real x): real, 48
(matrix x): real, 66
(real x, real y): real, 36
(row_vector x): real, 66
(vector x): real, 66

logistic
sampling statement, 184

logistic_cdf
(reals y, reals mu, reals sigma): real, 184

logistic_lccdf
(reals y | reals mu, reals sigma): real, 184

logistic_lcdf
(reals y | reals mu, reals sigma): real, 184

logistic_lpdf
(reals y | reals mu, reals sigma): real, 184

logistic_lupdf
(reals y | reals mu, reals sigma): real, 184

logistic_rng
(reals mu, reals sigma): R, 184

logit
(reals mu, reals sigma): R, 184

logistic
sampling statement, 199

loglogistic
cdf
(reals y, reals alpha, reals beta): real, 199

loglogistic_lpdf
(reals y | reals alpha, reals beta): real, 199

loglogistic_rng
(reals alpha, reals beta): R, 199
lognormal
 sampling statement, 188
lognormal_cdf
 (reals y, reals mu, reals sigma): real, 188
lognormal_lccdf
 (reals y | reals mu, reals sigma): real, 189
lognormal_lcdf
 (reals y | reals mu, reals sigma): real, 188
lognormal_lpdf
 (reals y | reals mu, reals sigma): real, 188
lognormal_rng
 (reals mu, reals sigma): R, 189
machine_precision
 (): real, 14
map_rect
 (F f, vector phi, array[] vector theta, data array[], real x_r,
 data array[], int x_i): vector, 122
matrix_exp
 (matrix A): matrix, 87
matrix_exp_multiply
 (matrix A, matrix B): matrix, 87
matrix_power
 (matrix A, int B): matrix, 87
max
 (array[] int x): int, 47
 (array[] real x): real, 47
 (int x, int y): int, 7
 (matrix x): real, 67
 (row_vector x): real, 67
 (vector x): real, 67
mdivide_left_spd
 (matrix A, matrix B): vector, 86
 (matrix A, vector b): matrix, 86
mdivide_left_tri_low
 (matrix A, matrix B): matrix, 86
 (matrix A, vector b): vector, 85
mdivide_right_spd
 (matrix B, matrix A): matrix, 86
 (row_vector b, matrix A): row_vector, 86
mdivide_right_tri_low
 (matrix B, matrix A): matrix, 86
 (row_vector b, matrix A): row_vector, 86
mean
 (array[] real x): real, 48
 (matrix x): real, 68
 (row_vector x): real, 68
 (vector x): real, 68
min
 (array[] int x): int, 47
 (array[] real x): real, 47
 (int x, int y): int, 7
 (matrix x): real, 66
 (row_vector x): real, 66
 (vector x): real, 66
modified_bessel_first_kind
 (T1 x, T2 y): R, 31
 (int v, real z): real, 31
modified_bessel_second_kind
 (T1 x, T2 y): R, 32
 (int v, real z): real, 32
multi_gp
 sampling statement, 219
multi_gp_cholesky
 sampling statement, 220
multi_gp_cholesky_lpdf
 (row_vectors y | row_vectors mu, matrix L): real, 218
 (row_vectors y | vectors mu, matrix L): real, 218
multi_gp_cholesky_lupdf
 (row_vectors y | row_vectors mu, matrix L): real, 218
 (row_vectors y | vectors mu, matrix L): real, 218
multi_normal
 sampling statement, 213
multi_normal_cholesky
 sampling statement, 217
multi_normal_cholesky_lpdf
 (row_vectors y | row_vectors mu, matrix L): real, 218
multi_normal_cholesky_lupdf
 (row_vectors y | row_vectors mu, matrix L): real, 218
multi_normal_lpdf
 (matrix y | matrix L, vector w): real, 86
(vectors y | vectors mu, matrix L): real, 217
multi_normal_cholesky_lupdf
(row_vectors y | row_vectors mu, matrix L): real, 218
(row_vectors y | vectors mu, matrix L): real, 218
(vectors y | row_vectors mu, matrix L): real, 217
(vectors y | vectors mu, matrix L): real, 217
multi_normal_cholesky_rng
(row_vector mu, matrix L): vector, 218
(row_vectors mu, matrix L): vectors, 219
(vector mu, matrix L): vector, 218
(vectors mu, matrix L): vectors, 218
multi_normal_lpdf
(row_vectors y | row_vectors mu, matrix Sigma): real, 214
(row_vectors y | vectors mu, matrix Sigma): real, 214
(vectors y | row_vectors mu, matrix Sigma): real, 214
(vectors y | vectors mu, matrix Sigma): real, 213
multi_normal_lupdf
(row_vectors y | row_vectors mu, matrix Sigma): real, 214
(row_vectors y | vectors mu, matrix Sigma): real, 214
(vectors y | row_vectors mu, matrix Sigma): real, 214
(vectors y | vectors mu, matrix Sigma): real, 213
multi_normal_prec
sampling statement, 215
multi_normal_prec_lpdf
(row_vectors y | row_vectors mu, matrix Omega): real, 216
(row_vectors y | vectors mu, matrix Omega): real, 216
(vectors y | row_vectors mu, matrix Omega): real, 216
(vectors y | vectors mu, matrix Omega): real, 216
multi_normal_rng
(row_vectors mu, matrix Sigma): vector, 214
(row_vectors mu, matrix Sigma): vectors, 215
(vector mu, matrix Sigma): vector, 214
(vectors mu, matrix Sigma): vectors, 215
multi_student_t
sampling statement, 221
multi_student_t_lpdf
(row_vectors y | real nu, row_vectors mu, matrix Sigma): real, 222
(row_vectors y | real nu, vectors mu, matrix Sigma): real, 222
(vectors y | real nu, row_vectors mu, matrix Sigma): real, 221
(vectors y | real nu, vectors mu, matrix Sigma): real, 221
multi_student_t_lupdf
(row_vectors y | real nu, row_vectors mu, matrix Sigma): real, 222
(row_vectors y | real nu, vectors mu, matrix Sigma): real, 222
(vectors y | real nu, row_vectors mu, matrix Sigma): real, 221
(vectors y | real nu, vectors mu, matrix Sigma): real, 221
multi_student_t_rng
(real nu, row_vector mu, matrix Sigma): vector, 222
(real nu, row_vectors mu, matrix Sigma): vectors, 223
(real nu, vector mu, matrix Sigma): vector, 222
(real nu, vectors mu, matrix Sigma): vectors, 222
multinomial
sampling statement, 167
multinomial_logit
 sampling statement, 168

