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Overview

About this user’s guide

This is the official user’s guide for Stan. It provides example models and programming
techniques for coding statistical models in Stan.

• Part 1 gives Stan code and discussions for several important classes of models.

• Part 2 discusses various general Stan programming techniques that are not tied
to any particular model.

• Part 3 introduces algorithms for calibration and model checking that requie
multiple runs of Stan.

• The appendices provide a style guide and advice for users of BUGS and JAGS.

In addition to this user’s guide, there are two reference manuals for the Stan language
and algorithms. The Stan Reference Manual specifies the Stan programming language
and inference algorithms. The Stan Functions Reference specifies the functions built
into the Stan programming language.

There is also a separate installation and getting started guide for each of the Stan
interfaces (R, Python, Julia, Stata, MATLAB, Mathematica, and command line).

We recommend working through this guide using the textbooks Bayesian Data Analysis
and Statistical Rethinking: A Bayesian Course with Examples in R and Stan as references
on the concepts, and using the Stan Reference Manual when necessary to clarify
programming issues.

Web resources

Stan is an open-source software project, resources for which are hosted on various
web sites:

• The Stan Web Site organizes all of the resources for the Stan project for users and
developers. It contains links to the official Stan releases, source code, installation
instructions, and full documentation, including the latest version of this manual,
the user’s guide and the getting started guide for each interface, tutorials, case
studies, and reference materials for developers.
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CONTENTS 9

• The Stan Forums provide structured message boards for questions, discussion,
and announcements related to Stan for both users and developers.

• The Stan GitHub Organization hosts all of Stan’s code, documentation, wikis,
and web site, as well as the issue trackers for bug reports and feature requests
and interactive code review for pull requests.
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Part 1. Example Models

In this part of the book, we survey a range of example models, with the goal of
illustrating how to code them efficiently in Stan.
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1. Regression Models

Stan supports regression models from simple linear regressions to multilevel
generalized linear models.

1.1. Linear Regression
The simplest linear regression model is the following, with a single predictor and a
slope and intercept coefficient, and normally distributed noise. This model can be
written using standard regression notation as

yn = α+ βxn + εn where εn ∼ normal(0, σ).

This is equivalent to the following sampling involving the residual,

yn − (α+ βXn) ∼ normal(0, σ),

and reducing still further, to

yn ∼ normal(α+ βXn, σ).

This latter form of the model is coded in Stan as follows.

data {
int<lower=0> N;
vector[N] x;
vector[N] y;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

y ~ normal(alpha + beta * x, sigma);
}

There are N observations and for each observation, n ∈ N, we have predictor x[n] and
outcome y[n]. The intercept and slope parameters are alpha and beta. The model
assumes a normally distributed noise term with scale sigma. This model has improper
priors for the two regression coefficients.

11
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Matrix Notation and Vectorization
The sampling statement in the previous model is vectorized, with

y ~ normal(alpha + beta * x, sigma);

providing the same model as the unvectorized version,

for (n in 1:N)
y[n] ~ normal(alpha + beta * x[n], sigma);

In addition to being more concise, the vectorized form is much faster.1

In general, Stan allows the arguments to distributions such as normal to be vectors.
If any of the other arguments are vectors or arrays, they have to be the same size.
If any of the other arguments is a scalar, it is reused for each vector entry. See the
vectorization section for more information on vectorization of probability functions.

The other reason this works is that Stan’s arithmetic operators are overloaded to
perform matrix arithmetic on matrices. In this case, because x is of type vector and
beta of type real, the expression beta * x is of type vector. Because Stan supports
vectorization, a regression model with more than one predictor can be written directly
using matrix notation.

data {
int<lower=0> N; // number of data items
int<lower=0> K; // number of predictors
matrix[N, K] x; // predictor matrix
vector[N] y; // outcome vector

}
parameters {

real alpha; // intercept
vector[K] beta; // coefficients for predictors
real<lower=0> sigma; // error scale

}
model {

y ~ normal(x * beta + alpha, sigma); // likelihood
}

The constraint lower=0 in the declaration of sigma constrains the value to be greater

1Unlike in Python and R, which are interpreted, Stan is translated to C++ and compiled, so loops and
assignment statements are fast. Vectorized code is faster in Stan because (a) the expression tree used to
compute derivatives can be simplified, leading to fewer virtual function calls, and (b) computations that
would be repeated in the looping version, such as log(sigma) in the above model, will be computed once
and reused.
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than or equal to 0. With no prior in the model block, the effect is an improper prior
on non-negative real numbers. Although a more informative prior may be added,
improper priors are acceptable as long as they lead to proper posteriors.

In the model above, x is an N × K matrix of predictors and beta a K-vector of
coefficients, so x * beta is an N-vector of predictions, one for each of the N data
items. These predictions line up with the outcomes in the N-vector y, so the entire
model may be written using matrix arithmetic as shown. It would be possible to
include a column of ones in the data matrix x to remove the alpha parameter.

The sampling statement in the model above is just a more efficient, vector-based
approach to coding the model with a loop, as in the following statistically equivalent
model.

model {
for (n in 1:N)
y[n] ~ normal(x[n] * beta, sigma);

}

With Stan’s matrix indexing scheme, x[n] picks out row n of the matrix x; because
beta is a column vector, the product x[n] * beta is a scalar of type real.

Intercepts as Inputs

In the model formulation

y ~ normal(x * beta, sigma);

there is no longer an intercept coefficient alpha. Instead, we have assumed that the
first column of the input matrix x is a column of 1 values. This way, beta[1] plays
the role of the intercept. If the intercept gets a different prior than the slope terms,
then it would be clearer to break it out. It is also slightly more efficient in its explicit
form with the intercept variable singled out because there’s one fewer multiplications;
it should not make that much of a difference to speed, though, so the choice should
be based on clarity.

1.2. The QR Reparameterization
In the previous example, the linear predictor can be written as η = xβ, where η is
a N-vector of predictions, x is a N × K matrix, and β is a K-vector of coefficients.
Presuming N ≥ K, we can exploit the fact that any design matrix x can be decomposed
using the thin QR decomposition into an orthogonal matrix Q and an upper-triangular
matrix R, i.e. x = QR.

The functions qr_thin_Q and qr_thin_R implement the thin QR decomposition,
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which is to be preferred to the fat QR decomposition that would be obtained by
using qr_Q and qr_R, as the latter would more easily run out of memory (see the
Stan Functions Reference for more information on the qr_thin_Q and qr_thin_R
functions). In practice, it is best to write x = Q∗R∗ where Q∗ = Q ∗

√
n− 1 and

R∗ = 1√
n−1R. Thus, we can equivalently write η = xβ = QRβ = Q∗R∗β. If we let

θ = R∗β, then we have η = Q∗θ and β = R∗−1θ. In that case, the previous Stan
program becomes

data {
int<lower=0> N; // number of data items
int<lower=0> K; // number of predictors
matrix[N, K] x; // predictor matrix
vector[N] y; // outcome vector

}
transformed data {

matrix[N, K] Q_ast;
matrix[K, K] R_ast;
matrix[K, K] R_ast_inverse;
// thin and scale the QR decomposition
Q_ast = qr_thin_Q(x) * sqrt(N - 1);
R_ast = qr_thin_R(x) / sqrt(N - 1);
R_ast_inverse = inverse(R_ast);

}
parameters {

real alpha; // intercept
vector[K] theta; // coefficients on Q_ast
real<lower=0> sigma; // error scale

}
model {

y ~ normal(Q_ast * theta + alpha, sigma); // likelihood
}
generated quantities {

vector[K] beta;
beta = R_ast_inverse * theta; // coefficients on x

}

Since this Stan program generates equivalent predictions for y and the same posterior
distribution for α, β, and σ as the previous Stan program, many wonder why the
version with this QR reparameterization performs so much better in practice, often
both in terms of wall time and in terms of effective sample size. The reasoning is
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threefold:

1. The columns of Q∗ are orthogonal whereas the columns of x generally are not.
Thus, it is easier for a Markov Chain to move around in θ-space than in β-space.

2. The columns of Q∗ have the same scale whereas the columns of x generally do
not. Thus, a Hamiltonian Monte Carlo algorithm can move around the parameter
space with a smaller number of larger steps

3. Since the covariance matrix for the columns of Q∗ is an identity matrix, θ
typically has a reasonable scale if the units of y are also reasonable. This also
helps HMC move efficiently without compromising numerical accuracy.

Consequently, this QR reparameterization is recommended for linear and generalized
linear models in Stan whenever K > 1 and you do not have an informative prior on the
location of β. It can also be worthwhile to subtract the mean from each column of x
before obtaining the QR decomposition, which does not affect the posterior distribution
of θ or β but does affect α and allows you to interpret α as the expectation of y in a
linear model.

1.3. Priors for Coefficients and Scales
See our general discussion of priors for tips on priors for parameters in regression
models.

Later sections discuss univariate hierarchical priors and multivariate hierarchical
priors, as well as priors used to identify models.

However, as described in QR-reparameterization section, if you do not have an
informative prior on the location of the regression coefficients, then you are better
off reparameterizing your model so that the regression coefficients are a generated
quantity. In that case, it usually does not matter much what prior is used on on the
reparameterized regression coefficients and almost any weakly informative prior that
scales with the outcome will do.

1.4. Robust Noise Models
The standard approach to linear regression is to model the noise term ε as having a
normal distribution. From Stan’s perspective, there is nothing special about normally
distributed noise. For instance, robust regression can be accommodated by giving the
noise term a Student-t distribution. To code this in Stan, the sampling distribution is
changed to the following.

data {
...
real<lower=0> nu;

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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}
...
model {

y ~ student_t(nu, alpha + beta * x, sigma);
}

The degrees of freedom constant nu is specified as data.

1.5. Logistic and Probit Regression
For binary outcomes, either of the closely related logistic or probit regression models
may be used. These generalized linear models vary only in the link function they use
to map linear predictions in (−∞,∞) to probability values in (0,1). Their respective
link functions, the logistic function and the standard normal cumulative distribution
function, are both sigmoid functions (i.e., they are both S-shaped).

A logistic regression model with one predictor and an intercept is coded as follows.

data {
int<lower=0> N;
vector[N] x;
int<lower=0,upper=1> y[N];

}
parameters {

real alpha;
real beta;

}
model {

y ~ bernoulli_logit(alpha + beta * x);
}

The noise parameter is built into the Bernoulli formulation here rather than specified
directly.

Logistic regression is a kind of generalized linear model with binary outcomes and the
log odds (logit) link function, defined by

logit(v) = log
(
v

1− v

)
.

The inverse of the link function appears in the model:

logit−1(u) = inv_logit(u) = 1
1+ exp(−u) .
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The model formulation above uses the logit-parameterized version of the Bernoulli
distribution, which is defined by

bernoulli_logit (y | α) = bernoulli
(
y | logit−1(α)

)
.

The formulation is also vectorized in the sense that alpha and beta are scalars and x
is a vector, so that alpha + beta * x is a vector. The vectorized formulation is
equivalent to the less efficient version

for (n in 1:N)
y[n] ~ bernoulli_logit(alpha + beta * x[n]);

Expanding out the Bernoulli logit, the model is equivalent to the more explicit, but less
efficient and less arithmetically stable

for (n in 1:N)
y[n] ~ bernoulli(inv_logit(alpha + beta * x[n]));

Other link functions may be used in the same way. For example, probit regression
uses the cumulative normal distribution function, which is typically written as

Φ(x) =
∫ x
−∞

normal (y | 0,1) dy.

The cumulative standard normal distribution function Φ is implemented in Stan as
the function Phi. The probit regression model may be coded in Stan by replacing the
logistic model’s sampling statement with the following.

y[n] ~ bernoulli(Phi(alpha + beta * x[n]));

A fast approximation to the cumulative standard normal distribution function Φ is
implemented in Stan as the function Phi_approx.2 The approximate probit regression
model may be coded with the following.

y[n] ~ bernoulli(Phi_approx(alpha + beta * x[n]));

1.6. Multi-Logit Regression
Multiple outcome forms of logistic regression can be coded directly in Stan. For
instance, suppose there are K possible outcomes for each output variable yn. Also
suppose that there is a D-dimensional vector xn of predictors for yn. The multi-logit
model with normal(0,5) priors on the coefficients is coded as follows.

2The Phi_approx function is a rescaled version of the inverse logit function, so while the scale is roughly
the same Φ, the tails do not match.
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data {
int K;
int N;
int D;
int y[N];
matrix[N, D] x;

}
parameters {

matrix[D, K] beta;
}
model {

matrix[N, K] x_beta = x * beta;

to_vector(beta) ~ normal(0, 5);

for (n in 1:N)
y[n] ~ categorical_logit(x_beta[n]');

}

The prior on beta is coded in vectorized form. As of Stan 2.18, the categorical-logit
distribution is not vectorized for parameter arguments, so the loop is required. The
matrix multiplication is pulled out to define a local variable for all of the predictors for
efficiency. Like the Bernoulli-logit, the categorical-logit distribution applies softmax
internally to convert an arbitrary vector to a simplex,

categorical_logit (y | α) = categorical (y | softmax(α)) ,

where
softmax(u) = exp(u)/ sum

(
exp(u)

)
.

The categorical distribution with log-odds (logit) scaled parameters used above is
equivalent to writing

y[n] ~ categorical(softmax(x[n] * beta));

Constraints on Data Declarations

The data block in the above model is defined without constraints on sizes K, N, and D
or on the outcome array y. Constraints on data declarations provide error checking at
the point data are read (or transformed data are defined), which is before sampling
begins. Constraints on data declarations also make the model author’s intentions
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more explicit, which can help with readability. The above model’s declarations could
be tightened to

int<lower = 2> K;
int<lower = 0> N;
int<lower = 1> D;
int<lower = 1, upper = K> y[N];

These constraints arise because the number of categories, K, must be at least two in
order for a categorical model to be useful. The number of data items, N, can be zero,
but not negative; unlike R, Stan’s for-loops always move forward, so that a loop extent
of 1:N when N is equal to zero ensures the loop’s body will not be executed. The
number of predictors, D, must be at least one in order for beta * x[n] to produce
an appropriate argument for softmax(). The categorical outcomes y[n] must be
between 1 and K in order for the discrete sampling to be well defined.

Constraints on data declarations are optional. Constraints on parameters declared
in the parameters block, on the other hand, are not optional—they are required to
ensure support for all parameter values satisfying their constraints. Constraints on
transformed data, transformed parameters, and generated quantities are also optional.

Identifiability
Because softmax is invariant under adding a constant to each component of its input,
the model is typically only identified if there is a suitable prior on the coefficients.

An alternative is to use (K − 1)-vectors by fixing one of them to be zero. The partially
known parameters section discusses how to mix constants and parameters in a vector.
In the multi-logit case, the parameter block would be redefined to use (K − 1)-vectors

parameters {
matrix[K - 1, D] beta_raw;

}

and then these are transformed to parameters to use in the model. First, a transformed
data block is added before the parameters block to define a row vector of zero values,

transformed data {
row_vector[D] zeros = rep_row_vector(0, D);

}

which can then be appended to beta_row to produce the coefficient matrix beta,

transformed parameters {
matrix[K, D] beta;
beta = append_row(beta_raw, zeros);
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}

The rep_row_vector(0, D) call creates a row vector of size D with all entries set to
zero. The derived matrix beta is then defined to be the result of appending the row-
vector zeros as a new row at the end of beta_raw; the row vector zeros is defined as
transformed data so that it doesn’t need to be constructed from scratch each time it is
used.

This is not the same model as using K-vectors as parameters, because now the prior
only applies to (K − 1)-vectors. In practice, this will cause the maximum likelihood
solutions to be different and also the posteriors to be slightly different when taking
priors centered around zero, as is typical for regression coefficients.

1.7. Parameterizing Centered Vectors
It is often convenient to define a parameter vector β that is centered in the sense of
satisfying the sum-to-zero constraint,

K∑
k=1
βk = 0.

Such a parameter vector may be used to identify a multi-logit regression parameter
vector (see the multi-logit section for details), or may be used for ability or difficulty
parameters (but not both) in an IRT model (see the item-response model section for
details).

K − 1 Degrees of Freedom
There is more than one way to enforce a sum-to-zero constraint on a parameter vector,
the most efficient of which is to define the K-th element as the negation of the sum of
the elements 1 through K − 1.

parameters {
vector[K-1] beta_raw;
...

transformed parameters {
vector[K] beta = append_row(beta_raw, -sum(beta_raw));
...

Placing a prior on beta_raw in this parameterization leads to a subtly different
posterior than that resulting from the same prior on beta in the original
parameterization without the sum-to-zero constraint. Most notably, a simple prior
on each component of beta_raw produces different results than putting the same
prior on each component of an unconstrained K-vector beta. For example, providing

item-response-models.section
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a normal(0,5) prior on beta will produce a different posterior mode than placing the
same prior on beta_raw.

Marginal distribution of sum-to-zero components

On the Stan forums, Aaron Goodman provided the following code to produce a prior
with standard normal marginals on the components of beta,

model {
beta ~ normal(0, inv(sqrt(1 - inv(K))));
...

The components are not independent, as they must sum zero. No Jacobian is required
because summation and negation are linear operations (and thus have constant
Jacobians).

To generate distributions with marginals other than standard normal, the resulting
beta may be scaled by some factor sigma and translated to some new location mu.

QR Decomposition
Aaron Goodman, on the Stan forums, also provided this approach, which calculates
a QR decomposition in the transformed data block, then uses it to transform to a
sum-to-zero parameter x,

transformed data{
matrix[K, K] A = diag_matrix(rep_vector(1,K));
matrix[K, K-1] A_qr;
for (i in 1:K-1) A[K,i] = -1;
A[K,K] = 0;
A_qr = qr_Q(A)[ , 1:(K-1)];

}
parameters {

vector[K-1] beta_raw;
}
transformed parameters{

vector[K] beta = A_qr * beta_raw;
}
model {

beta_raw ~ normal(0, inv(sqrt(1 - inv(K))));
}

This produces a marginal standard normal distribution on the values of beta, which
will sum to zero by construction of the QR decomposition.
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Translated and Scaled Simplex
An alternative approach that’s less efficient, but amenable to a symmetric prior, is to
offset and scale a simplex.

parameters {
simplex[K] beta_raw;
real beta_scale;
...

transformed parameters {
vector[K] beta;
beta = beta_scale * (beta_raw - inv(K));
...

Here inv(K) is just a short way to write 1.0 / K. Given that beta_raw sums to 1
because it is a simplex, the elementwise subtraction of inv(K) is guaranteed to sum
to zero. Because the magnitude of the elements of the simplex is bounded, a scaling
factor is required to provide beta with K degrees of freedom necessary to take on
every possible value that sums to zero.

With this parameterization, a Dirichlet prior can be placed on beta_raw, perhaps
uniform, and another prior put on beta_scale, typically for “shrinkage.”

Soft Centering
Adding a prior such as β ∼ normal(0, σ) will provide a kind of soft centering of a
parameter vector β by preferring, all else being equal, that

∑K
k=1 βk = 0. This approach

is only guaranteed to roughly center if β and the elementwise addition β + c for a
scalar constant c produce the same likelihood (perhaps by another vector α being
transformed to α − c, as in the IRT models). This is another way of achieving a
symmetric prior.

1.8. Ordered Logistic and Probit Regression
Ordered regression for an outcome yn ∈ {1, . . . , k} with predictors xn ∈ RD is
determined by a single coefficient vector β ∈ RD along with a sequence of cutpoints
c ∈ RK−1 sorted so that cd < cd+1. The discrete output is k if the linear predictor xnβ
falls between ck−1 and ck, assuming c0 = −∞ and cK = ∞. The noise term is fixed by
the form of regression, with examples for ordered logistic and ordered probit models.

Ordered Logistic Regression
The ordered logistic model can be coded in Stan using the ordered data type for the
cutpoints and the built-in ordered_logistic distribution.

data {
int<lower=2> K;



CHAPTER 1. REGRESSION MODELS 23

int<lower=0> N;
int<lower=1> D;
int<lower=1,upper=K> y[N];
row_vector[D] x[N];

}
parameters {

vector[D] beta;
ordered[K-1] c;

}
model {

for (n in 1:N)
y[n] ~ ordered_logistic(x[n] * beta, c);

}

The vector of cutpoints c is declared as ordered[K-1], which guarantees that c[k] is
less than c[k+1].

If the cutpoints were assigned independent priors, the constraint effectively truncates
the joint prior to support over points that satisfy the ordering constraint. Luckily,
Stan does not need to compute the effect of the constraint on the normalizing term
because the probability is needed only up to a proportion.

Ordered Probit

An ordered probit model could be coded in exactly the same way by swapping the
cumulative logistic (inv_logit) for the cumulative normal (Phi).

data {
int<lower=2> K;
int<lower=0> N;
int<lower=1> D;
int<lower=1,upper=K> y[N];
row_vector[D] x[N];

}
parameters {

vector[D] beta;
ordered[K-1] c;

}
model {

vector[K] theta;
for (n in 1:N) {
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real eta;
eta = x[n] * beta;
theta[1] = 1 - Phi(eta - c[1]);
for (k in 2:(K-1))

theta[k] = Phi(eta - c[k-1]) - Phi(eta - c[k]);
theta[K] = Phi(eta - c[K-1]);
y[n] ~ categorical(theta);

}
}

The logistic model could also be coded this way by replacing Phi with inv_logit,
though the built-in encoding based on the softmax transform is more efficient and
more numerically stable. A small efficiency gain could be achieved by computing the
values Phi(eta - c[k]) once and storing them for re-use.

1.9. Hierarchical Logistic Regression
The simplest multilevel model is a hierarchical model in which the data are grouped
into L distinct categories (or levels). An extreme approach would be to completely
pool all the data and estimate a common vector of regression coefficients β. At the
other extreme, an approach with no pooling assigns each level l its own coefficient
vector βl that is estimated separately from the other levels. A hierarchical model is
an intermediate solution where the degree of pooling is determined by the data and a
prior on the amount of pooling.

Suppose each binary outcome yn ∈ {0,1} has an associated level, lln ∈ {1, . . . , L}. Each
outcome will also have an associated predictor vector xn ∈ RD . Each level l gets its own
coefficient vector βl ∈ RD . The hierarchical structure involves drawing the coefficients
βl,d ∈ R from a prior that is also estimated with the data. This hierarchically estimated
prior determines the amount of pooling. If the data in each level are similar, strong
pooling will be reflected in low hierarchical variance. If the data in the levels are
dissimilar, weaker pooling will be reflected in higher hierarchical variance.

The following model encodes a hierarchical logistic regression model with a hierarchical
prior on the regression coefficients.

data {
int<lower=1> D;
int<lower=0> N;
int<lower=1> L;
int<lower=0,upper=1> y[N];
int<lower=1,upper=L> ll[N];
row_vector[D] x[N];
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}
parameters {

real mu[D];
real<lower=0> sigma[D];
vector[D] beta[L];

}
model {

for (d in 1:D) {
mu[d] ~ normal(0, 100);
for (l in 1:L)
beta[l,d] ~ normal(mu[d], sigma[d]);

}
for (n in 1:N)
y[n] ~ bernoulli(inv_logit(x[n] * beta[ll[n]]));

}

The standard deviation parameter sigma gets an implicit uniform prior on (0,∞)
because of its declaration with a lower-bound constraint of zero. Stan allows improper
priors as long as the posterior is proper. Nevertheless, it is usually helpful to have
informative or at least weakly informative priors for all parameters; see the regression
priors section for recommendations on priors for regression coefficients and scales.

Optimizing the Model

Where possible, vectorizing sampling statements leads to faster log probability and
derivative evaluations. The speed boost is not because loops are eliminated, but
because vectorization allows sharing subcomputations in the log probability and
gradient calculations and because it reduces the size of the expression tree required
for gradient calculations.

The first optimization vectorizes the for-loop over D as

mu ~ normal(0, 100);
for (l in 1:L)

beta[l] ~ normal(mu, sigma);

The declaration of beta as an array of vectors means that the expression beta[l]
denotes a vector. Although beta could have been declared as a matrix, an array
of vectors (or a two-dimensional array) is more efficient for accessing rows; see the
indexing efficiency section for more information on the efficiency tradeoffs among
arrays, vectors, and matrices.



CHAPTER 1. REGRESSION MODELS 26

This model can be further sped up and at the same time made more arithmetically
stable by replacing the application of inverse-logit inside the Bernoulli distribution
with the logit-parameterized Bernoulli,3

for (n in 1:N)
y[n] ~ bernoulli_logit(x[n] * beta[ll[n]]);

Unlike in R or BUGS, loops, array access and assignments are fast in Stan because they
are translated directly to C++. In most cases, the cost of allocating and assigning to a
container is more than made up for by the increased efficiency due to vectorizing the
log probability and gradient calculations. Thus the following version is faster than the
original formulation as a loop over a sampling statement.

{
vector[N] x_beta_ll;
for (n in 1:N)
x_beta_ll[n] = x[n] * beta[ll[n]];

y ~ bernoulli_logit(x_beta_ll);
}

The brackets introduce a new scope for the local variable x_beta_ll; alternatively,
the variable may be declared at the top of the model block.

In some cases, such as the above, the local variable assignment leads to models that
are less readable. The recommended practice in such cases is to first develop and
debug the more transparent version of the model and only work on optimizations
when the simpler formulation has been debugged.

1.10. Hierarchical Priors
Priors on priors, also known as “hyperpriors,” should be treated the same way as priors
on lower-level parameters in that as much prior information as is available should
be brought to bear. Because hyperpriors often apply to only a handful of lower-level
parameters, care must be taken to ensure the posterior is both proper and not overly
sensitive either statistically or computationally to wide tails in the priors.

Boundary-Avoiding Priors for MLE in Hierarchical Models
The fundamental problem with maximum likelihood estimation (MLE) in the
hierarchical model setting is that as the hierarchical variance drops and the values
cluster around the hierarchical mean, the overall density grows without bound. As an

3The Bernoulli-logit distribution builds in the log link function, taking

bernoulli_logit (y | α) = bernoulli
(
y | logit−1(α)

)
.
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illustration, consider a simple hierarchical linear regression (with fixed prior mean) of
yn ∈ R on xn ∈ RK , formulated as

yn ∼ normal(xnβ,σ)

βk ∼ normal(0, τ)

τ ∼ Cauchy(0,2.5)

In this case, as τ → 0 and βk → 0, the posterior density

p(β, τ,σ |y, x)∝ p(y|x,β, τ,σ)

grows without bound. See the plot of Neal’s funnel density, which has similar behavior.

There is obviously no MLE estimate for β,τ,σ in such a case, and therefore the model
must be modified if posterior modes are to be used for inference. The approach
recommended by Chung et al. (2013) is to use a gamma distribution as a prior, such as

σ ∼ Gamma(2,1/A),

for a reasonably large value of A, such as A = 10.

1.11. Item-Response Theory Models
Item-response theory (IRT) models the situation in which a number of students each
answer one or more of a group of test questions. The model is based on parameters
for the ability of the students, the difficulty of the questions, and in more articulated
models, the discriminativeness of the questions and the probability of guessing
correctly; see Gelman and Hill (2007 pps. 314–320) for a textbook introduction
to hierarchical IRT models and Curtis (2010) for encodings of a range of IRT models in
BUGS.

Data Declaration with Missingness
The data provided for an IRT model may be declared as follows to account for the fact
that not every student is required to answer every question.

data {
int<lower=1> J; // number of students
int<lower=1> K; // number of questions
int<lower=1> N; // number of observations
int<lower=1,upper=J> jj[N]; // student for observation n
int<lower=1,upper=K> kk[N]; // question for observation n
int<lower=0,upper=1> y[N]; // correctness for observation n

}

reparameterization-section.html#example-neals-funnel
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This declares a total of N student-question pairs in the data set, where each n in 1:N
indexes a binary observation y[n] of the correctness of the answer of student jj[n]
on question kk[n].

The prior hyperparameters will be hard coded in the rest of this section for simplicity,
though they could be coded as data in Stan for more flexibility.

1PL (Rasch) Model
The 1PL item-response model, also known as the Rasch model, has one parameter (1P)
for questions and uses the logistic link function (L).

The model parameters are declared as follows.

parameters {
real delta; // mean student ability
real alpha[J]; // ability of student j - mean ability
real beta[K]; // difficulty of question k

}

The parameter alpha[J] is the ability coefficient for student j and beta[k] is the
difficulty coefficient for question k. The non-standard parameterization used here also
includes an intercept term delta, which represents the average student’s response to
the average question.4

The model itself is as follows.

model {
alpha ~ std_normal(); // informative true prior
beta ~ std_normal(); // informative true prior
delta ~ normal(0.75, 1); // informative true prior
for (n in 1:N)
y[n] ~ bernoulli_logit(alpha[jj[n]] - beta[kk[n]] + delta);

}

This model uses the logit-parameterized Bernoulli distribution, where

bernoulli_logit (y | α) = bernoulli
(
y | logit−1(α)

)
.

The key to understanding it is the term inside the bernoulli_logit distribution,
from which it follows that

Pr[yn = 1] = logit−1
(
αjj[n] − βkk[n] + δ

)
.

4Gelman and Hill (2007) treat the δ term equivalently as the location parameter in the distribution of
student abilities.
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The model suffers from additive identifiability issues without the priors. For example,
adding a term ξ to each αj and βk results in the same predictions. The use of priors
for α and β located at 0 identifies the parameters; see Gelman and Hill (2007) for a
discussion of identifiability issues and alternative approaches to identification.

For testing purposes, the IRT 1PL model distributed with Stan uses informative priors
that match the actual data generation process used to simulate the data in R (the
simulation code is supplied in the same directory as the models). This is unrealistic
for most practical applications, but allows Stan’s inferences to be validated. A simple
sensitivity analysis with fatter priors shows that the posterior is fairly sensitive to
the prior even with 400 students and 100 questions and only 25% missingness at
random. For real applications, the priors should be fit hierarchically along with the
other parameters, as described in the next section.

Multilevel 2PL Model
The simple 1PL model described in the previous section is generalized in this section
with the addition of a discrimination parameter to model how noisy a question is and
by adding multilevel priors for the question difficulty and discrimination parameters.
The model parameters are declared as follows.

parameters {
real mu_beta; // mean question difficulty
vector[J] alpha; // ability for j - mean
vector[K] beta; // difficulty for k
vector<lower=0>[K] gamma; // discrimination of k
real<lower=0> sigma_beta; // scale of difficulties
real<lower=0> sigma_gamma; // scale of log discrimination

}

The parameters should be clearer after the model definition.

model {
alpha ~ std_normal();
beta ~ normal(0, sigma_beta);
gamma ~ lognormal(0, sigma_gamma);
mu_beta ~ cauchy(0, 5);
sigma_beta ~ cauchy(0, 5);
sigma_gamma ~ cauchy(0, 5);
y ~ bernoulli_logit(gamma[kk] .* (alpha[jj] - (beta[kk] + mu_beta)));

}



CHAPTER 1. REGRESSION MODELS 30

The std_normal function is used here, defined by

std_normal(y) = normal (y | 0,1) .

The sampling statement is also vectorized using elementwise multiplication; it is
equivalent to

for (n in 1:N)
y[n] ~ bernoulli_logit(gamma[kk[n]]

* (alpha[jj[n]] - (beta[kk[n]] + mu_beta));

The 2PL model is similar to the 1PL model, with the additional parameter gamma[k]
modeling how discriminative question k is. If gamma[k] is greater than 1, responses are
more attenuated with less chance of getting a question right at random. The parameter
gamma[k] is constrained to be positive, which prohibits there being questions that are
easier for students of lesser ability; such questions are not unheard of, but they tend
to be eliminated from most testing situations where an IRT model would be applied.

The model is parameterized here with student abilities alpha being given a standard
normal prior. This is to identify both the scale and the location of the parameters, both
of which would be unidentified otherwise; see the problematic posteriors chapter for
further discussion of identifiability. The difficulty and discrimination parameters beta
and gamma then have varying scales given hierarchically in this model. They could also
be given weakly informative non-hierarchical priors, such as

beta ~ normal(0, 5);
gamma ~ lognormal(0, 2);

The point is that the alpha determines the scale and location and beta and gamma are
allowed to float.

The beta parameter is here given a non-centered parameterization, with parameter
mu_beta serving as the mean beta location. An alternative would’ve been to take:

beta ~ normal(mu_beta, sigma_beta);

and

y[n] ~ bernoulli_logit(gamma[kk[n]] * (alpha[jj[n]] - beta[kk[n]]));

Non-centered parameterizations tend to be more efficient in hierarchical models;
see the reparameterization section for more information on non-centered
reparameterizations.

The intercept term mu_beta can’t itself be modeled hierarchically, so it is given a
weakly informative Cauchy(0,5) prior. Similarly, the scale terms, sigma_beta, and
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sigma_gamma, are given half-Cauchy priors. As mentioned earlier, the scale and
location for alpha are fixed to ensure identifiability. The truncation in the half-Cauchy
prior is implicit; explicit truncation is not necessary because the log probability need
only be calculated up to a proportion and the scale variables are constrained to (0,∞)
by their declarations.

1.12. Priors for Identifiability
Location and Scale Invariance
One application of (hierarchical) priors is to identify the scale and/or location of
a group of parameters. For example, in the IRT models discussed in the previous
section, there is both a location and scale non-identifiability. With uniform priors, the
posteriors will float in terms of both scale and location. See the collinearity section for
a simple example of the problems this poses for estimation.

The non-identifiability is resolved by providing a standard normal (i.e., normal(0,1))
prior on one group of coefficients, such as the student abilities. With a standard
normal prior on the student abilities, the IRT model is identified in that the posterior
will produce a group of estimates for student ability parameters that have a sample
mean of close to zero and a sample variance of close to one. The difficulty and
discrimination parameters for the questions should then be given a diffuse, or ideally a
hierarchical prior, which will identify these parameters by scaling and locating relative
to the student ability parameters.

Collinearity
Another case in which priors can help provide identifiability is in the case of collinearity
in a linear regression. In linear regression, if two predictors are collinear (i.e, one is
a linear function of the other), then their coefficients will have a correlation of 1 (or
-1) in the posterior. This leads to non-identifiability. By placing normal priors on the
coefficients, the maximum likelihood solution of two duplicated predictors (trivially
collinear) will be half the value than would be obtained by only including one.

Separability
In a logistic regression, if a predictor is positive in cases of 1 outcomes and negative
in cases of 0 outcomes, then the maximum likelihood estimate for the coefficient for
that predictor diverges to infinity. This divergence can be controlled by providing a
prior for the coefficient, which will “shrink” the estimate back toward zero and thus
identify the model in the posterior.

Similar problems arise for sampling with improper flat priors. The sampler will try
to draw large values. By providing a prior, the posterior will be concentrated around
finite values, leading to well-behaved sampling.
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1.13. Multivariate Priors for Hierarchical Models
In hierarchical regression models (and other situations), several individual-level
variables may be assigned hierarchical priors. For example, a model with multiple
varying intercepts and slopes within might assign them a multivariate prior.

As an example, the individuals might be people and the outcome income, with
predictors such as education level and age, and the groups might be states or other
geographic divisions. The effect of education level and age as well as an intercept
might be allowed to vary by state. Furthermore, there might be state-level predictors,
such as average state income and unemployment level.

Multivariate Regression Example
Gelman and Hill (2007, Chapter 13, Chapter 17) provide a discussion of a hierarchical
model with N individuals organized into J groups. Each individual has a predictor
row vector xn of size K; to unify the notation, they assume that xn,1 = 1 is a fixed
“intercept” predictor. To encode group membership, they assume individual n belongs
to group jj[n] ∈ {1, . . . , J}. Each individual n also has an observed outcome yn taking
on real values.

Likelihood

The model is a linear regression with slope and intercept coefficients varying by group,
so that βj is the coefficient K-vector for group j . The likelihood function for individual
n is then just

yn ∼ normal(xn βjj[n], σ) for n ∈ {1, . . . ,N}.

Coefficient Prior

Gelman and Hill model the coefficient vectors βj as being drawn from a multivariate
distribution with mean vector µ and covariance matrix Σ,

βj ∼multivariate normal(µj , Σ) for j ∈ {1, . . . , J}.

Below, we discuss the full model of Gelman and Hill, which uses group-level predictors
to model µ; for now, we assume µ is a simple vector parameter.

Hyperpriors

For hierarchical modeling, the group-level mean vector µ and covariance matrix Σmust
themselves be given priors. The group-level mean vector can be given a reasonable
weakly-informative prior for independent coefficients, such as

µj ∼ normal(0,5).
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If more is known about the expected coefficient values βj,k, this information can be
incorporated into the prior for µj .

For the prior on the covariance matrix, Gelman and Hill suggest using a scaled inverse
Wishart. That choice was motivated primarily by convenience as it is conjugate to the
multivariate likelihood function and thus simplifies Gibbs sampling

In Stan, there is no restriction to conjugacy for multivariate priors, and we in fact
recommend a slightly different approach. Like Gelman and Hill, we decompose our
prior into a scale and a matrix, but are able to do so in a more natural way based on
the actual variable scales and a correlation matrix. Specifically, we define

Σ = diag_matrix(τ)×Ω × diag_matrix(τ),

where Ω is a correlation matrix and τ is the vector of coefficient scales. This mapping
from scale vector τ and correlation matrix Ω can be inverted, using

τk =
√
Σk,k and Ωi,j =

Σi,j
τi τj

.

The components of the scale vector τ can be given any reasonable prior for scales, but
we recommend something weakly informative like a half-Cauchy distribution with a
small scale, such as

τk ∼ Cauchy(0,2.5) for k ∈ {1, . . . , K} constrained by τk > 0.

As for the prior means, if there is information about the scale of variation of coefficients
across groups, it should be incorporated into the prior for τ. For large numbers of
exchangeable coefficients, the components of τ itself (perhaps excluding the intercept)
may themselves be given a hierarchical prior.

Our final recommendation is to give the correlation matrix Ω an LKJ prior with shape
η ≥ 1,5

Ω ∼ LKJCorr(η).

The LKJ correlation distribution is defined by

LKJCorr (Σ | η)∝ det (Σ)η−1 .

5The prior is named for Lewandowski, Kurowicka, and Joe, as it was derived by inverting the random
correlation matrix generation strategy of Lewandowski, Kurowicka, and Joe (2009).
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The basic behavior of the LKJ correlation distribution is similar to that of a beta
distribution. For η = 1, the result is a uniform distribution. Despite being the identity
over correlation matrices, the marginal distribution over the entries in that matrix (i.e.,
the correlations) is not uniform between -1 and 1. Rather, it concentrates around zero
as the dimensionality increases due to the complex constraints.

For η > 1, the density increasingly concentrates mass around the unit matrix, i.e.,
favoring less correlation. For η < 1, it increasingly concentrates mass in the other
direction, i.e., favoring more correlation.

The LKJ prior may thus be used to control the expected amount of correlation among
the parameters βj . For a discussion of decomposing a covariance prior into a prior on
correlation matrices and an independent prior on scales, see Barnard, McCulloch, and
Meng (2000).

Group-Level Predictors for Prior Mean

To complete Gelman and Hill’s model, suppose each group j ∈ {1, . . . , J} is supplied
with an L-dimensional row-vector of group-level predictors uj . The prior mean for
the βj can then itself be modeled as a regression, using an L-dimensional coefficient
vector γ. The prior for the group-level coefficients then becomes

βj ∼multivariate normal(uj γ,Σ)

The group-level coefficients γ may themselves be given independent weakly informative
priors, such as

γl ∼ normal(0,5).

As usual, information about the group-level means should be incorporated into this
prior.

Coding the Model in Stan

The Stan code for the full hierarchical model with multivariate priors on the group-level
coefficients and group-level prior means follows its definition.

data {
int<lower=0> N; // num individuals
int<lower=1> K; // num ind predictors
int<lower=1> J; // num groups
int<lower=1> L; // num group predictors
int<lower=1,upper=J> jj[N]; // group for individual
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matrix[N, K] x; // individual predictors
row_vector[L] u[J]; // group predictors
vector[N] y; // outcomes

}
parameters {

corr_matrix[K] Omega; // prior correlation
vector<lower=0>[K] tau; // prior scale
matrix[L, K] gamma; // group coeffs
vector[K] beta[J]; // indiv coeffs by group
real<lower=0> sigma; // prediction error scale

}
model {

tau ~ cauchy(0, 2.5);
Omega ~ lkj_corr(2);
to_vector(gamma) ~ normal(0, 5);
{
row_vector[K] u_gamma[J];
for (j in 1:J)
u_gamma[j] = u[j] * gamma;

beta ~ multi_normal(u_gamma, quad_form_diag(Omega, tau));
}
for (n in 1:N)
y[n] ~ normal(x[n] * beta[jj[n]], sigma);

}

The hyperprior covariance matrix is defined implicitly through the a quadratic
form in the code because the correlation matrix Omega and scale vector tau
are more natural to inspect in the output; to output Sigma, define it as
a transformed parameter. The function quad_form_diag is defined so that
quad_form_diag(Sigma, tau) is equivalent to diag_matrix(tau) * Sigma *
diag_matrix(tau), where diag_matrix(tau) returns the matrix with tau on the
diagonal and zeroes off diagonal; the version using quad_form_diag should be faster.
For details on these and other matrix arithmetic operators and functions, see the
function reference manual.

Optimization through Vectorization

The code in the Stan program above can be sped up dramatically by replacing:

for (n in 1:N)
y[n] ~ normal(x[n] * beta[jj[n]], sigma);
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with the vectorized form:

{
vector[N] x_beta_jj;
for (n in 1:N)
x_beta_jj[n] = x[n] * beta[jj[n]];

y ~ normal(x_beta_jj, sigma);
}

The outer brackets create a local scope in which to define the variable x_beta_jj,
which is then filled in a loop and used to define a vectorized sampling statement. The
reason this is such a big win is that it allows us to take the log of sigma only once and
it greatly reduces the size of the resulting expression graph by packing all of the work
into a single density function.

Although it is tempting to redeclare beta and include a revised model block sampling
statement,

parameters {
matrix[J, K] beta;

...
model {

y ~ normal(rows_dot_product(x, beta[jj]), sigma);
...

this fails because it breaks the vectorization of sampling for beta,6

beta ~ multi_normal(...);

which requires beta to be an array of vectors. Both vectorizations are important, so
the best solution is to just use the loop above, because rows_dot_product cannot do
much optimization in and of itself because there are no shared computations.

The code in the Stan program above also builds up an array of vectors for the outcomes
and for the multivariate normal, which provides a major speedup by reducing the
number of linear systems that need to be solved and differentiated.

{
matrix[K, K] Sigma_beta;
Sigma_beta = quad_form_diag(Omega, tau);
for (j in 1:J)
beta[j] ~ multi_normal((u[j] * gamma)', Sigma_beta);

}

6Thanks to Mike Lawrence for pointing this out in the GitHub issue for the manual.
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In this example, the covariance matrix Sigma_beta is defined as a local variable so as
not to have to repeat the quadratic form computation J times. This vectorization can
be combined with the Cholesky-factor optimization in the next section.

Optimization through Cholesky Factorization

The multivariate normal density and LKJ prior on correlation matrices both require
their matrix parameters to be factored. Vectorizing, as in the previous section, ensures
this is only done once for each density. An even better solution, both in terms of
efficiency and numerical stability, is to parameterize the model directly in terms
of Cholesky factors of correlation matrices using the multivariate version of the
non-centered parameterization. For the model in the previous section, the program
fragment to replace the full matrix prior with an equivalent Cholesky factorized prior
is as follows.

data {
matrix[J, L] u;
...

parameters {
matrix[J, K] z;
cholesky_factor_corr[K] L_Omega;
...

transformed parameters {
matrix[J, K] beta;
beta = u * gamma + z * diag_post_multiply(L_Omega,tau);

}
model {

to_vector(z) ~ std_normal();
L_Omega ~ lkj_corr_cholesky(2);
...

The data variable u was originally an array of vectors, which is efficient for access; here
it is redeclared as a matrix in order to use it in matrix arithmetic. The new parameter
L_Omega is the Cholesky factor of the original correlation matrix Omega, so that

Omega = L_Omega * L_Omega'

The prior scale vector tau is unchanged, and furthermore, pre-multiplying the Cholesky
factor by the scale produces the Cholesky factor of the final covariance matrix,

Sigma_beta
= quad_form_diag(Omega, tau)
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= diag_post_multiply(L_Omega,tau) * diag_post_multiply(L_Omega,tau)'

where the diagonal post-multiply compound operation is defined by

diag_post_multiply(a, b) = a * diag_matrix(b)

The new variable z is declared as a matrix, the entries of which are given independent
standard normal priors; the to_vector operation turns the matrix into a vector so that
it can be used as a vectorized argument to the univariate normal density. Multiplying
the Cholesky factor of the covariance matrix by z and adding the mean (u * gamma)'
produces a beta distributed as in the original model.

Omitting the data declarations, which are the same as before, the optimized model is
as follows.

parameters {
matrix[J, K] z;
cholesky_factor_corr[K] L_Omega;
vector<lower=0,upper=pi()/2>[K] tau_unif;
matrix[L, K] gamma; // group coeffs
real<lower=0> sigma; // prediction error scale

}
transformed parameters {

matrix[J, K] beta;
vector<lower=0>[K] tau; // prior scale
for (k in 1:K) tau[k] = 2.5 * tan(tau_unif[k]);
beta = u * gamma + z * diag_post_multiply(L_Omega,tau);

}
model {

to_vector(z) ~ std_normal();
L_Omega ~ lkj_corr_cholesky(2);
to_vector(gamma) ~ normal(0, 5);
y ~ normal(rows_dot_product(beta[jj] , x), sigma);

}

This model also reparameterizes the prior scale tau to avoid potential problems
with the heavy tails of the Cauchy distribution. The statement tau_unif ~
uniform(0,pi()/2) can be omitted from the model block because Stan increments
the log posterior for parameters with uniform priors without it.

1.14. Prediction, Forecasting, and Backcasting
Stan models can be used for “predicting” the values of arbitrary model unknowns.
When predictions are about the future, they’re called “forecasts;” when they are
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predictions about the past, as in climate reconstruction or cosmology, they are
sometimes called “backcasts” (or “aftcasts” or “hindcasts” or “antecasts,” depending
on the author’s feelings about the opposite of “fore”).

Programming Predictions
As a simple example, the following linear regression provides the same setup for
estimating the coefficients beta as in our very first example, using y for the N
observations and x for the N predictor vectors. The model parameters and model for
observations are exactly the same as before.

To make predictions, we need to be given the number of predictions, N_new, and their
predictor matrix, x_new. The predictions themselves are modeled as a parameter
y_new. The model statement for the predictions is exactly the same as for the
observations, with the new outcome vector y_new and prediction matrix x_new.

data {
int<lower=1> K;
int<lower=0> N;
matrix[N, K] x;
vector[N] y;

int<lower=0> N_new;
matrix[N_new, K] x_new;

}
parameters {

vector[K] beta;
real<lower=0> sigma;

vector[N_new] y_new; // predictions
}
model {

y ~ normal(x * beta, sigma); // observed model

y_new ~ normal(x_new * beta, sigma); // prediction model
}

Predictions as Generated Quantities
Where possible, the most efficient way to generate predictions is to use the generated
quantities block. This provides proper Monte Carlo (not Markov chain Monte Carlo)
inference, which can have a much higher effective sample size per iteration.

...data as above...
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parameters {
vector[K] beta;
real<lower=0> sigma;

}
model {

y ~ normal(x * beta, sigma);
}
generated quantities {

vector[N_new] y_new;
for (n in 1:N_new)
y_new[n] = normal_rng(x_new[n] * beta, sigma);

}

Now the data are just as before, but the parameter y_new is now declared as a generated
quantity, and the prediction model is removed from the model and replaced by a
pseudo-random draw from a normal distribution.

Overflow in Generated Quantities

It is possible for values to overflow or underflow in generated quantities. The problem
is that if the result is NaN, then any constraints placed on the variables will be violated.
It is possible to check a value assigned by an RNG and reject it if it overflows, but this is
both inefficient and leads to biased posterior estimates. Instead, the conditions causing
overflow, such as trying to generate a negative binomial random variate with a mean of
231, must be intercepted and dealt with. This is typically done by reparameterizing or
reimplementing the random number generator using real values rather than integers,
which are upper-bounded by 231 − 1 in Stan.

1.15. Multivariate Outcomes
Most regressions are set up to model univariate observations (be they scalar, boolean,
categorical, ordinal, or count). Even multinomial regressions are just repeated
categorical regressions. In contrast, this section discusses regression when each
observed value is multivariate. To relate multiple outcomes in a regression setting,
their error terms are provided with covariance structure.

This section considers two cases, seemingly unrelated regressions for continuous
multivariate quantities and multivariate probit regression for boolean multivariate
quantities.
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Seemingly Unrelated Regressions
The first model considered is the “seemingly unrelated” regressions (SUR) of
econometrics where several linear regressions share predictors and use a covariance
error structure rather than independent errors (Zellner 1962; Greene 2011).

The model is easy to write down as a regression,

yn = xn β+ εn
εn ∼multivariate normal(0,Σ)

where xn is a J-row-vector of predictors (x is an (N × J) matrix), yn is a K-vector
of observations, β is a (K × J) matrix of regression coefficients (vector βk holds
coefficients for outcome k), and Σ is covariance matrix governing the error. As usual,
the intercept can be rolled into x as a column of ones.

The basic Stan code is straightforward (though see below for more optimized code for
use with LKJ priors on correlation).

data {
int<lower=1> K;
int<lower=1> J;
int<lower=0> N;
vector[J] x[N];
vector[K] y[N];

}
parameters {

matrix[K, J] beta;
cov_matrix[K] Sigma;

}
model {

vector[K] mu[N];
for (n in 1:N)
mu[n] = beta * x[n];

y ~ multi_normal(mu, Sigma);
}

For efficiency, the multivariate normal is vectorized by precomputing the array of
mean vectors and sharing the same covariance matrix.

Following the advice in the multivariate hierarchical priors section, we will place a
weakly informative normal prior on the regression coefficients, an LKJ prior on the
correlations and a half-Cauchy prior on standard deviations. The covariance structure
is parameterized in terms of Cholesky factors for efficiency and arithmetic stability.

multivariate-hierarchical-priors.section
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...
parameters {

matrix[K, J] beta;
cholesky_factor_corr[K] L_Omega;
vector<lower=0>[K] L_sigma;

}
model {

vector[K] mu[N];
matrix[K, K] L_Sigma;

for (n in 1:N)
mu[n] = beta * x[n];

L_Sigma = diag_pre_multiply(L_sigma, L_Omega);

to_vector(beta) ~ normal(0, 5);
L_Omega ~ lkj_corr_cholesky(4);
L_sigma ~ cauchy(0, 2.5);

y ~ multi_normal_cholesky(mu, L_Sigma);
}

The Cholesky factor of the covariance matrix is then reconstructed as a local variable
and used in the model by scaling the Cholesky factor of the correlation matrices. The
regression coefficients get a prior all at once by converting the matrix beta to a vector.

If required, the full correlation or covariance matrices may be reconstructed from their
Cholesky factors in the generated quantities block.

Multivariate Probit Regression
The multivariate probit model generates sequences of boolean variables by applying a
step function to the output of a seemingly unrelated regression.

The observations yn are D-vectors of boolean values (coded 0 for false, 1 for true). The
values for the observations yn are based on latent values zn drawn from a seemingly
unrelated regression model (see the previous section),

zn = xn β+ εn
εn ∼multivariate normal(0,Σ)

These are then put through the step function to produce a K-vector zn of boolean
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values with elements defined by

yn,k = I
(
zn,k > 0

)
,

where I() is the indicator function taking the value 1 if its argument is true and 0
otherwise.

Unlike in the seemingly unrelated regressions case, here the covariance matrix Σ has
unit standard deviations (i.e., it is a correlation matrix). As with ordinary probit and
logistic regressions, letting the scale vary causes the model (which is defined only by a
cutpoint at 0, not a scale) to be unidentified (see Greene (2011)).

Multivariate probit regression can be coded in Stan using the trick introduced by
Albert and Chib (1993), where the underlying continuous value vectors yn are coded as
truncated parameters. The key to coding the model in Stan is declaring the latent vector
z in two parts, based on whether the corresponding value of y is 0 or 1. Otherwise, the
model is identical to the seemingly unrelated regression model in the previous section.

First, we introduce a sum function for two-dimensional arrays of integers; this is going
to help us calculate how many total 1 values there are in y .

functions {
int sum2d(int[,] a) {
int s = 0;
for (i in 1:size(a))
s += sum(a[i]);

return s;
}

}

The function is trivial, but it’s not a built-in for Stan and it’s easier to understand the
rest of the model if it’s pulled into its own function so as not to create a distraction.

The data declaration block is much like for the seemingly unrelated regressions, but
the observations y are now integers constrained to be 0 or 1.

data {
int<lower=1> K;
int<lower=1> D;
int<lower=0> N;
int<lower=0,upper=1> y[N,D];
vector[K] x[N];

}
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After declaring the data, there is a rather involved transformed data block whose sole
purpose is to sort the data array y into positive and negative components, keeping
track of indexes so that z can be easily reassembled in the transformed parameters
block.

transformed data {
int<lower=0> N_pos;
int<lower=1,upper=N> n_pos[sum2d(y)];
int<lower=1,upper=D> d_pos[size(n_pos)];
int<lower=0> N_neg;
int<lower=1,upper=N> n_neg[(N * D) - size(n_pos)];
int<lower=1,upper=D> d_neg[size(n_neg)];

N_pos = size(n_pos);
N_neg = size(n_neg);
{
int i;
int j;
i = 1;
j = 1;
for (n in 1:N) {
for (d in 1:D) {

if (y[n,d] == 1) {
n_pos[i] = n;
d_pos[i] = d;
i += 1;

} else {
n_neg[j] = n;
d_neg[j] = d;
j += 1;

}
}

}
}

}

The variables N_pos and N_neg are set to the number of true (1) and number of false
(0) observations in y. The loop then fills in the sequence of indexes for the positive
and negative values in four arrays.

The parameters are declared as follows.
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parameters {
matrix[D, K] beta;
cholesky_factor_corr[D] L_Omega;
vector<lower=0>[N_pos] z_pos;
vector<upper=0>[N_neg] z_neg;

}

These include the regression coefficients beta and the Cholesky factor of the
correlation matrix, L_Omega. This time there is no scaling because the covariance
matrix has unit scale (i.e., it is a correlation matrix; see above).

The critical part of the parameter declaration is that the latent real value z is broken
into positive-constrained and negative-constrained components, whose size was
conveniently calculated in the transformed data block. The transformed data block’s
real work was to allow the transformed parameter block to reconstruct z.

transformed parameters {
vector[D] z[N];
for (n in 1:N_pos)
z[n_pos[n], d_pos[n]] = z_pos[n];

for (n in 1:N_neg)
z[n_neg[n], d_neg[n]] = z_neg[n];

}

At this point, the model is simple, pretty much recreating the seemingly unrelated
regression.

model {
L_Omega ~ lkj_corr_cholesky(4);
to_vector(beta) ~ normal(0, 5);
{
vector[D] beta_x[N];
for (n in 1:N)
beta_x[n] = beta * x[n];

z ~ multi_normal_cholesky(beta_x, L_Omega);
}

}

This simple form of model is made possible by the Albert and Chib-style constraints
on z.

Finally, the correlation matrix itself can be put back together in the generated quantities
block if desired.
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generated quantities {
corr_matrix[D] Omega;
Omega = multiply_lower_tri_self_transpose(L_Omega);

}

The same could be done for the seemingly unrelated regressions in the previous
section.

1.16. Applications of Pseudorandom Number Generation
The main application of pseudorandom number generator (PRNGs) is for posterior
inference, including prediction and posterior predictive checks. They can also be
used for pure data simulation, which is like a posterior predictive check with no
conditioning. See the function reference manual for a complete description of the
syntax and usage of pseudorandom number generators.

Prediction
Consider predicting unobserved outcomes using linear regression. Given predictors
x1, . . . , xN and observed outcomes y1, . . . , yN , and assuming a standard linear
regression with intercept α, slope β, and error scale σ , along with improper uniform
priors, the posterior over the parameters given x and y is

p (α,β,σ | x, y)∝
N∏
n=1

normal (yn | α+ βxn, σ) .

For this model, the posterior predictive inference for a new outcome ỹm given a
predictor x̃m, conditioned on the observed data x and y , is

p (ỹn | x̃n, x, y) =
∫
(α,β,σ)

normal (ỹn | α+ βx̃n, σ)× p (α,β,σ | x, y) d(α,β,σ).

To code the posterior predictive inference in Stan, a standard linear regression is
combined with a random number in the generated quantities block.

data {
int<lower=0> N;
vector[N] y;
vector[N] x;
int<lower=0> N_tilde;
vector[N_tilde] x_tilde;

}
parameters {

real alpha;
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real beta;
real<lower=0> sigma;

}
model {

y ~ normal(alpha + beta * x, sigma);
}
generated quantities {

vector[N_tilde] y_tilde;
for (n in 1:N_tilde)
y_tilde[n] = normal_rng(alpha + beta * x_tilde[n], sigma);

}

Given observed predictors x and outcomes y , y_tilde will be drawn according to
p (ỹ | x̃, y, x). This means that, for example, the posterior mean for y_tilde is the
estimate of the outcome that minimizes expected square error (conditioned on the
data and model).

Posterior Predictive Checks
A good way to investigate the fit of a model to the data, a critical step in Bayesian
data analysis, is to generate simulated data according to the parameters of the model.
This is carried out with exactly the same procedure as before, only the observed data
predictors x are used in place of new predictors x̃ for unobserved outcomes. If the
model fits the data well, the predictions for ỹ based on x should match the observed
data y .