multinomial_logit_lpmf
 (array[] int y | vector theta): real, 168

multinomial_logit_lupmf
 (array[] int y | vector theta): real, 168

multinomial_logit_rng
 (vector theta, int N): array[] int, 169

multinomial_lpmf
 (array[] int y | vector theta): real, 167

multinomial_lpmf
 (array[] int y | vector theta): real, 167

multinomial_rng
 (vector theta, int N): array[] int, 167

multiply_log
 (T1 x, T2 y): R, 34
 (real x, real y): real, 34

multiply_lower_tri_self_transpose
 (matrix x): matrix, 65

neg_binomial
 sampling statement, 156

neg_binomial_2
 sampling statement, 158

neg_binomial_2_cdf
 (ints n, reals mu, reals phi): real, 158

neg_binomial_2_lccdf
 (ints n | reals mu, reals phi): real, 158

neg_binomial_2_lccdf
 (ints n | reals mu, reals phi): real, 158

neg_binomial_2_lcdf
 (ints n | reals mu, reals phi): real, 158

neg_binomial_2_log
 sampling statement, 159

neg_binomial_2_log_glm
 sampling statement, 160

neg_binomial_2_log_glm_lpmf
 (array[] int y | matrix x, real alpha, vector beta, real phi): real, 161
 (array[] int y | row_vector x, vector alpha, vector beta, real phi): real, 162
 (int y | matrix x, real alpha, vector beta, real phi): real, 161
 (int y | row_vector x, real alpha, vector beta, real phi): real, 160