To code posterior predictive checks in Stan requires only a slight modification of the
prediction code to use x and N in place of x̃ and Ñ,

generated quantities {
vector[N] y_tilde;
for (n in 1:N)
y_tilde[n] = normal_rng(alpha + beta * x[n], sigma);

}

Gelman et al. (2013) recommend choosing several posterior draws ỹ(1), . . . , ỹ(M) and
plotting each of them alongside the data y that was actually observed. If the model
fits well, the simulated ỹ will look like the actual data y .



2. Time-Series Models

Times series data come arranged in temporal order. This chapter presents two kinds of
time series models, regression-like models such as autoregressive and moving average
models, and hidden Markov models.

The Gaussian processes chapter presents Gaussian processes, which may also be used
for time-series (and spatial) data.

2.1. Autoregressive Models
A first-order autoregressive model (AR(1)) with normal noise takes each point yn in a
sequence y to be generated according to

yn ∼ normal(α+ βyn−1, σ).

That is, the expected value of yn is α+ βyn−1, with noise scaled as σ .

AR(1) Models
With improper flat priors on the regression coefficients α and β and on the positively-
constrained noise scale (σ ), the Stan program for the AR(1) model is as follows.1

data {
int<lower=0> N;
vector[N] y;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

for (n in 2:N)
y[n] ~ normal(alpha + beta * y[n-1], sigma);

}

The first observed data point, y[1], is not modeled here because there is nothing to
condition on; instead, it acts to condition y[2]. This model also uses an improper

1The intercept in this model is α/(1 − β). An alternative parameterization in terms of an intercept γ
suggested Mark Scheuerell on GitHub is yn ∼ normal

(
γ + β · (yn−1 − γ),σ

)
.

48
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prior for sigma, but there is no obstacle to adding an informative prior if information
is available on the scale of the changes in y over time, or a weakly informative prior to
help guide inference if rough knowledge of the scale of y is available.

Slicing for Efficiency

Although perhaps a bit more difficult to read, a much more efficient way to write the
above model is by slicing the vectors, with the model above being replaced with the
one-liner

model {
y[2:N] ~ normal(alpha + beta * y[1:(N - 1)], sigma);

}

The left-hand side slicing operation pulls out the last N−1 elements and the right-hand
side version pulls out the first N − 1.

Extensions to the AR(1) Model
Proper priors of a range of different families may be added for the regression
coefficients and noise scale. The normal noise model can be changed to a Student-t
distribution or any other distribution with unbounded support. The model could also
be made hierarchical if multiple series of observations are available.

To enforce the estimation of a stationary AR(1) process, the slope coefficient beta may
be constrained with bounds as follows.

real<lower=-1,upper=1> beta;

In practice, such a constraint is not recommended. If the data are not well fit by
a stationary model it is best to know this. Stationary parameter estimates can be
encouraged with a prior favoring values of beta near zero.

AR(2) Models
Extending the order of the model is also straightforward. For example, an AR(2) model
could be coded with the second-order coefficient gamma and the following model
statement.

for (n in 3:N)
y[n] ~ normal(alpha + beta*y[n-1] + gamma*y[n-2], sigma);

AR(K) Models
A general model where the order is itself given as data can be coded by putting the
coefficients in an array and computing the linear predictor in a loop.

data {
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int<lower=0> K;
int<lower=0> N;
real y[N];

}
parameters {

real alpha;
real beta[K];
real sigma;

}
model {

for (n in (K+1):N) {
real mu = alpha;
for (k in 1:K)
mu += beta[k] * y[n-k];

y[n] ~ normal(mu, sigma);
}

}

ARCH(1) Models
Econometric and financial time-series models usually assume heteroscedasticity: they
allow the scale of the noise terms defining the series to vary over time. The simplest
such model is the autoregressive conditional heteroscedasticity (ARCH) model (Engle
1982). Unlike the autoregressive model AR(1), which modeled the mean of the series
as varying over time but left the noise term fixed, the ARCH(1) model takes the scale
of the noise terms to vary over time but leaves the mean term fixed. Models could be
defined where both the mean and scale vary over time; the econometrics literature
presents a wide range of time-series modeling choices.

The ARCH(1) model is typically presented as the following sequence of equations,
where rt is the observed return at time point t and µ, α0, and α1 are unknown
regression coefficient parameters.

rt = µ + at
at = σtεt
εt ∼ normal(0,1)

σ 2t = α0 +α1a2t−1

In order to ensure the noise terms σ 2t are positive, the scale coefficients are constrained
to be positive, α0, α1 > 0. To ensure stationarity of the time series, the slope is
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constrained to to be less than one, i.e., α1 < 1.2

The ARCH(1) model may be coded directly in Stan as follows.

data {
int<lower=0> T; // number of time points
real r[T]; // return at time t

}
parameters {

real mu; // average return
real<lower=0> alpha0; // noise intercept
real<lower=0,upper=1> alpha1; // noise slope

}
model {

for (t in 2:T)
r[t] ~ normal(mu, sqrt(alpha0 + alpha1 * pow(r[t-1] - mu,2)));

}

The loop in the model is defined so that the return at time t = 1 is not modeled; the
model in the next section shows how to model the return at t = 1. The model can be
vectorized to be more efficient; the model in the next section provides an example.

2.2. Modeling Temporal Heteroscedasticity
A set of variables is homoscedastic if their variances are all the same; the variables are
heteroscedastic if they do not all have the same variance. Heteroscedastic time-series
models allow the noise term to vary over time.

GARCH(1,1) Models
The basic generalized autoregressive conditional heteroscedasticity (GARCH) model,
GARCH(1,1), extends the ARCH(1) model by including the squared previous difference
in return from the mean at time t − 1 as a predictor of volatility at time t , defining

σ 2t = α0 +α1a2t−1 + β1σ 2t−1.

To ensure the scale term is positive and the resulting time series stationary, the
coefficients must all satisfy α0, α1, β1 > 0 and the slopes α1 + β1 < 1.

data {
int<lower=0> T;
real r[T];

2In practice, it can be useful to remove the constraint to test whether a non-stationary set of coefficients
provides a better fit to the data. It can also be useful to add a trend term to the model, because an unfitted
trend will manifest as non-stationarity.
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real<lower=0> sigma1;
}
parameters {

real mu;
real<lower=0> alpha0;
real<lower=0,upper=1> alpha1;
real<lower=0,upper=(1-alpha1)> beta1;

}
transformed parameters {

real<lower=0> sigma[T];
sigma[1] = sigma1;
for (t in 2:T)
sigma[t] = sqrt(alpha0

+ alpha1 * pow(r[t-1] - mu, 2)
+ beta1 * pow(sigma[t-1], 2));

}
model {

r ~ normal(mu, sigma);
}

To get the recursive definition of the volatility regression off the ground, the data
declaration includes a non-negative value sigma1 for the scale of the noise at t = 1.

The constraints are coded directly on the parameter declarations. This declaration is
order-specific in that the constraint on beta1 depends on the value of alpha1.

A transformed parameter array of non-negative values sigma is used to store the scale
values at each time point. The definition of these values in the transformed parameters
block is where the regression is now defined. There is an intercept alpha0, a slope
alpha1 for the squared difference in return from the mean at the previous time, and
a slope beta1 for the previous noise scale squared. Finally, the whole regression
is inside the sqrt function because Stan requires scale (deviation) parameters (not
variance parameters) for the normal distribution.

With the regression in the transformed parameters block, the model reduces a single
vectorized sampling statement. Because r and sigma are of length T, all of the data
are modeled directly.

2.3. Moving Average Models
A moving average model uses previous errors as predictors for future outcomes. For a
moving average model of order Q, MA(Q), there is an overall mean parameter µ and
regression coefficients θq for previous error terms. With εt being the noise at time t ,
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the model for outcome yt is defined by

yt = µ + θ1εt−1 + · · · + θQεt−Q + εt ,

with the noise term εt for outcome yt modeled as normal,

εt ∼ normal(0, σ).

In a proper Bayesian model, the parameters µ, θ, and σ must all be given priors.

MA(2) Example
An MA(2) model can be coded in Stan as follows.

data {
int<lower=3> T; // number of observations
vector[T] y; // observation at time T

}
parameters {

real mu; // mean
real<lower=0> sigma; // error scale
vector[2] theta; // lag coefficients

}
transformed parameters {

vector[T] epsilon; // error terms
epsilon[1] = y[1] - mu;
epsilon[2] = y[2] - mu - theta[1] * epsilon[1];
for (t in 3:T)
epsilon[t] = ( y[t] - mu

- theta[1] * epsilon[t - 1]
- theta[2] * epsilon[t - 2] );

}
model {

mu ~ cauchy(0, 2.5);
theta ~ cauchy(0, 2.5);
sigma ~ cauchy(0, 2.5);
for (t in 3:T)
y[t] ~ normal(mu

+ theta[1] * epsilon[t - 1]
+ theta[2] * epsilon[t - 2],
sigma);

}
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The error terms εt are defined as transformed parameters in terms of the observations
and parameters. The definition of the sampling statement (defining the likelihood)
follows the definition, which can only be applied to yn for n > Q. In this example, the
parameters are all given Cauchy (half-Cauchy for σ ) priors, although other priors can
be used just as easily.

This model could be improved in terms of speed by vectorizing the sampling statement
in the model block. Vectorizing the calculation of the εt could also be sped up by
using a dot product instead of a loop.

Vectorized MA(Q) Model
A general MA(Q) model with a vectorized sampling probability may be defined as
follows.

data {
int<lower=0> Q; // num previous noise terms
int<lower=3> T; // num observations
vector[T] y; // observation at time t

}
parameters {

real mu; // mean
real<lower=0> sigma; // error scale
vector[Q] theta; // error coeff, lag -t

}
transformed parameters {

vector[T] epsilon; // error term at time t
for (t in 1:T) {
epsilon[t] = y[t] - mu;
for (q in 1:min(t - 1, Q))
epsilon[t] = epsilon[t] - theta[q] * epsilon[t - q];

}
}
model {

vector[T] eta;
mu ~ cauchy(0, 2.5);
theta ~ cauchy(0, 2.5);
sigma ~ cauchy(0, 2.5);
for (t in 1:T) {
eta[t] = mu;
for (q in 1:min(t - 1, Q))
eta[t] = eta[t] + theta[q] * epsilon[t - q];
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}
y ~ normal(eta, sigma);

}

Here all of the data are modeled, with missing terms just dropped from the regressions
as in the calculation of the error terms. Both models converge quickly and mix well at
convergence, with the vectorized model being faster (per iteration, not to converge—
they compute the same model).

2.4. Autoregressive Moving Average Models
Autoregressive moving-average models (ARMA), combine the predictors of the
autoregressive model and the moving average model. An ARMA(1,1) model, with
a single state of history, can be encoded in Stan as follows.

data {
int<lower=1> T; // num observations
real y[T]; // observed outputs

}
parameters {

real mu; // mean coeff
real phi; // autoregression coeff
real theta; // moving avg coeff
real<lower=0> sigma; // noise scale

}
model {

vector[T] nu; // prediction for time t
vector[T] err; // error for time t
nu[1] = mu + phi * mu; // assume err[0] == 0
err[1] = y[1] - nu[1];
for (t in 2:T) {
nu[t] = mu + phi * y[t-1] + theta * err[t-1];
err[t] = y[t] - nu[t];

}
mu ~ normal(0, 10); // priors
phi ~ normal(0, 2);
theta ~ normal(0, 2);
sigma ~ cauchy(0, 5);
err ~ normal(0, sigma); // likelihood

}

The data are declared in the same way as the other time-series regressions and the
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parameters are documented in the code.

In the model block, the local vector nu stores the predictions and err the errors. These
are computed similarly to the errors in the moving average models described in the
previous section.

The priors are weakly informative for stationary processes. The likelihood only involves
the error term, which is efficiently vectorized here.

Often in models such as these, it is desirable to inspect the calculated error terms. This
could easily be accomplished in Stan by declaring err as a transformed parameter,
then defining it the same way as in the model above. The vector nu could still be a
local variable, only now it will be in the transformed parameter block.

Wayne Folta suggested encoding the model without local vector variables as follows.

model {
real err;
mu ~ normal(0, 10);
phi ~ normal(0, 2);
theta ~ normal(0, 2);
sigma ~ cauchy(0, 5);
err = y[1] - mu + phi * mu;
err ~ normal(0, sigma);
for (t in 2:T) {
err = y[t] - (mu + phi * y[t-1] + theta * err);
err ~ normal(0, sigma);

}
}

This approach to ARMA models illustrates how local variables, such as err in this
case, can be reused in Stan. Folta’s approach could be extended to higher order
moving-average models by storing more than one error term as a local variable and
reassigning them in the loop.

Both encodings are fast. The original encoding has the advantage of vectorizing the
normal distribution, but it uses a bit more memory. A halfway point would be to
vectorize just err.

Identifiability and Stationarity
MA and ARMA models are not identifiable if the roots of the characteristic polynomial
for the MA part lie inside the unit circle, so it’s necessary to add the following
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constraint3

real<lower = -1, upper = 1> theta;

When the model is run without the constraint, using synthetic data generated from the
model, the simulation can sometimes find modes for (theta, phi) outside the [−1,1]
interval, which creates a multiple mode problem in the posterior and also causes the
NUTS tree depth to get large (often above 10). Adding the constraint both improves
the accuracy of the posterior and dramatically reduces the tree depth, which speeds
up the simulation considerably (typically by much more than an order of magnitude).

Further, unless one thinks that the process is really non-stationary, it’s worth adding
the following constraint to ensure stationarity.

real<lower = -1, upper = 1> phi;

2.5. Stochastic Volatility Models
Stochastic volatility models treat the volatility (i.e., variance) of a return on an asset,
such as an option to buy a security, as following a latent stochastic process in discrete
time (Kim, Shephard, and Chib 1998). The data consist of mean corrected (i.e., centered)
returns yt on an underlying asset at T equally spaced time points. Kim et al. formulate
a typical stochastic volatility model using the following regression-like equations, with
a latent parameter ht for the log volatility, along with parameters µ for the mean log
volatility, and φ for the persistence of the volatility term. The variable εt represents
the white-noise shock (i.e., multiplicative error) on the asset return at time t , whereas
δt represents the shock on volatility at time t .

yt = εt exp(ht/2)

ht+1 = µ +φ(ht − µ)+ δtσ

h1 ∼ normal

µ, σ√
1−φ2


εt ∼ normal(0,1)

δt ∼ normal(0,1)

Rearranging the first line, εt = yt exp(−ht/2), allowing the sampling distribution for
yt to be written as

yt ∼ normal(0, exp(ht/2)).

3This subsection is a lightly edited comment of Jonathan Gilligan’s on GitHub; see https://github.com/s
tan-dev/stan/issues/1617#issuecomment-160249142

https://github.com/stan-dev/stan/issues/1617#issuecomment-160249142
https://github.com/stan-dev/stan/issues/1617#issuecomment-160249142
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The recurrence equation for ht+1 may be combined with the scaling and sampling of
δt to yield the sampling distribution

ht ∼ normal(µ +φ(ht−1 − µ),σ).

This formulation can be directly encoded, as shown in the following Stan model.

data {
int<lower=0> T; // # time points (equally spaced)
vector[T] y; // mean corrected return at time t

}
parameters {

real mu; // mean log volatility
real<lower=-1,upper=1> phi; // persistence of volatility
real<lower=0> sigma; // white noise shock scale
vector[T] h; // log volatility at time t

}
model {

phi ~ uniform(-1, 1);
sigma ~ cauchy(0, 5);
mu ~ cauchy(0, 10);
h[1] ~ normal(mu, sigma / sqrt(1 - phi * phi));
for (t in 2:T)
h[t] ~ normal(mu + phi * (h[t - 1] - mu), sigma);

for (t in 1:T)
y[t] ~ normal(0, exp(h[t] / 2));

}

Compared to the Kim et al. formulation, the Stan model adds priors for the parameters
φ, σ , and µ. The shock terms εt and δt do not appear explicitly in the model, although
they could be calculated efficiently in a generated quantities block.

The posterior of a stochastic volatility model such as this one typically has high
posterior variance. For example, simulating 500 data points from the above model
with µ = −1.02, φ = 0.95, and σ = 0.25 leads to 95% posterior intervals for µ of
(−1.23,−0.54), for φ of (0.82,0.98), and for σ of (0.16,0.38).

The samples using NUTS show a high degree of autocorrelation among the samples,
both for this model and the stochastic volatility model evaluated in (Hoffman and
Gelman 2014). Using a non-diagonal mass matrix provides faster convergence and
more effective samples than a diagonal mass matrix, but will not scale to large values
of T .
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It is relatively straightforward to speed up the effective samples per second generated
by this model by one or more orders of magnitude. First, the sampling statements for
return y is easily vectorized to

y ~ normal(0, exp(h / 2));

This speeds up the iterations, but does not change the effective sample size because
the underlying parameterization and log probability function have not changed. Mixing
is improved by by reparameterizing in terms of a standardized volatility, then rescaling.
This requires a standardized parameter h_std to be declared instead of h.

parameters {
...
vector[T] h_std; // std log volatility time t

The original value of h is then defined in a transformed parameter block.

transformed parameters {
vector[T] h = h_std * sigma; // now h ~ normal(0, sigma)
h[1] /= sqrt(1 - phi * phi); // rescale h[1]
h += mu;
for (t in 2:T)
h[t] += phi * (h[t-1] - mu);

}

The first assignment rescales h_std to have a normal(0, σ) distribution and
temporarily assigns it to h. The second assignment rescales h[1] so that its prior
differs from that of h[2] through h[T]. The next assignment supplies a mu offset, so
that h[2] through h[T] are now distributed normal(µ,σ); note that this shift must
be done after the rescaling of h[1]. The final loop adds in the moving average so that
h[2] through h[T] are appropriately modeled relative to phi and mu.

As a final improvement, the sampling statement for h[1] and loop for sampling h[2]
to h[T] are replaced with a single vectorized standard normal sampling statement.

model {
...
h_std ~ std_normal();

Although the original model can take hundreds and sometimes thousands of iterations
to converge, the reparameterized model reliably converges in tens of iterations. Mixing
is also dramatically improved, which results in higher effective sample sizes per
iteration. Finally, each iteration runs in roughly a quarter of the time of the original
iterations.
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2.6. Hidden Markov Models
A hidden Markov model (HMM) generates a sequence of T output variables yt
conditioned on a parallel sequence of latent categorical state variables zt ∈ {1, . . . , K}.
These “hidden” state variables are assumed to form a Markov chain so that zt
is conditionally independent of other variables given zt−1. This Markov chain is
parameterized by a transition matrix θ where θk is a K-simplex for k ∈ {1, . . . , K}. The
probability of transitioning to state zt from state zt−1 is

zt ∼ categorical(θz[t−1]).

The output yt at time t is generated conditionally independently based on the latent
state zt .

This section describes HMMs with a simple categorical model for outputs yt ∈
{1, . . . , V}. The categorical distribution for latent state k is parameterized by a V -
simplex φk. The observed output yt at time t is generated based on the hidden state
indicator zt at time t ,

yt ∼ categorical(φz[t]).

In short, HMMs form a discrete mixture model where the mixture component indicators
form a latent Markov chain.

Supervised Parameter Estimation
In the situation where the hidden states are known, the following naive model can be
used to fit the parameters θ and φ.

data {
int<lower=1> K; // num categories
int<lower=1> V; // num words
int<lower=0> T; // num instances
int<lower=1,upper=V> w[T]; // words
int<lower=1,upper=K> z[T]; // categories
vector<lower=0>[K] alpha; // transit prior
vector<lower=0>[V] beta; // emit prior

}
parameters {

simplex[K] theta[K]; // transit probs
simplex[V] phi[K]; // emit probs

}
model {

for (k in 1:K)
theta[k] ~ dirichlet(alpha);
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for (k in 1:K)
phi[k] ~ dirichlet(beta);

for (t in 1:T)
w[t] ~ categorical(phi[z[t]]);

for (t in 2:T)
z[t] ~ categorical(theta[z[t - 1]]);

}

Explicit Dirichlet priors have been provided for θk and φk; dropping these two
statements would implicitly take the prior to be uniform over all valid simplexes.

Start-State and End-State Probabilities
Although workable, the above description of HMMs is incomplete because the start
state z1 is not modeled (the index runs from 2 to T ). If the data are conceived as
a subsequence of a long-running process, the probability of z1 should be set to the
stationary state probabilities in the Markov chain. In this case, there is no distinct end
to the data, so there is no need to model the probability that the sequence ends at zT .

An alternative conception of HMMs is as models of finite-length sequences. For
example, human language sentences have distinct starting distributions (usually a
capital letter) and ending distributions (usually some kind of punctuation). The
simplest way to model the sequence boundaries is to add a new latent state K + 1,
generate the first state from a categorical distribution with parameter vector θK+1, and
restrict the transitions so that a transition to state K + 1 is forced to occur at the end
of the sentence and is prohibited elsewhere.

Calculating Sufficient Statistics
The naive HMM estimation model presented above can be sped up dramatically
by replacing the loops over categorical distributions with a single multinomial
distribution.

The data are declared as before. The transformed data block computes the sufficient
statistics for estimating the transition and emission matrices.

transformed data {
int<lower=0> trans[K, K];
int<lower=0> emit[K, V];
for (k1 in 1:K)
for (k2 in 1:K)
trans[k1, k2] = 0;

for (t in 2:T)
trans[z[t - 1], z[t]] += 1;

for (k in 1:K)
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for (v in 1:V)
emit[k,v] = 0;

for (t in 1:T)
emit[z[t], w[t]] += 1;

}

The likelihood component of the model based on looping over the input is replaced
with multinomials as follows.

model {
...
for (k in 1:K)
trans[k] ~ multinomial(theta[k]);

for (k in 1:K)
emit[k] ~ multinomial(phi[k]);

}

In a continuous HMM with normal emission probabilities could be sped up in the same
way by computing sufficient statistics.

Analytic Posterior
With the Dirichlet-multinomial HMM, the posterior can be computed analytically
because the Dirichlet is the conjugate prior to the multinomial. The following example
illustrates how a Stan model can define the posterior analytically. This is possible in
the Stan language because the model only needs to define the conditional probability
of the parameters given the data up to a proportion, which can be done by defining
the (unnormalized) joint probability or the (unnormalized) conditional posterior, or
anything in between.

The model has the same data and parameters as the previous models, but now
computes the posterior Dirichlet parameters in the transformed data block.

transformed data {
vector<lower=0>[K] alpha_post[K];
vector<lower=0>[V] beta_post[K];
for (k in 1:K)
alpha_post[k] = alpha;

for (t in 2:T)
alpha_post[z[t-1], z[t]] += 1;

for (k in 1:K)
beta_post[k] = beta;

for (t in 1:T)
beta_post[z[t], w[t]] += 1;
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}

The posterior can now be written analytically as follows.

model {
for (k in 1:K)
theta[k] ~ dirichlet(alpha_post[k]);

for (k in 1:K)
phi[k] ~ dirichlet(beta_post[k]);

}

Semisupervised Estimation
HMMs can be estimated in a fully unsupervised fashion without any data for which
latent states are known. The resulting posteriors are typically extremely multimodal.
An intermediate solution is to use semisupervised estimation, which is based on a
combination of supervised and unsupervised data. Implementing this estimation
strategy in Stan requires calculating the probability of an output sequence with an
unknown state sequence. This is a marginalization problem, and for HMMs, it is
computed with the so-called forward algorithm.

In Stan, the forward algorithm is coded as follows. First, two additional data variable
are declared for the unsupervised data.

data {
...
int<lower=1> T_unsup; // num unsupervised items
int<lower=1,upper=V> u[T_unsup]; // unsup words
...

The model for the supervised data does not change; the unsupervised data are handled
with the following Stan implementation of the forward algorithm.

model {
...
real acc[K];
real gamma[T_unsup, K];
for (k in 1:K)
gamma[1, k] = log(phi[k, u[1]]);

for (t in 2:T_unsup) {
for (k in 1:K) {
for (j in 1:K)

acc[j] = gamma[t-1, j] + log(theta[j, k]) + log(phi[k, u[t]]);
gamma[t, k] = log_sum_exp(acc);
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}
}
target += log_sum_exp(gamma[T_unsup]);

}

The forward values gamma[t, k] are defined to be the log marginal probability of the
inputs u[1],...,u[t] up to time t and the latent state being equal to k at time t;
the previous latent states are marginalized out. The first row of gamma is initialized by
setting gamma[1, k] equal to the log probability of latent state k generating the first
output u[1]; as before, the probability of the first latent state is not itself modeled.
For each subsequent time t and output j, the value acc[j] is set to the probability
of the latent state at time t-1 being j, plus the log transition probability from state
j at time t-1 to state k at time t, plus the log probability of the output u[t] being
generated by state k. The log_sum_exp operation just multiplies the probabilities for
each prior state j on the log scale in an arithmetically stable way.

The brackets provide the scope for the local variables acc and gamma; these could have
been declared earlier, but it is clearer to keep their declaration near their use.

Predictive Inference
Given the transition and emission parameters, θk,k′ and φk,v and an observation
sequence u1, . . . , uT ∈ {1, . . . , V}, the Viterbi (dynamic programming) algorithm
computes the state sequence which is most likely to have generated the observed
output u.

The Viterbi algorithm can be coded in Stan in the generated quantities block as
follows. The predictions here is the most likely state sequence y_star[1], ...,
y_star[T_unsup] underlying the array of observations u[1], ..., u[T_unsup].
Because this sequence is determined from the transition probabilities theta and
emission probabilities phi, it may be different from sample to sample in the posterior.

generated quantities {
int<lower=1,upper=K> y_star[T_unsup];
real log_p_y_star;
{
int back_ptr[T_unsup, K];
real best_logp[T_unsup, K];
real best_total_logp;
for (k in 1:K)
best_logp[1, k] = log(phi[k, u[1]]);

for (t in 2:T_unsup) {
for (k in 1:K) {
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best_logp[t, k] = negative_infinity();
for (j in 1:K) {
real logp;
logp = best_logp[t-1, j]

+ log(theta[j, k]) + log(phi[k, u[t]]);
if (logp > best_logp[t, k]) {

back_ptr[t, k] = j;
best_logp[t, k] = logp;

}
}

}
}
log_p_y_star = max(best_logp[T_unsup]);
for (k in 1:K)

if (best_logp[T_unsup, k] == log_p_y_star)
y_star[T_unsup] = k;

for (t in 1:(T_unsup - 1))
y_star[T_unsup - t] = back_ptr[T_unsup - t + 1,

y_star[T_unsup - t + 1]];
}

}

The bracketed block is used to make the three variables back_ptr, best_logp, and
best_total_logp local so they will not be output. The variable y_star will hold the
label sequence with the highest probability given the input sequence u. Unlike the
forward algorithm, where the intermediate quantities were total probability, here they
consist of the maximum probability best_logp[t, k] for the sequence up to time t
with final output category k for time t, along with a backpointer to the source of the
link. Following the backpointers from the best final log probability for the final time t
yields the optimal state sequence.

This inference can be run for the same unsupervised outputs u as are used to fit the
semisupervised model. The above code can be found in the same model file as the
unsupervised fit. This is the Bayesian approach to inference, where the data being
reasoned about is used in a semisupervised way to train the model. It is not “cheating”
because the underlying states for u are never observed — they are just estimated along
with all of the other parameters.

If the outputs u are not used for semisupervised estimation but simply as the basis
for prediction, the result is equivalent to what is represented in the BUGS modeling
language via the cut operation. That is, the model is fit independently of u, then those
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parameters used to find the most likely state to have generated u.



3. Missing Data and Partially Known

Parameters

Bayesian inference supports a general approach to missing data in which any missing
data item is represented as a parameter that is estimated in the posterior (Gelman et
al. 2013). If the missing data are not explicitly modeled, as in the predictors for most
regression models, then the result is an improper prior on the parameter representing
the missing predictor.

Mixing arrays of observed and missing data can be difficult to include in Stan, partly
because it can be tricky to model discrete unknowns in Stan and partly because unlike
some other statistical languages (for example, R and Bugs), Stan requires observed
and unknown quantities to be defined in separate places in the model. Thus it can be
necessary to include code in a Stan program to splice together observed and missing
parts of a data structure. Examples are provided later in the chapter.

3.1. Missing Data
Stan treats variables declared in the data and transformed data blocks as known
and the variables in the parameters block as unknown.

An example involving missing normal observations could be coded as follows.1

data {
int<lower=0> N_obs;
int<lower=0> N_mis;
real y_obs[N_obs];

}
parameters {

real mu;
real<lower=0> sigma;
real y_mis[N_mis];

}
model {

y_obs ~ normal(mu, sigma);
y_mis ~ normal(mu, sigma);

1A more meaningful estimation example would involve a regression of the observed and missing
observations using predictors that were known for each and specified in the data block.

67
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}

The number of observed and missing data points are coded as data with non-negative
integer variables N_obs and N_mis. The observed data are provided as an array data
variable y_obs. The missing data are coded as an array parameter, y_mis. The
ordinary parameters being estimated, the location mu and scale sigma, are also coded
as parameters. The model is vectorized on the observed and missing data; combining
them in this case would be less efficient because the data observations would be
promoted and have needless derivatives calculated.

3.2. Partially Known Parameters
In some situations, such as when a multivariate probability function has partially
observed outcomes or parameters, it will be necessary to create a vector mixing known
(data) and unknown (parameter) values. This can be done in Stan by creating a vector
or array in the transformed parameters block and assigning to it.

The following example involves a bivariate covariance matrix in which the variances
are known, but the covariance is not.

data {
int<lower=0> N;
vector[2] y[N];
real<lower=0> var1;
real<lower=0> var2;

}
transformed data {

real<lower=0> max_cov = sqrt(var1 * var2);
real<upper=0> min_cov = -max_cov;

}
parameters {

vector[2] mu;
real<lower=min_cov, upper=max_cov> cov;

}
transformed parameters {

matrix[2, 2] Sigma;
Sigma[1, 1] = var1; Sigma[1, 2] = cov;
Sigma[2, 1] = cov; Sigma[2, 2] = var2;

}
model {

y ~ multi_normal(mu, Sigma);
}
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The variances are defined as data in variables var1 and var2, whereas the covariance
is defined as a parameter in variable cov. The 2×2 covariance matrix Sigma is defined
as a transformed parameter, with the variances assigned to the two diagonal elements
and the covariance to the two off-diagonal elements.

The constraint on the covariance declaration ensures that the resulting covariance
matrix sigma is positive definite. The bound, plus or minus the square root of the
product of the variances, is defined as transformed data so that it is only calculated
once.

The vectorization of the multivariate normal is critical for efficiency here. The
transformed parameter Sigma could be defined as a local variable within the model
block if it does not need to be included in the sampler’s output.

3.3. Sliced Missing Data
If the missing data are part of some larger data structure, then it can often be effectively
reassembled using index arrays and slicing. Here’s an example for time-series data,
where only some entries in the series are observed.

data {
int<lower = 0> N_obs;
int<lower = 0> N_mis;
int<lower = 1, upper = N_obs + N_mis> ii_obs[N_obs];
int<lower = 1, upper = N_obs + N_mis> ii_mis[N_mis];
real y_obs[N_obs];

}
transformed data {

int<lower = 0> N = N_obs + N_mis;
}
parameters {

real y_mis[N_mis];
real<lower=0> sigma;

}
transformed parameters {

real y[N];
y[ii_obs] = y_obs;
y[ii_mis] = y_mis;

}
model {

sigma ~ gamma(1, 1);
y[1] ~ normal(0, 100);
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y[2:N] ~ normal(y[1:(N - 1)], sigma);
}

The index arrays ii_obs and ii_mis contain the indexes into the final array y of
the observed data (coded as a data vector y_obs) and the missing data (coded as a
parameter vector y_mis). See the time series chapter for further discussion of time-
series model and specifically the autoregression section for an explanation of the
vectorization for y as well as an explanation of how to convert this example to a full
AR(1) model. To ensure y[1] has a proper posterior in case it is missing, we have
given it an explicit, albeit broad, prior.

Another potential application would be filling the columns of a data matrix of
predictors for which some predictors are missing; matrix columns can be accessed as
vectors and assigned the same way, as in

x[N_obs_2, 2] = x_obs_2;
x[N_mis_2, 2] = x_mis_2;

where the relevant variables are all hard coded with index 2 because Stan doesn’t
support ragged arrays. These could all be packed into a single array with more fiddly
indexing that slices out vectors from longer vectors (see the ragged data structures
section for a general discussion of coding ragged data structures in Stan).

3.4. Loading matrix for factor analysis
Rick Farouni, on the Stan users group, inquired as to how to build a Cholesky factor for
a covariance matrix with a unit diagonal, as used in Bayesian factor analysis (Aguilar
and West 2000). This can be accomplished by declaring the below-diagonal elements
as parameters, then filling the full matrix as a transformed parameter.

data {
int<lower=2> K;

}
transformed data {

int<lower=1> K_choose_2;
K_choose_2 = (K * (K - 1)) / 2;

}
parameters {

vector[K_choose_2] L_lower;
}
transformed parameters {

cholesky_factor_cov[K] L;
for (k in 1:K)

autoregressive.section
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L[k, k] = 1;
{
int i;
for (m in 2:K) {

for (n in 1:(m - 1)) {
L[m, n] = L_lower[i];
L[n, m] = 0;
i += 1;

}
}

}
}

It is most convenient to place a prior directly on L_lower. An alternative would be a
prior for the full Cholesky factor L, because the transform from L_lower to L is just
the identity and thus does not require a Jacobian adjustment (despite the warning
from the parser, which is not smart enough to do the code analysis to infer that the
transform is linear). It would not be at all convenient to place a prior on the full
covariance matrix L * L', because that would require a Jacobian adjustment; the
exact adjustment is detailed in the reference manual.

3.5. Missing Multivariate Data
It’s often the case that one or more components of a multivariate outcome are missing.2

As an example, we’ll consider the bivariate distribution, which is easily marginalized.
The coding here is brute force, representing both an array of vector observations y
and a boolean array y_observed to indicate which values were observed (others can
have dummy values in the input).

vector[2] y[N];
int<lower=0, upper=1> y_observed[N, 2];

If both components are observed, we model them using the full multi-normal, otherwise
we model the marginal distribution of the component that is observed.

for (n in 1:N) {
if (y_observed[n, 1] && y_observed[n, 2])
y[n] ~ multi_normal(mu, Sigma);

else if (y_observed[n, 1])

2This is not the same as missing components of a multivariate predictor in a regression problem; in that
case, you will need to represent the missing data as a parameter and impute missing values in order to feed
them into the regression.
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y[n, 1] ~ normal(mu[1], sqrt(Sigma[1, 1]));
else if (y_observed[n, 2])
y[n, 2] ~ normal(mu[2], sqrt(Sigma[2, 2]));

}

It’s a bit more work, but much more efficient to vectorize these sampling statements.
In transformed data, build up three vectors of indices, for the three cases above:

transformed data {
int ns12[observed_12(y_observed)];
int ns1[observed_1(y_observed)];
int ns2[observed_2(y_observed)];

}

You will need to write functions that pull out the count of observations in each of the
three sampling situations. This must be done with functions because the result needs
to go in top-level block variable size declaration. Then the rest of transformed data
just fills in the values using three counters.

int n12 = 1;
int n1 = 1;
int n2 = 1;
for (n in 1:N) {

if (y_observed[n, 1] && y_observed[n, 2]) {
ns12[n12] = n;
n12 += 1;

} else if (y_observed[n, 1]) {
ns1[n1] = n;
n1 += 1;

} else if (y_observed[n, 2]) {
ns2[n2] = n;
n2 += 1;

}
}

Then, in the model block, everything is vectorizable using those indexes constructed
once in transformed data:

y[ns12] ~ multi_normal(mu, Sigma);
y[ns1] ~ normal(mu[1], sqrt(Sigma[1, 1]));
y[ns2] ~ normal(mu[2], sqrt(Sigma[2, 2]));

The result will be much more efficient than using latent variables for the missing
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data, but it requires the multivariate distribution to be marginalized analytically. It’d
be more efficient still to precompute the three arrays in the transformed data block,
though the efficiency improvement will be relatively minor compared to vectorizing
the probability functions.

This approach can easily be generalized with some index fiddling to the general
multivariate case. The trick is to pull out entries in the covariance matrix for
the missing components. It can also be used in situations such as multivariate
differential equation solutions where only one component is observed, as in a phase-
space experiment recording only time and position of a pendulum (and not recording
momentum).



4. Truncated or Censored Data

Data in which measurements have been truncated or censored can be coded in Stan
following their respective probability models.

4.1. Truncated Distributions
Truncation in Stan is restricted to univariate distributions for which the corresponding
log cumulative distribution function (CDF) and log complementary cumulative
distribution (CCDF) functions are available. See the reference manual section on
truncated distributions for more information on truncated distributions, CDFs, and
CCDFs.

4.2. Truncated Data
Truncated data are data for which measurements are only reported if they fall above a
lower bound, below an upper bound, or between a lower and upper bound.

Truncated data may be modeled in Stan using truncated distributions. For example,
suppose the truncated data are yn with an upper truncation point of U = 300 so
that yn < 300. In Stan, this data can be modeled as following a truncated normal
distribution for the observations as follows.

data {
int<lower=0> N;
real U;
real<upper=U> y[N];

}
parameters {

real mu;
real<lower=0> sigma;

}
model {

for (n in 1:N)
y[n] ~ normal(mu, sigma) T[,U];

}

The model declares an upper bound U as data and constrains the data for y to respect
the constraint; this will be checked when the data are loaded into the model before
sampling begins.

74
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This model implicitly uses an improper flat prior on the scale and location parameters;
these could be given priors in the model using sampling statements.

Constraints and Out-of-Bounds Returns
If the sampled variate in a truncated distribution lies outside of the truncation range,
the probability is zero, so the log probability will evaluate to −∞. For instance, if
variate y is sampled with the statement.

for (n in 1:N)
y[n] ~ normal(mu, sigma) T[L,U];

then if the value of y[n] is less than the value of L or greater than the value of U, the
sampling statement produces a zero-probability estimate. For user-defined truncation,
this zeroing outside of truncation bounds must be handled explicitly.

To avoid variables straying outside of truncation bounds, appropriate constraints are
required. For example, if y is a parameter in the above model, the declaration should
constrain it to fall between the values of L and U.

parameters {
real<lower=L,upper=U> y[N];
...

If in the above model, L or U is a parameter and y is data, then L and U must be
appropriately constrained so that all data are in range and the value of L is less than
that of U (if they are equal, the parameter range collapses to a single point and the
Hamiltonian dynamics used by the sampler break down). The following declarations
ensure the bounds are well behaved.

parameters {
real<upper=min(y)> L; // L < y[n]
real<lower=fmax(L, max(y))> U; // L < U; y[n] < U

For pairs of real numbers, the function fmax is used rather than max.

Unknown Truncation Points
If the truncation points are unknown, they may be estimated as parameters. This can
be done with a slight rearrangement of the variable declarations from the model in the
previous section with known truncation points.

data {
int<lower=1> N;
real y[N];

}
parameters {
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real<upper = min(y)> L;
real<lower = max(y)> U;
real mu;
real<lower=0> sigma;

}
model {

L ~ ...;
U ~ ...;
for (n in 1:N)
y[n] ~ normal(mu, sigma) T[L,U];

}

Here there is a lower truncation point L which is declared to be less than or equal to
the minimum value of y. The upper truncation point U is declared to be larger than the
maximum value of y. This declaration, although dependent on the data, only enforces
the constraint that the data fall within the truncation bounds. With N declared as type
int<lower=1>, there must be at least one data point. The constraint that L is less
than U is enforced indirectly, based on the non-empty data.

The ellipses where the priors for the bounds L and U should go should be filled in with
a an informative prior in order for this model to not concentrate L strongly around
min(y) and U strongly around max(y).

4.3. Censored Data
Censoring hides values from points that are too large, too small, or both. Unlike with
truncated data, the number of data points that were censored is known. The textbook
example is the household scale which does not report values above 300 pounds.

Estimating Censored Values
One way to model censored data is to treat the censored data as missing data that is
constrained to fall in the censored range of values. Since Stan does not allow unknown
values in its arrays or matrices, the censored values must be represented explicitly, as
in the following right-censored case.

data {
int<lower=0> N_obs;
int<lower=0> N_cens;
real y_obs[N_obs];
real<lower=max(y_obs)> U;

}
parameters {

real<lower=U> y_cens[N_cens];
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real mu;
real<lower=0> sigma;

}
model {

y_obs ~ normal(mu, sigma);
y_cens ~ normal(mu, sigma);

}

Because the censored data array y_cens is declared to be a parameter, it will be
sampled along with the location and scale parameters mu and sigma. Because the
censored data array y_cens is declared to have values of type real<lower=U>, all
imputed values for censored data will be greater than U. The imputed censored data
affects the location and scale parameters through the last sampling statement in the
model.

Integrating out Censored Values
Although it is wrong to ignore the censored values in estimating location and scale,
it is not necessary to impute values. Instead, the values can be integrated out. Each
censored data point has a probability of

Pr[y > U] =
∫∞
U

normal (y | µ,σ) dy

= 1− Φ
(
y − µ
σ

)
,

where Φ() is the standard normal cumulative distribution function. With M censored
observations, the total probability on the log scale is

log
M∏
m=1

Pr[ym > U] = log
(
1− Φ

(
y − µ
σ

))M
= M × normal_lccdf (y | µ,σ) ,

where normal_lccdf is the log of complementary CDF (Stan provides <distr>_lccdf
for each distribution implemented in Stan).

The following right-censored model assumes that the censoring point is known, so it
is declared as data.

data {
int<lower=0> N_obs;
int<lower=0> N_cens;
real y_obs[N_obs];
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real<lower=max(y_obs)> U;
}
parameters {

real mu;
real<lower=0> sigma;

}
model {

y_obs ~ normal(mu, sigma);
target += N_cens * normal_lccdf(U | mu, sigma);

}

For the observed values in y_obs, the normal sampling model is used without
truncation. The log probability is directly incremented using the calculated log
cumulative normal probability of the censored data items.

For the left-censored data the CDF (normal_lcdf) has to be used instead of
complementary CDF. If the censoring point variable (L) is unknown, its declaration
should be moved from the data to the parameters block.

data {
int<lower=0> N_obs;
int<lower=0> N_cens;
real y_obs[N_obs];

}
parameters {

real<upper=min(y_obs)> L;
real mu;
real<lower=0> sigma;

}
model {

L ~ normal(mu, sigma);
y_obs ~ normal(mu, sigma);
target += N_cens * normal_lcdf(L | mu, sigma);

}



5. Finite Mixtures

Finite mixture models of an outcome assume that the outcome is drawn from one
of several distributions, the identity of which is controlled by a categorical mixing
distribution. Mixture models typically have multimodal densities with modes near the
modes of the mixture components. Mixture models may be parameterized in several
ways, as described in the following sections. Mixture models may be used directly for
modeling data with multimodal distributions, or they may be used as priors for other
parameters.

5.1. Relation to Clustering
Clustering models, as discussed in the clustering chapter, are just a particular class
of mixture models that have been widely applied to clustering in the engineering
and machine-learning literature. The normal mixture model discussed in this chapter
reappears in multivariate form as the statistical basis for the K-means algorithm; the
latent Dirichlet allocation model, usually applied to clustering problems, can be viewed
as a mixed-membership multinomial mixture model.

5.2. Latent Discrete Parameterization
One way to parameterize a mixture model is with a latent categorical variable indicating
which mixture component was responsible for the outcome. For example, consider
K normal distributions with locations µk ∈ R and scales σk ∈ (0,∞). Now consider
mixing them in proportion λ, where λk ≥ 0 and

∑K
k=1 λk = 1 (i.e., λ lies in the unit

K-simplex). For each outcome yn there is a latent variable zn in {1, . . . , K} with a
categorical distribution parameterized by λ,

zn ∼ categorical(λ).

The variable yn is distributed according to the parameters of the mixture component
zn,

yn ∼ normal(µz[n], σz[n]).

This model is not directly supported by Stan because it involves discrete parameters
zn, but Stan can sample µ and σ by summing out the z parameter as described in the
next section.

5.3. Summing out the Responsibility Parameter
To implement the normal mixture model outlined in the previous section in Stan, the
discrete parameters can be summed out of the model. If Y is a mixture of K normal
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distributions with locations µk and scales σk with mixing proportions λ in the unit
K-simplex, then

pY (y | λ,µ,σ) =
K∑
k=1
λk normal (y | µk, σk) .

Log Sum of Exponentials: Linear Sums on the Log Scale
The log sum of exponentials function is used to define mixtures on the log scale. It is
defined for two inputs by

log_sum_exp(a, b) = log
(
exp(a)+ exp(b)

)
.

If a and b are probabilities on the log scale, then exp(a) + exp(b) is their sum
on the linear scale, and the outer log converts the result back to the log scale; to
summarize, log_sum_exp does linear addition on the log scale. The reason to use
Stan’s built-in log_sum_exp function is that it can prevent underflow and overflow in
the exponentiation, by calculating the result as

log
(
exp(a)+ exp(b)

)
= c + log

(
exp(a− c)+ exp(b − c)

)
,

where c = max(a, b). In this evaluation, one of the terms, a− c or b − c, is zero and
the other is negative, thus eliminating the possibility of overflow or underflow in the
leading term while extracting the most arithmetic precision possible by pulling the
max(a, b) out of the log-exp round trip.

For example, the mixture of normal(−1,2) with normal(3,1), with mixing proportion
λ = [0.3,0.7]>, can be implemented in Stan as follows.

parameters {
real y;

}
model {

target += log_sum_exp(log(0.3) + normal_lpdf(y | -1, 2),
log(0.7) + normal_lpdf(y | 3, 1));

}

The log probability term is derived by taking

logp (y | λ,µ,σ)
= log

(
0.3× normal (y | −1,2)+ 0.7× normal (y | 3,1)

)
= log

(
exp

(
log

(
0.3× normal (y | −1,2)

))
+ exp

(
log

(
0.7× normal (y | 3,1)

)))
= log_sum_exp

(
log(0.3)+ log normal (y | −1,2) , log(0.7)+ log normal (y | 3,1)

)
.
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Dropping uniform mixture ratios
If a two-component mixture has a mixing ratio of 0.5, then the mixing ratios can be
dropped, because

log_half = log(0.5);
for (n in 1:N)

target += log_sum_exp(neg_log_half
+ normal_lpdf(y[n] | mu[1], sigma[1]),
log_half

+ normal_lpdf(y[n] | mu[2], sigma[2]));

then the log0.5 term isn’t contributing to the proportional density, and the above can
be replaced with the more efficient version

for (n in 1:N)
target += log_sum_exp(normal_lpdf(y[n] | mu[1], sigma[1]),

normal_lpdf(y[n] | mu[2], sigma[2]));

The same result holds if there are K components and the mixing simplex λ is
symmetric, i.e.,

λ =
(
1
K
, . . . ,

1
K

)
.

The result follows from the identity

log_sum_exp(c + a, c + b) = c + log_sum_exp(a, b)

and the fact that adding a constant c to the log density accumulator has no effect
because the log density is only specified up to an additive constant in the first place.
There is nothing specific to the normal distribution here; constants may always be
dropped from the target.

Recovering posterior mixture proportions
The posterior p(zn | yn, µ,σ) over the mixture indicator zn ∈ 1 : K is often of interest
as p(zn = k | y, µ,σ) is the posterior probability that that observation yn was generated
by mixture component k. The posterior can be computed via Bayes’s rule,

Pr (zn = k | yn, µ,σ , λ)∝ p (yn | zn = k, µ,σ) p (zn = k | λ)
= normal (yn | µk, σk) · λk.

The normalization can be done via summation, because zn ∈ 1:K only takes on finitely
many values. In detail,

p (zn = k | yn, µ,σ , λ) =
p (yn | zn = k, µ,σ) · p (zn = k | λ)∑K

k′=1 p (yn | zn = k′, µ,σ) · p (zn = k′ | λ)
.
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On the log scale, the normalized probability is computed as

log Pr (zn = k | yn, µ,σ , λ)
= logp (yn | zn = k, µ,σ)+ log Pr (zn = k | λ)
− log_sum_expKk′=1

(
logp

(
yn | zn = k′, µ,σ

)
+ logp

(
zn = k′ | λ

) )
.

This can be coded up directly in Stan; the change-point model in the change point
section provides an example.

Estimating Parameters of a Mixture
Given the scheme for representing mixtures, it may be moved to an estimation
setting, where the locations, scales, and mixture components are unknown. Further
generalizing to a number of mixture components specified as data yields the following
model.

data {
int<lower=1> K; // number of mixture components
int<lower=1> N; // number of data points
real y[N]; // observations

}
parameters {

simplex[K] theta; // mixing proportions
ordered[K] mu; // locations of mixture components
vector<lower=0>[K] sigma; // scales of mixture components

}
model {

vector[K] log_theta = log(theta); // cache log calculation
sigma ~ lognormal(0, 2);
mu ~ normal(0, 10);
for (n in 1:N) {
vector[K] lps = log_theta;
for (k in 1:K)
lps[k] += normal_lpdf(y[n] | mu[k], sigma[k]);

target += log_sum_exp(lps);
}

}

The model involves K mixture components and N data points. The mixing proportion
parameter theta is declared to be a unit K-simplex, whereas the component location
parameter mu and scale parameter sigma are both defined to be K-vectors.

The location parameter mu is declared to be an ordered vector in order to identify
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the model. This will not affect inferences that do not depend on the ordering of the
components as long as the prior for the components mu[k] is symmetric, as it is here
(each component has an independent normal(0,10) prior). It would even be possible
to include a hierarchical prior for the components.

The values in the scale array sigma are constrained to be non-negative, and have a
weakly informative prior given in the model chosen to avoid zero values and thus
collapsing components.

The model declares a local array variable lps to be size K and uses it to accumulate the
log contributions from the mixture components. The main action is in the loop over
data points n. For each such point, the log of θk × normal (yn | µk, σk) is calculated
and added to the array lpps. Then the log probability is incremented with the log sum
of exponentials of those values.

5.4. Vectorizing Mixtures
There is (currently) no way to vectorize mixture models at the observation level in Stan.
This section is to warn users away from attempting to vectorize naively, as it results
in a different model. A proper mixture at the observation level is defined as follows,
where we assume that lambda, y[n], mu[1], mu[2], and sigma[1], sigma[2] are
all scalars and lambda is between 0 and 1.

for (n in 1:N) {
target += log_sum_exp(log(lambda)

+ normal_lpdf(y[n] | mu[1], sigma[1]),
log1m(lambda)
+ normal_lpdf(y[n] | mu[2], sigma[2]));

or equivalently

for (n in 1:N)
target += log_mix(lambda,

normal_lpdf(y[n] | mu[1], sigma[1]),
normal_lpdf(y[n] | mu[2], sigma[2]));

This definition assumes that each observation yn may have arisen from either of the
mixture components. The density is

p (y | λ,µ,σ) =
N∏
n=1

(
λ× normal (yn | µ1, σ1)+ (1− λ)× normal (yn | µ2, σ2)

)
.

Contrast the previous model with the following (erroneous) attempt to vectorize the
model.
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target += log_sum_exp(log(lambda)
+ normal_lpdf(y | mu[1], sigma[1]),

log1m(lambda)
+ normal_lpdf(y | mu[2], sigma[2]));

or equivalently,

target += log_mix(lambda,
normal_lpdf(y | mu[1], sigma[1]),
normal_lpdf(y | mu[2], sigma[2]));

This second definition implies that the entire sequence y1, . . . , yn of observations
comes form one component or the other, defining a different density,

p (y | λ,µ,σ) = λ×
N∏
n=1

normal (yn | µ1, σ1)+ (1− λ)×
N∏
n=1

normal (yn | µ2, σ2) .

5.5. Inferences Supported by Mixtures
In many mixture models, the mixture components are underlyingly exchangeable in
the model and thus not identifiable. This arises if the parameters of the mixture
components have exchangeable priors and the mixture ratio gets a uniform prior so
that the parameters of the mixture components are also exchangeable in the likelihood.

We have finessed this basic problem by ordering the parameters. This will allow us in
some cases to pick out mixture components either ahead of time or after fitting (e.g.,
male vs. female, or Democrat vs. Republican).

In other cases, we do not care about the actual identities of the mixture components
and want to consider inferences that are independent of indexes. For example, we
might only be interested in posterior predictions for new observations.

Mixtures with Unidentifiable Components
As an example, consider the normal mixture from the previous section, which provides
an exchangeable prior on the pairs of parameters (µ1, σ1) and (µ2, σ2),

µ1, µ2 ∼ normal(0,10)

σ1, σ2 ∼ halfnormal(0,10)

The prior on the mixture ratio is uniform,

λ ∼ uniform(0,1),
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so that with the likelihood

p (yn | µ,σ) = λ× normal (yn | µ1, σ1)+ (1− λ)× normal (yn | µ2, σ2) ,

the joint distribution p(y, µ,σ , λ) is exchangeable in the parameters (µ1, σ1) and
(µ2, σ2) with λ flipping to 1− λ.1

Inference under Label Switching
In cases where the mixture components are not identifiable, it can be difficult to
diagnose convergence of sampling or optimization algorithms because the labels will
switch, or be permuted, in different MCMC chains or different optimization runs.
Luckily, posterior inferences which do not refer to specific component labels are
invariant under label switching and may be used directly. This subsection considers a
pair of examples.

Predictive likelihood

Predictive likelihood for a new observation ỹ given the complete parameter vector θ
will be

p(ỹ | y) =
∫
θ
p(ỹ | θ)p(θ | y)dθ.

The normal mixture example from the previous section, with θ = (µ,σ , λ), shows that
the likelihood returns the same density under label switching and thus the predictive
inference is sound. In Stan, that predictive inference can be done either by computing
p(ỹ | y), which is more efficient statistically in terms of effective sample size, or
simulating draws of ỹ , which is easier to plug into other inferences. Both approaches
can be coded directly in the generated quantities block of the program. Here’s an
example of the direct (non-sampling) approach.

data {
int<lower = 0> N_tilde;
vector[N_tilde] y_tilde;
...

generated quantities {
vector[N_tilde] log_p_y_tilde;
for (n in 1:N_tilde)
log_p_y_tilde[n]
= log_mix(lambda,

normal_lpdf(y_tilde[n] | mu[1], sigma[1])

1Imposing a constraint such as θ < 0.5 will resolve the symmetry, but fundamentally changes the model
and its posterior inferences.
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normal_lpdf(y_tilde[n] | mu[2], sigma[2]));
}

It is a bit of a bother afterwards, because the logarithm function isn’t linear and
hence doesn’t distribute through averages (Jensen’s inequality shows which way the
inequality goes). The right thing to do is to apply log_sum_exp of the posterior draws
of log_p_y_tilde. The average log predictive density is then given by subtracting
log(N_new).

Clustering and similarity

Often a mixture model will be applied to a clustering problem and there might be two
data items yi and yj for which there is a question of whether they arose from the same
mixture component. If we take zi and zj to be the component responsibility discrete
variables, then the quantity of interest is zi = zj , which can be summarized as an event
probability

Pr[zi = zj | y] =
∫
θ

∑1
k=0 p(zi = k, zj = k, yi , yj | θ)∑1

k=0
∑1
m=0 p(zi = k, zj =m,yi , yj | θ)

p(θ | y)dθ.

As with other event probabilities, this can be calculated in the generated quantities
block either by sampling zi and zj and using the indicator function on their equality, or
by computing the term inside the integral as a generated quantity. As with predictive
likelihood, working in expectation is more statistically efficient than sampling.

5.6. Zero-Inflated and Hurdle Models
Zero-inflated and hurdle models both provide mixtures of a Poisson and Bernoulli
probability mass function to allow more flexibility in modeling the probability of a
zero outcome. Zero-inflated models, as defined by Lambert (1992), add additional
probability mass to the outcome of zero. Hurdle models, on the other hand, are
formulated as pure mixtures of zero and non-zero outcomes.

Zero inflation and hurdle models can be formulated for discrete distributions other
than the Poisson. Zero inflation does not work for continuous distributions in Stan
because of issues with derivatives; in particular, there is no way to add a point mass
to a continuous distribution, such as zero-inflating a normal as a regression coefficient
prior.

Zero Inflation
Consider the following example for zero-inflated Poisson distributions. It uses a
parameter theta here there is a probability θ of drawing a zero, and a probability
1−θ of drawing from Poisson(λ) (now θ is being used for mixing proportions because
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λ is the traditional notation for a Poisson mean parameter). The probability function
is thus

p(yn | θ,λ) =

θ + (1− θ)× Poisson(0 | λ) if yn = 0, and

(1− θ)× Poisson(yn | λ) if yn > 0.

The log probability function can be implemented directly in Stan as follows.

data {
int<lower=0> N;
int<lower=0> y[N];

}
parameters {

real<lower=0, upper=1> theta;
real<lower=0> lambda;

}
model {

for (n in 1:N) {
if (y[n] == 0)
target += log_sum_exp(bernoulli_lpmf(1 | theta),

bernoulli_lpmf(0 | theta)
+ poisson_lpmf(y[n] | lambda));

else
target += bernoulli_lpmf(0 | theta)

+ poisson_lpmf(y[n] | lambda);
}

}

The log_sum_exp(lp1,lp2) function adds the log probabilities on the linear scale;
it is defined to be equal to log(exp(lp1) + exp(lp2)), but is more arithmetically
stable and faster.

Optimizing the zero-inflated Poisson model

The code given above to compute the zero-inflated Poisson redundantly calculates
all of the Bernoulli terms and also poisson_lpmf(0 | lambda) every time the first
condition body executes. The use of the redundant terms is conditioned on y, which is
known when the data are read in. This allows the transformed data block to be used
to compute some more convenient terms for expressing the log density each iteration.

The number of zero cases is computed and handled separately. Then the nonzero
cases are collected into their own array for vectorization. The number of zeros is
required to declare y_nonzero, so it must be computed in a function.
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functions {
int num_zeros(int[] y) {
int sum = 0;
for (n in 1:size(y))
sum += (y[n] == 0);

return sum;
}

}
...
transformed data {

int<lower = 0> N_zero = num_zeros(y);
int<lower = 1> y_nonzero[N - N_zero];
int N_nonzero = 0;
for (n in 1:N) {
if (y[n] == 0) continue;
N_nonzero += 1;
y_nonzero[N_nonzero] = y[n];

}
}
...
model {

...
target

+= N_zero

* log_sum_exp(bernoulli_lpmf(1 | theta),
bernoulli_lpmf(0 | theta)
+ poisson_lpmf(0 | lambda));

target += N_nonzero * bernoulli_lpmf(0 | theta);
target += poisson_lpmf(y_nonzero | lambda);

...

The boundary conditions of all zeros and no zero outcomes is handled appropriately;
in the vectorized case, if y_nonzero is empty, N_nonzero will be zero, and the last
two target increment terms will add zeros.

Hurdle Models
The hurdle model is similar to the zero-inflated model, but more flexible in that the
zero outcomes can be deflated as well as inflated. The probability mass function for
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the hurdle likelihood is defined by

p(y | θ,λ) =

θ if y = 0, and

(1− θ) Poisson(y | λ)
1− PoissonCDF(0 | λ) if y > 0,

where PoissonCDF is the cumulative distribution function for the Poisson distribution.
The hurdle model is even more straightforward to program in Stan, as it does not
require an explicit mixture.

if (y[n] == 0)
1 ~ bernoulli(theta);

else {
0 ~ bernoulli(theta);
y[n] ~ poisson(lambda) T[1, ];

}

The Bernoulli statements are just shorthand for adding logθ and log(1− θ) to the log
density. The T[1,] after the Poisson indicates that it is truncated below at 1; see the
truncation section for more about truncation and the Poisson regression section for
the specifics of the Poisson CDF. The net effect is equivalent to the direct definition of
the log likelihood.

if (y[n] == 0)
target += log(theta);

else
target += log1m(theta) + poisson_lpmf(y[n] | lambda)

- poisson_lccdf(0 | lambda));

Julian King pointed out that because

log (1− PoissonCDF(0 | λ)) = log (1− Poisson(0 | λ))
= log(1− exp(−λ))

the CCDF in the else clause can be replaced with a simpler expression.

target += log1m(theta) + poisson_lpmf(y[n] | lambda)
- log1m_exp(-lambda));

The resulting code is about 15% faster than the code with the CCDF.

This is an example where collecting counts ahead of time can also greatly speed up the
execution speed without changing the density. For data size N = 200 and parameters
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θ = 0.3 and λ = 8, the speedup is a factor of 10; it will be lower for smaller N and
greater for larger N; it will also be greater for larger θ.

To achieve this speedup, it helps to have a function to count the number of non-zero
entries in an array of integers,

functions {
int num_zero(int[] y) {
int nz = 0;
for (n in 1:size(y))
if (y[n] == 0)

nz += 1;
return nz;

}
}

Then a transformed data block can be used to store the sufficient statistics,

transformed data {
int<lower=0, upper=N> N0 = num_zero(y);
int<lower=0, upper=N> Ngt0 = N - N0;
int<lower=1> y_nz[N - num_zero(y)];
{
int pos = 1;
for (n in 1:N) {
if (y[n] != 0) {

y_nz[pos] = y[n];
pos += 1;

}
}

}
}

The model block is then reduced to three statements.

model {
N0 ~ binomial(N, theta);
y_nz ~ poisson(lambda);
target += -Ngt0 * log1m_exp(-lambda);

}

The first statement accounts for the Bernoulli contribution to both the zero and non-
zero counts. The second line is the Poisson contribution from the non-zero counts,
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which is now vectorized. Finally, the normalization for the truncation is a single
line, so that the expression for the log CCDF at 0 isn’t repeated. Also note that the
negation is applied to the constant Ngt0; whenever possible, leave subexpressions
constant because then gradients need not be propagated until a non-constant term is
encountered.

5.7. Priors and Effective Data Size in Mixture Models
Suppose we have a two-component mixture model with mixing rate λ ∈ (0,1). Because
the likelihood for the mixture components is proportionally weighted by the mixture
weights, the effective data size used to estimate each of the mixture components will
also be weighted as a fraction of the overall data size. Thus although there are N
observations, the mixture components will be estimated with effective data sizes of
θN and (1−θ)N for the two components for some θ ∈ (0,1). The effective weighting
size is determined by posterior responsibility, not simply by the mixing rate λ.

Comparison to Model Averaging
In contrast to mixture models, which create mixtures at the observation level, model
averaging creates mixtures over the posteriors of models separately fit with the entire
data set. In this situation, the priors work as expected when fitting the models
independently, with the posteriors being based on the complete observed data y .

If different models are expected to account for different observations, we recommend
building mixture models directly. If the models being mixed are similar, often a single
expanded model will capture the features of both and may be used on its own for
inferential purposes (estimation, decision making, prediction, etc.). For example, rather
than fitting an intercept-only regression and a slope-only regression and averaging
their predictions, even as a mixture model, we would recommend building a single
regression with both a slope and an intercept. Model complexity, such as having more
predictors than data points, can be tamed using appropriately regularizing priors. If
computation becomes a bottleneck, the only recourse can be model averaging, which
can be calculated after fitting each model independently (see Hoeting et al. (1999) and
Gelman et al. (2013) for theoretical and computational details).



6. Measurement Error and Meta-Analysis

Most quantities used in statistical models arise from measurements. Most of these
measurements are taken with some error. When the measurement error is small
relative to the quantity being measured, its effect on a model is usually small. When
measurement error is large relative to the quantity being measured, or when precise
relations can be estimated being measured quantities, it is useful to introduce an
explicit model of measurement error. One kind of measurement error is rounding.

Meta-analysis plays out statistically much like measurement error models, where the
inferences drawn from multiple data sets are combined to do inference over all of
them. Inferences for each data set are treated as providing a kind of measurement
error with respect to true parameter values.

6.1. Bayesian Measurement Error Model
A Bayesian approach to measurement error can be formulated directly by treating the
true quantities being measured as missing data (Clayton 1992; Richardson and Gilks
1993). This requires a model of how the measurements are derived from the true
values.

Regression with Measurement Error
Before considering regression with measurement error, first consider a linear
regression model where the observed data for N cases includes a predictor xn and
outcome yn. In Stan, a linear regression for y based on x with a slope and intercept is
modeled as follows.

data {
int<lower=0> N; // number of cases
vector[N] x; // predictor (covariate)
vector[N] y; // outcome (variate)

}
parameters {

real alpha; // intercept
real beta; // slope
real<lower=0> sigma; // outcome noise

}
model {

y ~ normal(alpha + beta * x, sigma);

92
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alpha ~ normal(0, 10);
beta ~ normal(0, 10);
sigma ~ cauchy(0, 5);

}

Now suppose that the true values of the predictors xn are not known, but for each n, a
measurement xmeas

n of xn is available. If the error in measurement can be modeled, the
measured value xmeas

n can be modeled in terms of the true value xn plus measurement
noise. The true value xn is treated as missing data and estimated along with other
quantities in the model. A simple approach is to assume the measurement error is
normal with known deviation τ. This leads to the following regression model with
constant measurement error.

data {
...
real x_meas[N]; // measurement of x
real<lower=0> tau; // measurement noise

}
parameters {

real x[N]; // unknown true value
real mu_x; // prior location
real sigma_x; // prior scale
...

}
model {

x ~ normal(mu_x, sigma_x); // prior
x_meas ~ normal(x, tau); // measurement model
y ~ normal(alpha + beta * x, sigma);
...

}

The regression coefficients alpha and beta and regression noise scale sigma are the
same as before, but now x is declared as a parameter rather than as data. The data
are now x_meas, which is a measurement of the true x value with noise scale tau. The
model then specifies that the measurement error for x_meas[n] given true value x[n]
is normal with deviation tau. Furthermore, the true values x are given a hierarchical
prior here.

In cases where the measurement errors are not normal, richer measurement error
models may be specified. The prior on the true values may also be enriched. For
instance, Clayton (1992) introduces an exposure model for the unknown (but noisily
measured) risk factors x in terms of known (without measurement error) risk factors
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c. A simple model would regress xn on the covariates cn with noise term υ,

xn ∼ normal(γ>c, υ).

This can be coded in Stan just like any other regression. And, of course, other exposure
models can be provided.

Rounding
A common form of measurement error arises from rounding measurements. Rounding
may be done in many ways, such as rounding weights to the nearest milligram, or
to the nearest pound; rounding may even be done by rounding down to the nearest
integer.

Exercise 3.5(b) by Gelman et al. (2013) provides an example.

3.5. Suppose we weigh an object five times and measure weights, rounded
to the nearest pound, of 10, 10, 12, 11, 9. Assume the unrounded
measurements are normally distributed with a noninformative prior
distribution on µ and σ 2.

(b) Give the correct posterior distribution for (µ,σ 2), treating the
measurements as rounded.

Letting zn be the unrounded measurement for yn, the problem as stated assumes the
likelihood

zn ∼ normal(µ,σ).

The rounding process entails that zn ∈ (yn − 0.5, yn + 0.5). The probability mass
function for the discrete observation y is then given by marginalizing out the
unrounded measurement, producing the likelihood

p(yn | µ,σ) =
∫ yn+0.5
yn−0.5

normal(zn | µ,σ)dzn

= Φ
(
yn + 0.5− µ

σ

)
− Φ

(
yn − 0.5− µ

σ

)
.

Gelman’s answer for this problem took the noninformative prior to be uniform in the
variance σ 2 on the log scale, which yields (due to the Jacobian adjustment), the prior
density

p(µ,σ 2)∝ 1
σ 2
.

The posterior after observing y = (10,10,12,11,9) can be calculated by Bayes’s rule
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as

p(µ,σ 2 | y)∝ p(µ,σ 2) p(y | µ,σ 2)

∝ 1
σ 2

5∏
n=1

(
Φ
(
yn + 0.5− µ

σ

)
− Φ

(
yn − 0.5− µ

σ

))
.

The Stan code simply follows the mathematical definition, providing an example of
the direct definition of a probability function up to a proportion.

data {
int<lower=0> N;
vector[N] y;

}
parameters {

real mu;
real<lower=0> sigma_sq;

}
transformed parameters {

real<lower=0> sigma;
sigma = sqrt(sigma_sq);

}
model {

target += -2 * log(sigma);
for (n in 1:N)
target += log(Phi((y[n] + 0.5 - mu) / sigma)

- Phi((y[n] - 0.5 - mu) / sigma));
}

Alternatively, the model may be defined with latent parameters for the unrounded
measurements zn. The Stan code in this case uses the likelihood for zn directly
while respecting the constraint zn ∈ (yn − 0.5, yn + 0.5). Because Stan does not allow
varying upper- and lower-bound constraints on the elements of a vector (or array), the
parameters are declared to be the rounding error y − z, and then z is defined as a
transformed parameter.

data {
int<lower=0> N;
vector[N] y;

}
parameters {

real mu;
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real<lower=0> sigma_sq;
vector<lower=-0.5, upper=0.5>[N] y_err;

}
transformed parameters {

real<lower=0> sigma;
vector[N] z;
sigma = sqrt(sigma_sq);
z = y + y_err;

}
model {

target += -2 * log(sigma);
z ~ normal(mu, sigma);

}

This explicit model for the unrounded measurements z produces the same posterior
for µ and σ as the previous model that marginalizes z out. Both approaches mix
well, but the latent parameter version is about twice as efficient in terms of effective
samples per iteration, as well as providing a posterior for the unrounded parameters.

6.2. Meta-Analysis
Meta-analysis aims to pool the data from several studies, such as the application of a
tutoring program in several schools or treatment using a drug in several clinical trials.

The Bayesian framework is particularly convenient for meta-analysis, because each
previous study can be treated as providing a noisy measurement of some underlying
quantity of interest. The model then follows directly from two components, a prior on
the underlying quantities of interest and a measurement-error style model for each of
the studies being analyzed.

Treatment Effects in Controlled Studies
Suppose the data in question arise from a total of M studies providing paired binomial
data for a treatment and control group. For instance, the data might be post-surgical
pain reduction under a treatment of ibuprofen (Warn, Thompson, and Spiegelhalter
2002) or mortality after myocardial infarction under a treatment of beta blockers
(Gelman et al. 2013, Section 5.6).

Data

The clinical data consists of J trials, each with nt treatment cases, nc control cases, r t

successful outcomes among those treated and r c successful outcomes among those in
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the control group. This data can be declared in Stan as follows.1

data {
int<lower=0> J;
int<lower=0> n_t[J]; // num cases, treatment
int<lower=0> r_t[J]; // num successes, treatment
int<lower=0> n_c[J]; // num cases, control
int<lower=0> r_c[J]; // num successes, control

}

Converting to Log Odds and Standard Error

Although the clinical trial data are binomial in its raw format, it may be transformed
to an unbounded scale by considering the log odds ratio

yj = log

(
r tj/(n

t
j − r tj )

r cj /(n
c
j − r cj )

)

= log

(
r tj

ntj − r tj

)
− log

(
r cj

ncj − r cj

)

and corresponding standard errors

σj =
√
1
rTi
+ 1
nTi − rTi

+ 1
rCi
+ 1
nCi − rCi

.

The log odds and standard errors can be defined in a transformed parameter block,
though care must be taken not to use integer division.2

transformed data {
real y[J];
real<lower=0> sigma[J];
for (j in 1:J)
y[j] = log(r_t[j]) - log(n_t[j] - r_t[j])

- (log(r_c[j]) - log(n_c[j] - r_c[j]);
for (j in 1:J)
sigma[j] = sqrt(1 / r_t[j] + 1 / (n_t[j] - r_t[j])

+ 1 / r_c[j] + 1 / (n_c[j] - r_c[j]));
}

1Stan’s integer constraints are not powerful enough to express the constraint that r_t[j] ≤ n_t[j], but
this constraint could be checked in the transformed data block.

2When dividing two integers, the result type is an integer and rounding will ensue if the result is not
exact. See the discussion of primitive arithmetic types in the reference manual for more information.
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This definition will be problematic if any of the success counts is zero or equal to
the number of trials. If that arises, a direct binomial model will be required or other
transforms must be used than the unregularized sample log odds.

Non-Hierarchical Model

With the transformed data in hand, two standard forms of meta-analysis can be applied.
The first is a so-called “fixed effects” model, which assumes a single parameter for the
global odds ratio. This model is coded in Stan as follows.

parameters {
real theta; // global treatment effect, log odds

}
model {

y ~ normal(theta, sigma);
}

The sampling statement for y is vectorized; it has the same effect as the following.

for (j in 1:J)
y[j] ~ normal(theta, sigma[j]);

It is common to include a prior for theta in this model, but it is not strictly necessary
for the model to be proper because y is fixed and normal(y | µ,σ) = normal(µ | y,σ).

Hierarchical Model

To model so-called “random effects,” where the treatment effect may vary by clinical
trial, a hierarchical model can be used. The parameters include per-trial treatment
effects and the hierarchical prior parameters, which will be estimated along with other
unknown quantities.

parameters {
real theta[J]; // per-trial treatment effect
real mu; // mean treatment effect
real<lower=0> tau; // deviation of treatment effects

}
model {

y ~ normal(theta, sigma);
theta ~ normal(mu, tau);
mu ~ normal(0, 10);
tau ~ cauchy(0, 5);

}
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Although the vectorized sampling statement for y appears unchanged, the parameter
theta is now a vector. The sampling statement for theta is also vectorized, with
the hyperparameters mu and tau themselves being given wide priors compared to the
scale of the data.

Rubin (1981) provided a hierarchical Bayesian meta-analysis of the treatment effect of
Scholastic Aptitude Test (SAT) coaching in eight schools based on the sample treatment
effect and standard error in each school.

Extensions and Alternatives

Smith, Spiegelhalter, and Thomas (1995) and Gelman et al. (2013, Section 19.4) provide
meta-analyses based directly on binomial data. Warn, Thompson, and Spiegelhalter
(2002) consider the modeling implications of using alternatives to the log-odds ratio
in transforming the binomial data.

If trial-specific predictors are available, these can be included directly in a regression
model for the per-trial treatment effects θj .



7. Latent Discrete Parameters

Stan does not support sampling discrete parameters. So it is not possible to directly
translate BUGS or JAGS models with discrete parameters (i.e., discrete stochastic
nodes). Nevertheless, it is possible to code many models that involve bounded discrete
parameters by marginalizing out the discrete parameters.1

This chapter shows how to code several widely-used models involving latent discrete
parameters. The next chapter, the clustering chapter, on clustering models, considers
further models involving latent discrete parameters.

7.1. The Benefits of Marginalization
Although it requires some algebra on the joint probability function, a pleasant
byproduct of the required calculations is the posterior expectation of the marginalized
variable, which is often the quantity of interest for a model. This allows far greater
exploration of the tails of the distribution as well as more efficient sampling on an
iteration-by-iteration basis because the expectation at all possible values is being used
rather than itself being estimated through sampling a discrete parameter.

Standard optimization algorithms, including expectation maximization (EM), are often
provided in applied statistics papers to describe maximum likelihood estimation
algorithms. Such derivations provide exactly the marginalization needed for coding
the model in Stan.

7.2. Change Point Models
The first example is a model of coal mining disasters in the U.K. for the years 1851–
1962.2

Model with Latent Discrete Parameter
Fonnesbeck et al. (2013, Section 3.1) provides a Poisson model of disaster Dt in year t
with two rate parameters, an early rate (e) and late rate (l), that change at a given point

1The computations are similar to those involved in expectation maximization (EM) algorithms (Dempster,
Laird, and Rubin 1977).

2The source of the data is (Jarrett 1979), which itself is a note correcting an earlier data collection.

100
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in time s. The full model expressed using a latent discrete parameter s is

e ∼ exponential(re)

l ∼ exponential(rl)

s ∼ uniform(1, T )

Dt ∼ Poisson(t < s ? e : l)

The last line uses the conditional operator (also known as the ternary operator), which
is borrowed from C and related languages. The conditional operator has the same
behavior as its counterpart in C++.3

It uses a compact notation involving separating its three arguments by a question
mark (?) and a colon (:). The conditional operator is defined by

c ? x1 : x2 =

 x1 if c is true (i.e., non-zero), and

x2 if c is false (i.e., zero).

Marginalizing out the Discrete Parameter
To code this model in Stan, the discrete parameter s must be marginalized out to
produce a model defining the log of the probability function p(e, l,Dt). The full joint
probability factors as

p(e, l, s,D) = p(e)p(l) p(s)p(D | s, e, l)
= exponential(e | re) exponential(l | rl) uniform(s | 1, T )

T∏
t=1

Poisson(Dt | t < s ? e : l),

To marginalize, an alternative factorization into prior and likelihood is used,

p(e, l,D) = p(e, l) p(D | e, l),
3The R counterpart, ifelse, is slightly different in that it is typically used in a vectorized situation. The

conditional operator is not (yet) vectorized in Stan.
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where the likelihood is defined by marginalizing s as

p(D | e, l) =
T∑
s=1
p(s,D | e, l)

=
T∑
s=1
p(s)p(D | s, e, l)

=
T∑
s=1

uniform(s | 1, T )
T∏
t=1

Poisson(Dt | t < s ? e : l).

Stan operates on the log scale and thus requires the log likelihood,

logp(D | e, l) = log_sum_expTs=1

log uniform(s | 1, T )

+
T∑
t=1

log Poisson(Dt | t < s ? e : l)

 ,
where the log sum of exponents function is defined by

log_sum_expNn=1αn = log
N∑
n=1

exp(αn).

The log sum of exponents function allows the model to be coded directly in Stan
using the built-in function log_sum_exp, which provides both arithmetic stability and
efficiency for mixture model calculations.

Coding the Model in Stan
The Stan program for the change point model is shown in the figure below. The
transformed parameter lp[s] stores the quantity logp(s,D | e, l).

data {
real<lower=0> r_e;
real<lower=0> r_l;

int<lower=1> T;
int<lower=0> D[T];

}
transformed data {

real log_unif;
log_unif = -log(T);
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}
parameters {

real<lower=0> e;
real<lower=0> l;

}
transformed parameters {

vector[T] lp;
lp = rep_vector(log_unif, T);
for (s in 1:T)
for (t in 1:T)
lp[s] = lp[s] + poisson_lpmf(D[t] | t < s ? e : l);

}
model {

e ~ exponential(r_e);
l ~ exponential(r_l);
target += log_sum_exp(lp);

}

A change point model in which disaster rates D[t] have one rate, e, before the change
point and a different rate, l, after the change point. The change point itself, s, is
marginalized out as described in the text.

Although the change-point model is coded directly, the doubly nested loop used for
s and t is quadratic in T. Luke Wiklendt pointed out that a linear alternative can
be achieved by the use of dynamic programming similar to the forward-backward
algorithm for Hidden Markov models; he submitted a slight variant of the following
code to replace the transformed parameters block of the above Stan program.

transformed parameters {
vector[T] lp;
{

vector[T + 1] lp_e;
vector[T + 1] lp_l;
lp_e[1] = 0;
lp_l[1] = 0;
for (t in 1:T) {

lp_e[t + 1] = lp_e[t] + poisson_lpmf(D[t] | e);
lp_l[t + 1] = lp_l[t] + poisson_lpmf(D[t] | l);

}
lp = rep_vector(log_unif + lp_l[T + 1], T)

+ head(lp_e, T) - head(lp_l, T);
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}
}

As should be obvious from looking at it, it has linear complexity in T rather than
quadratic. The result for the mining-disaster data is about 20 times faster; the
improvement will be greater for larger T.

The key to understanding Wiklendt’s dynamic programming version is to see that
head(lp_e) holds the forward values, whereas lp_l[T + 1] - head(lp_l, T)
holds the backward values; the clever use of subtraction allows lp_l to be accumulated
naturally in the forward direction.

Fitting the Model with MCMC
This model is easy to fit using MCMC with NUTS in its default configuration.
Convergence is fast and sampling produces roughly one effective sample every two
iterations. Because it is a relatively small model (the inner double loop over time is
roughly 20,000 steps), it is fast.

The value of lp for each iteration for each change point is available because it is
declared as a transformed parameter. If the value of lp were not of interest, it could
be coded as a local variable in the model block and thus avoid the I/O overhead of
saving values every iteration.

Posterior Distribution of the Discrete Change Point
The value of lp[s] in a given iteration is given by logp(s,D | e, l) for the values of
the early and late rates, e and l, in the iteration. In each iteration after convergence,
the early and late disaster rates, e and l, are drawn from the posterior p(e, l | D) by
MCMC sampling and the associated lp calculated. The value of lp may be normalized
to calculate p(s | e, l,D) in each iteration, based on on the current values of e and l.
Averaging over iterations provides an unnormalized probability estimate of the change
point being s (see below for the normalizing constant),

p(s | D)∝ q(s | D)

= 1
M

M∑
m=1

exp(lp[m, s]).

where lp[m, s] represents the value of lp in posterior draw m for change point s. By
averaging over draws, e and l are themselves marginalized out, and the result has
no dependence on a given iteration’s value for e and l. A final normalization then
produces the quantity of interest, the posterior probability of the change point being s
conditioned on the data D,

p(s | D) = q(s | D)∑T
s′=1 q(s′ | D)

.
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A plot of the values of logp(s | D) computed using Stan 2.4’s default MCMC
implementation is shown in the posterior plot.

Log probability of change point being in year, calculated analytically.
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Figure 7.1: Analytical change-point posterior

The frequency of change points generated by sampling the discrete change points.

In order their range of estimates be visible, the first plot is on the log scale and the
second plot on the linear scale; note the narrower range of years in the second plot
resulting from sampling. The posterior mean of s is roughly 1891.

Discrete Sampling
The generated quantities block may be used to draw discrete parameter values using
the built-in pseudo-random number generators. For example, with lp defined as above,
the following program draws a random value for s at every iteration.

generated quantities {
int<lower=1,upper=T> s;
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Figure 7.2: Sampled change-point posterior

s = categorical_logit_rng(lp);
}

A posterior histogram of draws for s is shown on the second change point posterior
figure above.

Compared to working in terms of expectations, discrete sampling is highly inefficient,
especially for tails of distributions, so this approach should only be used if draws from
a distribution are explicitly required. Otherwise, expectations should be computed
in the generated quantities block based on the posterior distribution for s given by
softmax(lp).

Posterior Covariance
The discrete sample generated for s can be used to calculate covariance with other
parameters. Although the sampling approach is straightforward, it is more statistically
efficient (in the sense of requiring far fewer iterations for the same degree of accuracy)
to calculate these covariances in expectation using lp.
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Multiple Change Points
There is no obstacle in principle to allowing multiple change points. The only issue is
that computation increases from linear to quadratic in marginalizing out two change
points, cubic for three change points, and so on. There are three parameters, e, m, and
l, and two loops for the change point and then one over time, with log densities being
stored in a matrix.

matrix[T, T] lp;
lp = rep_matrix(log_unif, T);
for (s1 in 1:T)

for (s2 in 1:T)
for (t in 1:T)
lp[s1,s2] = lp[s1,s2]

+ poisson_lpmf(D[t] | t < s1 ? e : (t < s2 ? m : l));

The matrix can then be converted back to a vector using to_vector before being
passed to log_sum_exp.

7.3. Mark-Recapture Models
A widely applied field method in ecology is to capture (or sight) animals, mark them
(e.g., by tagging), then release them. This process is then repeated one or more times,
and is often done for populations on an ongoing basis. The resulting data may be used
to estimate population size.

The first subsection describes a simple mark-recapture model that does not involve
any latent discrete parameters. The following subsections describes the Cormack-Jolly-
Seber model, which involves latent discrete parameters for animal death.

Simple Mark-Recapture Model
In the simplest case, a one-stage mark-recapture study produces the following data

• M : number of animals marked in first capture,
• C : number animals in second capture, and
• R : number of marked animals in second capture.

The estimand of interest is

• N : number of animals in the population.

Despite the notation, the model will take N to be a continuous parameter; just because
the population must be finite doesn’t mean the parameter representing it must be.
The parameter will be used to produce a real-valued estimate of the population size.

The Lincoln-Petersen (Lincoln 1930; Petersen 1896) method for estimating population
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size is

N̂ = MC
R
.

This population estimate would arise from a probabilistic model in which the number
of recaptured animals is distributed binomially,

R ∼ binomial(C,M/N)

given the total number of animals captured in the second round (C) with a recapture
probability of M/N, the fraction of the total population N marked in the first round.

data {
int<lower=0> M;
int<lower=0> C;
int<lower=0,upper=min(M,C)> R;

}
parameters {

real<lower=(C - R + M)> N;
}
model {

R ~ binomial(C, M / N);
}

A probabilistic formulation of the Lincoln-Petersen estimator for population size based
on data from a one-step mark-recapture study. The lower bound on N is necessary to
efficiently eliminate impossible values.

The probabilistic variant of the Lincoln-Petersen estimator can be directly coded in
Stan as shown in the Lincon-Petersen model figure. The Lincoln-Petersen estimate is
the maximum likelihood estimate (MLE) for this model.

To ensure the MLE is the Lincoln-Petersen estimate, an improper uniform prior for N
is used; this could (and should) be replaced with a more informative prior if possible,
based on knowledge of the population under study.

The one tricky part of the model is the lower bound C−R+M placed on the population
size N. Values below this bound are impossible because it is otherwise not possible to
draw R samples out of the C animals recaptured. Implementing this lower bound is
necessary to ensure sampling and optimization can be carried out in an unconstrained
manner with unbounded support for parameters on the transformed (unconstrained)
space. The lower bound in the declaration for C implies a variable transform f :
(C − R +M,∞) → (−∞,+∞) defined by f (N) = log(N − (C − R +M)); the reference
manual contains full details of all constrained parameter transforms.
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Cormack-Jolly-Seber with Discrete Parameter
The Cormack-Jolly-Seber (CJS) model (Cormack 1964; Jolly 1965; Seber 1965) is an
open-population model in which the population may change over time due to death;
the presentation here draws heavily on Schofield (2007).

The basic data are

• I: number of individuals,
• T : number of capture periods, and
• yi,t : Boolean indicating if individual i was captured at time t .

Each individual is assumed to have been captured at least once because an individual
only contributes information conditionally after they have been captured the first time.

There are two Bernoulli parameters in the model,

• φt : probability that animal alive at time t survives until t + 1 and
• pt : probability that animal alive at time t is captured at time t .

These parameters will both be given uniform priors, but information should be used
to tighten these priors in practice.

The CJS model also employs a latent discrete parameter zi,t indicating for each
individual i whether it is alive at time t , distributed as

zi,t ∼ Bernoulli(zi,t−1 ? 0 : φt−1).

The conditional prevents the model positing zombies; once an animal is dead, it stays
dead. The data distribution is then simple to express conditional on z as

yi,t ∼ Bernoulli(zi,t ? 0 : pt).

The conditional enforces the constraint that dead animals cannot be captured.

Collective Cormack-Jolly-Seber Model
This subsection presents an implementation of the model in terms of counts for
different history profiles for individuals over three capture times. It assumes
exchangeability of the animals in that each is assigned the same capture and survival
probabilities.

In order to ease the marginalization of the latent discrete parameter zi,t , the Stan
models rely on a derived quantity χt for the probability that an individual is never
captured again if it is alive at time t (if it is dead, the recapture probability is zero).
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this quantity is defined recursively by

χt =

1 if t = T
(1−φt)+φt(1− pt+1)χt+1 if t < T

The base case arises because if an animal was captured in the last time period, the
probability it is never captured again is 1 because there are no more capture periods.
The recursive case defining χt in terms of χt+1 involves two possibilities: (1) not
surviving to the next time period, with probability (1 −φt), or (2) surviving to the
next time period with probability φt , not being captured in the next time period with
probability (1− pt+1), and not being captured again after being alive in period t + 1
with probability χt+1.

With three capture times, there are eight captured/not-captured profiles an individual
may have. These may be naturally coded as binary numbers as follows.

captures

profile 1 2 3 probability

0 − − − n/a
1 − − + n/a
2 − + − χ2
3 − + + φ2 p3
4 + − − χ1

5 + − + φ1 (1− p2)φ2 p3
6 + + − φ1 p2 χ2
7 + + + φ1 p2φ2 p3

History 0, for animals that are never captured, is unobservable because only animals
that are captured are observed. History 1, for animals that are only captured in the
last round, provides no information for the CJS model, because capture/non-capture
status is only informative when conditioned on earlier captures. For the remaining
cases, the contribution to the likelihood is provided in the final column.

By defining these probabilities in terms of χ directly, there is no need for a latent
binary parameter indicating whether an animal is alive at time t or not. The definition
of χ is typically used to define the likelihood (i.e., marginalize out the latent discrete
parameter) for the CJS model (Schofield 2007).
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The Stan model defines χ as a transformed parameter based on parameters φ and p.
In the model block, the log probability is incremented for each history based on its
count. This second step is similar to collecting Bernoulli observations into a binomial
or categorical observations into a multinomial, only it is coded directly in the Stan
program using target += rather than being part of a built-in probability function.

The following is the Stan program for the Cormack-Jolly-Seber mark-recapture model
that considers counts of individuals with observation histories of being observed or
not in three capture periods

data {
int<lower=0> history[7];

}
parameters {

real<lower=0,upper=1> phi[2];
real<lower=0,upper=1> p[3];

}
transformed parameters {

real<lower=0,upper=1> chi[2];
chi[2] = (1 - phi[2]) + phi[2] * (1 - p[3]);
chi[1] = (1 - phi[1]) + phi[1] * (1 - p[2]) * chi[2];

}
model {

target += history[2] * log(chi[2]);
target += history[3] * (log(phi[2]) + log(p[3]));
target += history[4] * (log(chi[1]));
target += history[5] * (log(phi[1]) + log1m(p[2])

+ log(phi[2]) + log(p[3]));
target += history[6] * (log(phi[1]) + log(p[2])

+ log(chi[2]));
target += history[7] * (log(phi[1]) + log(p[2])

+ log(phi[2]) + log(p[3]));
}
generated quantities {

real<lower=0,upper=1> beta3;
beta3 = phi[2] * p[3];

}
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Identifiability

The parameters φ2 and p3, the probability of death at time 2 and probability of capture
at time 3 are not identifiable, because both may be used to account for lack of capture
at time 3. Their product, β3 = φ2 p3, is identified. The Stan model defines beta3 as
a generated quantity. Unidentified parameters pose a problem for Stan’s samplers’
adaptation. Although the problem posed for adaptation is mild here because the
parameters are bounded and thus have proper uniform priors, it would be better to
formulate an identified parameterization. One way to do this would be to formulate a
hierarchical model for the p and φ parameters.

Individual Cormack-Jolly-Seber Model
This section presents a version of the Cormack-Jolly-Seber (CJS) model cast at the
individual level rather than collectively as in the previous subsection. It also extends
the model to allow an arbitrary number of time periods. The data will consist of
the number T of capture events, the number I of individuals, and a boolean flag yi,t
indicating if individual i was observed at time t . In Stan,

data {
int<lower=2> T;
int<lower=0> I;
int<lower=0,upper=1> y[I, T];

}

The advantages to the individual-level model is that it becomes possible to add
individual “random effects” that affect survival or capture probability, as well as to
avoid the combinatorics involved in unfolding 2T observation histories for T capture
times.

Utility Functions

The individual CJS model is written involves several function definitions. The first two
are used in the transformed data block to compute the first and last time period in
which an animal was captured.4

functions {
int first_capture(int[] y_i) {
for (k in 1:size(y_i))
if (y_i[k])

4An alternative would be to compute this on the outside and feed it into the Stan model as preprocessed
data. Yet another alternative encoding would be a sparse one recording only the capture events along with
their time and identifying the individual captured.
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return k;
return 0;

}
int last_capture(int[] y_i) {
for (k_rev in 0:(size(y_i) - 1)) {
int k;
k = size(y_i) - k_rev;
if (y_i[k])

return k;
}
return 0;

}
...

}

These two functions are used to define the first and last capture time for each individual
in the transformed data block.5

transformed data {
int<lower=0,upper=T> first[I];
int<lower=0,upper=T> last[I];
vector<lower=0,upper=I>[T] n_captured;
for (i in 1:I)
first[i] = first_capture(y[i]);

for (i in 1:I)
last[i] = last_capture(y[i]);

n_captured = rep_vector(0, T);
for (t in 1:T)
for (i in 1:I)
if (y[i, t])

n_captured[t] = n_captured[t] + 1;
}

The transformed data block also defines n_captured[t], which is the total number
of captures at time t. The variable n_captured is defined as a vector instead of an
integer array so that it can be used in an elementwise vector operation in the generated
quantities block to model the population estimates at each time point.

5Both functions return 0 if the individual represented by the input array was never captured. Individuals
with no captures are not relevant for estimating the model because all probability statements are conditional
on earlier captures. Typically they would be removed from the data, but the program allows them to be
included even though they make not contribution to the log probability function.
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The parameters and transformed parameters are as before, but now there is a function
definition for computing the entire vector chi, the probability that if an individual is
alive at t that it will never be captured again.

parameters {
vector<lower=0,upper=1>[T-1] phi;
vector<lower=0,upper=1>[T] p;

}
transformed parameters {

vector<lower=0,upper=1>[T] chi;
chi = prob_uncaptured(T,p,phi);

}

The definition of prob_uncaptured, from the functions block, is

functions {
...
vector prob_uncaptured(int T, vector p, vector phi) {
vector[T] chi;
chi[T] = 1.0;
for (t in 1:(T - 1)) {
int t_curr;
int t_next;
t_curr = T - t;
t_next = t_curr + 1;
chi[t_curr] = (1 - phi[t_curr])

+ phi[t_curr]

* (1 - p[t_next])

* chi[t_next];
}
return chi;

}
}

The function definition directly follows the mathematical definition of χt , unrolling
the recursion into an iteration and defining the elements of chi from T down to 1.

The Model

Given the precomputed quantities, the model block directly encodes the CJS model’s
log likelihood function. All parameters are left with their default uniform priors
and the model simply encodes the log probability of the observations q given the
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parameters p and phi as well as the transformed parameter chi defined in terms of p
and phi.

model {
for (i in 1:I) {
if (first[i] > 0) {
for (t in (first[i]+1):last[i]) {

1 ~ bernoulli(phi[t-1]);
y[i, t] ~ bernoulli(p[t]);

}
1 ~ bernoulli(chi[last[i]]);

}
}

}

The outer loop is over individuals, conditional skipping individuals i which are never
captured. The never-captured check depends on the convention of the first-capture
and last-capture functions returning 0 for first if an individual is never captured.

The inner loop for individual i first increments the log probability based on the survival
of the individual with probability phi[t-1]. The outcome of 1 is fixed because the
individual must survive between the first and last capture (i.e., no zombies). The loop
starts after the first capture, because all information in the CJS model is conditional
on the first capture.

In the inner loop, the observed capture status y[i, t] for individual i at time t has a
Bernoulli distribution based on the capture probability p[t] at time t.

After the inner loop, the probability of an animal never being seen again after being
observed at time last[i] is included, because last[i] was defined to be the last
time period in which animal i was observed.

Identified Parameters

As with the collective model described in the previous subsection, this model does
not identify phi[T-1] and p[T], but does identify their product, beta. Thus beta is
defined as a generated quantity to monitor convergence and report.

generated quantities {
real beta;
...

beta = phi[T-1] * p[T];
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...
}

The parameter p[1] is also not modeled and will just be uniform between 0 and 1. A
more finely articulated model might have a hierarchical or time-series component, in
which case p[1] would be an unknown initial condition and both phi[T-1] and p[T]
could be identified.

Population Size Estimates

The generated quantities also calculates an estimate of the population mean at each
time t in the same way as in the simple mark-recapture model as the number of
individuals captured at time t divided by the probability of capture at time t. This
is done with the elementwise division operation for vectors (./) in the generated
quantities block.

generated quantities {
...
vector<lower=0>[T] pop;
...
pop = n_captured ./ p;
pop[1] = -1;

}

Generalizing to Individual Effects

All individuals are modeled as having the same capture probability, but this model
could be easily generalized to use a logistic regression here based on individual-level
inputs to be used as predictors.

7.4. Data Coding and Diagnostic Accuracy Models
Although seemingly disparate tasks, the rating/coding/annotation of items with
categories and diagnostic testing for disease or other conditions, share several
characteristics which allow their statistical properties to be modeled similarly.

Diagnostic Accuracy
Suppose you have diagnostic tests for a condition of varying sensitivity and specificity.
Sensitivity is the probability a test returns positive when the patient has the condition
and specificity is the probability that a test returns negative when the patient does
not have the condition. For example, mammograms and puncture biopsy tests both
test for the presence of breast cancer. Mammograms have high sensitivity and low
specificity, meaning lots of false positives, whereas puncture biopsies are the opposite,
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with low sensitivity and high specificity, meaning lots of false negatives.

There are several estimands of interest in such studies. An epidemiological study may
be interested in the prevalence of a kind of infection, such as malaria, in a population.
A test development study might be interested in the diagnostic accuracy of a new test.
A health care worker performing tests might be interested in the disease status of a
particular patient.

Data Coding
Humans are often given the task of coding (equivalently rating or annotating) data.
For example, journal or grant reviewers rate submissions, a political study may code
campaign commercials as to whether they are attack ads or not, a natural language
processing study might annotate Tweets as to whether they are positive or negative in
overall sentiment, or a dentist looking at an X-ray classifies a patient as having a cavity
or not. In all of these cases, the data coders play the role of the diagnostic tests and
all of the same estimands are in play — data coder accuracy and bias, true categories
of items being coded, or the prevalence of various categories of items in the data.

Noisy Categorical Measurement Model
In this section, only categorical ratings are considered, and the challenge in the
modeling for Stan is to marginalize out the discrete parameters.

Dawid and Skene (1979) introduce a noisy-measurement model for coding and apply it
in the epidemiological setting of coding what doctors say about patient histories; the
same model can be used for diagnostic procedures.

Data

The data for the model consists of J raters (diagnostic tests), I items (patients), and
K categories (condition statuses) to annotate, with yi,j ∈ {1, . . . , K} being the rating
provided by rater j for item i. In a diagnostic test setting for a particular condition, the
raters are diagnostic procedures and often K = 2, with values signaling the presence
or absence of the condition.6

It is relatively straightforward to extend Dawid and Skene’s model to deal with the
situation where not every rater rates each item exactly once.

Model Parameters
The model is based on three parameters, the first of which is discrete:

• zi : a value in {1, . . . , K} indicating the true category of item i,
6Diagnostic procedures are often ordinal, as in stages of cancer in oncological diagnosis or the severity

of a cavity in dental diagnosis. Dawid and Skene’s model may be used as is or naturally generalized for
ordinal ratings using a latent continuous rating and cutpoints as in ordinal logistic regression.



CHAPTER 7. LATENT DISCRETE PARAMETERS 118

• π : a K-simplex for the prevalence of the K categories in the population, and
• θj,k : a K-simplex for the response of annotator j to an item of true category k.

Noisy Measurement Model
The true category of an item is assumed to be generated by a simple categorical
distribution based on item prevalence,

zi ∼ categorical(π).

The rating yi,j provided for item i by rater j is modeled as a categorical response of
rater i to an item of category zi ,7

yi,j ∼ categorical(θj,πz[i]).

Priors and Hierarchical Modeling

Dawid and Skene provided maximum likelihood estimates for θ and π , which allows
them to generate probability estimates for each zi .

To mimic Dawid and Skene’s maximum likelihood model, the parameters θj,k and π
can be given uniform priors over K-simplexes. It is straightforward to generalize to
Dirichlet priors,

π ∼ Dirichlet(α)

and
θj,k ∼ Dirichlet(βk)

with fixed hyperparameters α (a vector) and β (a matrix or array of vectors). The prior
for θj,k must be allowed to vary in k, so that, for instance, βk,k is large enough to allow
the prior to favor better-than-chance annotators over random or adversarial ones.

Because there are J coders, it would be natural to extend the model to include a
hierarchical prior for β and to partially pool the estimates of coder accuracy and bias.

Marginalizing out the True Category

Because the true category parameter z is discrete, it must be marginalized out of the
joint posterior in order to carry out sampling or maximum likelihood estimation in
Stan. The joint posterior factors as

p(y, θ,π) = p(y | θ,π)p(π)p(θ),
7In the subscript, zi is written as z[i] to improve legibility.
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where p(y | θ,π) is derived by marginalizing z out of

p(z, y | θ,π) =
I∏
i=1

categorical(zi | π)
J∏
j=1

categorical(yi,j | θj,z[i])
 .

This can be done item by item, with

p(y | θ,π) =
I∏
i=1

K∑
k=1

categorical(zi | π)
J∏
j=1

categorical(yi,j | θj,z[i])
 .

In the missing data model, only the observed labels would be used in the inner product.

Dawid and Skene (1979) derive exactly the same equation in their Equation (2.7),
required for the E-step in their expectation maximization (EM) algorithm. Stan requires
the marginalized probability function on the log scale,

logp(y | θ,π) =
I∑
i=1

log

 K∑
k=1

exp

log categorical(zi | π) +
J∑
j=1

log categorical(yi,j | θj,z[i])
 ,

which can be directly coded using Stan’s built-in log_sum_exp function.

Stan Implementation
The Stan program for the Dawid and Skene model is provided below (Dawid and Skene
1979).

data {
int<lower=2> K;
int<lower=1> I;
int<lower=1> J;

int<lower=1,upper=K> y[I, J];

vector<lower=0>[K] alpha;
vector<lower=0>[K] beta[K];

}
parameters {

simplex[K] pi;
simplex[K] theta[J, K];

}
transformed parameters {

vector[K] log_q_z[I];
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for (i in 1:I) {
log_q_z[i] = log(pi);
for (j in 1:J)
for (k in 1:K)

log_q_z[i, k] = log_q_z[i, k]
+ log(theta[j, k, y[i, j]]);

}
}
model {

pi ~ dirichlet(alpha);
for (j in 1:J)
for (k in 1:K)
theta[j, k] ~ dirichlet(beta[k]);

for (i in 1:I)
target += log_sum_exp(log_q_z[i]);

}

The model marginalizes out the discrete parameter z, storing the unnormalized
conditional probability logq(zi = k|θ,π) in log_q_z[i, k].

The Stan model converges quickly and mixes well using NUTS starting at diffuse initial
points, unlike the equivalent model implemented with Gibbs sampling over the discrete
parameter. Reasonable weakly informative priors are αk = 3 and βk,k = 2.5K and
βk,k′ = 1 if k ≠ k′. Taking α and βk to be unit vectors and applying optimization will
produce the same answer as the expectation maximization (EM) algorithm of Dawid
and Skene (1979).

Inference for the True Category

The quantity log_q_z[i] is defined as a transformed parameter. It encodes the
(unnormalized) log of p(zi | θ,π). Each iteration provides a value conditioned on that
iteration’s values for θ and π . Applying the softmax function to log_q_z[i] provides
a simplex corresponding to the probability mass function of zi in the posterior. These
may be averaged across the iterations to provide the posterior probability distribution
over each zi .



8. Sparse and Ragged Data Structures

Stan does not directly support either sparse or ragged data structures, though both
can be accommodated with some programming effort. The sparse matrices chapter
introduces a special-purpose sparse matrix times dense vector multiplication, which
should be used where applicable; this chapter covers more general data structures.

8.1. Sparse Data Structures
Coding sparse data structures is as easy as moving from a matrix-like data structure
to a database-like data structure. For example, consider the coding of sparse data for
the IRT models discussed in the item-response model section. There are J students
and K questions, and if every student answers every question, then it is practical to
declare the data as a J ×K array of answers.

data {
int<lower=1> J;
int<lower=1> K;
int<lower=0,upper=1> y[J, K];
...

model {
for (j in 1:J)
for (k in 1:K)
y[j, k] ~ bernoulli_logit(delta[k] * (alpha[j] - beta[k]));

...

y =

 0 1 NA 1
0 NA NA 1

NA 0 NA NA


jj kk y

1 1 0
1 2 1
1 4 1
2 1 0
2 4 1
3 2 0

On the left is a definition of a sparse matrix y using the NA notation from R (which is
not supported by Stan). On the right is a database-like encoding of the same sparse
matrix y that can be used directly in Stan. The first two columns, jj and kk, denote

121
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the indexes and the final column, y , the value. For example, the fifth row of the
database-like data structure on the right indicates that y2,4 = 1.

When not every student is given every question, the dense array coding will no longer
work, because Stan does not support undefined values. The sparse data example
shows an example with J = 3 and K = 4, with missing responses shown as NA, as in R.
There is no support within Stan for R’s NA values, so this data structure cannot be
used directly. Instead, it must be converted to a “long form” as in a database, with
columns indicating the j and k indexes along with the value. For instance, with jj and
kk used for the indexes (following Gelman and Hill (2007)), the data structure can be
coded as in the right-hand example in the example. This says that y1,1 = 0, y1,2 = 1,
and so on, up to y3,2 = 1, with all other entries undefined.

Letting N be the number of y that are defined, here N = 6, the data and model can be
formulated as follows.

data {
...
int<lower=1> N;
int<lower=1,upper=J> jj[N];
int<lower=1,upper=K> kk[N];
int<lower=0,upper=1> y[N];
...

model {
for (n in 1:N)
y[n] ~ bernoulli_logit(delta[kk[n]]

* (alpha[jj[n]] - beta[kk[n]]));
...

In the situation where there are no missing values, the two model formulations produce
exactly the same log posterior density.

8.2. Ragged Data Structures
Ragged arrays are arrays that are not rectangular, but have different sized entries.
This kind of structure crops up when there are different numbers of observations per
entry.

A general approach to dealing with ragged structure is to move to a full database-like
data structure as discussed in the previous section. A more compact approach is
possible with some indexing into a linear array.

For example, consider a data structure for three groups, each of which has a different
number of observations.
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y1 = [1.3 2.4 0.9]
y2 = [−1.8 − 0.1]
y3 = [12.9 18.7 42.9 4.7]

z = [1.3 2.4 0.9 −1.8 −0.1 12.9 18.7 42.9 4.7]
s = {3 2 4}

On the left is the definition of a ragged data structure y with three rows of different
sizes (y1 is size 3, y2 size 2, and y3 size 4). On the right is an example of how to code
the data in Stan, using a single vector y to hold all the values and a separate array
of integers s to hold the group row sizes. In this example, y1 = z1:3, y2 = z4:5, and
y3 = z6:9.

Suppose the model is a simple varying intercept model, which, using vectorized
notation, would yield a log-likelihood

3∑
n=1

log normal(yn | µn, σ).

There’s no direct way to encode this in Stan.

A full database type structure could be used, as in the sparse example, but this
is inefficient, wasting space for unnecessary indices and not allowing vector-based
density operations. A better way to code this data is as a single list of values, with a
separate data structure indicating the sizes of each subarray. This is indicated on the
right of the example. This coding uses a single array for the values and a separate
array for the sizes of each row.

The model can then be coded up using slicing operations as follows.

data {
int<lower=0> N; // # observations
int<lower=0> K; // # of groups
vector[N] y; // observations
int s[K]; // group sizes
...

model {
int pos;
pos = 1;
for (k in 1:K) {
segment(y, pos, s[k]) ~ normal(mu[k], sigma);
pos = pos + s[k];

}

This coding allows for efficient vectorization, which is worth the copy cost entailed by
the segment() vector slicing operation.



9. Clustering Models

Unsupervised methods for organizing data into groups are collectively referred to
as clustering. This chapter describes the implementation in Stan of two widely used
statistical clustering models, soft K-means and latent Dirichlet allocation (LDA). In
addition, this chapter includes naive Bayesian classification, which can be viewed
as a form of clustering which may be supervised. These models are typically
expressed using discrete parameters for cluster assignments. Nevertheless, they
can be implemented in Stan like any other mixture model by marginalizing out the
discrete parameters (see the mixture modeling chapter).

9.1. Relation to Finite Mixture Models
As mentioned in the clustering section, clustering models and finite mixture models
are really just two sides of the same coin. The “soft” K-means model described in the
next section is a normal mixture model (with varying assumptions about covariance
in higher dimensions leading to variants of K-means). Latent Dirichlet allocation is a
mixed-membership multinomial mixture.

9.2. Soft K-Means
K-means clustering is a method of clustering data represented as D-dimensional
vectors. Specifically, there will be N items to be clustered, each represented as a
vector yn ∈ RD . In the “soft” version of K-means, the assignments to clusters will be
probabilistic.

Geometric Hard K-Means Clustering
K-means clustering is typically described geometrically in terms of the following
algorithm, which assumes the number of clusters K and data vectors y as input.

1. For each n in {1, . . . ,N}, randomly assign vector yn to a cluster in {1, . . . , K};
2. Repeat

1. For each cluster k in {1, . . . , K}, compute the cluster centroid µk by
averaging the vectors assigned to that cluster;

2. For each n in {1, . . . ,N}, reassign yn to the cluster k for which the
(Euclidean) distance from yn to µk is smallest;

3. If no vectors changed cluster, return the cluster assignments.

This algorithm is guaranteed to terminate.
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Soft K-Means Clustering
Soft K-means clustering treats the cluster assignments as probability distributions over
the clusters. Because of the connection between Euclidean distance and multivariate
normal models with a fixed covariance, soft K-means can be expressed (and coded in
Stan) as a multivariate normal mixture model.

In the full generative model, each data point n in {1, . . . ,N} is assigned a cluster
zn ∈ {1, . . . , K} with symmetric uniform probability,

zn ∼ categorical(1/K),

where 1 is the unit vector of K dimensions, so that 1/K is the symmetric K-simplex.
Thus the model assumes that each data point is drawn from a hard decision about
cluster membership. The softness arises only from the uncertainty about which cluster
generated a data point.

The data points themselves are generated from a multivariate normal distribution
whose parameters are determined by the cluster assignment zn,

yn ∼ normal(µz[n],Σz[n])

The sample implementation in this section assumes a fixed unit covariance matrix
shared by all clusters k,

Σk = diag_matrix(1),

so that the log multivariate normal can be implemented directly up to a proportion by

normal
(
yn|µk,diag_matrix(1)

)
∝ exp

−1
2

D∑
d=1

(
µk,d − yn,d

)2 .
The spatial perspective on K-means arises by noting that the inner term is just half
the negative Euclidean distance from the cluster mean µk to the data point yn.

Stan Implementation of Soft K-Means
Consider the following Stan program for implementing K-means clustering.

data {
int<lower=0> N; // number of data points
int<lower=1> D; // number of dimensions
int<lower=1> K; // number of clusters
vector[D] y[N]; // observations

}
transformed data {
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real<upper=0> neg_log_K;
neg_log_K = -log(K);

}
parameters {

vector[D] mu[K]; // cluster means
}
transformed parameters {

real<upper=0> soft_z[N, K]; // log unnormalized clusters
for (n in 1:N)
for (k in 1:K)
soft_z[n, k] = neg_log_K

- 0.5 * dot_self(mu[k] - y[n]);
}
model {

// prior
for (k in 1:K)
mu[k] ~ std_normal();

// likelihood
for (n in 1:N)
target += log_sum_exp(soft_z[n]);

}

There is an independent standard normal prior on the centroid parameters; this prior
could be swapped with other priors, or even a hierarchical model to fit an overall
problem scale and location.

The only parameter is mu, where mu[k] is the centroid for cluster k. The transformed
parameters soft_z[n] contain the log of the unnormalized cluster assignment
probabilities. The vector soft_z[n] can be converted back to a normalized simplex
using the softmax function (see the functions reference manual), either externally or
within the model’s generated quantities block.

Generalizing Soft K-Means
The multivariate normal distribution with unit covariance matrix produces a log
probability density proportional to Euclidean distance (i.e., L2 distance). Other
distributions relate to other geometries. For instance, replacing the normal distribution
with the double exponential (Laplace) distribution produces a clustering model based
on L1 distance (i.e., Manhattan or taxicab distance).

Within the multivariate normal version of K-means, replacing the unit covariance
matrix with a shared covariance matrix amounts to working with distances defined in
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a space transformed by the inverse covariance matrix.

Although there is no global spatial analog, it is common to see soft K-means specified
with a per-cluster covariance matrix. In this situation, a hierarchical prior may be used
for the covariance matrices.

9.3. The Difficulty of Bayesian Inference for Clustering
Two problems make it pretty much impossible to perform full Bayesian inference for
clustering models, the lack of parameter identifiability and the extreme multimodality
of the posteriors. There is additional discussion related to the non-identifiability due
to label switching in the label switching section.

Non-Identifiability
Cluster assignments are not identified—permuting the cluster mean vectors mu leads
to a model with identical likelihoods. For instance, permuting the first two indexes in
mu and the first two indexes in each soft_z[n] leads to an identical likelihood (and
prior).

The lack of identifiability means that the cluster parameters cannot be compared
across multiple Markov chains. In fact, the only parameter in soft K-means is not
identified, leading to problems in monitoring convergence. Clusters can even fail to be
identified within a single chain, with indices swapping if the chain is long enough or
the data are not cleanly separated.

Multimodality
The other problem with clustering models is that their posteriors are highly multimodal.
One form of multimodality is the non-identifiability leading to index swapping. But
even without the index problems the posteriors are highly multimodal.

Bayesian inference fails in cases of high multimodality because there is no way to
visit all of the modes in the posterior in appropriate proportions and thus no way to
evaluate integrals involved in posterior predictive inference.

In light of these two problems, the advice often given in fitting clustering models is
to try many different initializations and select the sample with the highest overall
probability. It is also popular to use optimization-based point estimators such as
expectation maximization or variational Bayes, which can be much more efficient than
sampling-based approaches.
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9.4. Naive Bayes Classification and Clustering
Naive Bayes is a kind of mixture model that can be used for classification or for
clustering (or a mix of both), depending on which labels for items are observed.1

Multinomial mixture models are referred to as “naive Bayes” because they are often
applied to classification problems where the multinomial independence assumptions
are clearly false.

Naive Bayes classification and clustering can be applied to any data with multinomial
structure. A typical example of this is natural language text classification and
clustering, which is used an example in what follows.

The observed data consists of a sequence of M documents made up of bags of words
drawn from a vocabulary of V distinct words. A documentm has Nm words, which are
indexed as wm,1, . . . , wm,N[m] ∈ {1, . . . , V}. Despite the ordered indexing of words in a
document, this order is not part of the model, which is clearly defective for natural
human language data. A number of topics (or categories) K is fixed.

The multinomial mixture model generates a single category zm ∈ {1, . . . , K} for each
document m ∈ {1, . . . ,M} according to a categorical distribution,

zm ∼ categorical(θ).

The K-simplex parameter θ represents the prevalence of each category in the data.

Next, the words in each document are generated conditionally independently of each
other and the words in other documents based on the category of the document, with
word n of document m being generated as

wm,n ∼ categorical(φz[m]).

The parameter φz[m] is a V -simplex representing the probability of each word in the
vocabulary in documents of category zm.

The parameters θ and φ are typically given symmetric Dirichlet priors. The prevalence
θ is sometimes fixed to produce equal probabilities for each category k ∈ {1, . . . , K}.

Coding Ragged Arrays
The specification for naive Bayes in the previous sections have used a ragged array
notation for the words w . Because Stan does not support ragged arrays, the models

1For clustering, the non-identifiability problems for all mixture models present a problem, whereas there
is no such problem for classification. Despite the difficulties with full Bayesian inference for clustering,
researchers continue to use it, often in an exploratory data analysis setting rather than for predictive
modeling.
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are coded using an alternative strategy that provides an index for each word in a global
list of words. The data is organized as follows, with the word arrays laid out in a
column and each assigned to its document in a second column.

n w[n] doc[n]

1 w1,1 1
2 w1,2 1
...

...
...

N1 w1,N[1] 1
N1 + 1 w2,1 2

N1 + 2 w2,2 2
...

...
...

N1 +N2 w2,N[2] 2
N1 +N2 + 1 w3,1 3

...
...

...

N =
∑M
m=1Nm wM,N[M] M

The relevant variables for the program are N, the total number of words in all the
documents, the word array w, and the document identity array doc.