neg_binomial_2_log_lpmf
 (ints n | reals eta, reals phi): real, 159

neg_binomial_2_log_lpmf
 (ints n | reals eta, reals phi): real, 159

neg_binomial_2_log_rng
 (reals eta, reals phi): R, 159

neg_binomial_2_log_glm
 sampling statement, 160

neg_binomial_2_log_glm_lpmf
 (array[] int y | matrix x, real alpha, vector beta, real phi): real, 161
 (array[] int y | row_vector x, real alpha, vector beta, real phi): real, 162
 (array[] int y | matrix x, real alpha, vector beta, real phi): real, 161
 (int y | matrix x, real alpha, vector beta, real phi): real, 160

neg_binomial_2_log_lpmf
 (array[] int y | matrix x, real alpha, vector beta, real phi): real, 161
 (array[] int y | row_vector x, vector alpha, vector beta, real phi): real, 162
 (array[] int y | matrix x, vector alpha, vector beta, real phi): real, 161
 (int y | matrix x, vector alpha, vector beta, real phi): real, 160
neg_binomial_lccdf
 (ints n | reals alpha, reals beta): real, 157
neg_binomial_lcdf
 (ints n | reals alpha, reals beta): real, 157
neg_binomial_lpmf
 (ints n | reals alpha, reals beta): real, 156
neg_binomial_rng
 (reals alpha, reals beta): R, 157
negative_infinity
 (): real, 14
norm
 (complex z): real, 42
normal
 sampling statement, 171
normal_cdf
 (reals y, reals mu, reals sigma): real, 171
normal_id_glm
 sampling statement, 174
normal_id_glm_lpdf
 (real y | matrix x, real alpha, vector beta, real sigma): real, 176
 (vector y | matrix x, row_vector x, real alpha, vector beta, real sigma): real, 175
 (vector y | row_vector x, vector alpha, vector beta, real sigma): real, 175
normal_lccdf
 (reals y | reals mu, reals sigma): real, 172
normal_lcdf
 (reals y | reals mu, reals sigma): real, 171
normal_lpdf
 (reals y | reals mu, reals sigma): real, 171
normal_lupdf
 (reals y | reals mu, reals sigma): real, 171
 (real y | matrix x, real alpha, vector beta, real sigma): real, 174
 (real y | matrix x, real alpha, vector beta, vector sigma): real, 175
 (real y | matrix x, vector alpha, vector beta, real sigma): real, 174
 (real y | matrix x, vector alpha, vector beta, vector sigma): real, 175
 (real y | matrix x, vector alpha, vector beta, vector sigma): real, 176
 (vector y | matrix x, real alpha, vector beta, real sigma): real, 176
 (vector y | matrix x, real alpha, vector beta, vector sigma): real, 177
 (vector y | row_vector x, real alpha, vector beta, real sigma): real, 175
 (vector y | row_vector x, vector alpha, vector beta, real sigma): real, 175
 (vector y | row_vector x, vector alpha, vector beta, vector sigma): real, 176
 (vector y | matrix x, real alpha, vector beta, real sigma): real, 176
 (vector y | matrix x, real alpha, vector beta, vector sigma): real, 176
 (vector y | matrix x, vector alpha, vector beta, real sigma): real, 175
 (vector y | matrix x, vector alpha, vector beta, vector sigma): real, 177
 (vector y | row_vector x, real alpha, vector beta, real sigma): real, 177
(reals y | reals mu, reals sigma): real, 171

normal_rng
(reals mu, reals sigma): R, 172

not_a_number
(): real, 14

num_elements
(array[] T x): int, 51
(matrix x): int, 56
(row_vector x): int, 56
(vector x): int, 56

ode_adams
(function ode, vector initial_state, real initial_time, array[] real times, ...): array[] vector, 110

ode_adams_tol
(function ode, vector initial_state, real initial_time, array[] real times, data real rel_tol, data real abs_tol, data int max_num_steps, ...): array[] vector, 110