Estimation with Category-Labeled Training Data
A naive Bayes model for estimating the simplex parameters given training data with
documents of known categories can be coded in Stan as follows

data {
// training data
int<lower=1> K; // num topics
int<lower=1> V; // num words
int<lower=0> M; // num docs
int<lower=0> N; // total word instances
int<lower=1,upper=K> z[M]; // topic for doc m
int<lower=1,upper=V> w[N]; // word n
int<lower=1,upper=M> doc[N]; // doc ID for word n
// hyperparameters
vector<lower=0>[K] alpha; // topic prior
vector<lower=0>[V] beta; // word prior

}
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parameters {
simplex[K] theta; // topic prevalence
simplex[V] phi[K]; // word dist for topic k

}
model {

theta ~ dirichlet(alpha);
for (k in 1:K)
phi[k] ~ dirichlet(beta);

for (m in 1:M)
z[m] ~ categorical(theta);

for (n in 1:N)
w[n] ~ categorical(phi[z[doc[n]]]);

}

The topic identifiers zm are declared as data and the latent category assignments are
included as part of the likelihood function.

Estimation without Category-Labeled Training Data
Naive Bayes models can be used in an unsupervised fashion to cluster multinomial-
structured data into a fixed number K of categories. The data declaration includes
the same variables as the model in the previous section excluding the topic labels z.
Because z is discrete, it needs to be summed out of the model calculation. This is done
for naive Bayes as for other mixture models. The parameters are the same up to the
priors, but the likelihood is now computed as the marginal document probability

logp(wm,1, . . . , wm,Nm | θ,φ)

= log
K∑
k=1

categorical(k | θ)×
Nm∏
n=1

categorical(wm,n | φk)


= log
K∑
k=1

exp

log categorical(k | θ)+
Nm∑
n=1

log categorical(wm,n | φk)
 .

The last step shows how the log_sum_exp function can be used to stabilize the
numerical calculation and return a result on the log scale.

model {
real gamma[M, K];
theta ~ dirichlet(alpha);
for (k in 1:K)
phi[k] ~ dirichlet(beta);

for (m in 1:M)
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for (k in 1:K)
gamma[m, k] = categorical_lpmf(k \mid theta);

for (n in 1:N)
for (k in 1:K)
gamma[doc[n], k] = gamma[doc[n], k]

+ categorical_lpmf(w[n] \mid phi[k]);
for (m in 1:M)
target += log_sum_exp(gamma[m]);

}

The local variable gamma[m, k] represents the value

γm,k = log categorical(k | θ)+
Nm∑
n=1

log categorical(wm,n | φk).

Given γ, the posterior probability that document m is assigned category k is

Pr[zm = k|w,α,β] = exp

γm,k − log
K∑
k=1

exp
(
γm,k

) .
If the variable gamma were declared and defined in the transformed parameter block,
its sampled values would be saved by Stan. The normalized posterior probabilities
could also be defined as generated quantities.

Full Bayesian Inference for Naive Bayes
Full Bayesian posterior predictive inference for the naive Bayes model can be
implemented in Stan by combining the models for labeled and unlabeled data. The
estimands include both the model parameters and the posterior distribution over
categories for the unlabeled data. The model is essentially a missing data model
assuming the unknown category labels are missing completely at random; see Gelman
et al. (2013) and Gelman and Hill (2007) for more information on missing data
imputation. The model is also an instance of semisupervised learning because the
unlabeled data contributes to the parameter estimations.

To specify a Stan model for performing full Bayesian inference, the model for labeled
data is combined with the model for unlabeled data. A second document collection
is declared as data, but without the category labels, leading to new variables M2
N2, w2, and doc2. The number of categories and number of words, as well as the
hyperparameters are shared and only declared once. Similarly, there is only one set of
parameters. Then the model contains a single set of statements for the prior, a set of
statements for the labeled data, and a set of statements for the unlabeled data.
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Prediction without Model Updates
An alternative to full Bayesian inference involves estimating a model using labeled data,
then applying it to unlabeled data without updating the parameter estimates based
on the unlabeled data. This behavior can be implemented by moving the definition
of gamma for the unlabeled documents to the generated quantities block. Because the
variables no longer contribute to the log probability, they no longer jointly contribute
to the estimation of the model parameters.

9.5. Latent Dirichlet Allocation
Latent Dirichlet allocation (LDA) is a mixed-membership multinomial clustering model
(Blei, Ng, and Jordan 2003) that generalizes naive Bayes. Using the topic and document
terminology common in discussions of LDA, each document is modeled as having a
mixture of topics, with each word drawn from a topic based on the mixing proportions.

The LDA Model
The basic model assumes each document is generated independently based on fixed
hyperparameters. For documentm, the first step is to draw a topic distribution simplex
θm over the K topics,

θm ∼ Dirichlet(α).

The prior hyperparameter α is fixed to a K-vector of positive values. Each word in
the document is generated independently conditional on the distribution θm. First, a
topic zm,n ∈ {1, . . . , K} is drawn for the word based on the document-specific topic-
distribution,

zm,n ∼ categorical(θm).

Finally, the word wm,n is drawn according to the word distribution for topic zm,n,

wm,n ∼ categorical(φz[m,n]).

The distributions φk over words for topic k are also given a Dirichlet prior,

φk ∼ Dirichlet(β)

where β is a fixed V -vector of positive values.

Summing out the Discrete Parameters
Although Stan does not (yet) support discrete sampling, it is possible to calculate the
marginal distribution over the continuous parameters by summing out the discrete
parameters as in other mixture models. The marginal posterior of the topic and word
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variables is

p(θ,φ | w,α,β)∝ p(θ | α)p(φ | β)p(w | θ,φ)

=
M∏
m=1

p(θm | α)×
K∏
k=1
p(φk | β)×

M∏
m=1

M[n]∏
n=1

p(wm,n | θm,φ).

The inner word-probability term is defined by summing out the topic assignments,

p(wm,n | θm,φ) =
K∑
z=1
p(z,wm,n | θm,φ)

=
K∑
z=1
p(z | θm)p(wm,n | φz).

Plugging the distributions in and converting to the log scale provides a formula that
can be implemented directly in Stan,

logp(θ,φ | w,α,β)

=
M∑
m=1

log Dirichlet(θm | α)+
K∑
k=1

log Dirichlet(φk | β)

+
M∑
m=1

N[m]∑
n=1

log

 K∑
z=1

categorical(z | θm)× categorical(wm,n | φz)


Implementation of LDA
Applying the marginal derived in the last section to the data structure described in
this section leads to the following Stan program for LDA.

data {
int<lower=2> K; // num topics
int<lower=2> V; // num words
int<lower=1> M; // num docs
int<lower=1> N; // total word instances
int<lower=1,upper=V> w[N]; // word n
int<lower=1,upper=M> doc[N]; // doc ID for word n
vector<lower=0>[K] alpha; // topic prior
vector<lower=0>[V] beta; // word prior

}
parameters {

simplex[K] theta[M]; // topic dist for doc m
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simplex[V] phi[K]; // word dist for topic k
}
model {

for (m in 1:M)
theta[m] ~ dirichlet(alpha); // prior

for (k in 1:K)
phi[k] ~ dirichlet(beta); // prior

for (n in 1:N) {
real gamma[K];
for (k in 1:K)
gamma[k] = log(theta[doc[n], k]) + log(phi[k, w[n]]);

target += log_sum_exp(gamma); // likelihood;
}

}

As in the other mixture models, the log-sum-of-exponents function is used to stabilize
the numerical arithmetic.

Correlated Topic Model
To account for correlations in the distribution of topics for documents, Blei and Lafferty
(2007) introduced a variant of LDA in which the Dirichlet prior on the per-document
topic distribution is replaced with a multivariate logistic normal distribution.

The authors treat the prior as a fixed hyperparameter. They use an L1-regularized
estimate of covariance, which is equivalent to the maximum a posteriori estimate
given a double-exponential prior. Stan does not (yet) support maximum a posteriori
estimation, so the mean and covariance of the multivariate logistic normal must be
specified as data.

Fixed Hyperparameter Correlated Topic Model

The Stan model in the previous section can be modified to implement the correlated
topic model by replacing the Dirichlet topic prior alpha in the data declaration with
the mean and covariance of the multivariate logistic normal prior.

data {
... data as before without alpha ...
vector[K] mu; // topic mean
cov_matrix[K] Sigma; // topic covariance

}

Rather than drawing the simplex parameter theta from a Dirichlet, a parameter eta
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is drawn from a multivariate normal distribution and then transformed using softmax
into a simplex.

parameters {
simplex[V] phi[K]; // word dist for topic k
vector[K] eta[M]; // topic dist for doc m

}
transformed parameters {

simplex[K] theta[M];
for (m in 1:M)
theta[m] = softmax(eta[m]);

}
model {

for (m in 1:M)
eta[m] ~ multi_normal(mu, Sigma);

... model as before w/o prior for theta ...
}

Full Bayes Correlated Topic Model

By adding a prior for the mean and covariance, Stan supports full Bayesian inference
for the correlated topic model. This requires moving the declarations of topic mean
mu and covariance Sigma from the data block to the parameters block and providing
them with priors in the model. A relatively efficient and interpretable prior for the
covariance matrix Sigma may be encoded as follows.

... data block as before, but without alpha ...
parameters {

vector[K] mu; // topic mean
corr_matrix[K] Omega; // correlation matrix
vector<lower=0>[K] sigma; // scales
vector[K] eta[M]; // logit topic dist for doc m
simplex[V] phi[K]; // word dist for topic k

}
transformed parameters {

... eta as above ...
cov_matrix[K] Sigma; // covariance matrix
for (m in 1:K)
Sigma[m, m] = sigma[m] * sigma[m] * Omega[m, m];

for (m in 1:(K-1)) {
for (n in (m+1):K) {
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Sigma[m, n] = sigma[m] * sigma[n] * Omega[m, n];
Sigma[n, m] = Sigma[m, n];

}
}

}
model {

mu ~ normal(0, 5); // vectorized, diffuse
Omega ~ lkj_corr(2.0); // regularize to unit correlation
sigma ~ cauchy(0, 5); // half-Cauchy due to constraint
... words sampled as above ...

}

The LKJCorr distribution with shape α > 0 has support on correlation matrices (i.e.,
symmetric positive definite with unit diagonal). Its density is defined by

LkjCorr(Ω|α)∝ det(Ω)α−1

With a scale of α = 2, the weakly informative prior favors a unit correlation matrix.
Thus the compound effect of this prior on the covariance matrix Σ for the multivariate
logistic normal is a slight concentration around diagonal covariance matrices with
scales determined by the prior on sigma.



10. Gaussian Processes

Gaussian processes are continuous stochastic processes and thus may be interpreted
as providing a probability distribution over functions. A probability distribution over
continuous functions may be viewed, roughly, as an uncountably infinite collection of
random variables, one for each valid input. The generality of the supported functions
makes Gaussian priors popular choices for priors in general multivariate (non-linear)
regression problems.

The defining feature of a Gaussian process is that the joint distribution of the function’s
value at a finite number of input points is a multivariate normal distribution. This
makes it tractable to both fit models from finite amounts of observed data and make
predictions for finitely many new data points.

Unlike a simple multivariate normal distribution, which is parameterized by a mean
vector and covariance matrix, a Gaussian process is parameterized by a mean function
and covariance function. The mean and covariance functions apply to vectors of
inputs and return a mean vector and covariance matrix which provide the mean and
covariance of the outputs corresponding to those input points in the functions drawn
from the process.

Gaussian processes can be encoded in Stan by implementing their mean and covariance
functions and plugging the result into the Gaussian form of their sampling distribution,
or by using the specialized covariance functions outlined below. This form of model is
straightforward and may be used for simulation, model fitting, or posterior predictive
inference. A more efficient Stan implementation for the GP with a normally distributed
outcome marginalizes over the latent Gaussian process, and applies a Cholesky-factor
reparameterization of the Gaussian to compute the likelihood and the posterior
predictive distribution analytically.

After defining Gaussian processes, this chapter covers the basic implementations
for simulation, hyperparameter estimation, and posterior predictive inference for
univariate regressions, multivariate regressions, and multivariate logistic regressions.
Gaussian processes are general, and by necessity this chapter only touches on some
basic models. For more information, see Rasmussen and Williams (2006).

10.1. Gaussian Process Regression
The data for a multivariate Gaussian process regression consists of a series of N inputs
x1, . . . , xN ∈ RD paired with outputs y1, . . . , yN ∈ R. The defining feature of Gaussian

137



CHAPTER 10. GAUSSIAN PROCESSES 138

processes is that the probability of a finite number of outputs y conditioned on their
inputs x is Gaussian:

y ∼multivariate normal(m(x),K(x | θ)),

where m(x) is an N-vector and K(x | θ) is an N × N covariance matrix. The mean
function m : RN×D → RN can be anything, but the covariance function K : RN×D →
RN×N must produce a positive-definite matrix for any input x.1

A popular covariance function, which will be used in the implementations later in this
chapter, is an exponentiated quadratic function,

K(x | α,ρ,σ)i,j = α2 exp

− 1
2ρ2

D∑
d=1
(xi,d − xj,d)2

+ δi,jσ 2,
where α, ρ, and σ are hyperparameters defining the covariance function and where
δi,j is the Kronecker delta function with value 1 if i = j and value 0 otherwise; this test
is between the indexes i and j , not between values xi and xj . This kernel is obtained
through a convolution of two independent Gaussian processes, f1 and f2, with kernels

K1(x | α,ρ)i,j = α2 exp

− 1
2ρ2

D∑
d=1
(xi,d − xj,d)2


and

K2(x | σ)i,j = δi,jσ 2,

The addition of σ 2 on the diagonal is important to ensure the positive definiteness of
the resulting matrix in the case of two identical inputs xi = xj . In statistical terms, σ
is the scale of the noise term in the regression.

The hyperparameter ρ is the length-scale, and corresponds to the frequency of the
functions represented by the Gaussian process prior with respect to the domain.
Values of ρ closer to zero lead the GP to represent high-frequency functions, whereas
larger values of ρ lead to low-frequency functions. The hyperparameter α is the
marginal standard deviation. It controls the magnitude of the range of the function
represented by the GP. If you were to take the standard deviation of many draws from
the GP f1 prior at a single input x conditional on one value of α one would recover α.

The only term in the squared exponential covariance function involving the inputs
xi and xj is their vector difference, xi − xj . This produces a process with stationary

1Gaussian processes can be extended to covariance functions producing positive semi-definite matrices,
but Stan does not support inference in the resulting models because the resulting distribution does not
have unconstrained support.
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covariance in the sense that if an input vector x is translated by a vector ε to x+ ε, the
covariance at any pair of outputs is unchanged, because K(x | θ) = K(x+ ε | θ).

The summation involved is just the squared Euclidean distance between xi and xj (i.e.,
the L2 norm of their difference, xi − xj ). This results in support for smooth functions
in the process. The amount of variation in the function is controlled by the free
hyperparameters α, ρ, and σ .

Changing the notion of distance from Euclidean to taxicab distance (i.e., an L1 norm)
changes the support to functions which are continuous but not smooth.

10.2. Simulating from a Gaussian Process
It is simplest to start with a Stan model that does nothing more than simulate draws
of functions f from a Gaussian process. In practical terms, the model will draw values
yn = f (xn) for finitely many input points xn.

The Stan model defines the mean and covariance functions in a transformed data block
and then samples outputs y in the model using a multivariate normal distribution.
To make the model concrete, the squared exponential covariance function described
in the previous section will be used with hyperparameters set to α2 = 1, ρ2 = 1,
and σ 2 = 0.1, and the mean function m is defined to always return the zero vector,
m(x) = 0. Consider the following implementation of a Gaussian process simulator.

data {
int<lower=1> N;
real x[N];

}
transformed data {

matrix[N, N] K;
vector[N] mu = rep_vector(0, N);
for (i in 1:(N - 1)) {
K[i, i] = 1 + 0.1;
for (j in (i + 1):N) {
K[i, j] = exp(-0.5 * square(x[i] - x[j]));
K[j, i] = K[i, j];

}
}
K[N, N] = 1 + 0.1;

}
parameters {

vector[N] y;
}
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model {
y ~ multi_normal(mu, K);

}

The above model can also be written more compactly using the specialized covariance
function that implements the exponentiated quadratic kernel.

data {
int<lower=1> N;
real x[N];

}
transformed data {

matrix[N, N] K = cov_exp_quad(x, 1.0, 1.0);
vector[N] mu = rep_vector(0, N);
for (n in 1:N)
K[n, n] = K[n, n] + 0.1;

}
parameters {

vector[N] y;
}
model {

y ~ multi_normal(mu, K);
}

The input data are just the vector of inputs x and its size N. Such a model can be used
with values of x evenly spaced over some interval in order to plot sample draws of
functions from a Gaussian process.

Multivariate Inputs
Only the input data needs to change in moving from a univariate model to a
multivariate model.

The only lines that change from the univariate model above are as follows.

data {
int<lower=1> N;
int<lower=1> D;
vector[D] x[N];

}
transformed data {
...

The data are now declared as an array of vectors instead of an array of scalars; the
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dimensionality D is also declared.

In the remainder of the chapter, univariate models will be used for simplicity, but
any of the models could be changed to multivariate in the same way as the simple
sampling model. The only extra computational overhead from a multivariate model is
in the distance calculation.

Cholesky Factored and Transformed Implementation
A more efficient implementation of the simulation model can be coded in Stan by
relocating, rescaling and rotating an isotropic standard normal variate. Suppose η is
an an isotropic standard normal variate

η ∼ normal(0,1),

where 0 is an N-vector of 0 values and 1 is the N × N identity matrix. Let L be
the Cholesky decomposition of K(x | θ), i.e., the lower-triangular matrix L such
that LL> = K(x | θ). Then the transformed variable µ + Lη has the intended target
distribution,

µ + Lη ∼multivariate normal(µ(x),K(x | θ)).

This transform can be applied directly to Gaussian process simulation.

This model has the same data declarations for N and x, and the same transformed
data definitions of mu and K as the previous model, with the addition of a transformed
data variable for the Cholesky decomposition. The parameters change to the raw
parameters sampled from an isotropic standard normal, and the actual samples are
defined as generated quantities.

...
transformed data {

matrix[N, N] L;
...

L = cholesky_decompose(K);
}
parameters {

vector[N] eta;
}
model {

eta ~ std_normal();
}
generated quantities {

vector[N] y;
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y = mu + L * eta;
}

The Cholesky decomposition is only computed once, after the data are loaded and the
covariance matrix K computed. The isotropic normal distribution for eta is specified as
a vectorized univariate distribution for efficiency; this specifies that each eta[n] has
an independent standard normal distribution. The sampled vector y is then defined as
a generated quantity using a direct encoding of the transform described above.

10.3. Fitting a Gaussian Process
GP with a normal outcome
The full generative model for a GP with a normal outcome, y ∈ RN , with inputs x ∈ RN ,
for a finite N:

ρ ∼ InvGamma(5,5)

α ∼ normal(0,1)

σ ∼ normal(0,1)

f ∼multivariate normal (0, K(x | α,ρ))
yi ∼ normal(fi , σ)∀i ∈ {1, . . . ,N}

With a normal outcome, it is possible to integrate out the Gaussian process f , yielding
the more parsimonious model:

ρ ∼ InvGamma(5,5)

α ∼ normal(0,1)

σ ∼ normal(0,1)

y ∼multivariate normal
(
0, K(x | α,ρ)+ INσ 2

)

It can be more computationally efficient when dealing with a normal outcome to
integrate out the Gaussian process, because this yields a lower-dimensional parameter
space over which to do inference. We’ll fit both models in Stan. The former model
will be referred to as the latent variable GP, while the latter will be called the marginal
likelihood GP.

The hyperparameters controlling the covariance function of a Gaussian process can be
fit by assigning them priors, like we have in the generative models above, and then
computing the posterior distribution of the hyperparameters given observed data. The
priors on the parameters should be defined based on prior knowledge of the scale
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of the output values (α), the scale of the output noise (σ ), and the scale at which
distances are measured among inputs (ρ). See the Gaussian process priors section for
more information about how to specify appropriate priors for the hyperparameters.

The Stan program implementing the marginal likelihood GP is shown below. The
program is similar to the Stan programs that implement the simulation GPs above,
but because we are doing inference on the hyperparameters, we need to calculate the
covariance matrix K in the model block, rather than the transformed data block.

data {
int<lower=1> N;
real x[N];
vector[N] y;

}
transformed data {

vector[N] mu = rep_vector(0, N);
}
parameters {

real<lower=0> rho;
real<lower=0> alpha;
real<lower=0> sigma;

}
model {

matrix[N, N] L_K;
matrix[N, N] K = cov_exp_quad(x, alpha, rho);
real sq_sigma = square(sigma);

// diagonal elements
for (n in 1:N)
K[n, n] = K[n, n] + sq_sigma;

L_K = cholesky_decompose(K);

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
sigma ~ std_normal();

y ~ multi_normal_cholesky(mu, L_K);
}

The data block declares a vector y of observed values y[n] for inputs x[n]. The
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transformed data block now only defines the mean vector to be zero. The three
hyperparameters are defined as parameters constrained to be non-negative. The
computation of the covariance matrix K is now in the model block because it involves
unknown parameters and thus can’t simply be precomputed as transformed data. The
rest of the model consists of the priors for the hyperparameters and the multivariate
Cholesky-parameterized normal likelihood, only now the value y is known and the
covariance matrix K is an unknown dependent on the hyperparameters, allowing us to
learn the hyperparameters.

We have used the Cholesky parameterized multivariate normal rather than the standard
parameterization because it allows us to the cholesky_decompose function which
has been optimized for both small and large matrices. When working with small
matrices the differences in computational speed between the two approaches will not
be noticeable, but for larger matrices (N Ý 100) the Cholesky decomposition version
will be faster.

Hamiltonian Monte Carlo sampling is fast and effective for hyperparameter inference
in this model (Neal 1997). If the posterior is well-concentrated for the hyperparameters
the Stan implementation will fit hyperparameters in models with a few hundred data
points in seconds.

Latent variable GP

We can also explicitly code the latent variable formulation of a GP in Stan. This will be
useful for when the outcome is not normal. We’ll need to add a small positive term, δ
to the diagonal of the covariance matrix in order to ensure that our covariance matrix
remains positive definite.

data {
int<lower=1> N;
real x[N];
vector[N] y;

}
transformed data {

real delta = 1e-9;
}
parameters {

real<lower=0> rho;
real<lower=0> alpha;
real<lower=0> sigma;
vector[N] eta;
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}
model {

vector[N] f;
{
matrix[N, N] L_K;
matrix[N, N] K = cov_exp_quad(x, alpha, rho);

// diagonal elements
for (n in 1:N)
K[n, n] = K[n, n] + delta;

L_K = cholesky_decompose(K);
f = L_K * eta;

}

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
sigma ~ std_normal();
eta ~ std_normal();

y ~ normal(f, sigma);
}

Two differences between the latent variable GP and the marginal likelihood GP are
worth noting. The first is that we have augmented our parameter block with a
new parameter vector of length N called eta. This is used in the model block to
generate a multivariate normal vector called f , corresponding to the latent GP. We
put a normal(0,1) prior on eta like we did in the Cholesky-parameterized GP in the
simulation section. The second difference is that our likelihood is now univariate,
though we could code N likelihood terms as one N-dimensional multivariate normal
with an identity covariance matrix multiplied by σ 2. However, it is more efficient to
use the vectorized statement as shown above.

Discrete outcomes with Gaussian Processes
Gaussian processes can be generalized the same way as standard linear models by
introducing a link function. This allows them to be used as discrete data models.

Poisson GP

If we want to model count data, we can remove the σ parameter, and use poisson_log,
which implements a log link, for our likelihood rather than normal. We can also add



CHAPTER 10. GAUSSIAN PROCESSES 146

an overall mean parameter, a, which will account for the marginal expected value for y .
We do this because we cannot center count data like we would for normally distributed
data.

data {
...

int<lower=0> y[N];
...
}
...
parameters {

real<lower=0> rho;
real<lower=0> alpha;
real a;
vector[N] eta;

}
model {
...

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
a ~ std_normal();
eta ~ std_normal();

y ~ poisson_log(a + f);
}

Logistic Gaussian Process Regression

For binary classification problems, the observed outputs zn ∈ {0,1} are binary. These
outputs are modeled using a Gaussian process with (unobserved) outputs yn through
the logistic link,

zn ∼ Bernoulli(logit−1(yn)),

or in other words,
Pr[zn = 1] = logit−1(yn).

We can extend our latent variable GP Stan program to deal with classification problems.
Below a is the bias term, which can help account for imbalanced classes in the training
data:

data {
...
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int<lower=0, upper=1> z[N];
...
}
...
model {
...

y ~ bernoulli_logit(a + f);
}

Automatic Relevance Determination
If we have multivariate inputs x ∈ RD, the squared exponential covariance function
can be further generalized by fitting a scale parameter ρd for each dimension d,

k(x | α, ~ρ,σ)i,j = α2 exp

−1
2

D∑
d=1

1
ρ2d
(xi,d − xj,d)2

+ δi,jσ 2.
The estimation of ρ was termed “automatic relevance determination” by Neal (1996a),
but this is misleading, because the magnitude of the scale of the posterior for each ρd
is dependent on the scaling of the input data along dimension d. Moreover, the scale
of the parameters ρd measures non-linearity along the d-th dimension, rather than
“relevance” (Piironen and Vehtari 2016).

A priori, the closer ρd is to zero, the more nonlinear the conditional mean in dimension
d is. A posteriori, the actual dependencies between x and y play a role. With one
covariate x1 having a linear effect and another covariate x2 having a nonlinear effect,
it is possible that ρ1 > ρ2 even if the predictive relevance of x1 is higher (Rasmussen
and Williams 2006, 80). The collection of ρd (or 1/ρd) parameters can also be modeled
hierarchically.

The implementation of automatic relevance determination in Stan is straightforward,
though it currently requires the user to directly code the covariance matrix.
We’ll write a function to generate the Cholesky of the covariance matrix called
L_cov_exp_quad_ARD.

functions {
matrix L_cov_exp_quad_ARD(vector[] x,

real alpha,
vector rho,
real delta) {

int N = size(x);
matrix[N, N] K;
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real sq_alpha = square(alpha);
for (i in 1:(N-1)) {

K[i, i] = sq_alpha + delta;
for (j in (i + 1):N) {

K[i, j] = sq_alpha

* exp(-0.5 * dot_self((x[i] - x[j]) ./ rho));
K[j, i] = K[i, j];

}
}
K[N, N] = sq_alpha + delta;
return cholesky_decompose(K);

}
}
data {

int<lower=1> N;
int<lower=1> D;
vector[D] x[N];
vector[N] y;

}
transformed data {

real delta = 1e-9;
}
parameters {

vector<lower=0>[D] rho;
real<lower=0> alpha;
real<lower=0> sigma;
vector[N] eta;

}
model {

vector[N] f;
{
matrix[N, N] L_K = L_cov_exp_quad_ARD(x, alpha, rho, delta);
f = L_K * eta;

}

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
sigma ~ std_normal();
eta ~ std_normal();
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y ~ normal(f, sigma);
}

Priors for Gaussian Process Parameters
Formulating priors for GP hyperparameters requires the analyst to consider the
inherent statistical properties of a GP, the GP’s purpose in the model, and the numerical
issues that may arise in Stan when estimating a GP.

Perhaps most importantly, the parameters ρ and α are weakly identified (Zhang 2004).
The ratio of the two parameters is well-identified, but in practice we put independent
priors on the two hyperparameters because these two quantities are more interpretable
than their ratio.

Priors for length-scale

GPs are a flexible class of priors and, as such, can represent a wide spectrum of
functions. For length scales below the minimum spacing of the covariates the
GP likelihood plateaus. Unless regularized by a prior, this flat likelihood induces
considerable posterior mass at small length scales where the observation variance
drops to zero and the functions supported by the GP being to exactly interpolate
between the input data. The resulting posterior not only significantly overfits to the
input data, it also becomes hard to accurately sample using Euclidean HMC.

We may wish to put further soft constraints on the length-scale, but these are
dependent on how the GP is used in our statistical model.

If our model consists of only the GP, i.e.:

f ∼multivariate normal (0, K(x | α,ρ))
yi ∼ normal(fi , σ)∀i ∈ {1, . . . ,N}
x ∈ RN×D, f ∈ RN

we likely don’t need constraints beyond penalizing small length-scales. We’d like to
allow the GP prior to represent both high-frequency and low-frequency functions, so
our prior should put non-negligible mass on both sets of functions. In this case, an
inverse gamma, inv_gamma_lpdf in Stan’s language, will work well as it has a sharp
left tail that puts negligible mass on infinitesimal length-scales, but a generous right
tail, allowing for large length-scales. Inverse gamma priors will avoid infinitesimal
length-scales because the density is zero at zero, so the posterior for length-scale
will be pushed away from zero. An inverse gamma distribution is one of many



CHAPTER 10. GAUSSIAN PROCESSES 150

zero-avoiding or boundary-avoiding distributions.2.

If we’re using the GP as a component in a larger model that includes an overall mean
and fixed effects for the same variables we’re using as the domain for the GP, i.e.:

f ∼multivariate normal
(
0, K(x | α,ρ)

)
yi ∼ normal

(
β0 + xiβ[1:D] + fi , σ

)
∀i ∈ {1, . . . ,N}

xTi , β[1:D] ∈ RD, x ∈ RN×D, f ∈ RN

we’ll likely want to constrain large length-scales as well. A length scale that is larger
than the scale of the data yields a GP posterior that is practically linear (with respect
to the particular covariate) and increasing the length scale has little impact on the
likelihood. This will introduce nonidentifiability in our model, as both the fixed effects
and the GP will explain similar variation. In order to limit the amount of overlap
between the GP and the linear regression, we should use a prior with a sharper right
tail to limit the GP to higher-frequency functions. We can use a generalized inverse
Gaussian distribution:

f (x | a, b, p) = (a/b)p/2

2Kp
(√
ab
)xp−1 exp

(
− (ax+ b/x)/2

)
x, a, b ∈ R+, p ∈ Z

which has an inverse gamma left tail if p ≤ 0 and an inverse Gaussian right tail. This
has not yet been implemented in Stan’s math library, but it is possible to implement
as a user defined function:

functions {
real generalized_inverse_gaussian_lpdf(real x, int p,

real a, real b) {
return p * 0.5 * log(a / b)
- log(2 * modified_bessel_second_kind(p, sqrt(a * b)))
+ (p - 1) * log(x)
- (a * x + b / x) * 0.5;

}
}
data {
...

2A boundary-avoiding prior is just one where the limit of the density is zero at the boundary, the result
of which is estimates that are pushed away from the boundary.
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If we have high-frequency covariates in our fixed effects, we may wish to further
regularize the GP away from high-frequency functions, which means we’ll need to
penalize smaller length-scales. Luckily, we have a useful way of thinking about how
length-scale affects the frequency of the functions supported the GP. If we were to
repeatedly draw from a zero-mean GP with a length-scale of ρ in a fixed-domain [0, T ],
we would get a distribution for the number of times each draw of the GP crossed the
zero axis. The expectation of this random variable, the number of zero crossings, is
T/πρ. You can see that as ρ decreases, the expectation of the number of upcrossings
increases as the GP is representing higher-frequency functions. Thus, this is a good
statistic to keep in mind when setting a lower-bound for our prior on length-scale
in the presence of high-frequency covariates. However, this statistic is only valid for
one-dimensional inputs.

Priors for marginal standard deviation

The parameter α corresponds to how much of the variation is explained by the
regression function and has a similar role to the prior variance for linear model
weights. This means the prior can be the same as used in linear models, such as a
half-t prior on α.

A half-t or half-Gaussian prior on alpha also has the benefit of putting nontrivial prior
mass around zero. This allows the GP support the zero functions and allows the
possibility that the GP won’t contribute to the conditional mean of the total output.

Predictive Inference with a Gaussian Process
Suppose for a given sequence of inputs x that the corresponding outputs y are
observed. Given a new sequence of inputs x̃, the posterior predictive distribution of
their labels is computed by sampling outputs ỹ according to

p (ỹ | x̃, x, y) = p (ỹ, y | x̃, x)
p(y | x) ∝ p (ỹ, y | x̃, x) .

A direct implementation in Stan defines a model in terms of the joint distribution of
the observed y and unobserved ỹ .

data {
int<lower=1> N1;
real x1[N1];
vector[N1] y1;
int<lower=1> N2;
real x2[N2];

}
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transformed data {
real delta = 1e-9;
int<lower=1> N = N1 + N2;
real x[N];
for (n1 in 1:N1) x[n1] = x1[n1];
for (n2 in 1:N2) x[N1 + n2] = x2[n2];

}
parameters {

real<lower=0> rho;
real<lower=0> alpha;
real<lower=0> sigma;
vector[N] eta;

}
transformed parameters {

vector[N] f;
{
matrix[N, N] L_K;
matrix[N, N] K = cov_exp_quad(x, alpha, rho);

// diagonal elements
for (n in 1:N)
K[n, n] = K[n, n] + delta;

L_K = cholesky_decompose(K);
f = L_K * eta;

}
}
model {

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
sigma ~ std_normal();
eta ~ std_normal();

y1 ~ normal(f[1:N1], sigma);
}
generated quantities {

vector[N2] y2;
for (n2 in 1:N2)
y2[n2] = normal_rng(f[N1 + n2], sigma);

}
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The input vectors x1 and x2 are declared as data, as is the observed output vector y1.
The unknown output vector y2, which corresponds to input vector x2, is declared in
the generated quantities block and will be sampled when the model is executed.

A transformed data block is used to combine the input vectors x1 and x2 into a single
vector x.

The model block declares and defines a local variable for the combined output vector
f, which consists of the concatenation of the conditional mean for known outputs
y1 and unknown outputs y2. Thus the combined output vector f is aligned with the
combined input vector x. All that is left is to define the univariate normal sampling
statement for y.

The generated quantities block defines the quantity y2. We generate y2 by sampling
N2 univariate normals with each mean corresponding to the appropriate element in f.

Predictive Inference in non-Gaussian GPs

We can do predictive inference in non-Gaussian GPs in much the same way as we do
with Gaussian GPs.

Consider the following full model for prediction using logistic Gaussian process
regression.

data {
int<lower=1> N1;
real x1[N1];
int<lower=0, upper=1> z1[N1];
int<lower=1> N2;
real x2[N2];

}
transformed data {

real delta = 1e-9;
int<lower=1> N = N1 + N2;
real x[N];
for (n1 in 1:N1) x[n1] = x1[n1];
for (n2 in 1:N2) x[N1 + n2] = x2[n2];

}
parameters {

real<lower=0> rho;
real<lower=0> alpha;
real a;
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vector[N] eta;
}
transformed parameters {

vector[N] f;
{
matrix[N, N] L_K;
matrix[N, N] K = cov_exp_quad(x, alpha, rho);

// diagonal elements
for (n in 1:N)
K[n, n] = K[n, n] + delta;

L_K = cholesky_decompose(K);
f = L_K * eta;

}
}
model {

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
a ~ std_normal();
eta ~ std_normal();

z1 ~ bernoulli_logit(a + f[1:N1]);
}
generated quantities {

int z2[N2];
for (n2 in 1:N2)
z2[n2] = bernoulli_logit_rng(a + f[N1 + n2]);

}

Analytical Form of Joint Predictive Inference

Bayesian predictive inference for Gaussian processes with Gaussian observations can
be sped up by deriving the posterior analytically, then directly sampling from it.

Jumping straight to the result,

p (ỹ | x̃, y, x) = normal
(
K>Σ−1y, Ω −K>Σ−1K

)
,

where Σ = K(x | α,ρ,σ) is the result of applying the covariance function to the inputs
x with observed outputs y , Ω = K(x̃ | α,ρ) is the result of applying the covariance
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function to the inputs x̃ for which predictions are to be inferred, and K is the matrix of
covariances between inputs x and x̃, which in the case of the exponentiated quadratic
covariance function would be

K(x | α,ρ)i,j = η2 exp

− 1
2ρ2

D∑
d=1

(
xi,d − x̃j,d

)2 .
There is no noise term including σ 2 because the indexes of elements in x and x̃ are
never the same.

This Stan code below uses the analytic form of the posterior and provides sampling of
the resulting multivariate normal through the Cholesky decomposition. The data
declaration is the same as for the latent variable example, but we’ve defined a
function called gp_pred_rng which will generate a draw from the posterior predictive
mean conditioned on observed data y1. The code uses a Cholesky decomposition in
triangular solves in order to cut down on the number of matrix-matrix multiplications
when computing the conditional mean and the conditional covariance of p(ỹ).

functions {
vector gp_pred_rng(real[] x2,

vector y1,
real[] x1,
real alpha,
real rho,
real sigma,
real delta) {

int N1 = rows(y1);
int N2 = size(x2);
vector[N2] f2;
{

matrix[N1, N1] L_K;
vector[N1] K_div_y1;
matrix[N1, N2] k_x1_x2;
matrix[N1, N2] v_pred;
vector[N2] f2_mu;
matrix[N2, N2] cov_f2;
matrix[N2, N2] diag_delta;
matrix[N1, N1] K;
K = cov_exp_quad(x1, alpha, rho);
for (n in 1:N1)

K[n, n] = K[n,n] + square(sigma);
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L_K = cholesky_decompose(K);
K_div_y1 = mdivide_left_tri_low(L_K, y1);
K_div_y1 = mdivide_right_tri_low(K_div_y1', L_K)';
k_x1_x2 = cov_exp_quad(x1, x2, alpha, rho);
f2_mu = (k_x1_x2' * K_div_y1);
v_pred = mdivide_left_tri_low(L_K, k_x1_x2);
cov_f2 = cov_exp_quad(x2, alpha, rho) - v_pred' * v_pred;
diag_delta = diag_matrix(rep_vector(delta, N2));

f2 = multi_normal_rng(f2_mu, cov_f2 + diag_delta);
}
return f2;

}
}
data {

int<lower=1> N1;
real x1[N1];
vector[N1] y1;
int<lower=1> N2;
real x2[N2];

}
transformed data {

vector[N1] mu = rep_vector(0, N1);
real delta = 1e-9;

}
parameters {

real<lower=0> rho;
real<lower=0> alpha;
real<lower=0> sigma;

}
model {

matrix[N1, N1] L_K;
{
matrix[N1, N1] K = cov_exp_quad(x1, alpha, rho);
real sq_sigma = square(sigma);

// diagonal elements
for (n1 in 1:N1)
K[n1, n1] = K[n1, n1] + sq_sigma;
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L_K = cholesky_decompose(K);
}

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
sigma ~ std_normal();

y1 ~ multi_normal_cholesky(mu, L_K);
}
generated quantities {

vector[N2] f2;
vector[N2] y2;

f2 = gp_pred_rng(x2, y1, x1, alpha, rho, sigma, delta);
for (n2 in 1:N2)
y2[n2] = normal_rng(f2[n2], sigma);

}

Multiple-output Gaussian processes
Suppose we have observations yi ∈ RM observed at xi ∈ RK . One can model the data
like so:

yi ∼multivariate normal
(
f (xi), IMσ 2

)
f (x) ∼ GP

(
m(x),K(x | θ,φ)

)
K(x | θ) ∈ RM×M , f (x),m(x) ∈ RM

where the K(x, x′ | θ,φ)[m,m′] entry defines the covariance between fm(x) and
fm′(x′)(x). This construction of Gaussian processes allows us to learn the covariance
between the output dimensions of f (x). If we parameterize our kernel K:

K(x, x′ | θ,φ)[m,m′] = k
(
x, x′ | θ

)
k
(
m,m′ | φ

)
then our finite dimensional generative model for the above is:

f ∼matrixnormal
(
m(x),K(x | α,ρ),C(φ)

)
yi,m ∼ normal(fi,m, σ)

f ∈ RN×M

where K(x | α,ρ) is the exponentiated quadratic kernel we’ve used throughout this
chapter, and C(φ) is a positive-definite matrix, parameterized by some vector φ.
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The matrix normal distribution has two covariance matrices: K(x | α,ρ) to encode
column covariance, and C(φ) to define row covariance. The salient features of the
matrix normal are that the rows of the matrix f are distributed:

f[n,] ∼multivariate normal
(
m(x)[n,], K(x | α,ρ)[n,n]C(φ)

)
and that the columns of the matrix f are distributed:

f[,m] ∼multivariate normal
(
m(x)[,m], K(x | α,ρ)C(φ)[m,m]

)
This also means means that E

[
f T f

]
is equal to trace

(
K(x | α,ρ)

)
× C, whereas E

[
f f T

]
is trace(C)× K(x | α,ρ). We can derive this using properties of expectation and the
matrix normal density.

We should set α to 1.0 because the parameter is not identified unless we constrain
trace(C) = 1. Otherwise, we can multiply α by a scalar d and C by 1/d and our
likelihood will not change.

We can generate a random variable f from a matrix normal density in RN×M using the
following algorithm:

ηi,j ∼ normal(0,1)∀i, j
f = LK(x|1.0,ρ) ηLC(φ)T

f ∼matrixnormal
(
0, K(x | 1.0, ρ), C(φ)

)
η ∈ RN×M

LC(φ) = cholesky_decompose
(
C(φ)

)
LK(x|1.0,ρ) = cholesky_decompose

(
K(x | 1.0, ρ)

)
This can be implemented in Stan using a latent-variable GP formulation. We’ve used
LKJCorr for C(φ), but any positive-definite matrix will do.

data {
int<lower=1> N;
int<lower=1> D;
real x[N];
matrix[N, D] y;

}
transformed data {

real delta = 1e-9;
}
parameters {
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real<lower=0> rho;
vector<lower=0>[D] alpha;
real<lower=0> sigma;
cholesky_factor_corr[D] L_Omega;
matrix[N, D] eta;

}
model {

matrix[N, D] f;
{
matrix[N, N] K = cov_exp_quad(x, 1.0, rho);
matrix[N, N] L_K;

// diagonal elements
for (n in 1:N)
K[n, n] = K[n, n] + delta;

L_K = cholesky_decompose(K);
f = L_K * eta

* diag_pre_multiply(alpha, L_Omega)';
}

rho ~ inv_gamma(5, 5);
alpha ~ std_normal();
sigma ~ std_normal();
L_Omega ~ lkj_corr_cholesky(3);
to_vector(eta) ~ std_normal();

to_vector(y) ~ normal(to_vector(f), sigma);
}
generated quantities {

matrix[D, D] Omega;
Omega = L_Omega * L_Omega';

}



11. Directions, Rotations, and Hyperspheres

Directional statistics involve data and/or parameters that are constrained to be
directions. The set of directions forms a sphere, the geometry of which is not smoothly
mappable to that of a Euclidean space because you can move around a sphere and
come back to where you started. This is why it is impossible to make a map of the
globe on a flat piece of paper where all points that are close to each other on the globe
are close to each other on the flat map. The fundamental problem is easy to visualize
in two dimensions, because as you move around a circle, you wind up back where you
started. In other words, 0 degrees and 360 degrees (equivalently, 0 and 2π radians)
pick out the same point, and the distance between 359 degrees and 2 degrees is the
same as the distance between 137 and 140 degrees.

Stan supports directional statistics by providing a unit-vector data type, the values of
which determine points on a hypersphere (circle in two dimensions, sphere in three
dimensions).

11.1. Unit Vectors
The length of a vector x ∈ RK is given by

‖x‖ =
√
x> x =

√
x21 + x22 + · · · + x2K .

Unit vectors are defined to be vectors of unit length (i.e., length one).

With a variable declaration such as

unit_vector[K] x;

the value of x will be constrained to be a vector of size K with unit length; the reference
manual chapter on constrained parameter transforms provides precise definitions.

Warning: An extra term gets added to the log density to ensure the distribution
on unit vectors is proper. This is not a problem in practice, but it may lead to
misunderstandings of the target log density output (lp__ in some interfaces). The
underlying source of the problem is that a unit vector of size K has only K − 1 degrees
of freedom. But there is no way to map those K − 1 degrees of freedom continuously
to RN—for example, the circle can’t be mapped continuously to a line so the limits
work out, nor can a sphere be mapped to a plane. A workaround is needed instead.
Stan’s unit vector transform uses K unconstrained variables, then projects down to
the unit hypersphere. Even though the hypersphere is compact, the result would
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be an improper distribution. To ensure the unit vector distribution is proper, each
unconstrained variable is given a “Jacobian” adjustment equal to an independent
standard normal distribution. Effectively, each dimension is drawn standard normal,
then they are together projected down to the hypersphere to produce a unit vector.
The result is a proper uniform distribution over the hypersphere.

11.2. Circles, Spheres, and Hyperspheres
An n-sphere, written Sn, is defined as the set of (n+ 1)-dimensional unit vectors,

Sn =
{
x ∈ Rn+1 : ‖x‖ = 1

}
.

Even though Sn is made up of points in (n+1) dimensions, it is only an n-dimensional
manifold. For example, S2 is defined as a set of points in R3, but each such point may
be described uniquely by a latitude and longitude. Geometrically, the surface defined
by S2 in R3 behaves locally like a plane, i.e., R2. However, the overall shape of S2 is not
like a plane in that it is compact (i.e., there is a maximum distance between points).
If you set off around the globe in a “straight line” (i.e., a geodesic), you wind up back
where you started eventually; that is why the geodesics on the sphere (S2) are called
“great circles,” and why we need to use some clever representations to do circular or
spherical statistics.

Even though Sn−1 behaves locally like Rn−1, there is no way to smoothly map between
them. For example, because latitude and longitude work on a modular basis (wrapping
at 2π radians in natural units), they do not produce a smooth map.

Like a bounded interval (a, b), in geometric terms, a sphere is compact in that the
distance between any two points is bounded.

11.3. Transforming to Unconstrained Parameters
Stan (inverse) transforms arbitrary points in RK+1 to points in SK using the auxiliary
variable approach of Marsaglia (1972). A point y ∈ RK is transformed to a point
x ∈ SK−1 by

x = y√
y>y

.

The problem with this mapping is that it’s many to one; any point lying on a vector
out of the origin is projected to the same point on the surface of the sphere. Marsaglia
(1972) introduced an auxiliary variable interpretation of this mapping that provides the
desired properties of uniformity; the reference manual contains the precise definitions
used in the chapter on constrained parameter transforms.
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Warning: undefined at zero!

The above mapping from Rn to Sn is not defined at zero. While this point outcome has
measure zero during sampling, and may thus be ignored, it is the default initialization
point and thus unit vector parameters cannot be initialized at zero. A simple
workaround is to initialize from a small interval around zero, which is an option
built into all of the Stan interfaces.

11.4. Unit Vectors and Rotations
Unit vectors correspond directly to angles and thus to rotations. This is easy to
see in two dimensions, where a point on a circle determines a compass direction,
or equivalently, an angle θ. Given an angle θ, a matrix can be defined, the pre-
multiplication by which rotates a point by an angle of θ. For angle θ (in two
dimensions), the 2× 2 rotation matrix is defined by

Rθ =
[

cosθ − sinθ
sinθ cosθ

]
.

Given a two-dimensional vector x, Rθ x is the rotation of x (around the origin) by θ
degrees.

Angles from unit vectors
Angles can be calculated from unit vectors. For example, a random variable theta
representing an angle in (−π,π) radians can be declared as a two-dimensional unit
vector then transformed to an angle.

parameters {
unit_vector[2] xy;

}
transformed parameters {

real<lower = -pi(), upper = pi()> theta = atan2(xy[2], xy[1]);
}

If the distribution of (x, y) is uniform over a circle, then the distribution of arctan y
x is

uniform over (−π,π).

It might be tempting to try to just declare theta directly as a parameter with the
lower and upper bound constraint as given above. The drawback to this approach is
that the values −π and π are at −∞ and ∞ on the unconstrained scale, which can
produce multimodal posterior distributions when the true distribution on the circle is
unimodal.

With a little additional work on the trigonometric front, the same conversion back to
angles may be accomplished in more dimensions.
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11.5. Circular Representations of Days and Years
A 24-hour clock naturally represents the progression of time through the day, moving
from midnight to noon and back again in one rotation. A point on a circle divided into
24 hours is thus a natural representation for the time of day. Similarly, years cycle
through the seasons and return to the season from which they started.

In human affairs, temporal effects often arise by convention. These can be modeled
directly with ad-hoc predictors for holidays and weekends, or with data normalization
back to natural scales for daylight savings time.



12. Solving Algebraic Equations

Stan provides a built-in mechanism for specifying systems of algebraic equations.
These systems can be solved either with the Newton method, as implemented in the
Kinsol package (Hindmarsh et al. 2005), or with the Powell hybrid method (Powell
1970). The function signatures for Stan’s algebraic solvers are fully described in the
algebraic solver section of the reference manual.

Solving any system of algebraic equations can be translated into a root-finding problem,
that is, given a function f , we wish to find y such that f (y) = 0.

12.1. Example: System of Nonlinear Algebraic Equations
For systems of linear algebraic equations, we recommend solving the system using
matrix division. The algebraic solver becomes handy when we want to solve nonlinear
equations.

As an illustrative example, we consider the following nonlinear system of two equations
with two unknowns:

z1 = y1 − θ1
z2 = y1y2 + θ2

Our goal is to simultaneously solve all equations for y1 and y2, such that the vector z
goes to 0.

12.2. Coding an Algebraic System
A system of algebraic equations is coded directly in Stan as a function with a strictly
specified signature. For example, the nonlinear system given above can be coded
using the following function in Stan (see the user-defined functions section for more
information on coding user-defined functions).

vector system(vector y, // unknowns
vector theta, // parameters
real[] x_r, // data (real)
int[] x_i) { // data (integer)

vector[2] z;
z[1] = y[1] - theta[1];
z[2] = y[1] * y[2] - theta[2];
return z;
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}

The function takes the unknowns we wish to solve for in y (a vector), the system
parameters in theta (a vector), the real data in x_r (a real array) and the integer data
in x_i (an integer array). The system function returns the value of the function (a
vector), for which we want to compute the roots. Our example does not use real or
integer data. Nevertheless, these unused arguments must be included in the system
function with exactly the signature above.

The body of the system function here could also be coded using a row vector
constructor and transposition,

return [ y[1] - theta[1],
y[1] * y[2] - theta[2] ]';

As systems get more complicated, naming the intermediate expressions goes a long
way toward readability.

Strict Signature

The function defining the system must have exactly these argument types and return
type. This may require passing in zero-length arrays for data or a zero-length vector
for parameters if the system does not involve data or parameters.

12.3. Calling the Algebraic Solver
Let’s suppose θ = (3,6). To call the algebraic solver, we need to provide an initial
guess. This varies on a case-by-case basis, but in general a good guess will speed up
the solver and, in pathological cases, even determine whether the solver converges
or not. If the solver does not converge, the metropolis proposal gets rejected and a
warning message, stating no acceptable solution was found, is issued.

The solver has three tuning parameters to determine convergence: the relative
tolerance, the function tolerance, and the maximum number of steps. Their behavior
is explained in the section about algebraic solvers with control parameters.

The following code returns the solution to our nonlinear algebraic system:

transformed data {
vector[2] y_guess = {1, 1};
real x_r[0];
int x_i[0];

}

transformed parameters {
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vector[2] theta = {3, 6};
vector[2] y;

y = algebra_solver_newton(system, y_guess, theta, x_r, x_i);
}

which returns y = (3,−2).

Data versus Parameters
The arguments for the real data x_r and the integer data x_i must be expressions
that only involve data or transformed data variables. theta, on the other hand, must
only involve parameters. Note there are no restrictions on the initial guess, y_guess,
which may be a data or a parameter vector.

Length of the Algebraic Function and of the Vector of Unknowns
The Jacobian of the solution with respect to the parameters is computed using the
implicit function theorem, which imposes certain restrictions. In particular, the
Jacobian of the algebraic function f with respect to the unknowns x must be invertible.
This requires the Jacobian to be square, meaning f (y) and y have the same length or,
in other words the number of equations in the system is the same as the number of
unknowns.

Pathological Solutions
Certain systems may be degenerate, meaning they have multiple solutions. The
algebraic solver will not report these cases, as the algorithm stops once it has found an
acceptable solution. The initial guess will often determine which solution gets found
first. The degeneracy may be broken by putting additional constraints on the solution.
For instance, it might make “physical sense” for a solution to be positive or negative.

On the other hand, a system may not have a solution (for a given point in the parameter
space). In that case, the solver will not converge to a solution. When the solver fails to
do so, the current metropolis proposal gets rejected.

12.4. Control Parameters for the Algebraic Solver
The call to the algebraic solver shown previously uses the default control settings. The
solver allows three additional parameters, all of which must be supplied if any of them
is supplied.

y = algebra_solver_newton(system, y_guess, theta, x_r, x_i,
rel_tol, f_tol, max_steps);

The three control arguments are relative tolerance, function tolerance, and maximum
number of steps. Both tolerances need to be satisfied. If one of them is not met, the
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metropolis proposal gets rejected with a warning message explaining which criterion
was not satisfied. The default values for the control arguments are respectively
rel_tol = 1e-10 (10−10), f_tol = 1e-6 (10−6), and max_steps = 1e3 (103).

Tolerance
The relative and function tolerances control the accuracy of the solution generated
by the solver. Relative tolerances are relative to the solution value. The function
tolerance is the norm of the algebraic function, once we plug in the proposed solution.
This norm should go to 0 (equivalently, all elements of the vector function are 0). It
helps to think about this geometrically. Ideally the output of the algebraic function
is at the origin; the norm measures deviations from this ideal. As the length of the
return vector increases, a certain function tolerance becomes an increasingly difficult
criterion to meet, given each individual element of the vector contribute to the norm.

Smaller relative tolerances produce more accurate solutions but require more
computational time.

Sensitivity Analysis

The tolerances should be set low enough that setting them lower does not change the
statistical properties of posterior samples generated by the Stan program.

Maximum Number of Steps
The maximum number of steps can be used to stop a runaway simulation. This can
arise in MCMC when a bad jump is taken, particularly during warmup. If the limit is
hit, the current metropolis proposal gets rejected. Users will see a warning message
stating the maximum number of steps has been exceeded.



13. Ordinary Differential Equations

Stan provides a built-in mechanism for specifying and solving systems of ordinary
differential equations (ODEs). Three different solvers, tuned for solving non-stiff
systems and for stiff systems are available.

• rk45: a fourth and fifth order Runge-Kutta method for non-stiff systems
(Dormand and Prince 1980; Ahnert and Mulansky 2011), and

• adams: a variable-step, variable-order, Adams-Moulton formula implementation
for non-stiff systems (Cohen and Hindmarsh 1996; Serban and Hindmarsh 2005)

• bdf: a variable-step, variable-order, backward-differentiation formula
implementation for stiff systems (Cohen and Hindmarsh 1996; Serban and
Hindmarsh 2005)

For a discussion of stiff ODE systems, see the stiff ODE section. The function signatures
for Stan’s ODE solvers can be found in the reference manual section on ODE solvers.

13.1. Notation
An ODE is defined by a set of differential equations, y(t, θ)′ = f (t, y, θ), and initial
conditions, y(t0, θ) = y0. The function f (t, y, θ) is called the system function. The θ
dependence is included in the notation for y(t, θ) and f (t, y, θ) as a reminder that the
solution is a function of any parameters used in the computation.

13.2. Example: Simple Harmonic Oscillator
As an example of a system of ODEs, consider a harmonic oscillator. In a harmonic
oscillator a particle disturbed from equilibrium is pulled back towards its equilibrium
position by a force proportional to its displacement from equilibrium. The system
here additionally has a friction force proportional to particle speed which points in the
opposite direction of the particle velocity. The system state will be a pair y = (y1, y2)
representing position and speed. The change in the system with respect to time is
given by the following differential equations.1

d
dt
y1 = y2

d
dt
y2 = −y1 − θy2

1This example is drawn from the documentation for the Boost Numeric Odeint library (Ahnert and
Mulansky 2011), which Stan uses to implement the rk45 solver.
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The state equations implicitly defines the state at future times as a function of an
initial state and the system parameters.

13.3. Coding the ODE System Function
The first step in coding an ODE system in Stan is defining the ODE system function.
The system functions require a specific signature so that the solvers know how to use
them properly.

The first argument to the system function is time, passed as a real; the second
argument to the system function is the system state, passed as a vector, and the
return value from the system function are the current time derivatives of the state
defined as a vector. Additional arguments can be included in the system function
to pass other information into the solve (these will be passed through the function
that starts the ODE integration). These argument can be parameters (in this case, the
friction coefficient), data, or any quantities that are needed to define the differential
equation.

The simple harmonic oscillator can be coded using the following function in Stan
(see the user-defined functions chapter for more information on coding user-defined
functions).

vector sho(real t, // time
vector y, // state
real theta) { // friction parameter

vector[2] dydt;
dydt[1] = y[2];
dydt[2] = -y[1] - theta * y[2];
return dydt;

}

The function takes in a time t (a real), the system state y (a vector), and the parameter
theta (a real). The function returns a vector of time derivatives of the system state
at time t, state y, and parameter theta. The simple harmonic oscillator coded here
does not have time-sensitive equations; that is, t does not show up in the definition of
dydt, however it is still required.

Strict Signature
The types in the ODE system function are strict. The first argument is the time passed
as a real, the second argument is the state passed as a vector, and the return type
is a vector. A model that does not have this signature will fail to compile. The third
argument onwards can be any type, granted all the argument types match the types of
the respective arguments in the solver call.
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All of these are possible ODE signatures:

vector myode1(real t, vector y, real a0);
vector myode2(real t, vector y, int[] a0, vector a1);
vector myode3(real t, vector y, matrix a0, real[] a1, row_vector a2);

but these are not allowed:

vector myode1(real t, real[] y, real a0); // Second argument is not a vector
real[] myode2(real t, vector y, real a0); // Return type is not a vector
vector myode3(vector y, real a0); // First argument is not a real and second is not a vector

13.4. Measurement Error Models
Noisy observations of the ODE state can be used to estimate the parameters and/or
the initial state of the system.

Simulating Noisy Measurements
As an example, suppose the simple harmonic oscillator has a parameter value of
θ = 0.15 and an initial state y(t = 0, θ = 0.15) = (1,0). Assume the system is
measured at 10 time points, t = 1,2, · · · ,10, where each measurement of y(t, θ) has
independent normal(0,0.1) error in both dimensions (y1(t, θ) and y2(t, θ)).

The following model can be used to generate data like this:

functions {
vector sho(real t,

vector y,
real theta) {

vector[2] dydt;
dydt[1] = y[2];
dydt[2] = -y[1] - theta * y[2];
return dydt;

}
}
data {

int<lower=1> T;
vector[2] y0;
real t0;
real ts[T];
real theta;

}
model {
}
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generated quantities {
vector[2] y_sim[T] = ode_rk45(sho, y0, t0, ts, theta);
// add measurement error
for (t in 1:T) {
y_sim[t, 1] += normal_rng(0, 0.1);
y_sim[t, 2] += normal_rng(0, 0.1);

}
}

The system parameters theta and initial state y0 are read in as data along with the
initial time t0 and observation times ts. The ODE is solved for the specified times,
and then random measurement errors are added to produce simulated observations
y_sim. Because the system is not stiff, the ode_rk45 solver is used.

This program illustrates the way in which the ODE solver is called in a Stan program,

vector[2] y_sim[T] = ode_rk45(sho, y0, t0, ts, theta);

this returns the solution of the ODE initial value problem defined by system function
sho, initial state y0, initial time t0, and parameter theta at the times ts. The call
explicitly specifies the non-stiff RK45 solver.

The parameter theta is passed unmodified to the ODE system function. If there were
additional arguments that must be passed, they could be appended to the end of the
ode call here. For instance, if the system function took two parameters, θ and β, the
system function definition would look like:

vector sho(real t, vector y, real theta, real beta) { ... }

and the appropriate ODE solver call would be:

ode_rk45(sho, y0, t0, ts, theta, beta);

Any number of additional arguments can be added. They can be any Stan type (as long
as the types match between the ODE system function and the solver call).

Because all none of the input arguments are a function of parameters, the ODE solver
is called in the generated quantities block. The random measurement noise is added
to each of the T outputs with normal_rng.

Estimating System Parameters and Initial State
These ten noisy observations of the state can be used to estimate the friction parameter,
θ, the initial conditions, y(t0, θ), and the scale of the noise in the problem. The full
Stan model is:
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Figure 13.1: Typical realization of harmonic oscillator trajectory.

functions {
vector sho(real t,

vector y,
real theta) {

vector[2] dydt;
dydt[1] = y[2];
dydt[2] = -y[1] - theta * y[2];
return dydt;

}
}
data {

int<lower=1> T;
vector[2] y[T];
real t0;
real ts[T];
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}
parameters {

vector[2] y0;
vector<lower=0>[2] sigma;
real theta;

}
model {

vector[2] mu[T] = ode_rk45(sho, y0, t0, ts, theta);
sigma ~ normal(0, 2.5);
theta ~ std_normal();
y0 ~ std_normal();
for (t in 1:T)
y[t] ~ normal(mu[t], sigma);

}

Because the solves are now a function of model parameters, the ode_rk45 call is now
made in the model block. There are half-normal priors on the measurement error
scales sigma, and standard normal priors on theta and the initial state vector y0. The
solutions to the ODE are assigned to mu, which is used as the location for the normal
observation model.

As with other regression models, it’s easy to change the noise model to something
with heavier tails (e.g., Student-t distributed), correlation in the state variables (e.g.,
with a multivariate normal distribution), or both heavy tails and correlation in the
state variables (e.g., with a multivariate Student-t distribution).

13.5. Stiff ODEs
Stiffness is a numerical phenomena that causes some differential equation solvers
difficulty, notably the Runge-Kutta RK45 solver used in the examples earlier. The
phenomena is common in chemical reaction systems, which are often characterized by
having multiple vastly different time-scales. The stiffness of a system can also vary
between different parts of parameter space, and so a typically non-stiff system may
exhibit stiffness occasionally. These sorts of difficulties can occur more frequently
with loose priors or during warmup.

Stan provides a specialized solver for stiff ODEs (Cohen and Hindmarsh 1996; Serban
and Hindmarsh 2005). An ODE system is specified exactly the same way with a function
of exactly the same signature. The only difference is in the call to the solver the rk45
suffix is replaced with bdf, as in

ode_bdf(sho, y0, t0, ts, theta);



CHAPTER 13. ORDINARY DIFFERENTIAL EQUATIONS 174

Using the stiff (bdf) solver on a system that is not stiff may be much slower than using
the non-stiff (rk45) solver because each step of the stiff solver takes more time to
compute. On the other hand, attempting to use the non-stiff solver for a stiff system
will cause the timestep to become very small, leading the non-stiff solver taking more
time overall even if each step is easier to compute than for the stiff solver.

If it is not known for sure that an ODE system is stiff, run the model with both the
rk45 and bdf solvers and see which is faster. If the rk45 solver is faster, then the
problem is probably non-stiff, and then it makes sense to try the adams solver as well.
The adams solver uses higher order methods which can take larger timesteps than the
rk45 solver, though similar to the bdf solver each of these steps is more expensive to
compute.

13.6. Control Parameters for ODE Solving
For additional control of the solves, both the stiff and non-stiff solvers have
function signatures that makes it possible to specify the relative_tolerance,
absolute_tolerance, and max_num_steps parameters. These are the same as
the regular function names but with _tol appended to the end. All three control
arguments must be supplied with this signature (there are no defaults).

vector[2] y_sim[T] = ode_bdf_tol(sho, y0, t0, ts,
relative_tolerance,
absolute_tolerance,
max_num_steps,
theta);

relative_tolerance and absolute_tolerance control the stepsize by specifying
a target local error that the solver tries to match, and max_num_steps specifies the
maximum number of steps the solver will take between output time points before
throwing an error.

The control parameters must be data variables – they cannot be parameters or
expressions that depend on parameters, including local variables in any block other
than transformed data and generated quantities. User-defined function arguments
may be qualified as only allowing data arguments using the data qualifier.

For the RK45 solver, the default values for relative and absolute tolerance are both
10−6 and the maximum number of steps between outputs is one million. For the BDF
and Adams solvers, the relative and absolute tolerances are 10−10 and the maximum
number of steps between outputs is one hundred million.
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Discontinuous ODE System Function
If there are discontinuities in the ODE system function, it is best to integrate the ODE
between the discontinuities, stopping the solver at each one, and restarting it on the
other side.

Nonetheless, the ODE solvers will attempt to integrate over discontinuities they
encounters in the state function. The accuracy of the solution near the discontinuity
may be problematic (requiring many small steps). An example of such a discontinuity
is a lag in a pharmacokinetic model, where a concentration is zero for times 0 < t < t′

and then positive for t ≥ t′. In this example example, we would use code in the system
such as

if (t < t_lag)
return 0;

else
... return non-zero value...;

In general it is better to integrate up to t_lag in one solve and then integrate from
t_lag onwards in another. Mathematically, the discontinuity can make the problem
ill-defined and the numerical integrator may behave erratically around it.

If the location of the discontinuity cannot be controlled precisely, or there is some
other rapidly change in ODE behavior, it can be useful to tell the ODE solver to produce
output in the neighborhood. This can help the ODE solver avoid indiscriminately
stepping over an important feature of the solution.

Tolerance
The relative and absolute tolerance control the accuracy of the solutions generated
by the ODE solvers. Relative tolerances are relative to the solution value, whereas
absolute tolerances is the maximum absolute error allowed in a solution. Absolute
tolerance is more meaningful for ODE solutions that approach zero.

Smaller tolerances produce more accurate solutions, though they require more
computation time. The tolerances should be small enough so that setting them
lower does not change the statistical properties of posterior samples generated by the
Stan program but large enough to avoid unnecessary computation.

Maximum Number of Steps
The maximum number of steps can be used to stop a runaway simulation. This
can arise in when MCMC moves to a part of parameter space very far from where a
differential equation would typically be solved. In particular this can happen during
warmup. With the non-stiff solver, this may happen when the sampler moves to stiff
regions of parameter space, which will requires small step sizes.
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13.7. Solving a System of Linear ODEs using a Matrix Exponential
Linear systems of ODEs can be solved using a matrix exponential. This can be
considerably faster than using one of the ODE solvers.

The solution to d
dt y = ay is y = y0eat , where the constant y0 is determined by boundary

conditions. We can extend this solution to the vector case:

d
dt
y = Ay

where y is now a vector of length n and A is an n by n matrix. The solution is then
given by:

y = etA y0

where the matrix exponential is formally defined by the convergent power series:

etA =
∞∑
n=0

tAn

n!
= I + tA+ t

2A2

2!
+ · · ·

We can apply this technique to the simple harmonic oscillator example, by setting

y =
[
y1
y2

]
A =

[
0 1
−1 −θ

]

The Stan model to simulate noisy observations using a matrix exponential function is
given below.

In general, computing a matrix exponential will be more efficient than using a numerical
solver. We can however only apply this technique to systems of linear ODEs.

data {
int<lower=1> T;
vector[2] y0;
real ts[T];
real theta[1];

}
model {
}
generated quantities {

vector[2] y_sim[T];
matrix[2, 2] A = [[ 0, 1],

[-1, -theta[1]]]
for (t in 1:T)
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y_sim[t] = matrix_exp((t - 1) * A) * y0;
// add measurement error
for (t in 1:T) {
y_sim[t, 1] += normal_rng(0, 0.1);
y_sim[t, 2] += normal_rng(0, 0.1);

}
}

This Stan program simulates noisy measurements from a simple harmonic oscillator.
The system of linear differential equations is coded as a matrix. The system parameters
theta and initial state y0 are read in as data along observation times ts. The generated
quantities block is used to solve the ODE for the specified times and then add random
measurement error, producing observations y_sim. Because the ODEs are linear, we
can use the matrix_exp function to solve the system.



14. Computing One Dimensional Integrals

Definite and indefinite one dimensional integrals can be performed in Stan using the
integrate_1d function.

As an example, the normalizing constant of a left-truncated normal distribution is

∫∞
a

1√
2πσ 2

e−
1
2
(x−µ)2
σ2

To compute this integral in Stan, the integrand must first be defined as a Stan
function (see the Stan Reference Manual chapter on User-Defined Functions for more
information on coding user-defined functions).

real normal_density(real x, // Function argument
real xc, // Complement of function argument

// on the domain (defined later)
real[] theta, // parameters
real[] x_r, // data (real)
int[] x_i) { // data (integer)

real mu = theta[1];
real sigma = theta[2];

return 1 / (sqrt(2 * pi()) * sigma) * exp(-0.5 * ((x - mu) / sigma)^2);
}

This function is expected to return the value of the integrand evaluated at point
x. The argument xc is used in definite integrals to avoid loss of precision near the
limits of integration and is set to NaN when either limit is infinite (see the section
on precision/loss in the chapter on Higher-Order Functions of the Stan Functions
Reference for details on how to use this). The argument theta is used to pass in
arguments of the integral that are a function of the parameters in our model. The
arguments x_r and x_i are used to pass in real and integer arguments of the integral
that are not a function of our parameters.

The function defining the integrand must have exactly the argument types and return
type of normal_density above, though argument naming is not important. Even
if x_r and x_i are unused in the integrand, they must be included in the function
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signature. This may require passing in zero-length arrays for data or a zero-length
vector for parameters if the integral does not involve data or parameters.

14.1. Calling the Integrator
Suppose that our model requires evaluating the lpdf of a left-truncated normal, but
the truncation limit is to be estimated as a parameter. Because the truncation point
is a parameter, we must include the normalization term of the truncated pdf when
computing our model’s log density. Note this is just an example of how to use the
1D integrator. The more efficient way to perform the correct normalization in Stan is
described in the chapter on Truncated or Censored Data of this guide.

Such a model might look like (include the function defined at the beginning of this
chapter to make this code compile):

data {
int N;
real y[N];

}

transformed data {
real x_r[0];
int x_i[0];

}

parameters {
real mu;
real<lower = 0.0> sigma;
real left_limit;

}

model {
mu ~ normal(0, 1);
sigma ~ normal(0, 1);
left_limit ~ normal(0, 1);
target += normal_lpdf(y | mu, sigma);
target += log(integrate_1d(normal_density,

left_limit,
positive_infinity(),
{ mu, sigma }, x_r, x_i));

}
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Limits of Integration
The limits of integration can be finite or infinite. The infinite limits are made available
via the Stan calls negative_infinity() and positive_infinity().

If both limits are either negative_infinity() or positive_infinity(), the
integral and its gradients are set to zero.

Data Versus Parameters
The arguments for the real data x_r and the integer data x_i must be expressions
that only involve data or transformed data variables. theta, on the other hand, can be
a function of data, transformed data, parameters, or transformed parameters.

The endpoints of integration can be data or parameters (and internally the derivatives
of the integral with respect to the endpoints are handled with the Leibniz integral
rule).

14.2. Integrator Convergence
The integral is performed with the iterative 1D quadrature methods implemented in
the Boost library (Agrawal et al. 2017). If the nth estimate of the integral is denoted
In and the nth estimate of the norm of the integral is denoted |I|n, the iteration is
terminated when

|In+1 − In|
|I|n+1

< relative tolerance.

The relative_tolerance parameter can be optionally specified as the last
argument to integrate_1d. By default, integrate_1d follows the Boost library
recommendation of setting relative_tolerance to the square root of the machine
epsilon of double precision floating point numbers (about 1e-8).

Zero-crossing Integrals
Integrals on the (possibly infinite) interval (a, b) that cross zero are split into two
integrals, one from (a,0) and one from (0, b). This is because the quadrature methods
employed internally can have difficulty near zero.

In this case, each integral is separately integrated to the given relative_tolerance.

Avoiding precision loss near limits of integration in definite integrals
If care is not taken, the quadrature can suffer from numerical loss of precision near
the endpoints of definite integrals.

For instance, in integrating the pdf of a beta distribution when the values of α and β
are small, most of the probability mass is lumped near zero and one.
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The pdf of a beta distribution is proportional to

p(x)∝ xα−1(1− x)β−1

Normalizing this distribution requires computing the integral of p(x) from zero to
one. In Stan code, the integrand might look like:

real beta(real x, real xc, real[] theta, real[] x_r, int[] x_i) {
real alpha = theta[1];
real beta = theta[2];

return x^(alpha - 1.0) * (1.0 - x)^(beta - 1.0);
}

The issue is that there will be numerical breakdown in the precision of 1.0 - x as x
gets close to one. This is because of the limited precision of double precision floating
numbers. This integral will fail to converge for values of alpha and beta much less
than one.

This is where xc is useful. It is defined, for definite integrals, as a high precision
version of the distance from x to the nearest endpoint. To make use of this for the
beta integral, the integrand can be re-coded:

real beta(real x, real xc, real[] theta, real[] x_r, int[] x_i) {
real alpha = theta[1];
real beta = theta[2];
real v;

if(x > 0.5) {
v = x^(alpha - 1.0) * xc^(beta - 1.0);

} else {
v = x^(alpha - 1.0) * (1.0 - x)^(beta - 1.0);

}

return v;
}

This version of the integrand will converge for much smaller values of alpha and beta
than otherwise possible.

Note, xc is only used for definite integrals. If either the left endpoint is at negative
infinity or the right endpoint is at positive infinity, xc will be NaN.
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For zero-crossing definite integrals (see section Zero Crossing) the integrals are broken
into two pieces ((a,0) and (0, b) for endpoints a < 0 and b > 0) and xc is a high
precision version of the distance to the limits of each of the two integrals separately.
This means xc will be the a high precision version of a - x, x, or b - x, depending
on the value of x and the endpoints.



Part 2. Programming Techniques

This part of the manual surveys general programming techniques in Stan that are
useful across a range of different model types.
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15. Floating Point Arithmetic

Computers approximate real values in R using a fixed number of bits. This chapter
explains how this is done and why it is important for writing robust Stan (and other
numerical) programs. The subfield of computer science devoted to studying how real
arithmetic works on computers is called numerical analysis.

15.1. Floating-point representations
Stan’s arithmetic is implemented using double-precision arithmetic. The behavior
of most1 modern computers follows the floating-point arithmetic, IEEE Standard for
Floating-Point Arithmetic (IEEE 754).

Finite values
The double-precision component of the IEEE 754 standard specifies the representation
of real values using a fixed pattern of 64 bits (8 bytes). All values are represented in
base two (i.e., binary). The representation is divided into two signed components:

• significand (53 bits): base value representing significant digits

• exponent (11 bits): power of two multiplied by the base

The value of a finite floating point number is

v = (−1)s × c 2q

Normality
A normal floating-point value does not use any leading zeros in its significand;
subnormal numbers may use leading zeros. Not all I/O systems support subnormal
numbers.

Ranges and extreme values
There are some reserved exponent values so that legal exponent values range
between−(210)+ 2 = −1022 and 210 − 1 = 1023. Legal significand values are between
−252 and 252 − 1. Floating point allows the representation of both really big and really
small values. Some extreme values are

• largest normal finite number : ≈ 1.8× 10308

• largest subnormal finite number : ≈ 2.2× 10308

1The notable exception is Intel’s optimizing compilers under certain optimization settings.
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• smallest positive normal number : ≈ 2.2× 10−308

• smallest positive subnormal number : ≈ 4.9× 10−324

Signed zero
Because of the sign bit, there are two ways to represent zero, often called “positive
zero” and “negative zero”. This distinction is irrelevant in Stan (as it is in R), because
the two values are equal (i.e., 0 == -0 evaluates to true).

Not-a-number values
A specially chosen bit pattern is used for the not-a-number value (often written as NaN
in programming language output, including Stan’s).

Stan provides a value function not_a_number() that returns this special not-a-number
value. It is meant to represent error conditions, not missing values. Usually when
not-a-number is an argument to a function, the result will not-a-number if an exception
(a rejection in Stan) is not raised.

Stan also provides a test function is_nan(x) that returns 1 if x is not-a-number and 0
otherwise.

Not-a-number values propagate under almost all mathematical operations. For example,
all of the built-in binary arithmetic operations (addition, subtraction, multiplication,
division, negation) return not-a-number if any of their arguments are not-a-number.
The built-in functions such as log and exp have the same behavior, propagating
not-a-number values.

Most of Stan’s built-in functions will throw exceptions (i.e., reject) when any of their
arguments is not-a-number.

Comparisons with not-a-number always return false, up to and including comparison
with itself. That is, not_a_number() == not_a_number() somewhat confusingly
returns false. That is why there is a built-in is_nan() function in Stan (and in C++).
The only exception is negation, which remains coherent. This means not_a_number()
!= not_a_number() returns true.

Undefined operations often return not-a-number values. For example, sqrt(-1) will
evaluate to not-a-number.

Positive and negative infinity
There are also two special values representing positive infinity (∞) and negative infinity
(−∞). These are not as pathological as not-a-number, but are often used to represent
error conditions such as overflow and underflow. For example, rather than raising an
error or returning not-a-number, log(0) evaluates to negative infinity. Exponentiating
negative infinity leads back to zero, so that 0 == exp(log(0)). Nevertheless, this
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should not be done in Stan because the chain rule used to calculate the derivatives will
attempt illegal operations and return not-a-number.

There are value functions positive_infinity() and negative_infinity() as well
as a test function is_inf().

Positive and negative infinity have the expected comparison behavior, so that
negative_infinty() < 0 evaluates to true (represented with 1 in Stan). Also,
negating positive infinity leads to negative infinity and vice-versa.

Positive infinity added to either itself or a finite value produces positive infinity.
Negative infinity behaves the same way. However, attempts to subtract positive infinity
from itself produce not-a-number, not zero. Similarly, attempts to divide infinite
values results in a not-a-number value.

15.2. Literals: decimal and scientific notation
In programming languages such as Stan, numbers may be represented in standard
decimal (base 10) notation. For example, 2.39 or -1567846.276452. Remember there
is no point in writing more than 16 significant digits as they cannot be represented.
A number may be coded in Stan using scientific notation, which consists of a signed
decimal representation of a base and a signed integer decimal exponent. For example,
36.29e-3 represents the number 36.29 × 10−3, which is the same number as is
represented by 0.03629.

15.3. Arithmetic precision
The choice of significand provides log10 253 ≈ 15.95 decimal (base 10) digits of
arithmetic precision. This is just the precision of the floating-point representation.
After several operations are chained together, the realized arithmetic precision is often
much lower.

Rounding and probabilities
In practice, the finite amount of arithmetic precision leads to rounding, whereby a
number is represented by the closest floating-point number. For example, with only
16 decimal digits of accuracy,

1 + 1e-20 == 1

The closest floating point number to 1+ 10−20 turns out to be 1 itself. By contrast,

0 + 1e-20 == 1e-20

This highlights the fact that precision depends on scale. Even though 1 + 1e-20 ==
1, we have 1e-20 + 1e-20 == 2e-20, as expected.

Rounding also manifests itself in a lack of transitivity. In particular, it does not usually
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hold for three floating point numbers a, b, c that (a+ b)+ c = a+ (b = c).

In statistical applications, problems often manifest in situations where users expect
the usual rules of real-valued arithmetic to hold. Suppose we have a lower triangular
matrix L with strictly positive diagonal, so that it is the Cholesky factor of a positive-
definite matrix LL>. In practice, rounding and loss of precision may render the result
LL> neither symmetric nor positive definite.

In practice, care must be taken to defend against rounding. For example, symmetry
may be produced by adding LL> with its transpose and dividing by two, or by copying
the lower triangular portion into the upper portion. Positive definiteness may be
maintained by adding a small quantity to the diagonal.

Machine precision and the asymmetry of 0 and 1
The smallest number greater than zero is roughly 0+ 10−323. The largest number less
than zero is roughly 1− 10−15.95. The asymmetry is apparent when considering the
representation of that largest number smaller than one—the exponent is of no help,
and the number is represented as the binary equivalent of 0.9999999999999999.

For this reason, the machine precision is said to be roughly 1015.95. This constant is
available as machine_precision() in Stan.

Complementary and epsilon functions
Special operations are available to mitigate this problem with numbers rounding when
they get close to one. For example, consider the operation log(1 + x) for positive
x. When x is small (less than 10−16 for double-precision floating point), the sum
in the argument will round to 1 and the result will round to zero. To allow more
granularity, programming languages provide a library function directly implementing
f (x) = log(1+ x). In Stan (as in C++), this operation is written as log1p(x). Because x
itself may be close to zero, the function log1p(x) can take the logarithm of values
very close to one, the results of which are close to zero.

Similarly, the complementary cumulative distribution functions (CCDF), defined by
F�Y (y) = 1 − FY (y), where FY is the cumulative distribution function (CDF) for
the random variable Y . This allows values very close to one to be represented in
complementary form.

Catastrophic cancellation
Another downside to floating point representations is that subtraction of two numbers
close to each other results in a loss of precision that depends on how close they are.
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This is easy to see in practice. Consider

1.23456789012345

−1.23456789012344
= 0.00000000000001

We start with fifteen decimal places of accuracy in the arguments and are left with a
single decimal place of accuracy in the result.

Catastrophic cancellation arises in statistical computations whenever we calculate
variance for a distribution with small standard deviations relative to its location. When
calculating summary statistics, Stan uses Welford’s algorithm for computing variances.
This avoids catastrophic cancellation and may also be carried out in a single pass.

Overflow
Even though 1e200 may be represented as a double precision floating point value,
there is no finite value large enough to represent 1e200 * 1e200. The result of 1e200

* 1e200 is said to overflow. The IEEE 754 standard requires the result to be positive
infinity.

Overflow is rarely a problem in statistical computations. If it is, it’s possible to work
on the log scale, just as for underflow as described below.

Underflow and the log scale
When there is no number small enough to represent a result, it is said to underflow.
For instance, 1e-200 may be represented, but 1e-200 * 1e-200 underflows so that
the result is zero.

Underflow is a ubiquitous problem in likelihood calculations, For example, if p(yn |
θ) < 0.1, then

p(y | θ) =
N∏
n=1
p(yn | θ)

will underflow as soon as N > 350 or so.

To deal with underflow, work on the log scale. Even though p(y | θ) can’t be
represented, there is no problem representing

logp(y | θ) = log
∏N
n=1 p(yn | θ)

=
∑N
n=1 logp(yn | θ)

This is why all of Stan’s probability functions operate on the log scale.



CHAPTER 15. FLOATING POINT ARITHMETIC 189

15.4. Log sum of exponentials
Working on the log scale, multiplication is converted to addition,

log(a · b) = loga+ logb.

Thus sequences of multiplication operations can remain on the log scale. But what
about addition? Given loga and logb, how do we get log(a + b)? Working out the
algebra,

log(a+ b) = log(exp(loga)+ exp(logb)).

Log-sum-exp function
The nested log of sum of exponentials is so common, it has its own name, “log-sum-
exp”,

log-sum-exp(u, v) = log(exp(u)+ exp(v)).

so that
log(a+ b) = log-sum-exp(loga, logb).

Although it appears this might overflow as soon as exponentiation is introduced,
evaluation does not proceed by evaluating the terms as written. Instead, with a little
algebra, the terms are rearranged into a stable form,

log-sum-exp(u, v) =max(u, v)+ log
(

exp(u−max(u, v))+ exp(v −max(u, v))
)
.

Because the terms inside the exponentiations are u−max(u, v) and v −max(u, v), one
will be zero and the other will be negative. Because the operation is symmetric, it may
be assumed without loss of generality that u ≥ v , so that

log-sum-exp(u, v) = u+ log
(
1+ exp(v − u)

)
.

Although the inner term may itself be evaluated using the built-in function log1p,
there is only limited gain because exp(v − u) is only near zero when u is much larger
than v , meaning the final result is likely to round to u anyway.

To conclude, when evaluating log(a+ b) given loga and logb, and assuming loga >
logb, return

log(a+ b) = loga+ log1p
(

exp(logb − loga)
)
.
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Applying log-sum-exp to a sequence
The log sum of exponentials function may be generalized to sequences in the obvious
way, so that if v = v1, . . . , vN , then

log-sum-exp(v) = log
N∑
n=1

exp(vn)

= max(v)+ log
N∑
n=1

exp(vn −max(v)).

The exponent cannot overflow because its argument is either zero or negative. This
form makes it easy to calculate log(u1 + · · · + uN) given only logun.

Calculating means with log-sum-exp
An immediate application is to computing the mean of a vector u entirely on the log
scale. That is, given logu and returning log mean(u).

log

 1
N

N∑
n=1
un

 = log
1
N
+ log

N∑
n=1

exp(logun)

= − logN + log-sum-exp(logu).

where logu = (logu1, . . . , loguN) is understood elementwise.

15.5. Comparing floating-point numbers
Because floating-point representations are inexact, it is rarely a good idea to test
exact inequality. The general recommendation is that rather than testing x == y, an
approximate test may be used given an absolute or relative tolerance.

Given a positive absolute tolerance of epsilon, x can be compared to y using the
conditional

abs(x - y) <= epsilon.

Absolute tolerances work when the scale of x and y and the relevant comparison is
known.

Given a positive relative tolerance of epsilon, a typical comparison is

2 * abs(x - y) / (abs(x) + abs(y)) <= epsilon.



16. Matrices, Vectors, and Arrays

This chapter provides pointers as to how to choose among the various matrix, vector,
and array data structures provided by Stan.

16.1. Basic Motivation
Stan provides two basic scalar types, int and real, and three basic linear algebra types,
vector, row_vector, and matrix. Then Stan allows arrays to be of any dimension
and contain any type of element (though that type must be declared and must be the
same for all elements).

This leaves us in the awkward situation of having three one-dimensional containers, as
exemplified by the following declarations.

real a[N];
vector[N] a;
row_vector[N] a;

These distinctions matter. Matrix types, like vector and row vector, are required
for linear algebra operations. There is no automatic promotion of arrays to vectors
because the target, row vector or column vector, is ambiguous. Similarly, row vectors
are separated from column vectors because multiplying a row vector by a column
vector produces a scalar, whereas multiplying in the opposite order produces a matrix.

The following code fragment shows all four ways to declare a two-dimensional
container of size M ×N.

real b[M, N]; // b[m] : real[] (efficient)
vector[N] b[M]; // b[m] : vector (efficient)
row_vector[N] b[M]; // b[m] : row_vector (efficient)
matrix[M, N] b; // b[m] : row_vector (inefficient)

The main differences among these choices involve efficiency for various purposes and
the type of b[m], which is shown in comments to the right of the declarations. Thus
the only way to efficiently iterate over row vectors is to use the third declaration, but
if you need linear algebra on matrices, but the only way to use matrix operations is to
use the fourth declaration.

The inefficiencies due to any manual reshaping of containers is usually slight compared
to what else is going on in a Stan program (typically a lot of gradient calculations).
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16.2. Fixed Sizes and Indexing out of Bounds
Stan’s matrices, vectors, and array variables are sized when they are declared and may
not be dynamically resized. Function arguments do not have sizes, but these sizes are
fixed when the function is called and the container is instantiated. Also, declarations
may be inside loops and thus may change over the course of running a program, but
each time a declaration is visited, it declares a fixed size object.

When an index is provided that is out of bounds, Stan throws a rejection error and
computation on the current log density and gradient evaluation is halted and the
algorithm is left to clean up the error. All of Stan’s containers check the sizes of all
indexes.

16.3. Data Type and Indexing Efficiency
The underlying matrix and linear algebra operations are implemented in terms of
data types from the Eigen C++ library. By having vectors and matrices as basic types,
no conversion is necessary when invoking matrix operations or calling linear algebra
functions.

Arrays, on the other hand, are implemented as instances of the C++
std::vector class (not to be confused with Eigen’s Eigen::Vector class or Stan
vectors). By implementing arrays this way, indexing is efficient because values can be
returned by reference rather than copied by value.

Matrices vs. Two-Dimensional Arrays
In Stan models, there are a few minor efficiency considerations in deciding between a
two-dimensional array and a matrix, which may seem interchangeable at first glance.

First, matrices use a bit less memory than two-dimensional arrays. This is because
they don’t store a sequence of arrays, but just the data and the two dimensions.

Second, matrices store their data in column-major order. Furthermore, all of the
data in a matrix is guaranteed to be contiguous in memory. This is an important
consideration for optimized code because bringing in data from memory to cache
is much more expensive than performing arithmetic operations with contemporary
CPUs. Arrays, on the other hand, only guarantee that the values of primitive types are
contiguous in memory; otherwise, they hold copies of their values (which are returned
by reference wherever possible).

Third, both data structures are best traversed in the order in which they are stored.
This also helps with memory locality. This is column-major for matrices, so the
following order is appropriate.

matrix[M, N] a;
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//...
for (n in 1:N)

for (m in 1:M)
// ... do something with a[m, n] ...

Arrays, on the other hand, should be traversed in row-major order (i.e., last index
fastest), as in the following example.

real a[M, N];
// ...
for (m in 1:M)

for (n in 1:N)
// ... do something with a[m, n] ...

The first use of a[m,n] should bring a[m] into memory. Overall, traversing matrices
is more efficient than traversing arrays.

This is true even for arrays of matrices. For example, the ideal order in which to
traverse a two-dimensional array of matrices is

matrix[M, N] b[I, J];
// ...
for (i in 1:I)

for (j in 1:J)
for (n in 1:N)
for (m in 1:M)

... do something with b[i, j, m, n] ...

If a is a matrix, the notation a[m] picks out row m of that matrix. This is a rather
inefficient operation for matrices. If indexing of vectors is needed, it is much better to
declare an array of vectors. That is, this

row_vector[N] b[M];
// ...
for (m in 1:M)

... do something with row vector b[m] ...

is much more efficient than the pure matrix version

matrix b[M, N];
// ...
for (m in 1:M)

// ... do something with row vector b[m] ...
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Similarly, indexing an array of column vectors is more efficient than using the col
function to pick out a column of a matrix.

In contrast, whatever can be done as pure matrix algebra will be the fastest. So if I
want to create a row of predictor-coefficient dot-products, it’s more efficient to do this

matrix[N, k] x; // predictors (aka covariates)
// ...
vector[K] beta; // coeffs
// ...
vector[N] y_hat; // linear prediction
// ...
y_hat = x * beta;

than it is to do this

row_vector[K] x[N]; // predictors (aka covariates)
// ...
vector[K] beta; // coeffs
...
vector[N] y_hat; // linear prediction
...
for (n in 1:N)

y_hat[n] = x[n] * beta;

(Row) Vectors vs. One-Dimensional Arrays
For use purely as a container, there is really nothing to decide among vectors, row
vectors and one-dimensional arrays. The Eigen::Vector template specialization and
the std::vector template class are implemented similarly as containers of double
values (the type real in Stan). Only arrays in Stan are allowed to store integer values.

16.4. Memory Locality
The key to understanding efficiency of matrix and vector representations is memory
locality and reference passing versus copying.

Memory Locality
CPUs on computers bring in memory in blocks through layers of caches. Fetching from
memory is much slower than performing arithmetic operations. The only way to make
container operations fast is to respect memory locality and access elements that are
close together in memory sequentially in the program.
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Matrices
Matrices are stored internally in column-major order. That is, an M ×N matrix stores
its elements in the order

(1,1), (2,1), . . . , (M,1), (1,2), . . . , (M,2), . . . , (1, N), . . . , (M,N).

This means that it’s much more efficient to write loops over matrices column by
column, as in the following example.

matrix[M, N] a;
...
for (n in 1:N)

for (m in 1:M)
... do something with a[m, n] ...

It also follows that pulling a row out of a matrix is not memory local, as it has to stride
over the whole sequence of values. It also requires a copy operation into a new data
structure as it is not stored internally as a unit in a matrix. For sequential access to
row vectors in a matrix, it is much better to use an array of row vectors, as in the
following example.

row_vector[N] a[M];
...
for (m in 1:M)

... do something with row vector a[m] ...

Even if what is done involves a function call, the row vector a[m] will not have to be
copied.

Arrays
Arrays are stored internally following their data structure. That means a two
dimensional array is stored in row-major order. Thus it is efficient to pull out a
“row” of a two-dimensional array.

real a[M, N];
...
for (m in 1:M)

... do something with a[m] ...

A difference with matrices is that the entries a[m] in the two dimensional array are not
necessarily adjacent in memory, so there are no guarantees on iterating over all the
elements in a two-dimensional array will provide memory locality across the “rows.”
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16.5. Converting among Matrix, Vector, and Array Types
There is no automatic conversion among matrices, vectors, and arrays in Stan. But
there are a wide range of conversion functions to convert a matrix into a vector, or
a multi-dimensional array into a one-dimensional array, or convert a vector to an
array. See the section on mixed matrix and array operations in the functions reference
manual for a complete list of conversion operators and the multi-indexing chapter for
some reshaping operations involving multiple indexing and range indexing.

16.6. Aliasing in Stan Containers
Stan expressions are all evaluated before assignment happens, so there is no danger
of so-called aliasing in array, vector, or matrix operations. Contrast the behavior of
the assignments to u and x, which start with the same values.

The loop assigning to u and the compound slicing assigning to x.

the following trivial Stan program.

transformed data {
vector[4] x = [ 1, 2, 3, 4 ]';
vector[4] u = [ 1, 2, 3, 4 ]';

for (t in 2:4)
u[t] = u[t - 1] * 3;

x[2:4] = x[1:3] * 3;

print("u = ", u);
print("x = ", x);

}

The output it produces is,

u = [1,3,9,27]
x = [1,3,6,9]

In the loop version assigning to u, the values are updated before being used to define
subsequent values; in the sliced expression assigning to x, the entire right-hand side is
evaluated before assigning to the left-hand side.



17. Multiple Indexing and Range Indexing

Stan allows multiple indexes to be provided for containers (i.e., arrays, vectors, and
matrices) in a single position, using either an array of integer indexes or range bounds.
This allows many models to be vectorized. For instance, consider the likelihood for a
varying-slope, varying-intercept hierarchical linear regression, which could be coded as

for (n in 1:N)
y[n] ~ normal(alpha[ii[n]] + beta[ii[n]] * x[n], sigma);

With multiple indexing, this can be coded in one line, leading to more efficient
vectorized code.

y ~ normal(alpha[ii] + rows_dot_product(beta[ii], x), sigma);

This latter version is equivalent in speed to the clunky assignment to a local variable.

{
vector[N] mu;
for (n in 1:N)
mu[n] = alpha[ii[n]] + beta[ii[n]] * x[n];

y ~ normal(mu, sigma);
}

17.1. Multiple Indexing
The following is the simplest concrete example of multiple indexing with an array
of integers; the ellipses stand for code defining the variables as indicated in the
comments.

int c[3];
... // define: c == (5, 9, 7)
int idxs[4];
... // define: idxs == (3, 3, 1, 2)
int d[4];
d = c[idxs]; // result: d == (7, 7, 5, 9)

In general, the multiple indexed expression c[idxs] is defined as follows, assuming
idxs is of size K.

c[idxs] = ( c[idxs[1]], c[idxs[2]], ..., c[idxs[K]] )
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Thus c[idxs] is of the same size as idxs, which is K in this example.

Multiple indexing can also be used with multi-dimensional arrays. For example,
consider the following.

int c[2, 3];
... // define: c = ((1, 3, 5), ((7, 11, 13))
int idxs[4];
... // define: idxs = (2, 2, 1, 2)
int d[4, 3]
d = c[idxs]; // result: d = ((7, 11, 13), (7, 11, 13),

// (1, 3, 5), (7, 11, 13))

That is, putting an index in the first position acts exactly the same way as defined
above. The fact that the values are themselves arrays makes no difference—the result
is still defined by c[idxs][j] == c[idxs[j]].

Multiple indexing may also be used in the second position of a multi-dimensional
array. Continuing the above example, consider a single index in the first position and
a multiple index in the second.

int e[4];
e = c[2, idxs]; // result: c[2] = (7, 11, 13)

// result: e = (11, 11, 7, 11)

The single index is applied, the one-dimensional result is determined, then the multiple
index is applied to the result. That is, c[2,idxs] evaluates to the same value as
c[2][idxs].

Multiple indexing can apply to more than one position of a multi-dimensional array.
For instance, consider the following

int c[2, 3];
... // define: c = ((1, 3, 5), (7, 11, 13))
int idxs1[3];
... // define: idxs1 = (2, 2, 1)
int idxs2[2];
... // define: idxs2 = (1, 3)
int d[3, 2];
d = c[idxs1, idxs2]; // result: d = ((7, 13), (7, 13), (1, 5))

With multiple indexes, we no longer have c[idxs1, idxs2] being the same as
c[idxs1][idxs2]. Rather, the entry d[i, j] after executing the above is given
by
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d[i, j] == c[idxs1, idxs2][i, j] = c[idxs1[i], idxs2[j]]

This example illustrates the operation of multiple indexing in the general case: a
multiple index like idxs1 converts an index i used on the result (here, c[idxs1,
idxs2]) to index idxs1[i] in the variable being indexed (here, c). In contrast, a single
index just returns the value at that index, thus reducing dimensionality by one in the
result.

17.2. Slicing with Range Indexes
Slicing returns a contiguous slice of a one-dimensional array, a contiguous sub-block of
a two-dimensional array, and so on. Semantically, it is just a special form of multiple
indexing.

Lower and Upper Bound Indexes
For instance, consider supplying an upper and lower bound for an index.

int c[7];
...
int d[4];
d = c[3:6]; // result: d == (c[3], c[4], c[5], c[6])

The range index 3:6 behaves semantically just like the multiple index (3, 4, 5, 6).
In terms of implementation, the sliced upper and/or lower bounded indices are faster
and use less memory because they do not explicitly create a multiple index, but rather
use a direct loop. They are also easier to read, so should be preferred over multiple
indexes where applicable.

Lower or Upper Bound Indexes
It is also possible to supply just a lower bound, or just an upper bound. Writing c[3:]
is just shorthand for c[3:size(c)]. Writing c[:5] is just shorthand for c[1:5].

Full Range Indexes
Finally, it is possible to write a range index that covers the entire range of an array,
either by including just the range symbol (:) as the index or leaving the index position
empty. In both cases, c[] and c[:] are equal to c[1:size(c)], which in turn is just
equal to c.

17.3. Multiple Indexing on the Left of Assignments
Multiple expressions may be used on the left-hand side of an assignment statement,
where they work exactly the same way as on the right-hand side in terms of picking
out entries of a container. For example, consider the following.

int a[3];
int c[2];



CHAPTER 17. MULTIPLE INDEXING AND RANGE INDEXING 200

int idxs[2];
... // define: a == (1, 2, 3); c == (5, 9)

// idxs = (3,2)
a[idxs] = c; // result: a == (1, 9, 5)

The result above can be worked out by noting that the assignment sets a[idxs[1]]
(a[3]) to c[1] (5) and a[idxs[2]] (a[2]) to c[2] (9).

The same principle applies when there are many multiple indexes, as in the following
example.

int a[5, 7];
int c[2, 2];
...
a[2:3, 5:6] = c; // result: a[2, 5] == c[1, 1]; a[2, 6] == c[1, 2]

// a[3, 5] == c[2, 1]; a[3, 6] == c[2, 2]

As in the one-dimensional case, the right-hand side is written into the slice, block, or
general chunk picked out by the left-hand side.

Usage on the left-hand side allows the full generality of multiple indexing, with single
indexes reducing dimensionality and multiple indexes maintaining dimensionality
while rearranging, slicing, or blocking. For example, it is valid to assign to a segment
of a row of an array as follows.

int a[10, 13];
int c[2];
...
a[4, 2:3] = c; // result: a[4, 2] == c[1]; a[4, 3] == c[2]

Assign-by-Value and Aliasing
Aliasing issues arise when there are references to the same data structure on the
right-hand and left-hand side of an assignment. For example, consider the array a in
the following code fragment.

int a[3];
... // define: a == (5, 6, 7)
a[2:3] = a[1:2];
... // result: a == (5, 5, 6)

The reason the value of a after the assignment is (5,5,6) rather than (5,5,5) is that
Stan behaves as if the right-hand side expression is evaluated to a fresh copy. As
another example, consider the following.

int a[3];
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int idxs[3];
... // define idxs = (2, 1, 3)
a[idxs] = a;

In this case, it is evident why the right-hand side needs to be copied before the
assignment.

It is tempting (but wrong) to think of the assignment a[2:3] = a[1:2] as executing
the following assignments.

... // define: a = (5, 6, 7)
a[2] = a[1]; // result: a = (5, 5, 7)
a[3] = a[2]; // result: a = (5, 5, 5)!

This produces a different result than executing the assignment because a[2]’s value
changes before it is used.

17.4. Multiple Indexes with Vectors and Matrices
Multiple indexes can be supplied to vectors and matrices as well as arrays of vectors
and matrices.

Vectors
Vectors and row vectors behave exactly the same way as arrays with multiple indexes.
If v is a vector, then v[3] is a scalar real value, whereas v[2:4] is a vector of size 3
containing the elements v[2], v[3], and v[4].

The only subtlety with vectors is in inferring the return type when there are multiple
indexes. For example, consider the following minimal example.

vector[5] v[3];
int idxs[7];
...
vector[7] u;
u = v[2, idxs];

real w[7];
w = v[idxs, 2];

The key is understanding that a single index always reduces dimensionality, whereas
a multiple index never does. The dimensions with multiple indexes (and unindexed
dimensions) determine the indexed expression’s type. In the example above, because v
is an array of vectors, v[2, idxs] reduces the array dimension but doesn’t reduce the
vector dimension, so the result is a vector. In contrast, v[idxs, 2] does not reduce
the array dimension, but does reduce the vector dimension (to a scalar), so the result
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type for w is an array of reals. In both cases, the size of the multiple index (here, 7)
determines the size of the result.

Matrices
Matrices are a bit trickier because they have two dimensions, but the underlying
principle of type inference is the same—multiple indexes leave dimensions in place,
whereas single indexes reduce them. The following code shows how this works for
multiple indexing of matrices.

matrix[5,7] m;
...
row_vector[3] rv;
rv = m[4, 3:5]; // result is 1 x 3
...
vector[4] v;
v = m[2:5, 3]; // result is 3 x 1
...
matrix[3, 4] m2;
m2 = m[1:3, 2:5]; // result is 3 x 4

The key is realizing that any position with a multiple index or bounded index remains
in play in the result, whereas any dimension with a single index is replaced with 1 in
the resulting dimensions. Then the type of the result can be read off of the resulting
dimensionality as indicated in the comments above.

Matrices with One Multiple Index
If matrices receive a single multiple index, the result is a matrix. So if m is a matrix, so
is m[2:4]. In contrast, supplying a single index, m[3], produces a row vector result.
That is, m[3] produces the same result as m[3, ] or m[3, 1:cols(m)].

Arrays of Vectors or Matrices
With arrays of matrices, vectors, and row vectors, the basic access rules remain exactly
the same: single indexes reduce dimensionality and multiple indexes redirect indexes.
For example, consider the following example.

matrix[3, 4] m[5, 7];
...
matrix[3, 4] a[2];
a = m[1, 2:3]; // knock off first array dimension
a = m[3:4, 5]; // knock off second array dimension

In both assignments, the multiple index knocks off an array dimension, but it’s different
in both cases. In the first case, a[i] == m[1, i + 1], whereas in the second case,
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a[i] == m[i + 2, 5].

Continuing the previous example, consider the following.

...
vector[2] b;
b = a[1, 3, 2:3, 2];

Here, the two array dimensions are reduced as is the column dimension of the matrix,
leaving only a row dimension index, hence the result is a vector. In this case, b[j] ==
a[1, 3, 1 + j, 2].

This last example illustrates an important point: if there is a lower-bounded index,
such as 2:3, with lower bound 2, then the lower bound minus one is added to the
index, as seen in the 1 + j expression above.

Continuing further, consider continuing with the following.

...
row_vector[3] c[2];
c = a[4:5, 3, 1, 2: ];

Here, the first array dimension is reduced, leaving a single array dimension, and the
row index of the matrix is reduced, leaving a row vector. For indexing, the values are
given by c[i, j] == a[i + 3, 3, 1, j + 1]

17.5. Matrices with Parameters and Constants
Suppose you have a 3x3 matrix and know that two entries are zero but the others are
parameters. Such a situation arises in missing data situations and in problems with
fixed structural parameters.

Suppose a 3× 3 matrix is known to be zero at indexes [1,2] and [1,3]. The indexes
for parameters are included in a “melted” data-frame or database format.

transformed data {
int<lower=1, upper=3> idxs[7, 2]
= { {1, 1},

{2, 1}, {2, 2}, {2, 3},
{3, 1}, {3, 2}, {3, 3} };

...

The seven remaining parameters are declared as a vector.

parameters {
vector[7] A_raw;
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...

Then the full matrix A is constructed in the model block as a local variable.

model {
matrix[3, 3] A;
for (i in 1:7)
A[idxs[i, 1], idxs[i, 2]] = A_raw[i];

A[1, 2] = 0;
A[1, 3] = 0;
...

This may seem like overkill in this setting, but in more general settings, the matrix size,
vector size, and the idxs array will be too large to code directly. Similar techniques
can be used to build up matrices with ad-hoc constraints, such as a handful of entries
known to be positive.



18. User-Defined Functions

This chapter explains functions from a user perspective with examples; see the
language reference for a full specification. User-defined functions allow computations
to be encapsulated into a single named unit and invoked elsewhere by name. Similarly,
functions allow complex procedures to be broken down into more understandable
components. Writing modular code using descriptively named functions is easier to
understand than a monolithic program, even if the latter is heavily commented.1

18.1. Basic Functions
Here’s an example of a skeletal Stan program with a user-defined relative difference
function employed in the generated quantities block to compute a relative differences
between two parameters.

functions {
real relative_diff(real x, real y) {
real abs_diff;
real avg_scale;
abs_diff = fabs(x - y);
avg_scale = (fabs(x) + fabs(y)) / 2;
return abs_diff / avg_scale;

}
}
...
generated quantities {

real rdiff;
rdiff = relative_diff(alpha, beta);

}

The function is named relative_diff, and is declared to have two real-valued
arguments and return a real-valued result. It is used the same way a built-in function
would be used in the generated quantities block.

1The main problem with comments is that they can be misleading, either due to misunderstandings
on the programmer’s part or because the program’s behavior is modified after the comment is written.
The program always behaves the way the code is written, which is why refactoring complex code into
understandable units is preferable to simply adding comments.
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User-Defined Functions Block
All functions are defined in their own block, which is labeled functions and must
appear before all other program blocks. The user-defined functions block is optional.

Function Bodies
The body (the part between the curly braces) contains ordinary Stan code, including
local variables. The new function is used in the generated quantities block just as any
of Stan’s built-in functions would be used.

Return Statements
Return statements, such as the one on the last line of the definition of relative_diff
above, are only allowed in the bodies of function definitions. Return statements may
appear anywhere in a function, but functions with non-void return types must end in
a return statement.

Reject Statements
The Stan reject statement provides a mechanism to report errors or problematic
values encountered during program execution. It accepts any number of quoted string
literals or Stan expressions as arguments. This statement is typically embedded in a
conditional statement in order to detect bad or illegal outcomes of some processing
step.

Catching errors

Rejection is used to flag errors that arise in inputs or in program state. It is far better
to fail early with a localized informative error message than to run into problems
much further downstream (as in rejecting a state or failing to compute a derivative).

The most common errors that are coded is to test that all of the arguments to a
function are legal. The following function takes a square root of its input, so requires
non-negative inputs; it is coded to guard against illegal inputs.

real dbl_sqrt(real x) {
if (!(x >= 0))
reject("dblsqrt(x): x must be positive; found x = ", x);

return 2 * sqrt(x);
}

The negation of the positive test is important, because it also catches the case where x
is a not-a-number value. If the condition had been coded as (x < 0) it would not catch
the not-a-number case, though it could be written as (x < 0 || is_nan(x)). The
positive infinite case is allowed through, but could also be checked with the is_inf(x)
function. The square root function does not itself reject, but some downstream
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consumer of dbl_sqrt(-2) would be likely to raise an error, at which point the origin
of the illegal input requires detective work. Or even worse, as Matt Simpson pointed
out in the GitHub comments, the function could go into an infinite loop if it starts
with an infinite value and tries to reduce it by arithmetic, likely consuming all available
memory and crashing an interface. Much better to catch errors early and report on
their origin.

The effect of rejection depends on the program block in which the rejection is executed.
In transformed data, rejections cause the program to fail to load. In transformed
parameters or in the model block, rejections cause the current state to be rejected in
the Metropolis sense.2

In generated quantities, rejections cause execution to halt because there is no way
to recover and generate the remaining parameters, so extra care should be taken in
calling functions in the generated quantities block.

Type Declarations for Functions

Function Argument Local Block

(unsized) (unconstrained) (constrained)
int int int

int<lower = L>
int<upper = U>
int<lower = L, upper = U>

real real real
real<lower = L>
real<upper = U>
real<lower = L, upper = U>

vector vector[N] vector[N]
vector[N]<lower = L>
vector[N]<upper = U>
vector[N]<lower = L, upper = U>
ordered[N]
positive_ordered[N]
simplex[N]
unit_vector[N]

row_vector row_vector[N] row_vector[N]
row_vector[N]<lower = L>

2Just because this makes it possible to code a rejection sampler does not make it a good idea. Rejections
break differentiability and the smooth exploration of the posterior. In Hamiltonian Monte Carlo, it can cause
the sampler to be reduced to a diffusive random walk.
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Function Argument Local Block

row_vector[N]<upper = U>
row_vector[N]<lower = L, upper = U>

matrix matrix[M, N] matrix[M, N]
matrix[M, N]<lower = L>
matrix[M, N]<upper = U>
matrix[M, N]<lower = L, upper = U>

matrix[K, K] corr_matrix[K]
matrix[K, K] cov_matrix[K]
matrix[K, K] cholesky_factor_corr[K]
matrix[K, K] cholesky_factor_cov[K]

The leftmost column is a list of the unconstrained and undimensioned basic types;
these are used as function return types and argument types. The middle column is
of unconstrained types with dimensions; these are used as local variable types. The
variables M and N indicate number of columns and rows, respectively. The variable
K is used for square matrices, i.e., K denotes both the number of rows and columns.
The rightmost column lists the corresponding constrained types. An expression of
any right-hand column type may be assigned to its corresponding left-hand column
basic type. At runtime, dimensions are checked for consistency for all variables;
containers of any sizes may be assigned to function arguments. The constrained
matrix types cov_matrix[K], corr_matrix[K], cholesky_factor_cov[K], and
cholesky_factor_corr[K] are only assignable to matrices of dimensions matrix[K,
K] types. Stan also allows arrays of any of these types, with slightly different
declarations for function arguments and return types and variables.

Function argument and return types for vector and matrix types are not declared with
their sizes, unlike type declarations for variables. Function argument type declarations
may not be declared with constraints, either lower or upper bounds or structured
constraints like forming a simplex or correlation matrix, (as is also the case for local
variables); see the table of constrained types for full details.

For example, here’s a function to compute the entropy of a categorical distribution
with simplex parameter theta.

real entropy(vector theta) {
return sum(theta .* log(theta));

}
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Although theta must be a simplex, only the type vector is used.3

Upper or lower bounds on values or constrained types are not allowed as return types
or argument types in function declarations.

Array Types for Function Declarations
Array arguments have their own syntax, which follows that used in this manual for
function signatures. For example, a function that operates on a two-dimensional array
to produce a one-dimensional array might be declared as follows.

real[] baz(real[,] x);

The notation [ ] is used for one-dimensional arrays (as in the return above), [ , ]
for two-dimensional arrays, [ , , ] for three-dimensional arrays, and so on.

Functions support arrays of any type, including matrix and vector types. As with other
types, no constraints are allowed.

Data-only Function Arguments
A function argument which is a real-valued type or a container of a real-valued type,
i.e., not an integer type or integer array type, can be qualified using the prefix qualifier
data. The following is an example of a data-only function argument.

real foo(real y, data real mu) {
return -0.5 * (y - mu)^2;

}

This qualifier restricts this argument to being invoked with expressions which consist
only of data variables, transformed data variables, literals, and function calls. A data-
only function argument cannot involve real variables declared in the parameters,
transformed parameters, or model block. Attempts to invoke a function using
an expression which contains parameter, transformed parameters, or model block
variables as a data-only argument will result in an error message from the parser.

Use of the data qualifier must be consistent between the forward declaration and the
definition of a functions.

This qualifier should be used when writing functions that call the built-in ordinary
differential equation (ODE) solvers, algebraic solvers, or map functions. These higher-
order functions have strictly specified signatures where some arguments of are data
only expressions. (See the ODE solver chapter for more usage details and the functions
reference manual for full definitions.) When writing a function which calls the ODE

3A range of built-in validation routines is coming to Stan soon! Alternatively, the reject statement can
be used to check constraints on the simplex.
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or algebraic solver, arguments to that function which are passed into the call to the
solver, either directly or indirectly, should have the data prefix qualifier. This allows
for compile-time type checking and increases overall program understandability.

18.2. Functions as Statements
In some cases, it makes sense to have functions that do not return a value. For example,
a routine to print the lower-triangular portion of a matrix can be defined as follows.

functions {
void pretty_print_tri_lower(matrix x) {
if (rows(x) == 0) {
print("empty matrix");
return;

}
print("rows=", rows(x), " cols=", cols(x));
for (m in 1:rows(x))

for (n in 1:m)
print("[", m, ",", n, "]=", x[m, n]);

}
}

The special symbol void is used as the return type. This is not a type itself in that
there are no values of type void; it merely indicates the lack of a value. As such, return
statements for void functions are not allowed to have arguments, as in the return
statement in the body of the previous example.

Void functions applied to appropriately typed arguments may be used on their own as
statements. For example, the pretty-print function defined above may be applied to a
covariance matrix being defined in the transformed parameters block.

transformed parameters {
cov_matrix[K] Sigma;
... code to set Sigma ...
pretty_print_tri_lower(Sigma);
...

18.3. Functions Accessing the Log Probability Accumulator
Functions whose names end in _lp are allowed to use sampling statements and target
+= statements; other functions are not. Because of this access, their use is restricted
to the transformed parameters and model blocks.

Here is an example of a function to assign standard normal priors to a vector of
coefficients, along with a center and scale, and return the translated and scaled
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coefficients; see the reparameterization section for more information on efficient
non-centered parameterizations

functions {
vector center_lp(vector beta_raw, real mu, real sigma) {
beta_raw ~ std_normal();
sigma ~ cauchy(0, 5);
mu ~ cauchy(0, 2.5);
return sigma * beta_raw + mu;

}
...

}
parameters {

vector[K] beta_raw;
real mu_beta;
real<lower=0> sigma_beta;
...

transformed parameters {
vector[K] beta;
...
beta = center_lp(beta_raw, mu_beta, sigma_beta);
...

18.4. Functions Acting as Random Number Generators
A user-specified function can be declared to act as a (pseudo) random number generator
(PRNG) by giving it a name that ends in _rng. Giving a function a name that ends
in _rng allows it to access built-in functions and user-defined functions that end in
_rng, which includes all the built-in PRNG functions. Only functions ending in _rng
are able access the built-in PRNG functions. The use of functions ending in _rng must
therefore be restricted to transformed data and generated quantities blocks like other
PRNG functions; they may also be used in the bodies of other user-defined functions
ending in _rng.