ode_bdf
(function ode, vector initial_state, real initial_time, array[] real times, ...): array[] vector, 110

ode_bdf_tol
(function ode, vector initial_state, real initial_time, array[] real times, data real rel_tol, data real abs_tol, int max_num_steps, ...): array[] vector, 110

ode_ckrk
(function ode, array[] real initial_state, real initial_time, array[] real times, ...): array[] vector, 111

ode_ckrk_tol
(function ode, vector initial_state, real initial_time, array[] real times, data real rel_tol, data real abs_tol, int max_num_steps, ...): array[] vector, 110

ode_rk45
(function ode, array[] real initial_state, real initial_time, array[] real times, ...): array[] vector, 109

ode_rk45_tol
(function ode, vector initial_state, real initial_time, array[] real times, data real rel_tol, data real abs_tol, int max_num_steps, ...): array[] vector, 109

one_hot_array
(int n, int k): array[] real, 72

one_hot_int_array
(int n, int k): array[] int, 72

one_hot_row_vector
(int n, int k): row_vector, 72

one_hot_vector
(int n, int k): vector, 72

ones_array
(int n): array[] real, 72

ones_int_array
(int n): array[] int, 72

ones_row_vector
(int n): row_vector, 72

ones_vector
(int n): vector, 72

operator_add
(complex x, complex y): complex, 40
(int x): int, 6
(int x, int y): int, 5
(matrix x, matrix y): matrix, 57
(matrix x, real y): matrix, 59
INDEX

(matrix x, real y): matrix, 62
(real x, matrix y): matrix, 62
(real x, row_vector y): row_vector, 62
(real x, vector y): vector, 62
(row_vector x, real y): row_vector, 62
(row_vector x, row_vector y): row_vector, 62
(vector x, real y): vector, 62
(vector x, vector y): vector, 62

operator_int_divide
(int x, int y): int, 5

operator_left_div
(matrix A, matrix B): matrix, 85
(matrix A, vector b): vector, 85

operator_logical_and
(int x, int y): int, 17
(real x, real y): int, 17

operator_logical_equal
(complex x, complex y): int, 41
(int x, int y): int, 16
(real x, real y): int, 16

operator_logical_greater_than
(int x, int y): int, 16
(real x, real y): int, 16

operator_logical_greater_than_equal
(int x, int y): int, 16
(real x, real y): int, 16

operator_logical_less_than
(int x, int y): int, 15
(real x, real y): int, 15

operator_logical_less_than_equal
(int x, int y): int, 16
(real x, real y): int, 16

operator_logical_not_equal
(complex x, complex y): int, 41
(int x, int y): int, 17
(real x, real y): int, 17

operator_logical_or
(int x, int y): int, 18
(real x, real y): int, 18

operator_mod
(int x, int y): int, 6

operator_multiply
(complex x, complex y): complex, 40
(int x, int y): int, 5
(matrix x, matrix y): matrix, 59
(matrix x, real y): matrix, 58

operator_negation
(int x): int, 17
(real x): int, 17

operator_pow
(complex x, complex y): complex, 40
(real x, real y): real, 20

operator_subtract
(complex x, complex y): complex, 40
(int x): int, 6
(int x, int y): int, 5
(matrix x): matrix, 57
(matrix x, matrix y): matrix, 58
(matrix x, real y): matrix, 60
(real x): real, 19
(real x, row_vector y): row_vector, 60
(real x, real y): real, 19
(real x, vector y): vector, 59
(row_vector x): vector, 57
(row_vector x, real y): row_vector, 60
(row_vector x, row_vector y): row_vector, 58
(vector x): vector, 57
(vector x, real y): vector, 59
(vector x, vector y): vector, 58