For example, the following function generates an N ×K data matrix, the first column
of which is filled with 1 values for the intercept and the remaining entries of which
have values drawn from a standard normal PRNG.

matrix predictors_rng(int N, int K) {
matrix[N, K] x;
for (n in 1:N) {
x[n, 1] = 1.0; // intercept
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for (k in 2:K)
x[n, k] = normal_rng(0, 1);

}
return x;

}

The following function defines a simulator for regression outcomes based on a data
matrix x, coefficients beta, and noise scale sigma.

vector regression_rng(vector beta, matrix x, real sigma) {
vector[rows(x)] y;
vector[rows(x)] mu;
mu = x * beta;
for (n in 1:rows(x))
y[n] = normal_rng(mu[n], sigma);

return y;
}

These might be used in a generated quantity block to simulate some fake data from a
fitted regression model as follows.

parameters {
vector[K] beta;
real<lower=0> sigma;
...

generated quantities {
matrix[N_sim, K] x_sim;
vector[N_sim] y_sim;
x_sim = predictors_rng(N_sim, K);
y_sim = regression_rng(beta, x_sim, sigma);

}

A more sophisticated simulation might fit a multivariate normal to the predictors x
and use the resulting parameters to generate multivariate normal draws for x_sim.

18.5. User-Defined Probability Functions
Probability functions are distinguished in Stan by names ending in _lpdf for density
functions and _lpmf for mass functions; in both cases, they must have real return
types.

Suppose a model uses several standard normal distributions, for which there is not a
specific overloaded density nor defaults in Stan. So rather than writing out the location
of 0 and scale of 1 for all of them, a new density function may be defined and reused.



CHAPTER 18. USER-DEFINED FUNCTIONS 213

functions {
real unit_normal_lpdf(real y) {
return normal_lpdf(y | 0, 1);

}
}
...
model {

alpha ~ unit_normal();
beta ~ unit_normal();
...

}

The ability to use the unit_normal function as a density is keyed off its name ending
in _lpdf (names ending in _lpmf for probability mass functions work the same way).

In general, if foo_lpdf is defined to consume N + 1 arguments, then

y ~ foo(theta1, ..., thetaN);

can be used as shorthand for

target += foo_lpdf(y | theta1, ..., thetaN);

As with the built-in functions, the suffix _lpdf is dropped and the first argument
moves to the left of the sampling symbol (~) in the sampling statement.

Functions ending in _lpmf (for probability mass functions), behave exactly the same
way. The difference is that the first argument of a density function (_lpdf) must be
continuous (not an integer or integer array), whereas the first argument of a mass
function (_lpmf) must be discrete (integer or integer array).

18.6. Overloading Functions
Stan does not permit overloading user-defined functions. This means that it is not
possible to define two different functions with the same name, even if they have
different signatures.

18.7. Documenting Functions
Functions will ideally be documented at their interface level. The Stan style guide
for function documentation follows the same format as used by the Doxygen (C++)
and Javadoc (Java) automatic documentation systems. Such specifications indicate the
variables and their types and the return value, prefaced with some descriptive text.

For example, here’s some documentation for the prediction matrix generator.

/**
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* Return a data matrix of specified size with rows

* corresponding to items and the first column filled

* with the value 1 to represent the intercept and the

* remaining columns randomly filled with unit-normal draws.

*
* @param N Number of rows corresponding to data items

* @param K Number of predictors, counting the intercept, per

* item.

* @return Simulated predictor matrix.

*/
matrix predictors_rng(int N, int K) {

...

The comment begins with /**, ends with */, and has an asterisk (*) on each line. It
uses @param followed by the argument’s identifier to document a function argument.
The tag @return is used to indicate the return value. Stan does not (yet) have an
automatic documentation generator like Javadoc or Doxygen, so this just looks like a
big comment starting with /* and ending with */ to the Stan parser.

For functions that raise exceptions, exceptions can be documented using @throws.4

For example,

...

* @param theta

* @throws If any of the entries of theta is negative.

*/
real entropy(vector theta) {

...

Usually an exception type would be provided, but these are not exposed as part of the
Stan language, so there is no need to document them.

18.8. Summary of Function Types
Functions may have a void or non-void return type and they may or may not have one
of the special suffixes, _lpdf, _lpmf, _lp, or _rng.

Void vs. Non-Void Return
Only functions declared to return void may be used as statements. These are also the
only functions that use return statements with no arguments.

4As of Stan 2.9.0, the only way a user-defined producer will raise an exception is if a function it calls
(including sampling statements) raises an exception via the reject statement.
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Only functions declared to return non-void values may be used as expressions. These
functions require return statements with arguments of a type that matches the
declared return type.

Suffixed or Non-Suffixed
Only functions ending in _lpmf or _lpdf and with return type real may be used as
probability functions in sampling statements.

Only functions ending in _lp may access the log probability accumulator through
sampling statements or target += statements. Such functions may only be used in
the transformed parameters or model blocks.

Only functions ending in _rng may access the built-in pseudo-random number
generators. Such functions may only be used in the generated quantities block or
transformed data block, or in the bodies of other user-defined functions ending in
_rng.

18.9. Recursive Functions
Stan supports recursive function definitions, which can be useful for some applications.
For instance, consider the matrix power operation, An, which is defined for a square
matrix A and positive integer n by

An =

I if n = 0, and

AAn−1 if n > 0.

where I is the identity matrix. This definition can be directly translated to a recursive
function definition.

matrix matrix_pow(matrix a, int n);

matrix matrix_pow(matrix a, int n) {
if (n == 0)
return diag_matrix(rep_vector(1, rows(a)));

else
return a * matrix_pow(a, n - 1);

}

The forward declaration of the function signature before it is defined is necessary so
that the embedded use of matrix_pow is well-defined when it is encountered. It would
be more efficient to not allow the recursion to go all the way to the base case, adding
the following conditional clause.

else if (n == 1)
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return a;

18.10. Truncated Random Number Generation
Generation with Inverse CDFs
To generate random numbers, it is often sufficient to invert their cumulative
distribution functions. This is built into many of the random number generators.
For example, to generate a standard logistic variate, first generate a uniform variate
u ∼ uniform(0,1), then run through the inverse cumulative distribution function,
y = logit(u). If this were not already built in as logistic_rng(0, 1), it could be
coded in Stan directly as

real standard_logistic_rng() {
real u = uniform_rng(0, 1);
real y = logit(u);
return y;

}

Following the same pattern, a standard normal RNG could be coded as

real standard_normal_rng() {
real u = uniform_rng(0, 1);
real y = inv_Phi(u);
return y;

}

that is, y = Φ−1(u), where Φ−1 is the inverse cumulative distribution function for the
standard normal distribution, implemented in the Stan function inv_Phi.

In order to generate non-standard variates of the location-scale variety, the variate
is scaled by the scale parameter and shifted by the location parameter. For example,
to generate normal(µ,σ) variates, it is enough to generate a uniform variate u ∼
uniform(0,1), then convert it to a standard normal variate, z = Φ(u), where Φ is the
inverse cumulative distribution function for the standard normal, and then, finally,
scale and translate it, y = µ + σ × z. In code,

real my_normal_rng(real mu, real sigma) {
real u = uniform_rng(0, 1);
real z = inv_Phi(u);
real y = mu + sigma * z;
return y;

}

A robust version of this function would test that the arguments are finite and that
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sigma is non-negative, e.g.,

if (is_nan(mu) || is_infinite(mu))
reject("my_normal_rng: mu must be finite; ",

"found mu = ", mu);
if (is_nan(sigma) || is_infinite(sigma) || sigma < 0)
reject("my_normal_rng: sigma must be finite and non-negative; ",

"found sigma = ", sigma);

Truncated variate generation
Often truncated uniform variates are needed, as in survival analysis when a time of
death is censored beyond the end of the observations. To generate a truncated random
variate, the cumulative distribution is used to find the truncation point in the inverse
CDF, a uniform variate is generated in range, and then the inverse CDF translates it
back.

Truncating below

For example, the following code generates a Weibull(α,σ) variate truncated below at a
time t ,5

real weibull_lb_rng(real alpha, real sigma, real t) {
real p = weibull_cdf(lt, alpha, sigma); // cdf for lb
real u = uniform_rng(p, 1); // unif in bounds
real y = sigma * (-log1m(u))^inv(alpha); // inverse cdf
return y;

}

Truncating above and below

If there is a lower bound and upper bound, then the CDF trick is used twice to find a
lower and upper bound. For example, to generate a normal(µ,σ) truncated to a region
(a, b), the following code suffices,

real normal_lub_rng(real mu, real sigma, real lb, real ub) {
real p_lb = normal_cdf(lb, mu, sigma);
real p_ub = normal_cdf(ub, mu, sigma);
real u = uniform_rng(p_lb, p_ub);
real y = mu + sigma * inv_Phi(u);

5The original code and impetus for including this in the manual came from the Stan forums post
http://discourse.mc-stan.org/t/rng-for-truncated-distributions/3122/7; by user lcomm, who also explained
truncation above and below.

http://discourse.mc-stan.org/t/rng-for-truncated-distributions/3122/7
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return y;
}

To make this more robust, all variables should be tested for finiteness, sigma should
be tested for positiveness, and lb and ub should be tested to ensure the upper bound
is greater than the lower bound. While it may be tempting to compress lines, the
variable names serve as a kind of chunking of operations and naming for readability;
compare the multiple statement version above with the single statement

return mu + sigma * inv_Phi(uniform_rng(normal_cdf(lb, mu, sigma),
normal_cdf(ub, mu, sigma)));

for readability. The names like p indicate probabilities, and p_lb and p_ub indicate
the probabilities of the bounds. The variable u is clearly named as a uniform variate,
and y is used to denote the variate being generated itself.



19. Custom Probability Functions

Custom distributions may also be implemented directly within Stan’s programming
language. The only thing that is needed is to increment the total log probability. The
rest of the chapter provides examples.

19.1. Examples
Triangle distribution
A simple example is the triangle distribution, whose density is shaped like an isosceles
triangle with corners at specified bounds and height determined by the constraint
that a density integrate to 1. If α ∈ R and β ∈ R are the bounds, with α < β, then
y ∈ (α,β) has a density defined as follows.

triangle(y | α,β) = 2
β−α

(
1−

∣∣∣∣∣y − α+ ββ−α

∣∣∣∣∣
)

If α = −1, β = 1, and y ∈ (−1,1), this reduces to

triangle(y | −1,1) = 1− |y|.

Consider the following Stan implementation of triangle(−1,1) for sampling.

parameters {
real<lower=-1,upper=1> y;

}
model {

target += log1m(fabs(y));
}

The single scalar parameter y is declared as lying in the interval (-1,1). The
total log probability is incremented with the joint log probability of all parameters,
i.e., log Triangle(y | −1,1). This value is coded in Stan as log1m(fabs(y)). The
function log1m is defined so that log1m(x) has the same value as log(1− x), but the
computation is faster, more accurate, and more stable.

The constrained type real<lower=-1,upper=1> declared for y is critical for correct
sampling behavior. If the constraint on y is removed from the program, say by
declaring y as having the unconstrained scalar type real, the program would compile,
but it would produce arithmetic exceptions at run time when the sampler explored
values of y outside of (−1,1).

219



CHAPTER 19. CUSTOM PROBABILITY FUNCTIONS 220

Now suppose the log probability function were extended to all of R as follows by
defining the probability to be log(0.0), i.e., −∞, for values outside of (−1,1).

target += log(fmax(0.0,1 - fabs(y)));

With the constraint on y in place, this is just a less efficient, slower, and less
arithmetically stable version of the original program. But if the constraint on y
is removed, the model will compile and run without arithmetic errors, but will not
sample properly.1

Exponential distribution
If Stan didn’t happen to include the exponential distribution, it could be coded directly
using the following assignment statement, where lambda is the inverse scale and y
the sampled variate.

target += log(lambda) - y * lambda;

This encoding will work for any lambda and y; they can be parameters, data, or one of
each, or even local variables.

The assignment statement in the previous paragraph generates C++ code that is similar
to that generated by the following sampling statement.

y ~ exponential(lambda);

There are two notable differences. First, the sampling statement will check the inputs
to make sure both lambda is positive and y is non-negative (which includes checking
that neither is the special not-a-number value).

The second difference is that if lambda is not a parameter, transformed parameter, or
local model variable, the sampling statement is clever enough to drop the log(lambda)
term. This results in the same posterior because Stan only needs the log probability up
to an additive constant. If lambda and y are both constants, the sampling statement
will drop both terms (but still check for out-of-domain errors on the inputs).

Bivariate normal cumulative distribution function
For another example of user-defined functions, consider the following definition of
the bivariate normal cumulative distribution function (CDF) with location zero, unit
variance, and correlation rho. That is, it computes

binormal_cdf(z1, z2, ρ) = Pr[Z1 > z1 and Z2 > z2]
1The problem is the (extremely!) light tails of the triangle distribution. The standard HMC and NUTS

samplers can’t get into the corners of the triangle properly. Because the Stan code declares y to be of type
real<lower = -1, upper = 1>, the inverse logit transform is applied to the unconstrained variable and
its log absolute derivative added to the log probability. The resulting distribution on the logit-transformed y
is well behaved.
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where the random 2-vector Z has the distribution

Z ∼multivariate normal

([
0
0

]
,
[
1 ρ
ρ 1

]
]
)
.

The following Stan program implements this function,

real binormal_cdf(real z1, real z2, real rho) {
if (z1 != 0 || z2 != 0) {
real denom = fabs(rho) < 1.0 ? sqrt((1 + rho) * (1 - rho)) : not_a_number();
real a1 = (z2 / z1 - rho) / denom;
real a2 = (z1 / z2 - rho) / denom;
real product = z1 * z2;
real delta = product < 0 || (product == 0 && (z1 + z2) < 0);
return 0.5 * (Phi(z1) + Phi(z2) - delta) - owens_t(z1, a1) - owens_t(z2, a2);

}
return 0.25 + asin(rho) / (2 * pi());

}



20. Problematic Posteriors

Mathematically speaking, with a proper posterior, one can do Bayesian inference and
that’s that. There is not even a need to require a finite variance or even a finite
mean—all that’s needed is a finite integral. Nevertheless, modeling is a tricky business
and even experienced modelers sometimes code models that lead to improper priors.
Furthermore, some posteriors are mathematically sound, but ill-behaved in practice.
This chapter discusses issues in models that create problematic posterior inferences,
either in general for Bayesian inference or in practice for Stan.

20.1. Collinearity of Predictors in Regressions
This section discusses problems related to the classical notion of identifiability, which
lead to ridges in the posterior density and wreak havoc with both sampling and
inference.

Examples of Collinearity
Redundant Intercepts

The first example of collinearity is an artificial example involving redundant intercept
parameters.1

Suppose there are observations yn for n ∈ {1, . . . ,N}, two intercept parameters λ1 and
λ2, a scale parameter σ > 0, and the sampling distribution

yn ∼ normal(λ1 + λ2, σ).

For any constant q, the sampling density for y does not change if we add q to λ1 and
subtract it from λ2, i.e.,

p(y | λ1, λ2, σ) = p(y | λ1 + q, λ2 − q,σ).

The consequence is that an improper uniform prior p(µ,σ)∝ 1 leads to an improper
posterior. This impropriety arises because the neighborhoods around λ1 + q, λ2 − q
have the same mass no matter what q is. Therefore, a sampler would need to spend as
much time in the neighborhood of λ1 = 1000000000 and λ2 = −1000000000 as it

1This example was raised by Richard McElreath on the Stan users group in a query about the difference in
behavior between Gibbs sampling as used in BUGS and JAGS and the Hamiltonian Monte Carlo (HMC) and
no-U-turn samplers (NUTS) used by Stan.

222
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does in the neighborhood of λ1 = 0 and λ2 = 0, and so on for ever more far-ranging
values.

The marginal posterior p(λ1, λ2 | y) for this model is thus improper.2

The impropriety shows up visually as a ridge in the posterior density, as illustrated
in the left-hand plot. The ridge for this model is along the line where λ2 = λ1 + c for
some constant c.

Contrast this model with a simple regression with a single intercept parameter µ and
sampling distribution

yn ∼ normal(µ,σ).

Even with an improper prior, the posterior is proper as long as there are at least two
data points yn with distinct values.

Ability and Difficulty in IRT Models

Consider an item-response theory model for students j ∈ 1:J with abilities αj and
test items i ∈ 1:I with difficulties βi . The observed data are an I × J array with entries
yi,j ∈ {0,1} coded such that yi,j = 1 indicates that student j answered question i
correctly. The sampling distribution for the data is

yi,j ∼ Bernoulli(logit−1(αj − βi)).

For any constant c, the probability of y is unchanged by adding a constant c to all the
abilities and subtracting it from all the difficulties, i.e.,

p(y | α,β) = p(y | α+ c, β− c).

This leads to a multivariate version of the ridge displayed by the regression with two
intercepts discussed above.

General Collinear Regression Predictors

The general form of the collinearity problem arises when predictors for a regression
are collinear. For example, consider a linear regression sampling distribution

yn ∼ normal(xnβ,σ)

2The marginal posterior p(σ | y) for σ is proper here as long as there are at least two distinct data
points.
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for an N-dimensional observation vector y , an N × K predictor matrix x, and a K-
dimensional coefficient vector β.

Now suppose that column k of the predictor matrix is a multiple of column k′, i.e.,
there is some constant c such that xn,k = c xn,k′ for all n. In this case, the coefficients
βk and βk′ can covary without changing the predictions, so that for any d ≠ 0,

p(y | . . . , βk, . . . , βk′ , . . . , σ) = p(y | . . . , dβk, . . . ,
d
c
βk′ , . . . , σ).

Even if columns of the predictor matrix are not exactly collinear as discussed above,
they cause similar problems for inference if they are nearly collinear.

Multiplicative Issues with Discrimination in IRT

Consider adding a discrimination parameter δi for each question in an IRT model, with
data sampling model

yi,j ∼ Bernoulli(logit−1(δi(αj − βi))).

For any constant c ≠ 0, multiplying δ by c and dividing α and β by c produces the
same likelihood,

p(y | δ,α,β) = p(y | cδ, 1
c
α,
1
c
β).

If c < 0, this switches the signs of every component in α, β, and δ without changing
the density.

Softmax with K vs. K − 1 Parameters

In order to parameterize a K-simplex (i.e., a K-vector with non-negative values that
sum to one), only K − 1 parameters are necessary because the Kth is just one minus
the sum of the first K − 1 parameters, so that if θ is a K-simplex,

θK = 1−
K−1∑
k=1
θk.

The softmax function maps a K-vector α of linear predictors to a K-simplex θ =
softmax(α) by defining

θk =
exp(αk)∑K
k′=1 exp(αk′)

.

The softmax function is many-to-one, which leads to a lack of identifiability of the
unconstrained parameters α. In particular, adding or subtracting a constant from each
αk produces the same simplex θ.
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Mitigating the Invariances
All of the examples discussed in the previous section allow translation or scaling of
parameters while leaving the data probability density invariant. These problems can
be mitigated in several ways.

Removing Redundant Parameters or Predictors

In the case of the multiple intercepts, λ1 and λ2, the simplest solution is to remove
the redundant intercept, resulting in a model with a single intercept parameter µ and
sampling distribution yn ∼ normal(µ,σ). The same solution works for solving the
problem with collinearity—just remove one of the columns of the predictor matrix x.

Pinning Parameters

The IRT model without a discrimination parameter can be fixed by pinning one of its
parameters to a fixed value, typically 0. For example, the first student ability α1 can
be fixed to 0. Now all other student ability parameters can be interpreted as being
relative to student 1. Similarly, the difficulty parameters are interpretable relative to
student 1’s ability to answer them.

This solution is not sufficient to deal with the multiplicative invariance introduced
by the question discrimination parameters δi . To solve this problem, one of the
difficulty parameters, say δ1, must also be constrained. Because it’s a multiplicative
and not an additive invariance, it must be constrained to a non-zero value, with 1 being
a convenient choice. Now all of the discrimination parameters may be interpreted
relative to item 1’s discrimination.

The many-to-one nature of softmax(α) is typically mitigated by pinning a component
of α, for instance fixing αK = 0. The resulting mapping is one-to-one from K − 1
unconstrained parameters to a K-simplex. This is roughly how simplex-constrained
parameters are defined in Stan; see the reference manual chapter on constrained
parameter transforms for a precise definition. The Stan code for creating a simplex
from a K − 1-vector can be written as

vector softmax_id(vector alpha) {
vector[num_elements(alpha) + 1] alphac1;
for (k in 1:num_elements(alpha))
alphac1[k] = alpha[k];

alphac1[num_elements(alphac1)] = 0;
return softmax(alphac1);

}
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Adding Priors

So far, the models have been discussed as if the priors on the parameters were
improper uniform priors.

A more general Bayesian solution to these invariance problems is to impose proper
priors on the parameters. This approach can be used to solve problems arising from
either additive or multiplicative invariance.

For example, normal priors on the multiple intercepts,

λ1, λ2 ∼ normal(0, τ),

with a constant scale τ, ensure that the posterior mode is located at a point where
λ1 = λ2, because this minimizes log normal(λ1 | 0, τ)+ log normal(λ2 | 0, τ).3

The following plots show the posteriors for two intercept parameterization without
prior, two intercept parameterization with standard normal prior, and one intercept
reparameterization without prior. For all three cases, the posterior is plotted for 100
data points drawn from a standard normal.

The two intercept parameterization leads to an improper prior with a ridge extending
infinitely to the northwest and southeast.

Adding a standard normal prior for the intercepts results in a proper posterior.

The single intercept parameterization with no prior also has a proper posterior.

The addition of a prior to the two intercepts model is shown in the second plot; the
final plot shows the result of reparameterizing to a single intercept.

An alternative strategy for identifying a K-simplex parameterization θ = softmax(α)
in terms of an unconstrained K-vector α is to place a prior on the components of α
with a fixed location (that is, specifically avoid hierarchical priors with varying location).
Unlike the approaching of pinning αK = 0, the prior-based approach models the K
outcomes symmetrically rather than modeling K − 1 outcomes relative to the K-th.
The pinned parameterization, on the other hand, is usually more efficient statistically
because it does not have the extra degree of (prior constrained) wiggle room.

Vague, Strongly Informative, and Weakly Informative Priors

Care must be used when adding a prior to resolve invariances. If the prior is taken to
be too broad (i.e., too vague), the resolution is in theory only, and samplers will still

3A Laplace prior (or an L1 regularizer for penalized maximum likelihood estimation) is not sufficient to
remove this additive invariance. It provides shrinkage, but does not in and of itself identify the parameters
because adding a constant to λ1 and subtracting it from λ2 results in the same value for the prior density.
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Figure 20.1: Two intercepts with improper prior

struggle.

Ideally, a realistic prior will be formulated based on substantive knowledge of the
problem being modeled. Such a prior can be chosen to have the appropriate strength
based on prior knowledge. A strongly informative prior makes sense if there is strong
prior information.

When there is not strong prior information, a weakly informative prior strikes the
proper balance between controlling computational inference without dominating the
data in the posterior. In most problems, the modeler will have at least some notion
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Figure 20.2: Two intercepts with proper prior

of the expected scale of the estimates and be able to choose a prior for identification
purposes that does not dominate the data, but provides sufficient computational
control on the posterior.

Priors can also be used in the same way to control the additive invariance of the IRT
model. A typical approach is to place a strong prior on student ability parameters
α to control scale simply to control the additive invariance of the basic IRT model
and the multiplicative invariance of the model extended with a item discrimination
parameters; such a prior does not add any prior knowledge to the problem. Then a
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Figure 20.3: Single intercepts with improper prior

prior on item difficulty can be chosen that is either informative or weakly informative
based on prior knowledge of the problem.

20.2. Label Switching in Mixture Models
Where collinearity in regression models can lead to infinitely many posterior maxima,
swapping components in a mixture model leads to finitely many posterior maxima.
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Mixture Models
Consider a normal mixture model with two location parameters µ1 and µ2, a shared
scale σ > 0, a mixture ratio θ ∈ [0,1], and likelihood

p(y | θ,µ1, µ2, σ) =
N∏
n=1

(
θ normal(yn | µ1, σ)+ (1− θ)normal(yn | µ2, σ)

)
.

The issue here is exchangeability of the mixture components, because

p(θ, µ1, µ2, σ | y) = p
(
(1− θ), µ2, µ1, σ | y

)
.

The problem is exacerbated as the number of mixture components K grows, as in
clustering models, leading to K! identical posterior maxima.

Convergence Monitoring and Effective Sample Size
The analysis of posterior convergence and effective sample size is also difficult for
mixture models. For example, the R̂ convergence statistic reported by Stan and the
computation of effective sample size are both compromised by label switching. The
problem is that the posterior mean, a key ingredient in these computations, is affected
by label switching, resulting in a posterior mean for µ1 that is equal to that of µ2, and
a posterior mean for θ that is always 1/2, no matter what the data are.

Some Inferences are Invariant
In some sense, the index (or label) of a mixture component is irrelevant. Posterior
predictive inferences can still be carried out without identifying mixture components.
For example, the log probability of a new observation does not depend on the identities
of the mixture components. The only sound Bayesian inferences in such models
are those that are invariant to label switching. Posterior means for the parameters
are meaningless because they are not invariant to label switching; for example, the
posterior mean for θ in the two component mixture model will always be 1/2.

Highly Multimodal Posteriors
Theoretically, this should not present a problem for inference because all of the
integrals involved in posterior predictive inference will be well behaved. The problem
in practice is computation.

Being able to carry out such invariant inferences in practice is an altogether different
matter. It is almost always intractable to find even a single posterior mode, much less
balance the exploration of the neighborhoods of multiple local maxima according to
the probability masses. In Gibbs sampling, it is unlikely for µ1 to move to a new mode
when sampled conditioned on the current values of µ2 and θ. For HMC and NUTS, the
problem is that the sampler gets stuck in one of the two “bowls” around the modes
and cannot gather enough energy from random momentum assignment to move from
one mode to another.
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Even with a proper posterior, all known sampling and inference techniques are
notoriously ineffective when the number of modes grows super-exponentially as
it does for mixture models with increasing numbers of components.

Hacks as Fixes
Several hacks (i.e., “tricks”) have been suggested and employed to deal with the
problems posed by label switching in practice.

Parameter Ordering Constraints

One common strategy is to impose a constraint on the parameters that identifies
the components. For instance, we might consider constraining µ1 < µ2 in the two-
component normal mixture model discussed above. A problem that can arise from such
an approach is when there is substantial probability mass for the opposite ordering
µ1 > µ2. In these cases, the posteriors are affected by the constraint and true posterior
uncertainty in µ1 and µ2 is not captured by the model with the constraint. In addition,
standard approaches to posterior inference for event probabilities is compromised.
For instance, attempting to use M posterior samples to estimate Pr[µ1 > µ2], will fail,
because the estimator

Pr[µ1 > µ2] ≈
M∑
m=1

I
(
µ(m)1 > µ(m)2

)
will result in an estimate of 0 because the posterior respects the constraint in the
model.

Initialization around a Single Mode

Another common approach is to run a single chain or to initialize the parameters near
realistic values.4

This can work better than the hard constraint approach if reasonable initial values can
be found and the labels do not switch within a Markov chain. The result is that all
chains are glued to a neighborhood of a particular mode in the posterior.

20.3. Component Collapsing in Mixture Models
It is possible for two mixture components in a mixture model to collapse to the same
values during sampling or optimization. For example, a mixture of K normals might
devolve to have µi = µj and σi = σj for i ≠ j .

4Tempering methods may be viewed as automated ways to carry out such a search for modes, though
most MCMC tempering methods continue to search for modes on an ongoing basis; see (Swendsen and
Wang 1986; Neal 1996b).
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This will typically happen early in sampling due to initialization in MCMC or
optimization or arise from random movement during MCMC. Once the parameters
match for a given draw (m), it can become hard to escape because there can be a
trough of low-density mass between the current parameter values and the ones without
collapsed components.

It may help to use a smaller step size during warmup, a stronger prior on each mixture
component’s membership responsibility. A more extreme measure is to include
additional mixture components to deal with the possibility that some of them may
collapse.

In general, it is difficult to recover exactly the right K mixture components in a mixture
model as K increases beyond one (yes, even a two-component mixture can have this
problem).

20.4. Posteriors with Unbounded Densities
In some cases, the posterior density grows without bounds as parameters approach
certain poles or boundaries. In such, there are no posterior modes and numerical
stability issues can arise as sampled parameters approach constraint boundaries.

Mixture Models with Varying Scales
One such example is a binary mixture model with scales varying by component, σ1
and σ2 for locations µ1 and µ2. In this situation, the density grows without bound as
σ1 → 0 and µ1 → yn for some n; that is, one of the mixture components concentrates
all of its mass around a single data item yn.

Beta-Binomial Models with Skewed Data and Weak Priors
Another example of unbounded densities arises with a posterior such as beta(φ |
0.5,0.5), which can arise if seemingly weak beta priors are used for groups that have
no data. This density is unbounded as φ → 0 and φ → 1. Similarly, a Bernoulli
likelihood model coupled with a “weak” beta prior, leads to a posterior

p(φ | y)∝ beta(φ | 0.5,0.5)×
N∏
n=1

Bernoulli(yn | φ)

= beta

φ
∣∣∣∣∣∣0.5+

N∑
n=1
yn,0.5+N −

N∑
n=1
yn

 .
If N = 9 and each yn = 1, the posterior is beta(φ | 9.5,0,5). This posterior is
unbounded as φ→ 1. Nevertheless, the posterior is proper, and although there is no
posterior mode, the posterior mean is well-defined with a value of exactly 0.95.
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Constrained vs. Unconstrained Scales

Stan does not sample directly on the constrained (0,1) space for this problem, so it
doesn’t directly deal with unconstrained density values. Rather, the probability values
φ are logit-transformed to (−∞,∞). The boundaries at 0 and 1 are pushed out to −∞
and ∞ respectively. The Jacobian adjustment that Stan automatically applies ensures
the unconstrained density is proper. The adjustment for the particular case of (0,1) is
log logit−1(φ)+ log logit(1−φ).

There are two problems that still arise, though. The first is that if the posterior mass
for φ is near one of the boundaries, the logit-transformed parameter will have to
sweep out long paths and thus can dominate the U-turn condition imposed by the
no-U-turn sampler (NUTS). The second issue is that the inverse transform from the
unconstrained space to the constrained space can underflow to 0 or overflow to 1,
even when the unconstrained parameter is not infinite. Similar problems arise for the
expectation terms in logistic regression, which is why the logit-scale parameterizations
of the Bernoulli and binomial distributions are more stable.

20.5. Posteriors with Unbounded Parameters
In some cases, the posterior density will not grow without bound, but parameters
will grow without bound with gradually increasing density values. Like the models
discussed in the previous section that have densities that grow without bound, such
models also have no posterior modes.

Separability in Logistic Regression
Consider a logistic regression model with N observed outcomes yn ∈ {0,1}, an N ×K
matrix x of predictors, a K-dimensional coefficient vector β, and sampling distribution

yn ∼ Bernoulli(logit−1(xnβ)).

Now suppose that column k of the predictor matrix is such that xn,k > 0 if and only if
yn = 1, a condition known as “separability.” In this case, predictive accuracy on the
observed data continue to improve as βk →∞, because for cases with yn = 1, xnβ→∞
and hence logit−1(xnβ)→ 1.

With separability, there is no maximum to the likelihood and hence no maximum
likelihood estimate. From the Bayesian perspective, the posterior is improper and
therefore the marginal posterior mean for βk is also not defined. The usual solution to
this problem in Bayesian models is to include a proper prior for β, which ensures a
proper posterior.
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20.6. Uniform Posteriors
Suppose your model includes a parameter ψ that is defined on [0,1] and is given a flat
prior uniform(ψ | 0,1). Now if the data don’t tell us anything about ψ, the posterior
is also uniform(ψ | 0,1).

Although there is no maximum likelihood estimate for ψ, the posterior is uniform
over a closed interval and hence proper. In the case of a uniform posterior on [0,1],
the posterior mean for ψ is well-defined with value 1/2. Although there is no posterior
mode, posterior predictive inference may nevertheless do the right thing by simply
integrating (i.e., averaging) over the predictions for ψ at all points in [0,1].

20.7. Sampling Difficulties with Problematic Priors
With an improper posterior, it is theoretically impossible to properly explore the
posterior. However, Gibbs sampling as performed by BUGS and JAGS, although still
unable to properly sample from such an improper posterior, behaves differently in
practice than the Hamiltonian Monte Carlo sampling performed by Stan when faced
with an example such as the two intercept model discussed in the collinearity section
and illustrated in the non-identifiable density plot.

Gibbs Sampling
Gibbs sampling, as performed by BUGS and JAGS, may appear to be efficient and well
behaved for this unidentified model, but as discussed in the previous subsection, will
not actually explore the posterior properly.

Consider what happens with initial values λ(0)1 , λ
(0)
2 . Gibbs sampling proceeds in

iteration m by drawing

λ(m)1 ∼ p(λ1 | λ(m−1)2 , σ (m−1), y)

λ(m)2 ∼ p(λ2 | λ(m)1 , σ (m−1), y)

σ (m) ∼ p(σ | λ(m)1 , λ(m)2 , y).

Now consider the draw for λ1 (the draw for λ2 is symmetric), which is conjugate in
this model and thus can be done efficiently. In this model, the range from which the
next λ1 can be drawn is highly constrained by the current values of λ2 and σ . Gibbs
will run quickly and provide seemingly reasonable inferences for λ1 + λ2. But it will
not explore the full range of the posterior; it will merely take a slow random walk
from the initial values. This random walk behavior is typical of Gibbs sampling when
posteriors are highly correlated and the primary reason to prefer Hamiltonian Monte
Carlo to Gibbs sampling for models with parameters correlated in the posterior.
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Hamiltonian Monte Carlo Sampling
Hamiltonian Monte Carlo (HMC), as performed by Stan, is much more efficient at
exploring posteriors in models where parameters are correlated in the posterior. In
this particular example, the Hamiltonian dynamics (i.e., the motion of a fictitious
particle given random momentum in the field defined by the negative log posterior)
is going to run up and down along the valley defined by the potential energy (ridges
in log posteriors correspond to valleys in potential energy). In practice, even with a
random momentum for λ1 and λ2, the gradient of the log posterior is going to adjust
for the correlation and the simulation will run λ1 and λ2 in opposite directions along
the valley corresponding to the ridge in the posterior log density.

No-U-Turn Sampling
Stan’s default no-U-turn sampler (NUTS), is even more efficient at exploring the
posterior (see Hoffman and Gelman 2014). NUTS simulates the motion of the fictitious
particle representing the parameter values until it makes a U-turn, it will be defeated
in most cases, as it will just move down the potential energy valley indefinitely without
making a U-turn. What happens in practice is that the maximum number of leapfrog
steps in the simulation will be hit in many of the iterations, causing a large number of
log probability and gradient evaluations (1000 if the max tree depth is set to 10, as in
the default). Thus sampling will appear to be slow. This is indicative of an improper
posterior, not a bug in the NUTS algorithm or its implementation. It is simply not
possible to sample from an improper posterior! Thus the behavior of HMC in general
and NUTS in particular should be reassuring in that it will clearly fail in cases of
improper posteriors, resulting in a clean diagnostic of sweeping out large paths in the
posterior.

Here are results of Stan runs with default parameters fit to N = 100 data points
generated from yn ∼ normal(0,1):

Two Scale Parameters, Improper Prior

Inference for Stan model: improper_stan
Warmup took (2.7, 2.6, 2.9, 2.9) seconds, 11 seconds total
Sampling took (3.4, 3.7, 3.6, 3.4) seconds, 14 seconds total

Mean MCSE StdDev 5% 95% N_Eff N_Eff/s R_hat
lp__ -5.3e+01 7.0e-02 8.5e-01 -5.5e+01 -5.3e+01 150 11 1.0
n_leapfrog__ 1.4e+03 1.7e+01 9.2e+02 3.0e+00 2.0e+03 2987 212 1.0
lambda1 1.3e+03 1.9e+03 2.7e+03 -2.3e+03 6.0e+03 2.1 0.15 5.2
lambda2 -1.3e+03 1.9e+03 2.7e+03 -6.0e+03 2.3e+03 2.1 0.15 5.2
sigma 1.0e+00 8.5e-03 6.2e-02 9.5e-01 1.2e+00 54 3.9 1.1
mu 1.6e-01 1.9e-03 1.0e-01 -8.3e-03 3.3e-01 2966 211 1.0



CHAPTER 20. PROBLEMATIC POSTERIORS 236

Two Scale Parameters, Weak Prior

Warmup took (0.40, 0.44, 0.40, 0.36) seconds, 1.6 seconds total
Sampling took (0.47, 0.40, 0.47, 0.39) seconds, 1.7 seconds total

Mean MCSE StdDev 5% 95% N_Eff N_Eff/s R_hat
lp__ -54 4.9e-02 1.3e+00 -5.7e+01 -53 728 421 1.0
n_leapfrog__ 157 2.8e+00 1.5e+02 3.0e+00 511 3085 1784 1.0
lambda1 0.31 2.8e-01 7.1e+00 -1.2e+01 12 638 369 1.0
lambda2 -0.14 2.8e-01 7.1e+00 -1.2e+01 12 638 369 1.0
sigma 1.0 2.6e-03 8.0e-02 9.2e-01 1.2 939 543 1.0
mu 0.16 1.8e-03 1.0e-01 -8.1e-03 0.33 3289 1902 1.0

One Scale Parameter, Improper Prior

Warmup took (0.011, 0.012, 0.011, 0.011) seconds, 0.044 seconds total
Sampling took (0.017, 0.020, 0.020, 0.019) seconds, 0.077 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ -54 2.5e-02 0.91 -5.5e+01 -53 -53 1318 17198 1.0
n_leapfrog__ 3.2 2.7e-01 1.7 1.0e+00 3.0 7.0 39 507 1.0
mu 0.17 2.1e-03 0.10 -3.8e-03 0.17 0.33 2408 31417 1.0
sigma 1.0 1.6e-03 0.071 9.3e-01 1.0 1.2 2094 27321 1.0

On the top is the non-identified model with improper uniform priors and likelihood
yn ∼ normal(λ1 + λ2, σ).

In the middle is the same likelihood as the middle plus priors λk ∼ normal(0,10).

On the bottom is an identified model with an improper prior, with likelihood yn ∼
normal(µ,σ). All models estimate µ at roughly 0.16 with low Monte Carlo standard
error, but a high posterior standard deviation of 0.1; the true value µ = 0 is within the
90% posterior intervals in all three models.

Examples: Fits in Stan
To illustrate the issues with sampling from non-identified and only weakly identified
models, we fit three models with increasing degrees of identification of their
parameters. The posteriors for these models is illustrated in the non-identifiable
density plot. The first model is the unidentified model with two location parameters
and no priors discussed in the collinearity section.

data {
int N;
real y[N];
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}
parameters {

real lambda1;
real lambda2;
real<lower=0> sigma;

}
transformed parameters {

real mu;
mu = lambda1 + lambda2;

}
model {

y ~ normal(mu, sigma);
}

The second adds priors to the model block for lambda1 and lambda2 to the previous
model.

lambda1 ~ normal(0, 10);
lambda2 ~ normal(0, 10);

The third involves a single location parameter, but no priors.

data {
int N;
real y[N];

}
parameters {

real mu;
real<lower=0> sigma;

}
model {

y ~ normal(mu, sigma);
}

All three of the example models were fit in Stan 2.1.0 with default parameters (1000
warmup iterations, 1000 sampling iterations, NUTS sampler with max tree depth of
10). The results are shown in the non-identified fits figure. The key statistics from
these outputs are the following.

• As indicated by R_hat column, all parameters have converged other than λ1 and
λ2 in the non-identified model.

• The average number of leapfrog steps is roughly 3 in the identified model, 150
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in the model identified by a weak prior, and 1400 in the non-identified model.

• The number of effective samples per second for µ is roughly 31,000 in the
identified model, 1,900 in the model identified with weakly informative priors,
and 200 in the non-identified model; the results are similar for σ .

• In the non-identified model, the 95% interval for λ1 is (-2300,6000), whereas it is
only (-12,12) in the model identified with weakly informative priors.

• In all three models, the simulated value of µ = 0 and σ = 1 are well within the
posterior 90% intervals.

The first two points, lack of convergence and hitting the maximum number of leapfrog
steps (equivalently maximum tree depth) are indicative of improper posteriors. Thus
rather than covering up the problem with poor sampling as may be done with Gibbs
samplers, Hamiltonian Monte Carlo tries to explore the posterior and its failure is a
clear indication that something is amiss in the model.



21. Reparameterization and Change of

Variables

Stan supports a direct encoding of reparameterizations. Stan also supports changes
of variables by directly incrementing the log probability accumulator with the log
Jacobian of the transform.

21.1. Theoretical and Practical Background
A Bayesian posterior is technically a probability measure, which is a parameterization-
invariant, abstract mathematical object.1

Stan’s modeling language, on the other hand, defines a probability density, which is a
non-unique, parameterization-dependent function in RN → R+. In practice, this means
a given model can be represented different ways in Stan, and different representations
have different computational performances.

As pointed out by Gelman (2004) in a paper discussing the relation between
parameterizations and Bayesian modeling, a change of parameterization often
carries with it suggestions of how the model might change, because we tend to
use certain natural classes of prior distributions. Thus, it’s not just that we have
a fixed distribution that we want to sample from, with reparameterizations being
computational aids. In addition, once we reparameterize and add prior information,
the model itself typically changes, often in useful ways.

21.2. Reparameterizations
Reparameterizations may be implemented directly using the transformed parameters
block or just in the model block.

Beta and Dirichlet Priors
The beta and Dirichlet distributions may both be reparameterized from a vector of
counts to use a mean and total count.

Beta Distribution

For example, the Beta distribution is parameterized by two positive count parameters
α,β > 0. The following example illustrates a hierarchical Stan model with a vector

1This is in contrast to (penalized) maximum likelihood estimates, which are not parameterization
invariant.

239
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of parameters theta are drawn i.i.d. for a Beta distribution whose parameters are
themselves drawn from a hyperprior distribution.

parameters {
real<lower = 0> alpha;
real<lower = 0> beta;
...

model {
alpha ~ ...
beta ~ ...
for (n in 1:N)
theta[n] ~ beta(alpha, beta);

...

It is often more natural to specify hyperpriors in terms of transformed parameters. In
the case of the Beta, the obvious choice for reparameterization is in terms of a mean
parameter

φ = α/(α+ β)

and total count parameter
λ = α+ β.

Following @[GelmanEtAl:2013, Chapter 5] the mean gets a uniform prior and the count
parameter a Pareto prior with p(λ)∝ λ−2.5.

parameters {
real<lower=0,upper=1> phi;
real<lower=0.1> lambda;
...

transformed parameters {
real<lower=0> alpha = lambda * phi;
real<lower=0> beta = lambda * (1 - phi);
...

model {
phi ~ beta(1, 1); // uniform on phi, could drop
lambda ~ pareto(0.1, 1.5);
for (n in 1:N)
theta[n] ~ beta(alpha, beta);

...

The new parameters, phi and lambda, are declared in the parameters block and the
parameters for the Beta distribution, alpha and beta, are declared and defined in
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the transformed parameters block. And If their values are not of interest, they could
instead be defined as local variables in the model as follows.

model {
real alpha = lambda * phi
real beta = lambda * (1 - phi);

...
for (n in 1:N)
theta[n] ~ beta(alpha, beta);

...
}

With vectorization, this could be expressed more compactly and efficiently as follows.

model {
theta ~ beta(lambda * phi, lambda * (1 - phi));

...
}

If the variables alpha and beta are of interest, they can be defined in the transformed
parameter block and then used in the model.

Jacobians not Necessary

Because the transformed parameters are being used, rather than given a distribution,
there is no need to apply a Jacobian adjustment for the transform. For example, in the
beta distribution example, alpha and beta have the correct posterior distribution.

Dirichlet Priors

The same thing can be done with a Dirichlet, replacing the mean for the Beta, which
is a probability value, with a simplex. Assume there are K > 0 dimensions being
considered (K = 1 is trivial and K = 2 reduces to the beta distribution case). The
traditional prior is

parameters {
vector[K] alpha;
simplex[K] theta[N];
...

model {
alpha ~ ...;
for (n in 1:N)
theta[n] ~ dirichlet(alpha);
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}

This provides essentially K degrees of freedom, one for each dimension of alpha, and
it is not obvious how to specify a reasonable prior for alpha.

An alternative coding is to use the mean, which is a simplex, and a total count.

parameters {
simplex[K] phi;
real<lower=0> kappa;
simplex[K] theta[N];
...

transformed parameters {
vector[K] alpha = kappa * phi;
...

}
model {

phi ~ ...;
kappa ~ ...;
for (n in 1:N)
theta[n] ~ dirichlet(alpha);

Now it is much easier to formulate priors, because phi is the expected value of theta
and kappa (minus K) is the strength of the prior mean measured in number of prior
observations.

Transforming Unconstrained Priors: Probit and Logit
If the variable u has a uniform(0,1) distribution, then logit(u) is distributed as
logistic(0,1). This is because inverse logit is the cumulative distribution function
(cdf) for the logistic distribution, so that the logit function itself is the inverse CDF
and thus maps a uniform draw in (0,1) to a logistically-distributed quantity.

Things work the same way for the probit case: if u has a uniform(0,1) distribution, then
Φ−1(u) has a normal(0,1) distribution. The other way around, if v has a normal(0,1)
distribution, then Φ(v) has a uniform(0,1) distribution.

In order to use the probit and logistic as priors on variables constrained to (0,1),
create an unconstrained variable and transform it appropriately. For comparison, the
following Stan program fragment declares a (0,1)-constrained parameter theta and
gives it a beta prior, then uses it as a parameter in a distribution (here using foo as a
placeholder).

parameters {
real<lower = 0, upper = 1> theta;
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...
model {

theta ~ beta(a, b);
...
y ~ foo(theta);

...

If the variables a and b are one, then this imposes a uniform distribution theta. If a
and b are both less than one, then the density on theta has a U shape, whereas if they
are both greater than one, the density of theta has an inverted-U or more bell-like
shape.

Roughly the same result can be achieved with unbounded parameters that are probit
or inverse-logit-transformed. For example,

parameters {
real theta_raw;

...
transformed parameters {

real<lower = 0, upper = 1> theta = inv_logit(theta_raw);
...
model {

theta_raw ~ logistic(mu, sigma);
...
y ~ foo(theta);

...

In this model, an unconstrained parameter theta_raw gets a logistic prior, and then
the transformed parameter theta is defined to be the inverse logit of theta_raw. In
this parameterization, inv_logit(mu) is the mean of the implied prior on theta. The
prior distribution on theta will be flat if sigma is one and mu is zero, and will be
U-shaped if sigma is larger than one and bell shaped if sigma is less than one.

When moving from a variable in (0,1) to a simplex, the same trick may be performed
using the softmax function, which is a multinomial generalization of the inverse logit
function. First, consider a simplex parameter with a Dirichlet prior.

parameters {
simplex[K] theta;

...
model {

theta ~ dirichlet(a);
...
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y ~ foo(theta);

Now a is a vector with K rows, but it has the same shape properties as the pair a and
b for a beta; the beta distribution is just the distribution of the first component of a
Dirichlet with parameter vector [ab]>. To formulate an unconstrained prior, the exact
same strategy works as for the beta.

parameters {
vector[K] theta_raw;

...
transformed parameters {

simplex[K] theta = softmax(theta_raw);
...
model {

theta_raw ~ multi_normal_cholesky(mu, L_Sigma);

The multivariate normal is used for convenience and efficiency with its Cholesky-factor
parameterization. Now the mean is controlled by softmax(mu), but we have additional
control of covariance through L_Sigma at the expense of having on the order of K2

parameters in the prior rather than order K. If no covariance is desired, the number
of parameters can be reduced back to K using a vectorized normal distribution as
follows.

theta_raw ~ normal(mu, sigma);

where either or both of mu and sigma can be vectors.

21.3. Changes of Variables
Changes of variables are applied when the transformation of a parameter is
characterized by a distribution. The standard textbook example is the lognormal
distribution, which is the distribution of a variable y > 0 whose logarithm logy has a
normal distribution. The distribution is being assigned to logy .

The change of variables requires an adjustment to the probability to account for the
distortion caused by the transform. For this to work, univariate changes of variables
must be monotonic and differentiable everywhere in their support.

For univariate changes of variables, the resulting probability must be scaled by the
absolute derivative of the transform.

In the case of log normals, if y ’s logarithm is normal with mean µ and deviation σ ,
then the distribution of y is given by

p(y) = normal(logy | µ,σ)
∣∣∣∣∣ ddy logy

∣∣∣∣∣ = normal(logy | µ,σ) 1
y
.
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Stan works on the log scale to prevent underflow, where

logp(y) = log normal(logy | µ,σ)− logy.

In Stan, the change of variables can be applied in the sampling statement. To adjust
for the curvature, the log probability accumulator is incremented with the log absolute
derivative of the transform. The lognormal distribution can thus be implemented
directly in Stan as follows.2

parameters {
real<lower=0> y;
...

model {
log(y) ~ normal(mu, sigma);
target += -log(y);
...

It is important, as always, to declare appropriate constraints on parameters; here y is
constrained to be positive.

It would be slightly more efficient to define a local variable for the logarithm, as
follows.

model {
real log_y;
log_y = log(y);
log_y ~ normal(mu, sigma);
target += -log_y;
...

If y were declared as data instead of as a parameter, then the adjustment can be
ignored because the data will be constant and Stan only requires the log probability
up to a constant.

Change of Variables vs. Transformations
This section illustrates the difference between a change of variables and a simple
variable transformation. A transformation samples a parameter, then transforms it,
whereas a change of variables transforms a parameter, then samples it. Only the latter
requires a Jacobian adjustment.

2This example is for illustrative purposes only; the recommended way to implement the lognormal
distribution in Stan is with the built-in lognormal probability function; see the functions reference manual
for details.
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It does not matter whether the probability function is expressed using a sampling
statement, such as

log(y) ~ normal(mu, sigma);

or as an increment to the log probability function, as in

target += normal_lpdf(log(y) | mu, sigma);

Gamma and Inverse Gamma Distribution

Like the log normal, the inverse gamma distribution is a distribution of variables whose
inverse has a gamma distribution. This section contrasts two approaches, first with a
transform, then with a change of variables.

The transform based approach to sampling y_inv with an inverse gamma distribution
can be coded as follows.

parameters {
real<lower=0> y;

}
transformed parameters {

real<lower=0> y_inv;
y_inv = 1 / y;

}
model {

y ~ gamma(2,4);
}

The change-of-variables approach to sampling y_inv with an inverse gamma
distribution can be coded as follows.

parameters {
real<lower=0> y_inv;

}
transformed parameters {

real<lower=0> y;
y = 1 / y_inv; // change variables

}
model {

y ~ gamma(2,4);
target += -2 * log(y_inv); // Jacobian adjustment;

}



CHAPTER 21. REPARAMETERIZATION AND CHANGE OF VARIABLES 247

The Jacobian adjustment is the log of the absolute derivative of the transform, which
in this case is

log
∣∣∣∣ ddu

(
1
u

)∣∣∣∣ = log
∣∣∣−u−2∣∣∣ = logu−2 = −2 logu.

Multivariate Changes of Variables
In the case of a multivariate transform, the log of the Jacobian of the transform must
be added to the log probability accumulator. In Stan, this can be coded as follows in
the general case where the Jacobian is not a full matrix.

parameters {
vector[K] u; // multivariate parameter
...

transformed parameters {
vector[K] v; // transformed parameter
matrix[K, K] J; // Jacobian matrix of transform
... compute v as a function of u ...
... compute J[m, n] = d.v[m] / d.u[n] ...
target += log(fabs(determinant(J)));
...

model {
v ~ ...;
...

If the Jacobian is known analytically, it will be more efficient to apply it directly than
to call the determinant function, which is neither efficient nor particularly stable
numerically.

In many cases, the Jacobian matrix will be triangular, so that only the diagonal elements
will be required for the determinant calculation. Triangular Jacobians arise when each
element v[k] of the transformed parameter vector only depends on elements u[1],
. . . , u[k] of the parameter vector. For triangular matrices, the determinant is the
product of the diagonal elements, so the transformed parameters block of the above
model can be simplified and made more efficient by recoding as follows.

transformed parameters {
...
vector[K] J_diag; // diagonals of Jacobian matrix
...
... compute J[k, k] = d.v[k] / d.u[k] ...
target += sum(log(J_diag));
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...

21.4. Vectors with Varying Bounds
Stan only allows a single lower and upper bound to be declared in the constraints for a
container data type. But suppose we have a vector of parameters and a vector of lower
bounds? Then the transforms are calculated and their log Jacobians added to the log
density accumulator; the Jacobian calculations are described in detail in the reference
manual chapter on constrained parameter transforms.

Varying Lower Bounds
For example, suppose there is a vector parameter α with a vector L of lower bounds.
The simplest way to deal with this if L is a constant is to shift a lower-bounded
parameter.

data {
int N;
vector[N] L; // lower bounds
...

parameters {
vector<lower=0>[N] alpha_raw;
...

transformed parameters {
vector[N] alpha = L + alpha_raw;
...

The Jacobian for adding a constant is one, so its log drops out of the log density.

Even if the lower bound is a parameter rather than data, there is no Jacobian required,
because the transform from (L,αraw) to (L+αraw, αraw) produces a Jacobian derivative
matrix with a unit determinant.

It’s also possible implement the transform by directly transforming an unconstrained
parameter and accounting for the Jacobian.

data {
int N;
vector[N] L; // lower bounds
...

parameters {
vector[N] alpha_raw;
...

transformed parameters {
vector[N] alpha = L + exp(alpha_raw);
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...
model {

target += sum(alpha_raw); // log Jacobian
...

The adjustment in the log Jacobian determinant of the transform mapping αraw to
α = L+ exp(αraw). The details are simple in this case because the Jacobian is diagonal;
see the reference manual chapter on constrained parameter transforms for full details.
Here L can even be a vector containing parameters that don’t depend on αraw; if the
bounds do depend on αraw then a revised Jacobian needs to be calculated taking into
account the dependencies.

Varying Upper and Lower Bounds
Suppose there are lower and upper bounds that vary by parameter. These can be
applied to shift and rescale a parameter constrained to (0,1).

data {
int N;
vector[N] L; // lower bounds
vector[N] U; // upper bounds
...

parameters {
vector<lower=0, upper=1>[N] alpha_raw;
...

transformed parameters {
vector[N] alpha = L + (U - L) .* alpha_raw;

The expression U - L is multiplied by alpha_raw elementwise to produce a vector of
variables in (0, U − L), then adding L results in a variable ranging between (L,U).

In this case, it is important that L and U are constants, otherwise a Jacobian would be
required when multiplying by U − L.



22. Efficiency Tuning

This chapter provides a grab bag of techniques for optimizing Stan code, including
vectorization, sufficient statistics, and conjugacy. At a coarse level, efficiency involves
both the amount of time required for a computation and the amount of memory
required. For practical applied statistical modeling, we are mainly concerned with
reducing wall time (how long a program takes as measured by a clock on the wall) and
keeping memory requirements within available bounds.

22.1. What is Efficiency?
The standard algorithm analyses in computer science measure efficiency asymptotically
as a function of problem size (such as data, number of parameters, etc.) and typically
do not consider constant additive factors like startup times or multiplicative factors
like speed of operations. In practice, the constant factors are important; if run time can
be cut in half or more, that’s a huge gain. This chapter focuses on both the constant
factors involved in efficiency (such as using built-in matrix operations as opposed
to naive loops) and on asymptotic efficiency factors (such as using linear algorithms
instead of quadratic algorithms in loops).

22.2. Efficiency for Probabilistic Models and Algorithms
Stan programs express models which are intrinsically statistical in nature. The
algorithms applied to these models may or may not themselves be probabilistic.
For example, given an initial value for parameters (which may itself be given
deterministically or generated randomly), Stan’s optimization algorithm (L-BFGS) for
penalized maximum likelihood estimation is purely deterministic. Stan’s sampling
algorithms are based on Markov chain Monte Carlo algorithms, which are probabilistic
by nature at every step. Stan’s variational inference algorithm (ADVI) is probabilistic
despite being an optimization algorithm; the randomization lies in a nested Monte
Carlo calculation for an expected gradient.

With probabilistic algorithms, there will be variation in run times (and maybe memory
usage) based on the randomization involved. For example, by starting too far out in
the tail, iterative algorithms underneath the hood, such as the solvers for ordinary
differential equations, may take different numbers of steps. Ideally this variation will
be limited; when there is a lot of variation it can be a sign that there is a problem with
the model’s parameterization in a Stan program or with initialization.

A well-behaved Stan program will have low variance between runs with different

250
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random initializations and differently seeded random number generators. But
sometimes an algorithm can get stuck in one part of the posterior, typically due
to high curvature. Such sticking almost always indicates the need to reparameterize
the model. Just throwing away Markov chains with apparently poor behavior (slow,
or stuck) can lead to bias in posterior estimates. This problem with getting stuck
can often be overcome by lowering the initial step size to avoid getting stuck during
adaptation and increasing the target acceptance rate in order to target a lower step
size. This is because smaller step sizes allow Stan’s gradient-based algorithms to
better follow the curvature in the density or penalized maximum likelihood being fit.

22.3. Statistical vs. Computational Efficiency
There is a difference between pure computational efficiency and statistical efficiency for
Stan programs fit with sampling-based algorithms. Computational efficiency measures
the amount of time or memory required for a given step in a calculation, such as an
evaluation of a log posterior or penalized likelihood.

Statistical efficiency typically involves requiring fewer steps in algorithms by making
the statistical formulation of a model better behaved. The typical way to do this is by
applying a change of variables (i.e., reparameterization) so that sampling algorithms
mix better or optimization algorithms require less adaptation.

22.4. Model Conditioning and Curvature
Because Stan’s algorithms (other than Riemannian Hamiltonian Monte Carlo)
rely on step-based gradient-based approximations of the density (or penalized
maximum likelihood) being fitted, posterior curvature not captured by this first-order
approximation plays a central role in determining the statistical efficiency of Stan’s
algorithms.

A second-order approximation to curvature is provided by the Hessian, the matrix of
second derivatives of the log density logp(θ) with respect to the parameter vector θ,
defined as

H(θ) = ∇∇ logp(θ | y),

so that

Hi,j(θ) =
∂2 logp(θ | y)
∂θi ∂θj

.