operator_transpose
(matrix x): matrix, 60
(vector x): vector, 60

ordered_logistic
sampling statement, 152

ordered_logistic_glm

sampling statement, 153
ordered_logistic_glm_lpmf
(array[] int y | matrix x, vector beta, vector c): real, 154
(array[] int y | row_vector x, vector beta, vector c): real, 153
(int y | matrix x, vector beta, vector c): real, 153
(int y | row_vector x, vector beta, vector c): real, 153
ordered_logistic_glm_lupmf
(array[] int y | matrix x, vector beta, vector c): real, 154
(array[] int y | row_vector x, vector beta, vector c): real, 154
(int y | matrix x, vector beta, vector c): real, 153
(int y | row_vector x, vector beta, vector c): real, 153
ordered_logistic_lpmf
(ints k | vector eta, vectors c): real, 152
ordered_logistic_lupmf
(ints k | vector eta, vectors c): real, 152
ordered_logistic_rng
(real eta, vector c): int, 152
ordered_probit
sampling statement, 155
ordered_probit_lpmf
(ints k | real eta, vectors c): real, 155
(ints k | vector eta, vectors c): real, 155
ordered_probit_lupmf
(ints k | real eta, vectors c): real, 155
(ints k | vector eta, vectors c): real, 155
ordered_probit_rng
(real eta, vector c): int, 155
owens_t
(T1 x, T2 y): R, 28
(real h, real a): real, 27
pareto
sampling statement, 201
pareto_cdf
(real y, real y_min, real alpha): real, 201
pareto_lccdf
(real y | real y_min, real alpha): real, 202
pareto_lcdf
(real y | real y_min, real alpha): real, 201
pareto_lpdf
(real y | real y_min, real alpha): real, 201
pareto_lupdf
(real y | real y_min, real alpha): real, 201
pareto_rng
(real y_min, real alpha): R, 202
pareto_type_2
sampling statement, 202
pareto_type_2_cdf
(real y, real mu, real lambda, real alpha): real, 203
pareto_type_2_lccdf
(real y | real mu, real lambda, real alpha): real, 203
pareto_type_2_lcdf
(real y | real mu, real lambda, real alpha): real, 203
pareto_type_2_lpdf
(real y | real mu, real lambda, real alpha): real, 203
pareto_type_2_lupdf
(real y | real mu, real lambda, real alpha): real, 202
pareto_type_2_rng
(real mu, real lambda, real alpha): R, 203
phi
(T x): R, 27
phi_approx
(T x): R, 27
pi
(): real, 13
poisson
sampling statement, 162
poisson_cdf
(ints n, real lambda): real, 162
poisson_lccdf
(ints n | real lambda): real, 163
poisson_lcdf
(ints n | reals lambda): real, 162

poisson_log
sampling statement, 163

poisson_log_glm
sampling statement, 164

poisson_log_glm_lpmf
(array[] int y | matrix x, real alpha, vector beta): real, 165
(array[] int y | matrix x, vector alpha, vector beta): real, 165
(array[] int y | row_vector x, real alpha, vector beta): real, 165
(array[] int y | row_vector x, vector alpha, vector beta): real, 165
(int y | matrix x, real alpha, vector beta): real, 164
(int y | matrix x, vector alpha, vector beta): real, 164
(int y | matrix x, vector alpha, vector beta): real, 165

poisson_log_glm_lupmf
(array[] int y | matrix x, real alpha, vector beta): real, 165
(array[] int y | matrix x, vector alpha, vector beta): real, 165
(array[] int y | row_vector x, real alpha, vector beta): real, 165
(array[] int y | row_vector x, vector alpha, vector beta): real, 165
(int y | matrix x, real alpha, vector beta): real, 164
(int y | matrix x, vector alpha, vector beta): real, 164

poisson_log_lpmf
(ints n | reals alpha): real, 163

poisson_log_lupmf
(ints n | reals alpha): real, 163

poisson_log_rng
(reals alpha): R, 164

poisson_rng
(reals lambda): R, 163

polar
(real r, real theta): complex, 43

positive_infinity
(): real, 14

cpy
(T1 x1, ..., TN xN): void, 2

prod
(array[] int x): real, 48
(array[] real x): real, 47
(matrix x): real, 67
(row_vector x): real, 67
(vector x): real, 67