For pure penalized maximum likelihood problems, the posterior log density logp(θ |
y) is replaced by the penalized likelihood function L(θ) = logp(y | θ)− λ(θ).

Condition Number and Adaptation
A good gauge of how difficult a problem the curvature presents is given by the
condition number of the Hessian matrix H, which is the ratio of the largest to the
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smallest eigenvalue of H (assuming the Hessian is positive definite). This essentially
measures the difference between the flattest direction of movement and the most
curved. Typically, the step size of a gradient-based algorithm is bounded by the most
sharply curved direction. With better conditioned log densities or penalized likelihood
functions, it is easier for Stan’s adaptation, especially the diagonal adaptations that
are used as defaults.

Unit Scales without Correlation
Ideally, all parameters should be programmed so that they have unit scale and so
that posterior correlation is reduced; together, these properties mean that there
is no rotation or scaling required for optimal performance of Stan’s algorithms.
For Hamiltonian Monte Carlo, this implies a unit mass matrix, which requires no
adaptation as it is where the algorithm initializes. Riemannian Hamiltonian Monte
Carlo performs this conditioning on the fly at every step, but such conditioning is
expensive computationally.

Varying Curvature
In all but very simple models (such as multivariate normals), the Hessian will vary
as θ varies (an extreme example is Neal’s funnel, as naturally arises in hierarchical
models with little or no data). The more the curvature varies, the harder it is for all of
the algorithms with fixed adaptation parameters (that is, everything but Riemannian
Hamiltonian Monte Carlo) to find adaptations that cover the entire density well. Many
of the variable transforms proposed are aimed at improving the conditioning of the
Hessian and/or making it more consistent across the relevant portions of the density
(or penalized maximum likelihood function) being fit.

For all of Stan’s algorithms, the curvature along the path from the initial values of
the parameters to the solution is relevant. For penalized maximum likelihood and
variational inference, the solution of the iterative algorithm will be a single point, so
this is all that matters. For sampling, the relevant “solution” is the typical set, which is
the posterior volume where almost all draws from the posterior lies; thus, the typical
set contains almost all of the posterior probability mass.

With sampling, the curvature may vary dramatically between the points on the path
from the initialization point to the typical set and within the typical set. This is why
adaptation needs to run long enough to visit enough points in the typical set to get a
good first-order estimate of the curvature within the typical set. If adaptation is not
run long enough, sampling within the typical set after adaptation will not be efficient.
We generally recommend at least one hundred iterations after the typical set is reached
(and the first effective draw is ready to be realized). Whether adaptation has run long
enough can be measured by comparing the adaptation parameters derived from a set
of diffuse initial parameter values.



CHAPTER 22. EFFICIENCY TUNING 253

Reparameterizing with a Change of Variables
Improving statistical efficiency is achieved by reparameterizing the model so that the
same result may be calculated using a density or penalized maximum likelihood that
is better conditioned. Again, see the example of reparameterizing Neal’s funnel for an
example, and also the examples in the change of variables chapter.

One has to be careful in using change-of-variables reparameterizations when using
maximum likelihood estimation, because they can change the result if the Jacobian
term is inadvertently included in the revised likelihood model.

22.5. Well-Specified Models
Model misspecification, which roughly speaking means using a model that doesn’t
match the data, can be a major source of slow code. This can be seen in cases where
simulated data according to the model runs robustly and efficiently, whereas the real
data for which it was intended runs slowly or may even have convergence and mixing
issues. While some of the techniques recommended in the remaining sections of this
chapter may mitigate the problem, the best remedy is a better model specification.

Counterintuitively, more complicated models often run faster than simpler models.
One common pattern is with a group of parameters with a wide fixed prior such
as normal(0, 1000)). This can fit slowly due to the mismatch between prior and
posterior (the prior has support for values in the hundreds or even thousands, whereas
the posterior may be concentrated near zero). In such cases, replacing the fixed prior
with a hierarchical prior such as normal(mu, sigma), where mu and sigma are new
parameters with their own hyperpriors, can be beneficial.

22.6. Avoiding Validation
Stan validates all of its data structure constraints. For example, consider a transformed
parameter defined to be a covariance matrix and then used as a covariance parameter
in the model block.

transformed parameters {
cov_matrix[K] Sigma;
...

} // first validation
model {

y ~ multi_normal(mu, Sigma); // second validation
...

Because Sigma is declared to be a covariance matrix, it will be factored at the end of
the transformed parameter block to ensure that it is positive definite. The multivariate
normal log density function also validates that Sigma is positive definite. This test is
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expensive, having cubic run time (i.e., O(N3) for N ×N matrices), so it should not be
done twice.

The test may be avoided by simply declaring Sigma to be a simple unconstrained
matrix.

transformed parameters {
matrix[K, K] Sigma;
...

model {
y ~ multi_normal(mu, Sigma); // only validation

Now the only validation is carried out by the multivariate normal.

22.7. Reparameterization
Stan’s sampler can be slow in sampling from distributions with difficult posterior
geometries. One way to speed up such models is through reparameterization. In some
cases, reparameterization can dramatically increase effective sample size for the same
number of iterations or even make programs that would not converge well behaved.

Example: Neal’s Funnel
In this section, we discuss a general transform from a centered to a non-centered
parameterization (Papaspiliopoulos, Roberts, and Sköld 2007).1

This reparameterization is helpful when there is not much data, because it separates
the hierarchical parameters and lower-level parameters in the prior.

Neal (2003) defines a distribution that exemplifies the difficulties of sampling from
some hierarchical models. Neal’s example is fairly extreme, but can be trivially
reparameterized in such a way as to make sampling straightforward. Neal’s example
has support for y ∈ R and x ∈ R9 with density

p(y, x) = normal(y | 0,3)×
9∏
n=1

normal(xn | 0, exp(y/2)).

The probability contours are shaped like ten-dimensional funnels. The funnel’s neck is
particularly sharp because of the exponential function applied to y . A plot of the log
marginal density of y and the first dimension x1 is shown in the following plot.

The marginal density of Neal’s funnel for the upper-level variable y and one lower-level
variable x1 (see the text for the formula). The blue region has log density greater than

1This parameterization came to be known on our mailing lists as the “Matt trick” after Matt Hoffman,
who independently came up with it while fitting hierarchical models in Stan.
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-8, the yellow region density greater than -16, and the gray background a density less
than -16.

Figure 22.1: Neal’s funnel density

The funnel can be implemented directly in Stan as follows.

parameters {
real y;
vector[9] x;

}
model {

y ~ normal(0, 3);
x ~ normal(0, exp(y/2));

}
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When the model is expressed this way, Stan has trouble sampling from the neck of the
funnel, where y is small and thus x is constrained to be near 0. This is due to the fact
that the density’s scale changes with y , so that a step size that works well in the body
will be too large for the neck, and a step size that works in the neck will be inefficient
in the body. This can be seen in the following plot.

4000 draws are taken from a run of Stan’s sampler with default settings. Both plots
are restricted to the shown window of x1 and y values; some draws fell outside of the
displayed area as would be expected given the density. The samples are consistent
with the marginal density p(y) = normal(y | 0,3), which has mean 0 and standard
deviation 3.
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In this particular instance, because the analytic form of the density from which samples
are drawn is known, the model can be converted to the following more efficient form.

parameters {
real y_raw;
vector[9] x_raw;

}
transformed parameters {

real y;
vector[9] x;
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y = 3.0 * y_raw;
x = exp(y/2) * x_raw;

}
model {

y_raw ~ std_normal(); // implies y ~ normal(0, 3)
x_raw ~ std_normal(); // implies x ~ normal(0, exp(y/2))

}

In this second model, the parameters x_raw and y_raw are sampled as independent
standard normals, which is easy for Stan. These are then transformed into samples
from the funnel. In this case, the same transform may be used to define Monte Carlo
samples directly based on independent standard normal samples; Markov chain Monte
Carlo methods are not necessary. If such a reparameterization were used in Stan code,
it is useful to provide a comment indicating what the distribution for the parameter
implies for the distribution of the transformed parameter.

Reparameterizing the Cauchy
Sampling from heavy tailed distributions such as the Cauchy is difficult for Hamiltonian
Monte Carlo, which operates within a Euclidean geometry.2

The practical problem is that tail of the Cauchy requires a relatively large step size
compared to the trunk. With a small step size, the No-U-Turn sampler requires many
steps when starting in the tail of the distribution; with a large step size, there will be
too much rejection in the central portion of the distribution. This problem may be
mitigated by defining the Cauchy-distributed variable as the transform of a uniformly
distributed variable using the Cauchy inverse cumulative distribution function.

Suppose a random variable of interest X has a Cauchy distribution with location µ
and scale τ, so that X ∼ Cauchy(µ, τ). The variable X has a cumulative distribution
function FX : R→ (0,1) defined by

FX(x) =
1
π

arctan
(
x− µ
τ

)
+ 1
2
.

The inverse of the cumulative distribution function, F−1X : (0,1)→ R, is thus

F−1X (y) = µ + τ tan
(
π
(
y − 1

2

))
.

2Riemannian Manifold Hamiltonian Monte Carlo (RMHMC) overcomes this difficulty by simulating the
Hamiltonian dynamics in a space with a position-dependent metric; see Girolami and Calderhead (2011) and
Betancourt (2012).
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Thus if the random variable Y has a unit uniform distribution, Y ∼ uniform(0,1),
then F−1X (Y) has a Cauchy distribution with location µ and scale τ, i.e., F−1X (Y) ∼
Cauchy(µ, τ).

Consider a Stan program involving a Cauchy-distributed parameter beta.

parameters {
real beta;
...

}
model {

beta ~ cauchy(mu, tau);
...

}

This declaration of beta as a parameter may be replaced with a transformed parameter
beta defined in terms of a uniform-distributed parameter beta_unif.

parameters {
real<lower = -pi()/2, upper = pi()/2> beta_unif;
...

}
transformed parameters {

real beta;
beta = mu + tau * tan(beta_unif); // beta ~ cauchy(mu, tau)

}
model {

beta_unif ~ uniform(-pi()/2, pi()/2); // not necessary
...

}

It is more convenient in Stan to transform a uniform variable on (−π/2, π/2) than
one on (0,1). The Cauchy location and scale parameters, mu and tau, may be defined
as data or may themselves be parameters. The variable beta could also be defined as
a local variable if it does not need to be included in the sampler’s output.

The uniform distribution on beta_unif is defined explicitly in the model block, but
it could be safely removed from the program without changing sampling behavior.
This is because log uniform(βunif | −π/2, π/2) = − logπ is a constant and Stan only
needs the total log probability up to an additive constant. Stan will spend some time
checking that that beta_unif is between -pi()/2 and pi()/2, but this condition is
guaranteed by the constraints in the declaration of beta_unif.
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Reparameterizing a Student-t Distribution
One thing that sometimes works when you’re having trouble with the heavy-tailedness
of Student-t distributions is to use the gamma-mixture representation, which says that
you can generate a Student-t distributed variable β,

β ∼ Student-t(ν,0,1),

by first generating a gamma-distributed precision (inverse variance) τ according to

τ ∼ Gamma(ν/2, ν/2),

and then generating β from the normal distribution,

β ∼ normal
(
0, τ−

1
2

)
.

Because τ is precision, τ−
1
2 is the scale (standard deviation), which is the

parameterization used by Stan.

The marginal distribution of β when you integrate out τ is Student-t(ν,0,1), i.e.,

Student-t(β | ν,0,1) =
∫∞
0

normal
(
β
∣∣∣0, τ−0.5)× Gamma (τ|ν/2, ν/2) dτ.

To go one step further, instead of defining a β drawn from a normal with precision τ ,
define α to be drawn from a unit normal,

α ∼ normal(0,1)

and rescale by defining
β = ατ− 12 .

Now suppose µ = βx is the product of β with a regression predictor x. Then the
reparameterization µ = ατ− 12 x has the same distribution, but in the original, direct
parameterization, β has (potentially) heavy tails, whereas in the second, neither τ nor
α have heavy tails.

To translate into Stan notation, this reparameterization replaces

parameters {
real<lower=0> nu;
real beta;
...

model {
beta ~ student_t(nu, 0, 1);
...
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with

parameters {
real<lower=0> nu;
real<lower=0> tau;
real alpha;
...

transformed parameters {
real beta;
beta = alpha / sqrt(tau);
...

model {
real half_nu;
half_nu = 0.5 * nu;
tau ~ gamma(half_nu, half_nu);
alpha ~ std_normal();
...

Although set to 0 here, in most cases, the lower bound for the degrees of freedom
parameter nu can be set to 1 or higher; when nu is 1, the result is a Cauchy distribution
with fat tails and as nu approaches infinity, the Student-t distribution approaches a
normal distribution. Thus the parameter nu characterizes the heaviness of the tails of
the model.

Hierarchical Models and the Non-Centered Parameterization
Unfortunately, the usual situation in applied Bayesian modeling involves complex
geometries and interactions that are not known analytically. Nevertheless,
reparameterization can still be effective for separating parameters.

Centered parameterization

For example, a vectorized hierarchical model might draw a vector of coefficients β
with definitions as follows. The so-called centered parameterization is as follows.

parameters {
real mu_beta;
real<lower = 0> sigma_beta;
vector[K] beta;
...

model {
beta ~ normal(mu_beta, sigma_beta);
...
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Although not shown, a full model will have priors on both mu_beta and sigma_beta
along with data modeled based on these coefficients. For instance, a standard binary
logistic regression with data matrix x and binary outcome vector y would include a
likelihood statement such as form y ~ bernoulli_logit(x * beta), leading to an
analytically intractable posterior.

A hierarchical model such as the above will suffer from the same kind of inefficiencies
as Neal’s funnel, because the values of beta, mu_beta and sigma_beta are highly
correlated in the posterior. The extremity of the correlation depends on the amount
of data, with Neal’s funnel being the extreme with no data. In these cases, the non-
centered parameterization, discussed in the next section, is preferable; when there
is a lot of data, the centered parameterization is more efficient. See Betancourt and
Girolami (2013) for more information on the effects of centering in hierarchical models
fit with Hamiltonian Monte Carlo.

Non-Centered Parameterization
Sometimes the group-level effects do not constrain the hierarchical distribution tightly.
Examples arise when there are not many groups, or when the inter-group variation is
high. In such cases, hierarchical models can be made much more efficient by shifting
the data’s correlation with the parameters to the hyperparameters. Similar to the
funnel example, this will be much more efficient in terms of effective sample size when
there is not much data (see Betancourt and Girolami (2013)), and in more extreme
cases will be necessary to achieve convergence.

parameters {
vector[K] beta_raw;
...

transformed parameters {
vector[K] beta;
// implies: beta ~ normal(mu_beta, sigma_beta)
beta = mu_beta + sigma_beta * beta_raw;

model {
beta_raw ~ std_normal();
...

Any priors defined for mu_beta and sigma_beta remain as defined in the original
model.

Reparameterization of hierarchical models is not limited to the normal distribution,
although the normal distribution is the best candidate for doing so. In general,
any distribution of parameters in the location-scale family is a good candidate for
reparameterization. Let β = l + sα where l is a location parameter and s is a scale
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parameter. The parameter l need not be the mean, s need not be the standard deviation,
and neither the mean nor the standard deviation need to exist. If α and β are from the
same distributional family but α has location zero and unit scale, while β has location
l and scale s, then that distribution is a location-scale distribution. Thus, if α were a
parameter and β were a transformed parameter, then a prior distribution from the
location-scale family on α with location zero and unit scale implies a prior distribution
on β with location l and scale s. Doing so would reduce the dependence between α, l,
and s.

There are several univariate distributions in the location-scale family, such as the
Student t distribution, including its special cases of the Cauchy distribution (with one
degree of freedom) and the normal distribution (with infinite degrees of freedom). As
shown above, if α is distributed standard normal, then β is distributed normal with
mean µ = l and standard deviation σ = s. The logistic, the double exponential, the
generalized extreme value distributions, and the stable distribution are also in the
location-scale family.

Also, if z is distributed standard normal, then z2 is distributed chi-squared with
one degree of freedom. By summing the squares of K independent standard normal
variates, one can obtain a single variate that is distributed chi-squared with K degrees
of freedom. However, for large K, the computational gains of this reparameterization
may be overwhelmed by the computational cost of specifying K primitive parameters
just to obtain one transformed parameter to use in a model.

Multivariate Reparameterizations
The benefits of reparameterization are not limited to univariate distributions. A
parameter with a multivariate normal prior distribution is also an excellent candidate
for reparameterization. Suppose you intend the prior for β to be multivariate normal
with mean vector µ and covariance matrix Σ. Such a belief is reflected by the following
code.

data {
int<lower=2> K;
vector[K] mu;
cov_matrix[K] Sigma;
...

parameters {
vector[K] beta;
...

model {
beta ~ multi_normal(mu, Sigma);
...
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In this case mu and Sigma are fixed data, but they could be unknown parameters, in
which case their priors would be unaffected by a reparameterization of beta.

If α has the same dimensions as β but the elements of α are independently and
identically distributed standard normal such that β = µ + Lα, where LL> = Σ, then
β is distributed multivariate normal with mean vector µ and covariance matrix Σ.
One choice for L is the Cholesky factor of Σ. Thus, the model above could be
reparameterized as follows.

data {
int<lower=2> K;
vector[K] mu;
cov_matrix[K] Sigma;
...

transformed data {
matrix[K, K] L;
L = cholesky_decompose(Sigma);

}
parameters {

vector[K] alpha;
...

transformed parameters {
vector[K] beta;
beta = mu + L * alpha;

}
model {

alpha ~ std_normal();
// implies: beta ~ multi_normal(mu, Sigma)
...

This reparameterization is more efficient for two reasons. First, it reduces dependence
among the elements of alpha and second, it avoids the need to invert Sigma every
time multi_normal is evaluated.

The Cholesky factor is also useful when a covariance matrix is decomposed into a
correlation matrix that is multiplied from both sides by a diagonal matrix of standard
deviations, where either the standard deviations or the correlations are unknown
parameters. The Cholesky factor of the covariance matrix is equal to the product of
a diagonal matrix of standard deviations and the Cholesky factor of the correlation
matrix. Furthermore, the product of a diagonal matrix of standard deviations and a
vector is equal to the elementwise product between the standard deviations and that
vector. Thus, if for example the correlation matrix Tau were fixed data but the vector
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of standard deviations sigma were unknown parameters, then a reparameterization of
beta in terms of alpha could be implemented as follows.

data {
int<lower=2> K;
vector[K] mu;
corr_matrix[K] Tau;
...

transformed data {
matrix[K, K] L;
L = cholesky_decompose(Tau);

}
parameters {

vector[K] alpha;
vector<lower=0>[K] sigma;
...

transformed parameters {
vector[K] beta;
// This equals mu + diag_matrix(sigma) * L * alpha;
beta = mu + sigma .* (L * alpha);

}
model {

sigma ~ cauchy(0, 5);
alpha ~ std_normal();
// implies: beta ~ multi_normal(mu,
// diag_matrix(sigma) * L * L' * diag_matrix(sigma)))
...

This reparameterization of a multivariate normal distribution in terms of standard
normal variates can be extended to other multivariate distributions that can be
conceptualized as contaminations of the multivariate normal, such as the multivariate
Student t and the skew multivariate normal distribution.

A Wishart distribution can also be reparameterized in terms of standard normal
variates and chi-squared variates. Let L be the Cholesky factor of a K × K positive
definite scale matrix S and let ν be the degrees of freedom. If

A =



√
c1 0 · · · 0

z21
√
c2

. . .
...

...
. . .

. . . 0
zK1 · · · zK(K−1)

√
cK

 ,
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where each ci is distributed chi-squared with ν − i + 1 degrees of freedom and each
zij is distributed standard normal, then W = LAA>L> is distributed Wishart with
scale matrix S = LL> and degrees of freedom ν. Such a reparameterization can be
implemented by the following Stan code:

data {
int<lower=1> N;
int<lower=1> K;
int<lower=K+2> nu
matrix[K, K] L; // Cholesky factor of scale matrix
vector[K] mu;
matrix[N, K] y;
...

parameters {
vector<lower=0>[K] c;
vector[0.5 * K * (K - 1)] z;
...

model {
matrix[K, K] A;
int count = 1;
for (j in 1:(K-1)) {
for (i in (j+1):K) {
A[i, j] = z[count];
count += 1;

}
for (i in 1:(j - 1)) {

A[i, j] = 0.0;
}
A[j, j] = sqrt(c[j]);

}
for (i in 1:(K-1))
A[i, K] = 0;

A[K, K] = sqrt(c[K]);

for (i in 1:K)
c[i] ~ chi_square(nu - i + 1);

z ~ std_normal();
// implies: L * A * A' * L' ~ wishart(nu, L * L')
y ~ multi_normal_cholesky(mu, L * A);
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...

This reparameterization is more efficient for three reasons. First, it reduces
dependence among the elements of z and second, it avoids the need to invert
the covariance matrix, W every time wishart is evaluated. Third, if W is to be
used with a multivariate normal distribution, you can pass LA to the more efficient
multi_normal_cholesky function, rather than passing W to multi_normal.

If W is distributed Wishart with scale matrix S and degrees of freedom ν, then W−1

is distributed inverse Wishart with inverse scale matrix S−1 and degrees of freedom
ν. Thus, the previous result can be used to reparameterize the inverse Wishart
distribution. Since W = LAA>L>, W−1 = L>−1A>−1A−1L−1, where all four inverses exist,
but L−1

> = L>−1 and A−1
> = A>−1 . We can slightly modify the above Stan code for this

case:

data {
int<lower=1> K;
int<lower=K+2> nu
matrix[K, K] L; // Cholesky factor of scale matrix
...

transformed data {
matrix[K, K] eye;
matrix[K, K] L_inv;
for (j in 1:K) {
for (i in 1:K) {
eye[i, j] = 0.0;

}
eye[j, j] = 1.0;

}
L_inv = mdivide_left_tri_low(L, eye);

}
parameters {

vector<lower=0>[K] c;
vector[0.5 * K * (K - 1)] z;
...

model {
matrix[K, K] A;
matrix[K, K] A_inv_L_inv;
int count;
count = 1;
for (j in 1:(K-1)) {
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for (i in (j+1):K) {
A[i, j] = z[count];
count += 1;

}
for (i in 1:(j - 1)) {

A[i, j] = 0.0;
}
A[j, j] = sqrt(c[j]);

}
for (i in 1:(K-1))
A[i, K] = 0;

A[K, K] = sqrt(c[K]);

A_inv_L_inv = mdivide_left_tri_low(A, L_inv);
for (i in 1:K)
c[i] ~ chi_square(nu - i + 1);

z ~ std_normal(); // implies: crossprod(A_inv_L_inv) ~
// inv_wishart(nu, L_inv' * L_inv)
...

Another candidate for reparameterization is the Dirichlet distribution with all K shape
parameters equal. Zyczkowski and Sommers (2001) shows that if θi is equal to the
sum of β independent squared standard normal variates and ρi = θi∑

θi , then the K-

vector ρ is distributed Dirichlet with all shape parameters equal to β
2 . In particular, if

β = 2, then ρ is uniformly distributed on the unit simplex. Thus, we can make ρ be a
transformed parameter to reduce dependence, as in:

data {
int<lower=1> beta;
...

parameters {
vector[beta] z[K];
...

transformed parameters {
simplex[K] rho;
for (k in 1:K)
rho[k] = dot_self(z[k]); // sum-of-squares

rho = rho / sum(rho);
}
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model {
for (k in 1:K)
z[k] ~ std_normal();

// implies: rho ~ dirichlet(0.5 * beta * ones)
...

22.8. Vectorization
Gradient Bottleneck
Stan spends the vast majority of its time computing the gradient of the log probability
function, making gradients the obvious target for optimization. Stan’s gradient
calculations with algorithmic differentiation require a template expression to be
allocated and constructed for each subexpression of a Stan program involving
parameters or transformed parameters.3 This section defines optimization strategies
based on vectorizing these subexpressions to reduce the work done during algorithmic
differentiation.

Vectorizing Summations
Because of the gradient bottleneck described in the previous section, it is more efficient
to collect a sequence of summands into a vector or array and then apply the sum()
operation than it is to continually increment a variable by assignment and addition.
For example, consider the following code snippet, where foo() is some operation that
depends on n.

for (n in 1:N)
total += foo(n,...);

This code has to create intermediate representations for each of the N summands.

A faster alternative is to copy the values into a vector, then apply the sum() operator,
as in the following refactoring.

{
vector[N] summands;
for (n in 1:N)
summands[n] = foo(n,...);

total = sum(summands);
}

Syntactically, the replacement is a statement block delineated by curly brackets ({, }),
starting with the definition of the local variable summands.

3Stan uses its own arena-based allocation, so allocation and deallocation are faster than with a raw call to
new.
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Even though it involves extra work to allocate the summands vector and copy N values
into it, the savings in differentiation more than make up for it. Perhaps surprisingly, it
will also use substantially less memory overall than incrementing total within the
loop.

Vectorization through Matrix Operations
The following program directly encodes a linear regression with fixed unit noise using
a two-dimensional array x of predictors, an array y of outcomes, and an array beta of
regression coefficients.

data {
int<lower=1> K;
int<lower=1> N;
real x[K, N];
real y[N];

}
parameters {

real beta[K];
}
model {

for (n in 1:N) {
real gamma = 0;
for (k in 1:K)
gamma += x[n, k] * beta[k];

y[n] ~ normal(gamma, 1);
}

}

The following model computes the same log probability function as the previous
model, even supporting the same input files for data and initialization.

data {
int<lower=1> K;
int<lower=1> N;
vector[K] x[N];
real y[N];

}
parameters {

vector[K] beta;
}
model {

for (n in 1:N)
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y[n] ~ normal(dot_product(x[n], beta), 1);
}

Although it produces equivalent results, the dot product should not be replaced with
a transpose and multiply, as in

y[n] ~ normal(x[n]' * beta, 1);

The relative inefficiency of the transpose and multiply approach is that the
transposition operator allocates a new vector into which the result of the transposition
is copied. This consumes both time and memory.4

The inefficiency of transposition could itself be mitigated by reordering the product
and pulling the transposition out of the loop, as follows.

...
transformed parameters {

row_vector[K] beta_t;
beta_t = beta';

}
model {

for (n in 1:N)
y[n] ~ normal(beta_t * x[n], 1);

}

The problem with transposition could be completely solved by directly encoding the x
as a row vector, as in the following example.

data {
...
row_vector[K] x[N];
...

}
parameters {

vector[K] beta;
}
model {

for (n in 1:N)
y[n] ~ normal(x[n] * beta, 1);

4Future versions of Stan may remove this inefficiency by more fully exploiting expression templates
inside the Eigen C++ matrix library. This will require enhancing Eigen to deal with mixed-type arguments,
such as the type double used for constants and the algorithmic differentiation type stan::math::var
used for variables.
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}

Declaring the data as a matrix and then computing all the predictors at once using
matrix multiplication is more efficient still, as in the example discussed in the next
section.

Having said all this, the most efficient way to code this model is with direct matrix
multiplication, as in

data {
matrix[N, K] x;
vector[N] y;

}
parameters {

vector[K] beta;
}
model {

y ~ normal(x * beta, 1);
}

In general, encapsulated single operations that do the work of loops will be more
efficient in their encapsulated forms. Rather than performing a sequence of row-
vector/vector multiplications, it is better to encapsulate it as a single matrix/vector
multiplication.

Vectorized Probability Functions
The final and most efficient version replaces the loops and transformed parameters
by using the vectorized form of the normal probability function, as in the following
example.

data {
int<lower=1> K;
int<lower=1> N;
matrix[N, K] x;
vector[N] y;

}
parameters {

vector[K] beta;
}
model {

y ~ normal(x * beta, 1);
}
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The variables are all declared as either matrix or vector types. The result of the matrix-
vector multiplication x * beta in the model block is a vector of the same length as
y.

The probability function documentation in the function reference manual indicates
which of Stan’s probability functions support vectorization; see the function reference
manual for full details. Vectorized probability functions accept either vector or scalar
inputs for all arguments, with the only restriction being that all vector arguments are
the same dimensionality. In the example above, y is a vector of size N, x * beta is a
vector of size N, and 1 is a scalar.

Reshaping Data for Vectorization
Sometimes data does not arrive in a shape that is ideal for vectorization, but can be
put into such shape with some munging (either inside Stan’s transformed data block
or outside).

John Hall provided a simple example on the Stan users group. Simplifying notation a
bit, the original model had a sampling statement in a loop, as follows.

for (n in 1:N)
y[n] ~ normal(mu[ii[n]], sigma);

The brute force vectorization would build up a mean vector and then vectorize all at
once.

{
vector[N] mu_ii;
for (n in 1:N)
mu_ii[n] = mu[ii[n]];

y ~ normal(mu_ii, sigma);
}

If there aren’t many levels (values ii[n] can take), then it behooves us to reorganize
the data by group in a case like this. Rather than having a single observation vector
y, there are K of them. And because Stan doesn’t support ragged arrays, it means K
declarations. For instance, with 5 levels, we have

y_1 ~ normal(mu[1], sigma);
...
y_5 ~ normal(mu[5], sigma);

This way, both the mu and sigma parameters are shared. Which way works out to be
more efficient will depend on the shape of the data; if the sizes are small, the simple
vectorization may be faster, but for moderate to large sized groups, the full expansion
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should be faster.

22.9. Exploiting Sufficient Statistics
In some cases, models can be recoded to exploit sufficient statistics in estimation.
This can lead to large efficiency gains compared to an expanded model. For example,
consider the following Bernoulli sampling model.

data {
int<lower=0> N;
int<lower=0, upper=1> y[N];
real<lower=0> alpha;
real<lower=0> beta;

}
parameters {

real<lower=0, upper=1> theta;
}
model {

theta ~ beta(alpha, beta);
for (n in 1:N)
y[n] ~ bernoulli(theta);

}

In this model, the sum of positive outcomes in y is a sufficient statistic for the chance
of success theta. The model may be recoded using the binomial distribution as
follows.

theta ~ beta(alpha, beta);
sum(y) ~ binomial(N, theta);

Because truth is represented as one and falsehood as zero, the sum sum(y) of a binary
vector y is equal to the number of positive outcomes out of a total of N trials.

This can be generalized to other discrete cases (one wouldn’t expect continuous
observations to be duplicated if they are random). Suppose there are only K possible
discrete outcomes, z1, . . . , zK , but there are N observations, where N is much larger
than K. If fk is the frequency of outcome zk, then the entire likelihood with distribution
foo can be coded as follows.

for (k in 1:K)
target += f[k] * foo_lpmf(z[k] | ...);

where the ellipses are the parameters of the log probability mass function for
distribution foo (there’s no distribution called “foo”; this is just a placeholder for any
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discrete distribution name).

The resulting program looks like a “weighted” regression, but here the weights f[k] are
counts and thus sufficient statistics for the PMF and simply amount to an alternative,
more efficient coding of the same likelihood. For efficiency, the frequencies f[k]
should be counted once in the transformed data block and stored.

22.10. Aggregating Common Subexpressions
If an expression is calculated once, the value should be saved and reused wherever
possible. That is, rather than using exp(theta) in multiple places, declare a local
variable to store its value and reuse the local variable.

Another case that may not be so obvious is with two multilevel parameters, say
a[ii[n]] + b[jj[n]]. If a and b are small (i.e., do not have many levels), then a
table a_b of their sums can be created, with

matrix[size(a), size(b)] a_b;
for (i in 1:size(a))
for (j in 1:size(b))
a_b[i, j] = a[i] + b[j];

Then the sum can be replaced with a_b[ii[n], jj[n]].

22.11. Exploiting Conjugacy
Continuing the model from the previous section, the conjugacy of the beta prior
and binomial sampling distribution allow the model to be further optimized to the
following equivalent form.

theta ~ beta(alpha + sum(y), beta + N - sum(y));

To make the model even more efficient, a transformed data variable defined to be
sum(y) could be used in the place of sum(y).

22.12. Standardizing Predictors and Outputs
Stan programs will run faster if the input is standardized to have a zero sample mean
and unit sample variance. This section illustrates the principle with a simple linear
regression.

Suppose that y = (y1, . . . , yN) is a sequence of N outcomes and x = (x1, . . . , xN) a
parallel sequence of N predictors. A simple linear regression involving an intercept
coefficient α and slope coefficient β can be expressed as

yn = α+ βxn + εn,
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where
εn ∼ normal(0, σ).

If either vector x or y has very large or very small values or if the sample mean
of the values is far away from 0 (on the scale of the values), then it can be more
efficient to standardize the outputs yn and predictors xn. The data are first centered
by subtracting the sample mean, and then scaled by dividing by the sample deviation.
Thus a data point u is standardized with respect to a vector y by the function zy ,
defined by

zy(u) =
u− ȳ
sd(y)

where the sample mean of y is

ȳ = 1
N

N∑
n=1
yn,

and the sample standard deviation of y is

sd(y) =
 1
N

N∑
n=1
(yn − ȳ)2

1/2 .
The inverse transform is defined by reversing the two normalization steps, first
rescaling by the same deviation and relocating by the sample mean,

z−1y (v) = sd(y)v + ȳ .

To standardize a regression problem, the predictors and outcomes are standardized.
This changes the scale of the variables, and hence changes the scale of the priors.
Consider the following initial model.

data {
int<lower=0> N;
vector[N] y;
vector[N] x;

}
parameters {

real alpha;
real beta;
real<lower=0> sigma;

}
model {

// priors
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alpha ~ normal(0, 10);
beta ~ normal(0, 10);
sigma ~ cauchy(0, 5);
// likelihood
for (n in 1:N)
y[n] ~ normal(alpha + beta * x[n], sigma);

}

The data block for the standardized model is identical. The standardized predictors
and outputs are defined in the transformed data block.

data {
int<lower=0> N;
vector[N] y;
vector[N] x;

}
transformed data {

vector[N] x_std;
vector[N] y_std;
x_std = (x - mean(x)) / sd(x);
y_std = (y - mean(y)) / sd(y);

}
parameters {

real alpha_std;
real beta_std;
real<lower=0> sigma_std;

}
model {

alpha_std ~ normal(0, 10);
beta_std ~ normal(0, 10);
sigma_std ~ cauchy(0, 5);
for (n in 1:N)
y_std[n] ~ normal(alpha_std + beta_std * x_std[n],

sigma_std);
}

The parameters are renamed to indicate that they aren’t the “natural” parameters,
but the model is otherwise identical. In particular, the fairly diffuse priors on the
coefficients and error scale are the same. These could have been transformed as
well, but here they are left as is, because the scales make sense as diffuse priors for
standardized data; the priors could be made more informative. For instance, because
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the outputs y have been standardized, the error σ should not be greater than 1,
because that’s the scale of the noise for predictors α = β = 0.

The original regression
yn = α+ βxn + εn

has been transformed to a regression on the standardized variables,

zy(yn) = α′ + β′zx(xn)+ ε′n.

The original parameters can be recovered with a little algebra,

yn = z−1y (zy(yn))

= z−1y
(
α′ + β′zx(xn)+ ε′n

)
= z−1y

(
α′ + β′

(
xn − x̄
sd(x)

)
+ ε′n

)
= sd(y)

(
α′ + β′

(
xn − x̄
sd(x)

)
+ ε′n

)
+ ȳ

=
(
sd(y)

(
α′ − β′ x̄

sd(x)

)
+ ȳ

)
+
(
β′
sd(y)
sd(x)

)
xn + sd(y)ε′n,

from which the original scale parameter values can be read off,

α = sd(y)
(
α′ − β′ x̄

sd(x)

)
+ ȳ ; β = β′ sd(y)

sd(x)
; σ = sd(y)σ ′.

These recovered parameter values on the original scales can be calculated within Stan
using a generated quantities block following the model block,

generated quantities {
real alpha;
real beta;
real<lower=0> sigma;
alpha = sd(y) * (alpha_std - beta_std * mean(x) / sd(x))

+ mean(y);
beta = beta_std * sd(y) / sd(x);
sigma = sd(y) * sigma_std;

}

It is inefficient to compute all of the means and standard deviations every iteration;
for more efficiency, these can be calculated once and stored as transformed data.
Furthermore, the model sampling statement can be easily vectorized, for instance, in
the transformed model, to

y_std ~ normal(alpha_std + beta_std * x_std, sigma_std);
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Standard Normal Distribution
For many applications on the standard scale, normal distributions with location zero
and scale one will be used. In these cases, it is more efficient to use

y ~ std_normal();

than to use

y ~ normal(0, 1);

because the subtraction of the location and division by the scale cancel, as does
subtracting the log of the scale.

22.13. Using Map-Reduce
The map-reduce operation, even without multi-core MPI support, can be used to make
programs more scalable and also more efficient. See the map-reduce chapter for more
information on implementing map-reduce operations.

Map-reduce allows greater scalability because only the Jacobian of the mapped function
for each shard is stored. The Jacobian consists of all of the derivatives of the outputs
with respect to the parameters. During execution, the derivatives of the shard are
evaluated using nested automatic differentiation. As often happens with modern
CPUs, reduced memory overhead leads to increased memory locality and faster
execution. The Jacobians are all computed with local memory and their outputs
stored contiguously in memory.



23. Parallelization

Stan has two mechanisms for parallelizing calculations used in a model: reduce with
summation and rectangular map.

The advantages of reduce with summation are:

1. More flexible argument interface, avoiding the packing and unpacking that is
necessary with rectanguar map.

2. Partitions data for parallelization automatically (this is done manually in
rectanguar map).

3. Is easier to use.

The advantages of rectangular map are:

1. Returns a list of vectors, while the reduce summation returns only a scalar.
2. Can be parallelized across multiple cores and multiple computers, while reduce

summation can only parallelized across multiple cores on a single machine.

The actual speedup gained from using these functions will depend on many details.
It is strongly recommended to only parallelize the computationally most expensive
operations in a Stan program. Oftentimes this is the evaluation of the log likelihood
for the observed data. Since only portions of a Stan program will run in parallel, the
maximal speedup one can achieve is capped, a phenomen described by Amdahl’s law.

23.1. Reduce-Sum
It is often necessary in probabilistic modeling to compute the sum of a number of
independent function evaluations. This occurs, for instance, when evaluating a number
of conditionally independent terms in a log-likelihood. If g: U -> real is the function
and { x1, x2, ... } is an array of inputs, then that sum looks like:

g(x1) + g(x2) + ...

reduce_sum and reduce_sum_static are tools for parallelizing these calculations.

For efficiency reasons the reduce function doesn’t work with the element-wise
evaluated function g, but instead the partial sum function f: U[] -> real, where f
computes the partial sum corresponding to a slice of the sequence x passed in. Due to
the associativity of the sum reduction it holds that:

g(x1) + g(x2) + g(x3) = f({ x1, x2, x3 })

280

https://en.wikipedia.org/wiki/Amdahl's_law
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= f({ x1, x2 }) + f({ x3 })
= f({ x1 }) + f({ x2, x3 })
= f({ x1 }) + f({ x2 }) + f({ x3 })

With the partial sum function f: U[] -> real reduction of a large number of terms
can be evaluated in parallel automatically, since the overall sum can be partitioned
into arbitrary smaller partial sums. The exact partitioning into the partial sums is not
under the control of the user. However, since the exact numerical result will depend on
the order of summation, Stan provides two versions of the reduce summation facility:

• reduce_sum: Automatically choose partial sums partitioning based on a dynamic
scheduling algorithm.

• reduce_sum_static: Compute the same sum as reduce_sum, but partition the
input in the same way for given data set (in reduce_sum this partitioning might
change depending on computer load).

grainsize is the one tuning parameter. For reduce_sum, grainsize is a suggested
partial sum size. A grainsize of 1 leaves the partitioning entirely up to the scheduler.
This should be the default way of using reduce_sum unless time is spent carefully
picking grainsize. For picking a grainsize, see details below.

For reduce_sum_static, grainsize specifies the maximal partial sum size. With
reduce_sum_static it is more important to choose grainsize carefully since it
entirely determines the partitioning of work. See details below.

For efficiency and convenience additional shared arguments can be passed to every
term in the sum. So for the array { x1, x2, ... } and the shared arguments s1,
s2, ... the effective sum (with individual terms) looks like:

g(x1, s1, s2, ...) + g(x2, s1, s2, ...) + g(x3, s1, s2, ...) + ...

which can be written equivalently with partial sums to look like:

f({ x1, x2 }, s1, s2, ...) + f({ x3 }, s1, s2, ...)

where the particular slicing of the x array can change.

Given this, the signatures are:

real reduce_sum(F f, T[] x, int grainsize, T1 s1, T2 s2, ...)
real reduce_sum_static(F f, T[] x, int grainsize, T1 s1, T2 s2, ...)

1. f - User defined function that computes partial sums
2. x - Array to slice, each element corresponds to a term in the summation
3. grainsize - Target for size of slices
4. s1, s2, ... - Arguments shared in every term
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The user-defined partial sum functions have the signature:

real f(T[] x_slice, int start, int end, T1 s1, T2 s2, ...)

and take the arguments:

1. x_slice - The subset of x (from reduce_sum / reduce_sum_static) for which
this partial sum is responsible (x_slice = x[start:end])

2. start - An integer specifying the first term in the partial sum
3. end - An integer specifying the last term in the partial sum (inclusive)
4. s1, s2, ... - Arguments shared in every term (passed on without modification

from the reduce_sum / reduce_sum_static call)

The user-provided function f is expected to compute the partial sum with the terms
start through end of the overall sum. The user function is passed the subset
x[start:end] as x_slice. start and end are passed so that f can index any of
the tailing sM arguments as necessary. The trailing sM arguments are passed without
modification to every call of f.

A reduce_sum (or reduce_sum_static) call:

real sum = reduce_sum(f, x, grainsize, s1, s2, ...);

can be replaced by either:

real sum = f(x, 1, size(x), s1, s2, ...);

or the code:

real sum = 0.0;
for(i in 1:size(x)) {

sum += f({ x[i] }, i, i, s1, s2, ...);
}

Example: Logistic Regression
Logistic regression is a useful example to clarify both the syntax and semantics of
reduce summation and how it can be used to speed up a typical model. A basic logistic
regression can be coded in Stan as:

data {
int N;
int y[N];
vector[N] x;

}
parameters {

vector[2] beta;
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}
model {

beta ~ std_normal();
y ~ bernoulli_logit(beta[1] + beta[2] * x);

}

In this model predictions are made about the N outputs y using the covariate x. The
intercept and slope of the linear equation are to be estimated. The key point to getting
this calculation to use reduce summation, is recognizing that the statement:

y ~ bernoulli_logit(beta[1] + beta[2] * x);

can be rewritten (up to a proportionality constant) as:

for(n in 1:N) {
target += bernoulli_logit_lpmf(y[n] | beta[1] + beta[2] * x[n])

}

Now it is clear that the calculation is the sum of a number of conditionally independent
Bernoulli log probability statements, which is the condition where reduce summation
is useful. To use the reduce summation, a function must be written that can be used
to compute arbitrary partial sums of the total sum. Using the interface defined in
Reduce-Sum, such a function can be written like:

functions {
real partial_sum(int[] y_slice,

int start, int end,
vector x,
vector beta) {

return bernoulli_logit_lpmf(y_slice | beta[1] + beta[2] * x[start:end]);
}

}

The likelihood statement in the model can now be written:

target += partial_sum(y, 1, N, x, beta); // Sum terms 1 to N of the likelihood

In this example, y was chosen to be sliced over because there is one term in the
summation per value of y. Technically x would have worked as well. Use whatever
conceptually makes the most sense for a given model, e.g. slice over independent
terms like conditionally independent observations or groups of observations as in
hierarchical models. Because x is a shared argument, it is subset accordingly with
start:end. With this function, reduce summation can be used to automatically
parallelize the likelihood:
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int grainsize = 1;
target += reduce_sum(partial_sum, y,

grainsize,
x, beta);

The reduce summation facility automatically breaks the sum into pieces and computes
them in parallel. grainsize = 1 specifies that the grainsize should be estimated
automatically. The final model is:

functions {
real partial_sum(int[] y_slice,

int start, int end,
vector x,
vector beta) {

return bernoulli_logit_lpmf(y_slice | beta[1] + beta[2] * x[start:end]);
}

}
data {

int N;
int y[N];
vector[N] x;

}
parameters {

vector[2] beta;
}
model {

int grainsize = 1;
beta ~ std_normal();
target += reduce_sum(partial_sum, y,

grainsize,
x, beta);

}

Picking the Grainsize
The rational for choosing a sensible grainsize is based on balancing the overhead
implied by creating many small tasks versus creating fewer large tasks which limits
the potential parallelism.

In reduce_sum, grainsize is a recommendation on how to partition the work in
the partial sum into smaller pieces. A grainsize of 1 leaves this entirely up to the
internal scheduler and should be chosen if no benchmarking of other grainsizes is
done. Ideally this will be efficient, but there are no guarantees.
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In reduce_sum_static, grainsize is an upper limit on the worksize. Work will
be split until all partial sums are just smaller than grainsize (and the split will
happen the same way every time for the same inputs). For the static version it is more
important to select a sensible grainsize.

In order to figure out an optimal grainsize, if there are N terms and M cores, run
a quick test model with grainsize set roughly to N / M. Record the time, cut the
grainsize in half, and run the test again. Repeat this iteratively until the model
runtime begins to increase. This is a suitable grainsize for the model, because this
ensures the caculations can be carried out with the most parallelism without losing
too much efficiency.

For instance, in a model with N=10000 and M = 4, start with grainsize = 25000,
and sequentially try grainsize = 12500, grainsize = 6250, etc.

It is important to repeat this process until performance gets worse. It is possible after
many halvings nothing happens, but there might still be a smaller grainsize that
performs better. Even if a sum has many tens of thousands of terms, depending on the
internal calculations, a grainsize of thirty or forty or smaller might be the best, and
it is difficult to predict this behavior. Without doing these halvings until performance
actually gets worse, it is easy to miss this.

23.2. Map-Rect
Map-reduce allows large calculations (e.g., log likelihoods) to be broken into
components which may be calculated modularly (e.g., data blocks) and combined
(e.g., by summation and incrementing the target log density).

A map function is a higher-order function that applies an argument function to
every member of some collection, returning a collection of the results. For example,
mapping the square function, f (x) = x2, over the vector [3,5,10] produces the vector
[9,25,100]. In other words, map applies the square function elementwise.

The output of mapping a sequence is often fed into a reduction. A reduction function
takes an arbitrarily long sequence of inputs and returns a single output. Examples of
reduction functions are summation (with the return being a single value) or sorting
(with the return being a sorted sequence). The combination of mapping and reducing
is so common it has its own name, map-reduce.

Map Function
In order to generalize the form of functions and results that are possible and
accommodate both parameters (which need derivatives) and data values (which don’t),
Stan’s map function operates on more than just a sequence of inputs.
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Map Function Signature

Stan’s map function has the following signature

vector map_rect((vector, vector, real[], int[]):vector f,
vector phi, vector[] thetas,
data real[ , ] x_rs, data int[ , ] x_is);

The arrays thetas of parameters, x_rs of real data, and x_is of integer data have
the suffix “s” to indicate they are arrays. These arrays must all be the same size, as
they will be mapped in parallel by the function f. The value of phi is reused in each
mapped operation.

The _rect suffix in the name arises because the data structures it takes as arguments
are rectangular. In order to deal with ragged inputs, ragged inputs must be padded
out to rectangular form.

The last two arguments are two dimensional arrays of real and integer data values.
These argument types are marked with the data qualifier to indicate that they must
only contain variables originating in the data or transformed data blocks. This will
allow such data to be pinned to a processor on which it is being processed to reduce
communication overhead.

The notation (vector, vector, real[], int[]):vector indicates that the
function argument f must have the following signature.

vector f(vector phi, vector theta,
data real[] x_r, data int[] x_i);

Although f will often return a vector of size one, the built-in flexibility allows general
multivariate functions to be mapped, even raggedly.

Map Function Semantics

Stan’s map function applies the function f to the shared parameters along with one
element each of the job parameters, real data, and integer data arrays. Each of the
arguments theta, x_r, and x_i must be arrays of the same size. If the arrays are all
size N, the result is defined as follows.

map_rect(f, phi, thetas, xs, ns)
= f(phi, thetas[1], xs[1], ns[1]) . f(phi, thetas[2], xs[2], ns[2])

. ... . f(phi, thetas[N], xs[N], ns[N])

The dot operators in the notation above are meant to indicate concatenation
(implemented as append_row in Stan). The output of each application of f is a vector,
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and the sequence of N vectors is concatenated together to return a single vector.

Example: Logistic Regression
An example should help to clarify both the syntax and semantics of the mapping
operation and how it may be combined with reductions built into Stan to provide a
map-reduce implementation.

Unmapped Logistic Regression

Consider the following simple logistic regression model, which is coded
unconventionally to accomodate direct translation to a mapped implementation.

data {
int y[12];
real x[12];

}
parameters {

vector[2] beta;
}
model {

beta ~ std_normal();
y ~ bernoulli_logit(beta[1] + beta[2] * to_vector(x));

}

The program is unusual in that it (a) hardcodes the data size, which is not required by
the map function but is just used here for simplicity, (b) represents the predictors as a
real array even though it needs to be used as a vector, and (c) represents the regression
coefficients (intercept and slope) as a vector even though they’re used individually. The
bernoulli_logit distribution is used because the argument is on the logit scale—it
implicitly applies the inverse logit function to map the argument to a probability.

Mapped Logistic Regression

The unmapped logistic regression model described in the previous subsection may be
implemented using Stan’s rectangular mapping functionality as follows.

functions {
vector lr(vector beta, vector theta, real[] x, int[] y) {
real lp = bernoulli_logit_lpmf(y | beta[1]

+ to_vector(x) * beta[2]);
return [lp]';

}
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}
data {

int y[12];
real x[12];

}
transformed data {

// K = 3 shards
int ys[3, 4] = { y[1:4], y[5:8], y[9:12] };
real xs[3, 4] = { x[1:4], x[5:8], x[9:12] };
vector[0] theta[3];

}
parameters {

vector[2] beta;
}
model {

beta ~ std_normal();
target += sum(map_rect(lr, beta, theta, xs, ys));

}

The first piece of the code is the actual function to compute the logistic regression. The
argument beta will contain the regression coefficients (intercept and slope), as before.
The second argument theta of job-specific parameters is not used, but nevertheless
must be present. The modeled data y is passed as an array of integers and the
predictors x as an array of real values. The function body then computes the log
probability mass of y and assigns it to the local variable lp. This variable is then used
in [lp]' to construct a row vector and then transpose it to a vector to return.

The data are taken in as before. There is an additional transformed data block that
breaks the data up into three shards.1

The value 3 is also hard coded; a more practical program would allow the number
of shards to be controlled. There are three parallel arrays defined here, each of size
three, corresponding to the number of shards. The array ys contains the modeled
data variables; each element of the array ys is an array of size four. The second array
xs is for the predictors, and each element of it is also of size four. These contained
arrays are the same size because the predictors x stand in a one-to-one relationship
with the modeled data y. The final array theta is also of size three; its elements are
empty vectors, because there are no shard-specific parameters.

1The term “shard” is borrowed from databases, where it refers to a slice of the rows of a database. That
is exactly what it is here if we think of rows of a dataframe. Stan’s shards are more general in that they need
not correspond to rows of a dataframe.
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The parameters and the prior are as before. The likelihood is now coded using map-
reduce. The function lr to compute the log probability mass is mapped over the data
xs and ys, which contain the original predictors and outcomes broken into shards.
The parameters beta are in the first argument because they are shared across shards.
There are no shard-specific parameters, so the array of job-specific parameters theta
contains only empty vectors.

Example: Hierarchical Logistic Regression
Consider a hierarchical model of American presidential voting behavior based on state
of residence.2

Each of the fifty states k ∈ {1, . . . ,50} will have its own slope βk and intercept αk to
model the log odds of voting for the Republican candidate as a function of income.
Suppose there are N voters and with voter n ∈ 1:N being in state s[n] with income xn.
The likelihood for the vote yn ∈ {0,1} is

yn ∼ Bernoulli
(

logit−1
(
αs[n] + βs[n] xn

) )
.

The slopes and intercepts get hierarchical priors,

αk ∼ normal(µα, σα)

βk ∼ normal(µβ, σβ)

Unmapped Implementation

This model can be coded up in Stan directly as follows.

data {
int<lower = 0> K;
int<lower = 0> N;
int<lower = 1, upper = K> kk[N];
vector[N] x;
int<lower = 0, upper = 1> y[N];

}
parameters {

matrix[K,2] beta;
vector[2] mu;
vector<lower=0>[2] sigma;

}
model {

2This example is a simplified form of the model described in (Gelman and Hill 2007, Section 14.2)
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mu ~ normal(0, 2);
sigma ~ normal(0, 2);
for (i in 1:2)
beta[ , i] ~ normal(mu[i], sigma[i]);

y ~ bernoulli_logit(beta[kk, 1] + beta[kk, 2] .* x);
}

For this model the vector of predictors x is coded as a vector, corresponding to how it
is used in the likelihood. The priors for mu and sigma are vectorized. The priors on
the two components of beta (intercept and slope, respectively) are stored in a K × 2
matrix.

The likelihood is also vectorized using multi-indexing with index kk for the states and
elementwise multiplication (.*) for the income x. The vectorized likelihood works out
to the same thing as the following less efficient looped form.

for (n in 1:N)
y[n] ~ bernoulli_logit(beta[kk[n], 1] + beta[kk[n], 2] * x[n]);

Mapped Implementation

The mapped version of the model will map over the states K. This means the group-level
parameters, real data, and integer-data must be arrays of the same size.

The mapped implementation requires a function to be mapped. The following function
evaluates both the likelihood for the data observed for a group as well as the prior
for the group-specific parameters (the name bl_glm derives from the fact that it’s a
generalized linear model with a Bernoulli likelihood and logistic link function).

functions {
vector bl_glm(vector mu_sigma, vector beta,

real[] x, int[] y) {
vector[2] mu = mu_sigma[1:2];
vector[2] sigma = mu_sigma[3:4];
real lp = normal_lpdf(beta | mu, sigma);
real ll = bernoulli_logit_lpmf(y | beta[1] + beta[2] * to_vector(x));
return [lp + ll]';

}
}

The shared parameter mu_sigma contains the locations (mu_sigma[1:2]) and scales
(mu_sigma[3:4]) of the priors, which are extracted in the first two lines of the program.
The variable lp is assigned the log density of the prior on beta. The vector beta is of
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size two, as are the vectors mu and sigma, so everything lines up for the vectorization.
Next, the variable ll is assigned to the log likelihood contribution for the group. Here
beta[1] is the intercept of the regression and beta[2] the slope. The predictor array
x needs to be converted to a vector allow the multiplication.

The data block is identical to that of the previous program, but repeated here for
convenience. A transformed data block computes the data structures needed for the
mapping by organizing the data into arrays indexed by group.

data {
int<lower = 0> K;
int<lower = 0> N;
int<lower = 1, upper = K> kk[N];
vector[N] x;
int<lower = 0, upper = 1> y[N];

}
transformed data {

int<lower = 0> J = N / K;
real x_r[K, J];
int<lower = 0, upper = 1> x_i[K, J];
{
int pos = 1;
for (k in 1:K) {
int end = pos + J - 1;
x_r[k] = to_array_1d(x[pos:end]);
x_i[k] = to_array_1d(y[pos:end]);
pos += J;

}
}

}

The integer J is set to the number of observations per group.3

The real data array x_r holds the predictors and the integer data array x_i holds the
outcomes. The grouped data arrays are constructed by slicing the predictor vector x
(and converting it to an array) and slicing the outcome array y.

Given the transformed data with groupings, the parameters are the same as the
previous program. The model has the same priors for the hyperparameters mu and
sigma, but moves the prior for beta and the likelihood to the mapped function.

3This makes the strong assumption that each group has the same number of observations!
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parameters {
vector[2] beta[K];
vector[2] mu;
vector<lower=0>[2] sigma;

}
model {

mu ~ normal(0, 2);
sigma ~ normal(0, 2);
target += sum(map_rect(bl_glm, append_row(mu, sigma), beta, x_r, x_i));

}

The model as written here computes the priors for each group’s parameters along
with the likelihood contribution for the group. An alternative mapping would leave the
prior in the model block and only map the likelihood. In a serial setting this shouldn’t
make much of a difference, but with parallelization, there is reduced communication
(the prior’s parameters need not be transmitted) and also reduced parallelization with
the version that leaves the prior in the model block.

Ragged Inputs and Outputs
The previous examples included rectangular data structures and single outputs.
Despite the name, this is not technically required by map_rect.

Ragged Inputs

If each group has a different number of observations, then the rectangular data
structures for predictors and outcomes will need to be padded out to be rectangular.
In addition, the size of the ragged structure will need to be passed as integer data.
This holds for shards with varying numbers of parameters as well as varying numbers
of data points.

Ragged Outputs

The output of each mapped function is concatenated in order of inputs to produce
the output of map_rect. When every shard returns a singleton (size one) array, the
result is the same size as the number of shards and is easy to deal with downstream.
If functions return longer arrays, they can still be structured using the to_matrix
function if they are rectangular.

If the outputs are of varying sizes, then there will have to be some way to convert it
back to a usable form based on the input, because there is no way to directly return
sizes or a ragged structure.



Part 3. Posterior Inference & Model Checking

This part of the user’s guide surveys algorithms that perform posterior predictive
inference and model checking. Many of these algorithms require multiple runs of Stan
in order to fit varying simulated data samples.
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24. Posterior Predictive Sampling

The goal of inference is often posterior prediction, that is evaluating or sampling from
the posterior predictive distribution p(ỹ | y), where y is observed data and ỹ is yet
to be observed data. Often there are unmodeled predictors x and x̃ for the observed
data y and unobserved data ỹ . With predictors, the posterior predictive density is
p(ỹ | x̃, x, y). All of these variables may represent multivariate quantities.