proj
(complex z): complex, 43

qr
(matrix A): matrix, 90

quad_form
(matrix A, matrix B): matrix, 64
(matrix A, vector B): real, 65

quad_form_diag
(matrix m, row_vector rv): matrix, 65
(matrix m, vector v): matrix, 65

quad_form_sym
(matrix A, matrix B): matrix, 65
(matrix A, vector B): real, 65

quantile
(data array[] real x, data array[] real p): real, 50
(data array[] real x, data real p): real, 50
(data row_vector x, data array[] real p): real, 69
(data row_vector x, data real p): real, 69
(data vector x, data array[] real p): real, 69
(data vector x, data real p): real, 69

rank
(array[] int v, int s): int, 54
(array[] real v, int s): int, 54
(row_vector v, int s): int, 92
(vector v, int s): int, 92

rayleigh
sampling statement, 198

rayleigh_cdf
INDEX

(real y, real sigma): real, 198
rayleigh_lccdf
 (real y | real sigma): real, 198
rayleigh_lcdf
 (real y | real sigma): real, 198
rayleigh_lpdf
 (reals y | reals sigma): real, 198
rayleigh_lupdf
 (reals y | reals sigma): real, 198
rayleigh_rng
 (reals sigma): R, 199
reduce_sum
 (F f, array[] T x, int grainsize, T1 s1, T2 s2, ...): real, 120
reject
 (T1 x1, ..., TN xN): void, 2
rep_array
 (T x, int k, int m, int n):
 array[], T, 51
 (T x, int m, int n):
 array[], T, 51
 (T x, int n):
 array[], T, 51
rep_matrix
 (real x, int m, int n):
 matrix, 69
 (row_vector rv, int m):
 matrix, 70
 (vector v, int n):
 matrix, 69
rep_row_vector
 (real x, int n):
 row_vector, 69
rep_vector
 (real x, int m):
 vector, 69
reverse
 (array[] T v):
 array[], T, 55
 (row_vector v):
 row_vector, 93
 (vector v):
 vector, 92
rising_factorial
 (T1 x, T2 y):
 R, 33
 (real x, int n):
 real, 33
round
 (T x):
 R, 23
row
 (matrix x, int m):
 row_vector, 73
rows
 (matrix x):
 int, 56
 (row_vector x):
 int, 56
 (vector x):
 int, 56
rows_dot_product
 (matrix x, matrix y):
 vector, 63
 (row_vector x, row_vector y):
 vector, 63
 (vector x, vector y):
 vector, 63
rows_dot_self
 (matrix x):
 vector, 64
 (row_vector x):
 vector, 64
 (vector x):
 vector, 64
scale_matrix_exp_multiply
 (real t, matrix A, matrix B):
 matrix, 87
scaled_inv_chi_square
 sampling statement, 191
scaled_inv_chi_square_cdf
 (reals y, reals nu, reals sigma):
 real, 192
scaled_inv_chi_square_lccdf
 (reals y | reals nu, reals sigma):
 real, 192
scaled_inv_chi_square_lcdf
 (reals y | reals nu, reals sigma):
 real, 192
scaled_inv_chi_square_lpdf
 (reals y | reals nu, reals sigma):
 real, 191
scaled_inv_chi_square_lupdf
 (reals y | reals nu, reals sigma):
 real, 192
scaled_inv_chi_square_rng
 (reals nu, reals sigma):
 real, 192
sd
 (array[] real x):
 real, 49
 (matrix x):
 real, 68
 (row_vector x):
 real, 68
 (vector x):
 real, 68
segment
 (array[] T sv, int i, int n):
 array[], T, 75
 (row_vector rv, int i, int n):
 row_vector, 75
 (vector v, int i, int n):
 vector, 75
sin
 (T x):
 R, 25
 (complex z):
 complex, 44
singular_values
 (matrix A):
 vector, 91
sinh
 (T x):
 R, 25
 (complex z):
 complex, 46
size
 (array[] T x):
 int, 51
 (int x):
 int, 7
 (matrix x):
 int, 57
(real x): int, 7
(row_vector x): int, 57
(vector x): int, 56
skew_double_exponential
sampling statement, 186
skew_double_exponential_cdf
(reals y, reals mu, reals sigma,
reals tau): real, 186
skew_double_exponential_lccdf
(reals y | reals mu, reals sigma,
reals tau): real, 186
skew_double_exponential_lcdf
(reals y | reals mu, reals sigma,
reals tau): real, 186
skew_double_exponential_lpdf
(reals y | reals mu, reals sigma,
reals tau): real, 186
skew_double_exponential_lupdf
(reals y | reals mu, reals sigma,
reals tau): real, 186
skew_double_exponential_rng
(reals mu, reals sigma, reals tau):
R, 187
skew_normal
sampling statement, 178
skew_normal_cdf
(reals y, reals xi, reals omega,
reals alpha): real, 179
skew_normal_lccdf
(reals y | reals xi, reals omega,
reals alpha): real, 179
skew_normal_lcdf
(reals y | reals xi, reals omega,
reals alpha): real, 179
skew_normal_lpdf
(reals y | reals xi, reals omega,
reals alpha): real, 179
skew_normal_lupdf
(reals y | reals xi, reals omega,
reals alpha): real, 179
skew_normal_rng
(reals xi, reals omega, real alpha):
R, 179
softmax
(vector x): vector, 77
sort_asc
(array[] int v): array[] int, 54
(array[] real v): array[] real, 53
(row_vector v): row_vector, 92
(vector v): vector, 92
sort_desc
(array[] int v): array[] int, 54
(array[] real v): array[] real, 53
(row_vector v): row_vector, 92
(vector v): vector, 92
sort_indices_asc
(array[] int v): array[] int, 54
(array[] real v): array[] int, 54
(row_vector v): array[] int, 92
(vector v): array[] int, 92
sort_indices_desc
(array[] int v): array[] int, 54
(array[] real v): array[] int, 54
(row_vector v): array[] int, 92
(vector v): array[] int, 92
sqrt
(T x): R, 23
(complex x): complex, 44
sqrt2
(): real, 14
square
(T x): R, 23
squared_distance
(row_vector x, row_vector y): real,
50
(row_vector x, vector y): real, 50
(vector x, row_vector y): real, 49
(vector x, vector y): real, 49
std_normal
sampling statement, 172
std_normal_cdf
(reals y): real, 173
std_normal_lccdf
(reals y): real, 173
std_normal_lcdf
(reals y): real, 173
std_normal_lpdf
(reals y): real, 173
std_normal_lupdf
(reals y): real, 173
std_normal_rng
(): real, 173
step
(real x): real, 18
student_t
sampling statement, 180
student_t_cdf
(reals y, reals nu, reals mu, reals sigma): real, 180

student_t_lccdf
(reals y | reals nu, reals mu, reals sigma): real, 180

student_t_lcdf
(reals y | reals nu, reals mu, reals sigma): real, 180

student_t_lpdf
(reals y | reals nu, reals mu, reals sigma): real, 180

student_t_lupdf
(reals y | reals nu, reals mu, reals sigma): real, 180

student_t_rng
(reals nu, reals mu, reals sigma): R, 180

sub_col
(matrix x, int i, int j, int n_rows): vector, 74

sub_row
(matrix x, int i, int j, int n_cols): row_vector, 74

sum
(array[] int x): int, 47
(array[] real x): real, 47
(matrix x): real, 67
(row_vector x): real, 67
(vector x): real, 67

svd_U
(matrix A): vector, 91

svd_V
(matrix A): vector, 91

symmetrize_from_lower_tri
(matrix A): matrix, 70

tail
(array[] T sv, int n): array[] T, 74
(row_vector rv, int n): row_vector, 74
(vector v, int n): vector, 74

tan
(T x): R, 25
(complex z): complex, 45

tanh
(T x): R, 25
(complex z): complex, 46

target
(): real, 15

tcrossprod
(matrix x): matrix, 64
tgamma
(T x): R, 28
to_array_1d
(array[...] int a): array[] int, 100
(array[...] real a): array[] real, 100
(matrix m): array[] real, 100
(row_vector v): array[] real, 100
(vector v): array[] real, 100
to_array_2d
(matrix m): array[[], real, 99
to_complex
(): complex, 39
(real re): complex, 39
(real re, real im): complex, 39
to_matrix
(array[[], int a]: matrix, 98
(array[[], real a]: matrix, 98
(array[] int a, int m, int n): matrix, 98
(array[] int a, int m, int n, int col_major): matrix, 98
(array[] real a, int m, int n): matrix, 98
(array[] real a, int m, int n, int col_major): matrix, 98
(array[] row_vector vs): matrix, 98
(matrix m): matrix, 97
(matrix m, int m, int n): matrix, 97
(matrix m, int m, int n, int col_major): matrix, 97
(row_vector v): matrix, 97
(row_vector v, int m, int n): matrix, 97
(row_vector v, int m, int n, int col_major): matrix, 97
(vector v): matrix, 97
(vector v, int m, int n): matrix, 97
(vector v, int m, int n, int col_major): matrix, 97
to_row_vector
(array[] int a): row_vector, 99
(array[] real a): row_vector, 99
(matrix m): row_vector, 99
(row_vector v): row_vector, 99
(vector v): row_vector, 99
to_vector
INDEX

(array[] int a): vector, 99
(array[] real a): vector, 99
(matrix m): vector, 99
(row_vector v): vector, 99
(vector v): vector, 99

trace
(matrix A): real, 87

trace_gen_quad_form
(matrix D, matrix A, matrix B): real, 65

trace_quad_form
(matrix A, matrix B): real, 65

trigamma
(T x): R, 29

trunc
(T x): R, 23

uniform
sampling statement, 211
uniform_cdf
(reals y, real alpha, real beta): real, 211
uniform_lccdf
(reals y | real alpha, real beta): real, 211
uniform_lcdf
(reals y | real alpha, real beta): real, 211
uniform_lpdf
(reals y | real alpha, real beta): real, 211
uniform_lupdf
(reals y | real alpha, real beta): real, 211
uniform_rng
(real alpha, real beta): R, 212

uniform_simplex
(int n): vector, 73

variance
(array[] real x): real, 48
(matrix x): real, 68
(row_vector x): real, 68
(vector x): real, 68

von_mises
sampling statement, 208
von_mises_cdf
(reals y | real mu, real kappa): R, 209
von_mises_lccdf
(reals y | real mu, real kappa): R, 209
von_mises_lcdf
(reals y | real mu, real kappa): R, 209
von_mises_lupdf
(reals y | real mu, real kappa): R, 209

weibull
sampling statement, 196
weibull_cdf
(reals y, real alpha, real sigma): real, 196
weibull_lccdf
(reals y | real alpha, real sigma): real, 196
weibull_lcdf
(reals y | real alpha, real sigma): real, 196
weibull_lpdf
(reals y | real alpha, real sigma): real, 196
weibull_lupdf
(reals y | real alpha, real sigma): real, 196
weibull_rng
(real alpha, real sigma): R, 196

wiener
sampling statement, 204
wiener_lccdf
(reals y | real alpha, real tau, real beta, real delta): real, 204
wiener_lcdf
(reals y | real alpha, real tau, real beta, real delta): real, 204
wiener_lupdf
(reals y | real alpha, real tau, real beta, real delta): real, 204

wishart
sampling statement, 231
wishart_lpdf
(matrix W | real nu, matrix Sigma): real, 231
wishart_lupdf
(matrix W | real nu, matrix Sigma): real, 231
wishart_rng
(real nu, matrix Sigma): matrix, 231

zeros_array
(int n): array[] real, 72
zeros_int_array
 (int n): array[] int, 72
zeros_row_vector
 (int n): row_vector, 73
zeros_vector
 (int n): vector, 73