This chapter explains how to sample from the posterior predictive distribution in
Stan, including applications to posterior predictive simulation and calculating event
probabilities. These techniques can be coded in Stan using random number generation
in the generated quantities block. Further, a technique for fitting and performing
inference in two stages is presented in a section on stand-alone generated quantities
in Stan

24.1. Posterior predictive distribution
Given a full Bayesian model p(y, θ), the posterior predictive density for new data ỹ
given observed data y is

p(ỹ | y) =
∫
p(ỹ | θ) · p(θ | y)dθ.

The product under the integral reduces to the joint posterior density p(ỹ, θ | y), so
that the integral is simply marginalizing out the parameters θ, leaving the predictive
density p(ỹ | y) of future observations given past observations.

24.2. Computing the posterior predictive distribution
The posterior predictive density (or mass) of a prediction ỹ given observed data y can
be computed using Monte Carlo draws

θ(m) ∼ p(θ | y)

from the posterior as

p(ỹ | y) ≈ 1
M

M∑
m=1

p(ỹ | θ(m)).

Computing directly using this formula will lead to underflow in many situations, but
the log posterior predictive density, logp(ỹ | y) may be computed using the stable log
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sum of exponents function as

logp(ỹ | y) ≈ log
1
M

M∑
m=1

p(ỹ | θ(m)).

= − logM + log-sum-expMm=1 logp(ỹ | θ(m)),

where

log-sum-expMm=1vm = log
M∑
m=1

expvm

is used to maintain arithmetic precision. See the section on log sum of exponentials
for more details.

24.3. Sampling from the posterior predictive distribution
Given draws from the posterior θ(m) ∼ p(θ | y), draws from the posterior predictive
ỹ(m) ∼ p(ỹ | y) can be generated by randomly generating from the sampling
distribution with the parameter draw plugged in,

ỹ(m) ∼ p(y | θ(m)).

Randomly drawing ỹ from the sampling distribution is critical because there are two
forms of uncertainty in posterior predictive quantities, sampling uncertainty and
estimation uncertainty. Estimation uncertainty arises because θ is being estimated
based only on a sample of data y . Sampling uncertainty arises because even a known
value of θ leads to a sampling distribution p(ỹ | θ) with variation in ỹ . Both forms of
uncertainty show up in the factored form of the posterior predictive distribution,

p(ỹ | y) =
∫

p(ỹ | θ)︸ ︷︷ ︸
sampling
uncertainty

· p(θ | y)︸ ︷︷ ︸
estimation
uncertainty

dθ.

24.4. Posterior predictive simulation in Stan
Posterior predictive quantities can be coded in Stan using the generated quantities
block.

Simple Poisson model
For example, consider a simple Poisson model for count data with a rate parameter
λ > 0 following a gamma-distributed prior,

λ ∼ gamma(1,1).

The likelihood for N observations y1, . . . , yN is modeled as Poisson,

yn ∼ poisson(λ).
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Stan code
The following Stan program defines a variable for ỹ by random number generation in
the generated quantities block.

data {
int<lower = 0> N;
int<lower = 0> y[N];

}
parameters {

real<lower = 0> lambda;
}
model {

lambda ~ gamma(1, 1);
y ~ poisson(lambda);

}
generated quantities {

int<lower = 0> y_tilde = poisson_rng(lambda);
}

The random draw from the sampling distribution for ỹ is coded using Stan’s Poisson
random number generator in the generated quantities block. This accounts for the
sampling component of the uncertainty; Stan’s posterior sampler will account for the
estimation uncertainty, generating a new ỹ(m) ∼ p(y | λ(m)) for each posterior draw
λ(m) ∼ p(θ | y).

The posterior draws ỹ(m) may be used to estimate the expected value of ỹ or any of its
quantiles or posterior intervals, as well as event probabilities involving ỹ . In general,
E[f (ỹ, θ) | y] may be evaluated as

E[f (ỹ, θ) | y] ≈ 1
M

M∑
m=1

f (ỹ(m), θ(m)),

which is just the posterior mean of f (ỹ, θ). This quantity is computed by Stan if the
value of f (ỹ, θ) is assigned to a variable in the generated quantities block. That is, if
we have

generated quantities {
real f_val = f(y_tilde, theta);
...

where the value of f (ỹ, θ) is assigned to variable f_val, then the posterior mean of
f_val will be the expectation E[f (ỹ, θ) | y].
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Analytic posterior and posterior predictive
The gamma distribution is the conjugate prior distribution for the Poisson distribution,
so the posterior density p(λ | y) will also follow a gamma distribution.

Because the posterior follows a gamma distribution and the sampling distribution is
Poisson, the posterior predictive p(ỹ | y) will follow a negative binomial distribution,
because the negative binomial is defined as a compound gamma-Poisson. That is,
y ∼ negative-binomial(α,β) if λ ∼ gamma(α,β) and y ∼ poisson(λ). Rather than
marginalizing out the rate parameter λ analytically as can be done to define the
negative binomial probability mass function, the rate λ(m) ∼ p(λ | y) is sampled from
the posterior and then used to generate a draw of ỹ(m) ∼ p(y | λ(m)).

24.5. Posterior prediction for regressions
Posterior predictive distributions for regressions
Consider a regression with a single predictor xn for the training outcome yn and
x̃n for the test outcome ỹn. Without considering the parametric form of any of the
distributions, the posterior predictive distribution for a general regression in

p(ỹ | x̃, y, x) =
∫
p(ỹ | x, θ) · p(θ | y, x)dθ (24.1)

≈ 1
M

M∑
m=1

p(ỹ | x̃, θ(m)), (24.2)

where θ(m) ∼ p(θ | x, y).

Stan program
The following program defines a Poisson regression with a single predictor. These
predictors are all coded as data, as are their sizes. Only the observed y values are
coded as data. The predictive quantities ỹ appear in the generated quantities block,
where they are generated by random number generation.

data {
int<lower = 0> N;
vector[N] x;
int<lower = 0> y[N];
int<lower = 0> N_tilde;
vector[N_tilde] x_tilde;

}
parameters {

real alpha;
real beta;

}
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model {
y ~ poisson_log(alpha + beta * x);
{ alpha, beta } ~ normal(0, 1);

}
generated quantities {

int<lower = 0> y_tilde[N_tilde]
= poisson_log_rng(alpha + beta * x_tilde);

}

The Poisson distributions in both the model and generated quantities block are coded
using the log rate as a parameter (that’s poisson_log vs. poisson, with the suffixes
defining the scale of the parameter). The regression coefficients, an intercept alpha
and slope beta, are given standard normal priors.

In the model block, the log rate for the Poisson is a linear function of the training data
x, whereas in the generated quantities block it is a function of the test data x̃. Because
the generated quantities block does not affect the posterior draws, the model fits α
and β using only the training data, reserving x̃ to generate ỹ .

The result from running Stan is a predictive sample ỹ(1), . . . ỹ(M) where each ỹ(m) ∼
p(ỹ | x̃, x, y).

The mean of the posterior predictive distribution is the expected value

E[ỹ | x̃, x, y] =
∫
ỹ · p(ỹ | x̃, θ) · p(θ | x, y)dθ (24.3)

≈ 1
M

M∑
m=1

ỹ(m), (24.4)

where the ỹ(m) ∼ p(ỹ | x̃, x, y) are drawn from the posterior predictive distribution.
Thus the posterior mean of y_tilde[n] after running Stan is the expected value of ỹn
conditioned on the training data x, y and predictor x̃n. This is the Bayesian estimate
for ỹ with minimum expected squared error. The posterior draws can also be used
to estimate quantiles for the median and any posterior intervals of interest for ỹ , as
well as covariance of the ỹn. The posterior draws ỹ(m) may also be used to estimate
predictive event probabilities, such as Pr[ỹ1 > 0] or Pr[

∏Ñ
n=1(ỹn) > 1], as expectations

of indicator functions.

All of this can be carried out by running Stan only a single time to draw a single sample
of M draws,

ỹ(1), . . . , ỹ(M) ∼ p(ỹ | x̃, x, y).

It’s only when moving to cross-validation where multiple runs are required.
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24.6. Estimating event probabilities
Event probabilities involving either parameters or predictions or both may be coded in
the generated quantities block. For example, to evaluate Pr[λ > 5 | y] in the simple
Poisson example with only a rate parameter λ, it suffices to define a generated quantity

generated quantities {
int<lower = 0, upper = 1> lambda_gt_5 = lambda > 5;
...

The value of the expression lambda > 5 is 1 if the condition is true and 0 otherwise.
The posterior mean of this parameter is the event probability

Pr[λ > 5 | y] =
∫

I(λ > 5) · p(λ | y)dλ

≈ 1
M

M∑
m=1

I[λ(m) > 5],

where each λ(m) ∼ p(λ | y) is distributed according to the posterior. In Stan, this is
recovered as the posterior mean of the parameter lambda_gt_5.

In general, event probabilities may be expressed as expectations of indicator functions.
For example,

Pr[λ > 5 | y] = E[I[λ > 5] | y]

=
∫

I(λ > 5) · p(λ | y)dλ

≈ 1
M

M∑
m=1

I(λ(m) > 5).

The last line above is the posterior mean of the indicator function as coded in Stan.

Event probabilities involving posterior predictive quantities ỹ work exactly the same
way as those for parameters. For example, if ỹn is the prediction for the n-th
unobserved outcome (such as the score of a team in a game or a level of expression of
a protein in a cell), then

Pr[ỹ3 > ỹ7 | x̃, x, y] = E[I[ỹ3 > ỹ7] | x̃, x, y]

=
∫

I(ỹ3 > ỹ7) · p(ỹ | x̃, x, y)dỹ

≈ 1
M

M∑
m=1

I(ỹ(m)3 > ỹ(m)7 ),

where ỹ(m) ∼ p(ỹ | x̃, x, y).
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24.7. Stand-alone generated quantities and ongoing prediction
Stan’s sampling algorithms take a Stan program representing a posterior p(θ | y, x)
along with actual data x and y to produce a set of draws θ(1), . . . , θ(M) from the
posterior. Posterior predictive draws ỹ(m) ∼ p(ỹ | x̃, x, y) can be generated by drawing

ỹ(m) ∼ p(y | x̃, θ(m))

from the sampling distribution. Note that drawing ỹ(m) only depends on the new
predictors x̃ and the posterior draws θ(m). Most importantly, neither the original data
or the model density is required.

By saving the posterior draws, predictions for new data items x̃ may be generated
whenever needed. In Stan’s interfaces, this is done by writing a second Stan program
that inputs the original program’s parameters and the new predictors. For example,
for the linear regression case, the program to take posterior draws declares the data
and parameters, and defines the model.

data {
int<lower = 0> N;
vector[N] x;
vector[N] y;

}
parameters {

real alpha;
real beta;
real<lower = 0> sigma;

}
model {

y ~ normal(alpha + beta * x, sigma);
alpha ~ normal(0, 5);
beta ~ normal(0, 1);
sigma ~ lognormal(0, 0.5);

}

A second program can be used to generate new observations. This follow-on program
need only declare the parameters as they were originally defined. This may require
defining constants in the data block such as sizes and hyperparameters that are
involved in parameter size or constraint declarations. Then additional data is read in
corresponding to predictors for new outcomes that have yet to be observed. There is no
need to repeat the model or unneeded transformed parameters or generated quantities.
The complete follow-on program for prediction just declares the predictors in the data,
the original parameters, and then the predictions in the generated quantities block.
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data {
int<lower = 0> N_tilde;
vector[N_tilde] x_tilde;

}
parameters {

real alpha;
real beta;
real<lower = 0> sigma;

}
generated quantities {

vector[N_tilde] y_tilde
= normal_rng(alpha + beta * x_tilde, sigma);

}

When running stand-alone generated quantities, the inputs required are the original
draws for the parameters and any predictors corresponding to new predictions, and
the output will be draws for ỹ or derived quantities such as event probabilities.

Any posterior predictive quantities desired may be generated this way. For example,
event probabilities are estimated in the usual way by defining indicator variables in
the generated quantities block.



25. Simulation-Based Calibration

A Bayesian posterior is calibrated if the posterior intervals have appropriate coverage.
For example, 80% intervals are expected to contain the true parameter 80% of the
time. If data is generated according to a model, Bayesian posterior inference with
respect to that model is calibrated by construction. Simulation-based calibration (SBC)
exploits this property of Bayesian inference to asses the soundness of a posterior
sampler. Roughly, the way it works is by simulating parameters according to the prior,
then simulating data conditioned on the simulated parameters, then testing posterior
calibration of the inference algorithm over independently simulated data sets. This
chapter follows Talts et al. (2018), which improves on the original approach developed
by Cook, Gelman, and Rubin (2006).

25.1. Bayes is calibrated by construction
Suppose a Bayesian model is given in the form of a prior density p(θ) and sampling
density p(y | θ). Now consider a process that first simulates parameters from the
prior,

θsim ∼ p(θ),

and then simulates data given the parameters,

ysim ∼ p(y | θsim).

By the definition of conditional densities, the simulated data and parameters constitute
an independent draw from the model’s joint distribution,

(ysim, θsim) ∼ p(y, θ).

From Bayes’s rule, it follows that for any observed (fixed) data y ,

p(θ | y)∝ p(y, θ).

Therefore, the simulated parameters constitute a draw from the posterior for the
simulated data,

θsim ∼ p(θ | ysim).

Now consider an algorithm that produces a sequence of draws from the posterior
given this simulated data,

θ(1), . . . , θ(M) ∼ p(θ | ysim).

302
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Because θsim is also distributed as a draw from the posterior, the rank statistics of
θsim with respect to θ(1), . . . θ(M) should be uniform.

This is one way to define calibration, because it follows that posterior intervals will
have appropriate coverage (Dawid 1982; Gneiting, Balabdaoui, and Raftery 2007). If
the rank of θsim is uniform among the draws θ(1), . . . , θ(M), then for any 90% interval
selected, the probability the true value θsim falls in it will also be 90%. The same goes
for any other posterior interval.

25.2. Simulation-based calibration
Suppose the Bayesian model to test has joint density

p(y, θ) = p(y | θ) · p(θ),

with data y and parameters θ (both are typically multivariate). Simulation-based
calibration works by generating N simulated parameter and data pairs according to
the joint density,

(ysim(1), θsim(1)), . . . , (ysim(N), θsim(N)),∼ p(y, θ).

For each simulated data set ysim(n), use the algorithm to be tested to generate M
posterior draws, which if everything is working properly, will be distributed marginally
as

θ(n,1), . . . , θ(n,M) ∼ p(θ | ysim(n)).

For a simulation n and parameter k, the rank of the simulated parameter among the
posterior draws is

rn,k = rank(θsim(n)
k , (θ(n,1), . . . , θ(n,M)))

=
M∑
m=1

I[θ(n,m)k < θsim(n)
k ].

That is, the rank is the number of posterior draws θ(n,m)k that are less than the simulated
draw θsim(n)

k .

If the algorithm generates posterior draws according to the posterior, the ranks should
be uniformly distributed from 0 to M , so that the ranks plus one are uniformly
distributed from 1 to M + 1,

rn,k + 1 ∼ categorical
(

1
M + 1 , . . . ,

1
M + 1

)
.

Simulation-based calibration uses this expected behavior to test the calibration of each
parameter of a model on simulated data. Talts et al. (2018) suggest plotting binned
counts of r1:N,k for different parameters k; Cook, Gelman, and Rubin (2006) automate
the process with a hypothesis test for uniformity.
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25.3. SBC in Stan
Running simulation-based calibration in Stan will test whether Stan’s sampling
algorithm can sample from the posterior associated with data generated according
to the model. The data simulation and posterior fitting and rank calculation can all
be done within a single Stan program. Then Stan’s posterior sampler has to be run
multiple times. Each run produces a rank for each parameter being assessed for
uniformity. The total set of ranks can then be tested for uniformity.

Example model
For illustration, a very simple model will suffice. Suppose there are two parameters
(µ,σ) with independent priors,

µ ∼ normal(0,1),

and
σ ∼ lognormal(0,1).

The data y = y1, . . . , yN is drawn conditionally independently given the parameters,

yn ∼ normal(µ,σ).

The joint prior density is thus

p(µ,σ) = normal(µ | 0,1) · lognormal(σ | 0,1),

and the sampling density is

p(y | µ,σ) =
N∏
n=1

normal(yn | µ,σ).

For example, suppose the following two parameter values are drawn from the prior in
the first simulation,

(µsim(1), σ sim(1)) = (1.01,0.23).

Then data ysim(1) ∼ p(y | µsim(1), σ sim(1)) is drawn according to the sampling
distribution. Next, M = 4 draws are taken from the posterior µ(1,m), σ (1,m) ∼ p(µ,σ |
ysim(1)),

m µ(1,m) σ (1,m)

1 1.07 0.33
2 −0.32 0.14
3 −0.99 0.26
4 1.51 0.31
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Then the comparisons on which ranks are based look as follows,

m I(µ(1,m) < µsim(1)) I(σ (1,m) < σ sim(1))
1 0 0
2 1 1
3 1 0
4 0 0

The ranks are the column sums, r1,1 = 2 and r1,2 = 1. Because the simulated parameters
are distributed according to the posterior, these ranks should be distributed uniformly
between 0 and M , the number of posterior draws.

Testing a Stan program with simulation-based calibration
To code simulation-based calibration in a Stan program, the transformed data block can
be used to simulate parameters and data from the model. The parameters, transformed
parameters, and model block then define the model over the simulated data. Then,
in the generated quantities block, the program records an indicator for whether each
parameter is less than the simulated value. As shown above, the rank is then the sum
of the simulated indicator variables.

transformed data {
real mu_sim = normal_rng(0, 1);
real<lower = 0> sigma_sim = lognormal_rng(0, 1);
int<lower = 0> J = 10;
for (j in 1:J)
y_sim[j] = normal_rng(mu_sim, sigma_sim);

}
parameters {

real mu;
real<lower = 0> sigma;

}
model {

mu ~ normal(0, 1);
sigma ~ lognormal(0, 1);
y_sim ~ normal(mu, sigma);

}
generated quantities {

int<lower = 0, upper = 1> lt_sim[2]
= { mu < mu_sim, sigma < sigma_sim };

}

To avoid confusion with the number of simulated data sets used for simulation-based
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calibration, J is used for the number of simulated data points.

The model is implemented twice—once as a data generating process using random
number generators in the transformed data block, then again in the parameters and
model block. This duplication is a blessing and a curse. The curse is that it’s more
work and twice the chance for errors. The blessing is that by implementing the model
twice and comparing results, the chance of there being a mistake in the model is
reduced.

Pseudocode for simulation-based calibration
The entire simulation-based calibration process is as follows, where

• p(theta) is the prior density
• p(y | theta) is the sampling density
• K is the number of parameters
• N is the total number of simulated data sets and fits
• M is the number of posterior draws per simulated data set

SBC(p(theta), p(y | theta), K, N, M)
------------------------------------
for (n in 1:N) {

// simulate parameters and data
theta(sim(n)) ~ p(theta)
y(sim(n)) ~ p(y | theta(sim(n)))

// posterior draws given simulated data
for (m in 1:M)

theta(n, m) ~ p(theta | y(sim(n)))

// calculate rank of sim among posterior draws
for (k in 1:K)

rank(n, k) = SUM_m I(theta[k](n,m) < theta[k](sim(n)))
}
// test uniformity of each parameter
for (k in 1:K)

test uniformity of rank(1:N, k)

The importance of thinning
The draws from the posterior are assumed to be roughly independent. If they are not,
artifacts may arise in the uniformity tests due to correlation in the posterior draws.
Thus it is best to think the posterior draws down to the point where the effective
sample size is roughly the same as the number of thinned draws. This may require
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running the code a few times to judge the number of draws required to produce a
target effective sample size. This operation that can be put into a loop that doubles
the number of iterations until all parameters have an effective sample size of M, then
thinning down to M draws.

25.4. Testing uniformity
A simple, though not very highly powered, χ2-squared test for uniformity can be
formulated by binning the ranks 0 : M into J bins and testing that the bins all have
roughly the expected number of draws in them. Many other tests for uniformity are
possible. For example, Cook, Gelman, and Rubin (2006) transform the ranks using the
inverse cumulative distribution function for the standard normal and then perform a
test for normality. Talts et al. (2018) recommend visual inspection of the binned plots.

The bins don’t need to be exactly the same size. In general, if bj is the number of ranks
that fall into bin j and ej is the number of ranks expected to fall into bin j (which will
be proportional to its size under uniformity), the test statistic is

X2 =
J∑
j=1

(bj − ej)2
ej

.

The terms are approximately square standard normal, so that under the null hypothesis
of uniformity,

X2 ∼ chiSquared(J − 1),

with the corresponding p-value given by the complementary cumulative distribution
function (CCDF) of chiSquared(J − 1) applied to X2. Because this test relies on the
binomial being approximately normal, the traditional advice is to make sure the
expected count in each bin is at least five, i.e., ej ≥ 5.

Indexing to simplify arithmetic
Because there are M + 1 possible ranks, with J bins, it is easiest to have M + 1 be
divisible by J. For instance, if J = 20 and M = 999, then there are 1000 possible ranks
and an expected count in each bin of M+1J = 50.

Distributing the ranks into bins is another fiddly operation that can be done with
integer arithmetic or the floor operation. Using floor, the following function determines
the bin for a rank,

bin(rn,m,M, J) = 1+
⌊ rn,m
(M + 1)/J

⌋
.

For example, with M = 999 and J = 20, (M + 1)/J = 50. The lowest rank checks out,

bin(0,999,20) = 1+ b0/50c = 1,
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as does the 50th rank,

bin(49,999,20) = 1+ b49/50c = 1,

and the 51st is appropriately put in the second bin,

bin(50,999,20) = 1+ b50/50c = 2.

The highest rank also checks out, with bin(1000,999,20) = 50.

To summarize, the following pseudocode computes the bj values for the χ2 test or for
visualization in a histogram.

Inputs: M draws, J bins, N parameters, ranks r[n, m]
b[1:J] = 0
for (m in 1:M)

++b[1 + floor(r[n, m] * J / (M + 1))]

where the ++b[n] notation is a common form of syntactic sugar for b[n] = b[n] +
1.

In general, a great deal of care must be taken in visualizing discrete data because
it’s easy to introduce off-by-one errors and artifacts at the edges because of the way
boundaries are computed by default. That’s why so much attention must be devoted
to indexing and binning.

25.5. Examples of simulation-based calibration
This section will show what the results look like when the tests pass and then when
they fail. The passing test will compare a normal model and normal data generating
process, whereas the second will compare a normal model with a Student-t data
generating process. The first will produce calibrated posteriors, the second will not.

When things go right
Consider the following simple model for a normal distribution with standard normal
and lognormal priors on the location and scale parameters.

µ ∼ normal(0,1)

σ ∼ lognormal(0,1)

y1:10 ∼ normal(µ,σ).

The Stan program for evaluating SBC for this model is

transformed data {
real mu_sim = normal_rng(0, 1);
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real<lower = 0> sigma_sim = lognormal_rng(0, 1);

int<lower = 0> J = 10;
vector[J] y_sim;
for (j in 1:J)
y_sim[j] = student_t_rng(4, mu_sim, sigma_sim);

}
parameters {

real mu;
real<lower = 0> sigma;

}
model {

mu ~ normal(0, 1);
sigma ~ lognormal(0, 1);

y_sim ~ normal(mu, sigma);
}
generated quantities {

int<lower = 0, upper = 1> I_lt_sim[2]
= { mu < mu_sim, sigma < sigma_sim };

}

After running this for enough iterations so that the effective sample size is larger than
M , then thinning to M draws (here M = 999), the ranks are computed and binned, and
then plotted.

When things go wrong
Now consider using a Student-t data generating process with a normal model. Compare
the apparent uniformity of the well specified model with the ill-specified situation with
Student-t generative process and normal model.

When Stan’s sampler goes wrong
The example in the previous sections show hard-coded pathological behavior. The
usual application of SBC is to diagnose problems with a sampler.

This can happen in Stan with well-specified models if the posterior geometry is too
difficult (usually due to extreme stiffness that varies). A simple example is the eight
schools problem, the data for which consists of sample means yj and standard
deviations σj of differences in test score after the same intervention in J = 8 different
schools. Rubin (1981) applies a hierarchical model for a meta-analysis of the results,
estimating the mean intervention effect and a varying effect for each school. With a
standard parameterization and weak priors, this model has very challenging posterior
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Figure 25.1: Simulation based calibration plots for location and scale of a normal
model with standard normal prior on the location standard lognormal prior on the
scale. Both histograms appear uniform, which is consistent with inference being well
calibrated.

Figure 25.2: Simulation based calibration plots for location and scale of a normal
model with standard normal prior on the location standard lognormal prior on the
scale with mismatched generative model using a Student-t likelihood with 4 degrees
of freedom. The mean histogram appears uniform, but the scale parameter shows
simulated values much smaller than fit values, clearly signaling the lack of calibration.
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geometry, as shown by Talts et al. (2018); this section replicates their results.

The meta-analysis model has parameters for a population mean µ and standard
deviation τ > 0 as well as the effect θj of the treatment in each school. The model has
weak normal and half-normal priors for the population-level parameters,

µ ∼ normal(0,5)

τ ∼ normal+(0,5).

School level effects are modeled as normal given the population parameters,

θj ∼ normal(µ, τ).

The data is modeled as in a meta-analysis, given the school effect and sample standard
deviation in the school,

yj ∼ normal(θj , σj).

This model can be coded in Stan with a data-generating process that simulates the
parameters and then simulates data according to the parameters.

transformed data {
real mu_sim = normal_rng(0, 5);
real tau_sim = fabs(normal_rng(0, 5));
int<lower = 0> J = 8;
real theta_sim[J] = normal_rng(rep_vector(mu_sim, J), tau_sim);
real<lower=0> sigma[J] = fabs(normal_rng(rep_vector(0, J), 5));
real y[J] = normal_rng(theta_sim, sigma);

}
parameters {

real mu;
real<lower=0> tau;
real theta[J];

}
model {

tau ~ normal(0, 5);
mu ~ normal(0, 5);
theta ~ normal(mu, tau);
y ~ normal(theta, sigma);

}
generated quantities {

int<lower = 0, upper = 1> mu_lt_sim = mu < mu_sim;
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int<lower = 0, upper = 1> tau_lt_sim = tau < tau_sim;
int<lower = 0, upper = 1> theta1_lt_sim = theta[1] < theta_sim[1];

}

As usual for simulation-based calibration, the transformed data encodes the data-
generating process using random number generators. Here, the population parameters
µ and τ are first simulated, then the school-level effects θ, and then finally the observed
data σj and yj . The parameters and model are a direct encoding of the mathematical
presentation using vectorized sampling statements. The generated quantities block
includes indicators for parameter comparisons, saving only θ1 because the schools are
exchangeable in the simulation.

When fitting the model in Stan, multiple warning messages are provided that the
sampler has diverged. The divergence warnings are in Stan’s sampler precisely to
diagnose the sampler’s inability to follow the curvature in the posterior and provide
independent confirmation that Stan’s sampler cannot fit this model as specified.

SBC also diagnoses the problem. Here’s the rank plots for running N = 200 simulations
with 1000 warmup iterations and M = 999 draws per simulation used to compute the
ranks.

Figure 25.3: Simulation based calibration plots for the eight-schools model with
centered parameterization in Stan. The geometry is too difficult for the NUTS sampler
to handle, as indicated by the plot for theta[1].

Although the population mean and standard deviation µ and τ appear well calibrated,
θ1 tells a very different story. The simulated values are much smaller than the values
fit from the data. This is because Stan’s no-U-turn sampler is unable to sample with
the model formulated in the centered parameterization—the posterior geometry has
regions of extremely high curvature as τ approaches zero and the θj become highly
constrained. The chapter on reparameterization explains how to remedy this problem
and fit this kind of hierarchical model with Stan.



26. Posterior and Prior Predictive Checks

Posterior predictive checks are a way of measuring whether a model does a good job
of capturing relevant aspects of the data, such as means, standard deviations, and
quantiles (Rubin 1984; Gelman, Meng, and Stern 1996). Posterior predictive checking
works by simulating new replicated data sets based on the fitted model parameters
and then comparing statistics applied to the replicated data set with the same statistic
applied to the original data set.

Prior predictive checks evaluate the prior the same way. Specifically, they evaluate
what data sets would be consistent with the prior. They will not be calibrated with
actual data, but extreme values help diagnose priors that are either too strong, too
weak, poorly shaped, or poorly located.

Prior and posterior predictive checks are two cases of the general concept of
predictive checks, just conditioning on different things (no data and the observed data,
respectively). For hierarchical models, there are intermediate versions, as discussed in
the section on hierarchical models and mixed replication.

26.1. Simulating from the posterior predictive distribution
The posterior predictive distribution is the distribution over new observations given
previous observations. It’s predictive in the sense that it’s predicting behavior on new
data that is not part of the training set. It’s posterior in that everything is conditioned
on observed data y .

The posterior predictive distribution for replications yrep of the original data set y
given model parameters θ is defined by

p(yrep | y) =
∫
p(yrep | θ) · p(θ | y)dθ.

As with other posterior predictive quantities, generating a replicated data set yrep from
the posterior predictive distribution is straightforward using the generated quantities
block. Consider a simple regression model with parameters θ = (α,β,σ).

data {
int<lower = 0> N;
vector[N] x;
vector[N] y;

}

313
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parameters {
real alpha;
real beta;
real<lower = 0> sigma;

}
model {

alpha ~ normal(0, 2);
beta ~ normal(0, 1);
sigma ~ normal(0, 1);
y ~ normal(alpha + beta * x, sigma);

}

To generate a replicated data set y_rep for this simple model, the following generated
quantities block suffices.

generated quantities {
real y_rep[N] = normal_rng(alpha + beta * x, sigma);

}

The vectorized form of the normal random number generator is used with the original
predictors x and the model parameters alpha, beta, and sigma. The replicated data
variable y_rep is declared to be the same size as the original data y, but instead of a
vector type, it is declared to be an array of reals to match the return type of the function
normal_rng. Because the vector and real array types have the same dimensions and
layout, they can be plotted against one another and otherwise compared during
downstream processing.

The posterior predictive sampling for posterior predictive checks is different from
usual posterior predictive sampling discussed in the chapter on posterior predictions
in that the original predictors x are used. That is, the posterior predictions are for the
original data.

26.2. Plotting multiples
A standard posterior predictive check would plot a histogram of each replicated data
set along with the original data set and compare them by eye. For this purpose, only
a few replications are needed. These should be taken by thinning a larger set of
replications down to the size needed to ensure rough independence of the replications.

Here’s a complete example where the model is a simple Poisson with a weakly
informative exponential prior with a mean of 10 and standard deviation of 10.

data {
int<lower = 0> N;
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int<lower = 0> y[N];
}
transformed data {

real<lower = 0> mean_y = mean(to_vector(y));
real<lower = 0> sd_y = sd(to_vector(y));

}
parameters {

real<lower = 0> lambda;
}
model {

y ~ poisson(lambda);
lambda ~ exponential(0.2);

}
generated quantities {

int<lower = 0> y_rep[N] = poisson_rng(rep_array(lambda, N));
real<lower = 0> mean_y_rep = mean(to_vector(y_rep));
real<lower = 0> sd_y_rep = sd(to_vector(y_rep));
int<lower = 0, upper = 1> mean_gte = (mean_y_rep >= mean_y);
int<lower = 0, upper = 1> sd_gte = (sd_y_rep >= sd_y);

}

The generated quantities block creates a variable y_rep for the replicated data,
variables mean_y_rep and sd_y_rep for the statistics of the replicated data, and
indicator variables mean_gte and sd_gte for whether the replicated statistic is greater
than or equal to the statistic applied to the original data.

Now consider generating data y ∼ Poisson(5). The resulting small multiples plot shows
the original data plotted in the upper left and eight different posterior replications
plotted in the remaining boxes.

With a Poisson data-generating process and Poisson model, the posterior replications
look similar to the original data. If it were easy to pick the original data out of the
lineup, there would be a problem.

Now consider generating over-dispersed data y ∼ negative-binomial2(5,1). This has
the same mean as Poisson(5), namely 5, but a standard deviation of

√
5+ 52/1 ≈ 5.5.

There is no way to fit this data with the Poisson model, because a variable distributed
as Poisson(λ) has mean λ and standard deviation

√
λ, which is

√
5 for Poisson(5).

Here’s the resulting small multiples plot, again with original data in the upper left.

This time, the original data stands out in stark contrast to the replicated data sets, all
of which are clearly more symmetric and lower variance than the original data. That is,
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Figure 26.1: Posterior predictive checks for Poisson data generating process and
Poisson model.

Figure 26.2: Posterior predictive checks for negative binomial data generating process
and Poisson model.
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the model’s not appropriately capturing the variance of the data.

26.3. Posterior “p-values’ ’
If a model captures the data well, summary statistics such as sample mean and
standard deviation, should have similar values in the original and replicated data sets.
This can be tested by means of a p-value-like statistic, which here is just the probability
the test statistic s(·) in a replicated data set exceeds that in the original data,

Pr [s(yrep) ≥ s(y) | y] =
∫

I (s(yrep) ≥ s(y) | y) · p (yrep | y) dyrep.

It is important to note that“p-values’ ’ is in quotes because these statistics are not
classically calibrated, and thus will not in general have a uniform distribution even
when the model is well specified (Bayarri and Berger 2000).

Nevertheless, values of this statistic very close to zero or one are cause for concern
that the model is not fitting the data well. Unlike a visual test, this p-value-like test is
easily automated for bulk model fitting.

To calculate event probabilities in Stan, it suffices to define indicator variables that
take on value 1 if the event occurs and 0 if it does not. The posterior mean is then
the event probability. For efficiency, indicator variables are defined in the generated
quantities block.

generated quantities {
int<lower = 0, upper = 1> mean_gt;
int<lower = 0, upper = 1> sd_gt;
{
real y_rep[N] = normal_rng(alpha + beta * x, sigma);
mean_gt = mean(y_rep) > mean(y);
sd_gt = sd(y_rep) > sd(y);

}
}

The indicator variable mean_gt will have value 1 if the mean of the simulated data
y_rep is greater than or equal to the mean of he original data y. Because the values of
y_rep are not needed for the posterior predictive checks, the program saves output
space by using a local variable for y_rep. The statistics mean(u) and sd(y) could also
be computed in the transformed data block and saved.

For the example in the previous section, where over-dispersed data generated by a
negative binomial distribution was fit with a simple Poisson model, the following plot
illustrates the posterior p-value calculation for the mean statistic.
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Figure 26.3: Histogram of means of replicated data sets; vertical red line at mean of
original data.

The p-value for the mean is just the percentage of replicated data sets whose statistic
is greater than or equal that of the original data. Using a Poisson model for negative
binomial data still fits the mean well, with a posterior p-value of 0.49. In Stan terms, it
is extracted as the posterior mean of the indicator variable mean_gt.

The standard deviation statistic tells a different story.

Figure 26.4: Scatterplot of standard deviations of replicated data sets; the vertical red
line is at standard deviation of original data.

Here, the original data has much higher standard deviation than any of the replicated
data sets. The resulting p-value estimated by Stan after a large number of iterations is
exactly zero (the absolute error bounds are fine, but a lot of iterations are required to
get good relative error bounds on small p-values by sampling). In other words, there
were no posterior draws in which the replicated data set had a standard deviation
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greater than or equal to that of the original data set. Clearly, the model is not capturing
the dispersion of the original data. The point of this exercise isn’t just to figure out
that there’s a problem with a model, but to isolate where it is. Seeing that the data is
over-dispersed compared to the Poisson model would be reason to fit a more general
model like the negative binomial or a latent varying effects (aka random effects) model
that can account for the over-dispersion.

Which statistics to test?
Any statistic may be used for the data, but these can be guided by the quantities
of interest in the model itself. Popular choices in addition to mean and standard
deviation are quantiles, such as the median, 5% or 95% quantiles, or even the maximum
or minimum value to test extremes.

Despite the range of choices, test statistics should ideally be ancillary, in the sense
that they should be testing something other than the fit of a parameter. For example,
a simple normal model of a data set will typically fit the mean and variance of the
data quite well as long as the prior doesn’t dominate the posterior. In contrast, a
Poisson model of the same data cannot capture both the mean and the variance of a
data set if they are different, so they bear checking in the Poisson case. As we saw
with the Poisson case, the posterior mean for the single rate parameter was located
near the data mean, not the data variance. Other distributions such as the lognormal
and gamma distribution, have means and variances that are functions of two or more
parameters.

26.4. Prior predictive checks
Prior predictive checks generate data according to the prior in order to asses whether
a prior is appropriate (Gabry et al. 2019). A posterior predictive check generates
replicated data according to the posterior predictive distribution. In contrast, the prior
predictive check generates data according to the prior predictive distribution,

ysim ∼ p(y).

The prior predictive distribution is just like the posterior predictive distribution with
no observed data, so that a prior predictive check is nothing more than the limiting
case of a posterior predictive check with no data.

This is easy to carry out mechanically by simulating parameters

θsim ∼ p(θ)

according to the priors, then simulating data

ysim ∼ p(y | θsim)
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according to the sampling distribution given the simulated parameters. The result is a
simulation from the joint distribution,

(ysim, θsim) ∼ p(y, θ)

and thus
ysim ∼ p(y)

is a simulation from the prior predictive distribution.

Coding prior predictive checks in Stan
A prior predictive check is coded just like a posterior predictive check. If a posterior
predictive check has already been coded and it’s possible to set the data to be empty,
then no additional coding is necessary. The disadvantage to coding prior predictive
checks as posterior predictive checks with no data is that Markov chain Monte Carlo
will be used to sample the parameters, which is less efficient than taking independent
draws using random number generation.

Prior predictive checks can be coded entirely within the generated quantities block
using random number generation. The resulting draws will be independent. Predictors
must be read in from the actual data set—they do not have a generative model from
which to be simulated. For a Poisson regression, prior predictive sampling can be
encoded as the following complete Stan program.

data {
int<lower = 0> N;
vector[N] x;

}
generated quantities {

real alpha = normal_rng(0, 1);
real beta = normal_rng(0, 1);
real y_sim[N] = poisson_log_rng(alpha + beta * x);

}

Running this program using Stan’s fixed-parameter sampler yields draws from the
prior. These may be plotted to consider their appropriateness.

26.5. Example of prior predictive checks
Suppose we have a model for a football (aka soccer) league where there are J teams.
Each team has a scoring rate λj and in each game will be assumed to score poisson(λj)
points. Yes, this model completely ignores defense. Suppose the modeler does not
want to “put their thumb on the scale” and would rather “let the data speak for
themselves” and so uses a prior with very wide tails, because it seems uninformative,
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such as the widely deployed
λj ∼ gamma(ε1, ε2).

This is not just a manufactured example; The BUGS Book recommends setting ε =
(0.5,0.00001), which corresponds to a Jeffreys prior for a Poisson rate parameter prior
(Lunn et al. 2012, 85).

Suppose the league plays a round-robin tournament wherein every team plays every
other team. The following Stan model generates random team abilities and the results
of such a round-robin tournament, which may be used to perform prior predictive
checks.

data {
int<lower = 0> J;
real<lower = 0> epsilon[2];

}
generated quantities {

real<lower = 0> lambda[J];
int y[J, J];
for (j in 1:J) lambda[j] = gamma_rng(epsilon[1], epsilon[2]);
for (i in 1:J)
for (j in 1:J)
y[i, j] = poisson_rng(lambda[i]) - poisson_rng(lambda[j]);

}

In this simulation, teams play each other twice and play themselves once. This could
be made more realistic by controlling the combinatorics to only generate a single result
for each pair of teams, of which there are

(
J
2

)
= J·(J−1)

2 .

Using the gamma(0.5,0.00001) reference prior on team abilities, the following are the
first 20 simulated point differences for the match between the first two teams, y(1:20)

1,2 .

2597 -26000 5725 22496 1270 1072 4502 -2809 -302 4987
7513 7527 -3268 -12374 3828 -158 -29889 2986 -1392 66

That’s some pretty highly scoring football games being simulated; all but one has a
score differential greater than 100! In other words, this gamma(0.5,0.00001) prior
is putting around 95% of its weight on score differentials above 100. Given that
two teams combined rarely score 10 points, this prior is way out of line with prior
knowledge about football matches; it is not only consistent with outcomes that have
never occurred in the history of the sport, it puts most of the prior probability mass
there.
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The posterior predictive distribution can be strongly affected by the prior when there is
not much observed data and substantial prior mass is concentrated around infeasible
values (Gelman 2006).

Just as with posterior predictive distributions, any statistics of the generated data may
be evaluated. Here, the focus was on score difference between a single pair of teams,
but it could’ve been on maximums, minimums, averages, variances, etc.

In this textbook example, the prior is univariate and directly related to the expected
number of points scored, and could thus be directly inspected for consistency with
prior knowledge about scoring rates in football. There will not be the same kind
of direct connection when the prior and sampling distributions are multivariate. In
these more challenging situations, prior predictive checks are an easy way to get a
handle on the implications of a prior in terms of what it says the data is going to look
like; for a more complex application involving spatially heterogeneous air pollution
concentration, see (Gabry et al. 2019).

Prior predictive checks can also be compared with the data, but one should not expect
them to be calibrated in the same way as posterior predictive checks. That would
require guessing the posterior and encoding it in the prior. The goal is make sure the
prior is not so wide that it will pull probability mass away from feasible values.

26.6. Mixed predictive replication for hierarchical models
Gelman, Meng, and Stern (1996) discuss the case of mixed replication for hierarchical
models in which the hyperparameters remain fixed, but varying effects are replicated.
This is neither a purely prior nor purely posterior predictive check, but falls somewhere
in between.

For example, consider a simple varying intercept logistic regression, with intercepts
αk for k ∈ 1 : K. Each data item yn ∈ {0,1} is assumed to correspond to group
kkn ∈ 1 : K. The sampling distribution is thus

yn ∼ bernoulli(logit−1(αkk[n])).

The varying intercepts have a hierarchical normal prior,

αk ∼ normal(µ,σ).

The hyperparameters are themselves given weakly informative priors,

µ ∼ normal(0,2)

σ ∼ lognormal(0,1).
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Like in a posterior predictive check, the hyperparameters µ and σ are drawn from the
posterior,

µ(m), σ (m) ∼ p(µ,σ | y)

Like in a prior predictive check, replicated values of α are drawn from the
hyperparameters,

αrep(m)
k ∼ normal(αk | µ(m), σ (m)).

The data items are then each replicated using the replicated intercepts,

yrep(m)
n ∼ bernoulli(logit−1(αrep(m)

kk[n] )).

Thus the yrep(m) can be seen as a kind of posterior predictive replication of observations
from new groups that were not among the original K groups.

In Stan, mixed predictive replications yrep(m) can be programmed directly.

data {
int<lower = 0> K;
int<lower = 0> N;
int<lower = 1, upper = K> kk[N];
int<lower = 0, upper = 1> y[N];

}
parameters {

real mu;
real<lower = 0> sigma;
vector<offset = mu, multiplier = sigma>[K] alpha;

}
model {

mu ~ normal(0, 2); // hyperprior
sigma ~ lognormal(0, 1);
alpha ~ normal(mu, sigma); // hierarchical prior
y ~ bernoulli_logit(alpha[kk]); // sampling distribution

}
generated quantities {

// alpha replicated; mu and sigma not replicated
real alpha_rep[K]
= normal_rng(rep_vector(mu, K), sigma);

int<lower = 0, upper = 1> y_rep[N]
= bernoulli_logit_rng(alpha_rep[kk]);

}
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26.7. Joint model representation
Following Gelman, Meng, and Stern (1996), prior, posterior, and mixed replications
may all be defined as posteriors from joint models over parameters and observed and
replicated data.

Posterior predictive model
For example, posterior predictive replication may be formulated using sampling
notation as follows.

θ ∼ p(θ)

y ∼ p(y | θ)

yrep ∼ p(y | θ)

The heavily overloaded sampling notation is meant to indicate that both y and yrep are
drawn from the same distribution, or more formally using capital letters to distinguish
random variables, that the conditional densities pY rep|Θ and pY |Θ are the same.

The joint density is

p(θ, y, yrep) = p(θ) · p(y | θ) · p(yrep | θ).

This again is assuming that the two distributions for y and yrep are identical.

The variable y is observed, with the predictive simulation yrep and parameter vector
θ not observed. The posterior is p(yrep, θ | y). Given draws from the posterior, the
posterior predictive simulations yrep are retained.

Prior predictive model
The prior predictive model simply drops the data component of the posterior
predictive model.

θ ∼ p(θ)

yrep ∼ p(y | θ)

This corresponds to the joint density

p(θ, yrep) = p(θ) · p(yrep | θ).

It is typically straightforward to draw θ from the prior and yrep from the sampling
distribution given θ efficiently. In cases where it is not, the model may be coded and
executed just as the posterior predictive model, only with no data.
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Mixed replication for hierarchical models
The mixed replication corresponds to the model

φ ∼ p(φ)

α ∼ p(α | φ)

y ∼ p(y | α)

αrep ∼ p(α | φ)

yrep ∼ p(y | φ)

The notation here is meant to indicate that α and αrep have identical distributions, as
do y and yrep.

This corresponds to a joint model

p(φ,α,αrep, y, yrep) = p(φ) · p(α | φ) · p(y | α) · p(αrep | φ) · p(yrep | αrep),

where y is the only observed variable, α contains the lower-level parameters and φ the
hyperparameters. Note that φ is not replicated and instead appears in the distribution
for both α and αrep.

The posterior is p(φ,α,αrep, yrep | y). From posterior draws, the posterior predictive
simulations yrep are kept.



27. Held-Out Evaluation and Cross-Validation

Held-out evaluation involves splitting a data set into two parts, a training data set
and a test data set. The training data is used to estimate the model and the test data
is used for evaluation. Held-out evaluation is commonly used to declare winners in
predictive modeling competitions such as those run by Kaggle.

Cross-validation involves repeated held-out evaluations performed by partitioning a
single data set in different ways. The training/test split can be done either by randomly
selecting the test set, or by partitioning the data set into several equally-sized subsets
and then using each subset in turn as the test data with the other folds as training
data.

Held-out evaluation and cross-validation may involve any kind of predictive statistics,
with common choices being the predictive log density on test data, squared error of
parameter estimates, or accuracy in a classification task.

27.1. Evaluating posterior predictive densities
Given training data (x, y) consisting of parallel sequences of predictors and
observations and test data (x̃, ỹ) of the same structure, the posterior predictive density
is

p(ỹ | x̃, x, y) =
∫
p(ỹ | x̃, θ) · p(θ | x, y)dθ,

where θ is the vector of model parameters. This predictive density is the density of
the test observations, conditioned on both the test predictors x̃ and the training data
(x, y).

This integral may be calculated with Monte Carlo methods as usual,

p(ỹ | x̃, x, y) ≈ 1
M

M∑
m=1

p(ỹ | x̃, θ(m)),

where the θ(m) ∼ p(θ | x, y) are draws from the posterior given only the training data
(x, y).

To avoid underflow in calculations, it will be more stable to compute densities on the
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log scale. Taking the logarithm and pushing it through results in a stable computation,

logp(ỹ | x̃, x, y) ≈ log
1
M

M∑
m=1

p(ỹ | x̃, θ(m)),

= − logM + log
M∑
m=1

p(ỹ | x̃, θ(m)),

= − logM + log
M∑
m=1

exp(logp(ỹ | x̃, θ(m)))

= − logM + log-sum-expMm=1 logp(ỹ | x̃, θ(m))

where the log sum of exponentials function is defined so as to make the above equation
hold,

log-sum-expMm=1 µm = log
M∑
m=1

exp(µm).

The log sum of exponentials function can be implemented so as to avoid underflow
and maintain high arithmetic precision as

log-sum-expMm=1µm =max(µ)+
M∑
m=1

exp(µm −max(µ)).

Pulling the maximum out preserves all of its precision. By subtracting the maximum,
the terms µm −max(µ) ≤ 0, and thus will not overflow.

Stan program
To evaluate the log predictive density of a model, it suffices to implement the log
predictive density of the test data in the generated quantities block. The log sum
of exponentials calculation must be done on the outside of Stan using the posterior
draws of logp(ỹ | x̃, θ(m)).

Here is the code for evaluating the log posterior predictive density in a simple linear
regression of the test data ỹ given predictors x̃ and training data (x, y).

data {
int<lower = 0> N;
vector[N] y;
vector[N] x;
int<lower = 0> N_tilde;
vector[N_tilde] x_tilde;
vector[N_tilde] y_tilde;
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}
parameters {

real alpha;
real beta;
real<lower = 0> sigma;

}
model {

y ~ normal(alpha + beta * x, sigma);
}
generated quantities {

real log_p = normal_lpdf(y_tilde | alpha + beta * x_tilde, sigma);
}

Only the training data x and y are used in the model block. The test data y_tilde
and test predictors x_tilde appear in only the generated quantities block. Thus the
program is not cheating by using the test data during training. Although this model
does not do so, it would be fair to use x_tilde in the model block—only the test
observations y_tilde are unknown before they are predicted.

GivenM posterior draws from Stan, the sequence log_p[1:M] will be available, so that
the log posterior predictive density of the test data given training data and predictors
is just log_sum_exp(log_p) - log(M).

27.2. Estimation error
Parameter estimates
Estimation is usually considered for unknown parameters. If the data from which the
parameters were estimated came from simulated data, the true value of the parameters
may be known. If θ is the true value and θ̂ the estimate, then error is just the difference
between the prediction and the true value,

err = θ̂ − θ.

If the estimate is larger than the true value, the error is positive, and if it’s smaller,
then error is negative. If an estimator’s unbiased, then expected error is zero. So
typically, absolute error or squared error are used, which will always have positive
expectations for an imperfect estimator. Absolute error is defined as

abs-err =
∣∣∣θ̂ − θ∣∣∣

and squared error as

sq-err =
(
θ̂ − θ

)2
.
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Gneiting and Raftery (2007) provide a thorough overview of such scoring rules and
their properties.

Bayesian posterior means minimize expected square error, whereas posterior medians
minimize expected absolute error. Estimates based on modes rather than probability,
such as (penalized) maximum likelihood estimates or maximum a posterior estimates,
do not have these properties.

Predictive estimates
In addition to parameters, other unknown quantities may be estimated, such as the
score of a football match or the effect of a medical treatment given to a subject. In
these cases, square error is defined in the same way. If there are multiple exchangeable
outcomes being estimated, z1, . . . , zN , then it is common to report mean square error
(MSE),

mse = 1
N

N∑
n=1
(ẑn − zn)2 .

To put the error back on the scale of the original value, the square root may be applied,
resulting in what is known prosaically as root mean square error (RMSE),

rmse =
√

mean-sq-err.

Predictive estimates in Stan
Consider a simple linear regression model, parameters for the intercept α and slope β,
along with predictors x̃n. The standard Bayesian estimate is the expected value of ỹ
given the predictors and training data,

ˆ̃yn = E[ỹn | x̃n, x, y]

≈ 1
M

M∑
m=1

ỹ(m)n

where ỹ(m)n is drawn from the sampling distribution

ỹ(m)n ∼ p(ỹn | x̃n, α(m), β(m)),

for parameters α(m) and β(m) drawn from the posterior,

(α(m), β(m)) ∼ p(α,β | x, y).

In the linear regression case, two stages of simplification can be carried out, the first
of which helpfully reduces the variance of the estimator. First, rather than averaging
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samples ỹ(m)n , the same result is obtained by averaging linear predictions,

ˆ̃yn = E [α+ β · x̃n | x̃n, x, y]

≈ 1
M

M∑
m=1

α(m) + β(m) · x̃n

This is possible because

ỹ(m)n ∼ normal(ỹn | α(m) + β(m) · x̃n, σ (m)),

and the normal distribution has symmetric error so that the expectation of ỹ(m)n is
the same as α(m) + β(m) · x̃n. Replacing the sampled quantity ỹ(m)n with its expectation
is a general variance reduction technique for Monte Carlo estimates known as Rao-
Blackwellization (Rao 1945; Blackwell 1947).

In the linear case, because the predictor is linear in the coefficients, the estimate can
be further simplified to use the estimated coefficients,

ỹ(m)n ≈ 1
M

M∑
m=1

(
α(m) + β(m) · x̃n

)

= 1
M

M∑
m=1

α(m) + 1
M

M∑
m=1
(β(m) · x̃n)

= 1
M

M∑
m=1

α(m) +
 1
M

M∑
m=1

β(m)
 · x̃n

= α̂+ β̂ · x̃n.

In Stan, only the first of the two steps (the important variance reduction step) can be
coded in the object model. The linear predictor is defined in the generated quantities
block.

data {
int<lower = 0> N_tilde;
vector[N_tilde] x_tilde;
...

generated quantities {
vector[N_tilde] tilde_y = alpha + beta * x_tilde;

The posterior mean of tilde_y calculated by Stan is the Bayesian estimate ˆ̃y. The
posterior median may also be calculated and used as an estimate, though square error
and the posterior mean are more commonly reported.
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27.3. Cross-validation
Cross-validation involves choosing multiple subsets of a data set as the test set and
using the other data as training. This can be done by partitioning the data and using
each subset in turn as the test set with the remaining subsets as training data. A
partition into ten subsets is common to reduce computational overhead. In the limit,
when the test set is just a single item, the result is known as leave-one-out (LOO)
cross-validation (Vehtari, Gelman, and Gabry 2017).

Partitioning the data and reusing the partitions is very fiddly in the indexes and may
not lead to even divisions of the data. It’s far easier to use random partitions, which
support arbitrarily sized test/training splits and can be easily implemented in Stan.
The drawback is that the variance of the resulting estimate is higher than with a
balanced block partition.

Stan implementation with random folds
For the simple linear regression model, randomized cross-validation can be
implemented in a single model. To randomly permute a vector in Stan, the simplest
approach is the following.

functions {
int[] permutation_rng(int N) {

int N = rows(x);
int y[N];
for (n in 1:N)
y[n] = n;

vector[N] theta = rep_vector(1.0 / N, N);
for (n in 1:rows(y))

int i = categorical_rng(theta);
int temp = y[n];
y[n] = y[i];
y[i] = temp;

}
return y;

}
}

The name of the function must end in _rng because it uses other random functions
internally. This will restrict its usage to the transformed data and generated quantities
block. The code walks through the vector exchanging each item with another randomly
chosen item, resulting in a uniformly drawn permutation of the integers 1:N.1

1The traditional approach is to walk through a vector and replace each item with a random element from
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The transformed data block uses the permutation RNG to generate training data and
test data by taking prefixes and suffixes of the permuted data.

data {
int<lower = 0> N;
vector[N] x;
vector[N] y;
int<lower = 0, upper = N> N_test;

}
transformed data {

int N_train = N - N_test;
int permutation[N] = permutation_rng(N);
vector[N_train] x_train = x[permutation[1 : N_train]];
vector[N_train] y_train = y[permutation[1 : N_train]];
vector[N_test] x_test = x[permutation[N_train + 1 : N]];
vector[N_test] y_test = y[permutation[N_train + 1 : N]];

}

Recall that in Stan, permutation[1:N_train] is an array of integers, so that
x[permutation[1 : N_train]] is a vector defined for i in 1:N_train by

x[permutation[1 : N_train]][i] = x[permutation[1:N_train][i]]
= x[permutation[i]]

Given the test/train split, the rest of the model is straightforward.

parameters {
real alpha;
real beta;
real<lower = 0> sigma;

}
model {

y_train ~ normal(alpha + beta * x_train, sigma);
{ alpha, beta, sigma } ~ normal(0, 1);

}
generated quantities {

vector[N] y_test_hat = normal_rng(alpha + beta * x_test, sigma);
vector[N] err = y_test_sim - y_hat;

}

the remaining elements, which is guaranteed to only move each item once. This was not done here as it’d
require new categorical theta because Stan does not have a uniform discrete RNG built in.
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The prediction y_test_hat is defined in the generated quantities block using the
general form involving all uncertainty. The posterior of this quantity corresponds to
using a posterior mean estimator,

ŷ test = E
[
y test | xtest, xtrainy train

]
≈ 1

M

M∑
m=1

ŷ test(m).

Because the test set is constant and the expectation operator is linear, the posterior
mean of err as defined in the Stan program will be the error of the posterior mean
estimate,

ŷ test − y test = E
[
ŷ test | xtest, xtrain, y train

]
− y test

= E
[
ŷ test − y test | xtest, xtrain, y train

]
≈ 1

M

M∑
m=1

ŷ test(m) − y test,

where
ŷ test(m) ∼ p(y | xtest, xtrain, y train).

This just calculates error; taking absolute value or squaring will compute absolute
error and mean square error. Note that the absolute value and square operation should
not be done within the Stan program because neither is a linear function and the result
of averaging squares is not the same as squaring an average in general.

Because the test set size is chosen for convenience in cross-validation, results should
be presented on a per-item scale, such as average absolute error or root mean square
error, not on the scale of error in the fold being evaluated.

User-defined permutations
It is straightforward to declare the variable permutation in the data block instead of
the transformed data block and read it in as data. This allows an external program to
control the blocking, allowing non-random partitions to be evaluated.

Cross-validation with structured data
Cross-validation must be done with care if the data is inherently structured. For
example, in a simple natural language application, data might be structured by
document. For cross-validation, one needs to cross-validate at the document level, not
at the individual word level. This is related to mixed replication in posterior predictive
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checking, where there is a choice to simulate new elements of existing groups or
generate entirely new groups.

Education testing applications are typically grouped by school district, by school, by
classroom, and by demographic features of the individual students or the school as
a whole. Depending on the variables of interest, different structured subsets should
be evaluated. For example, the focus of interest may be on the performance of entire
classrooms, so it would make sense to cross-validate at the class or school level on
classroom performance.

Cross-validation with spatio-temporal data
Often data measurements have spatial or temporal properties. For example, home
energy consumption varies by time of day, day of week, on holidays, by season, and
by ambient temperature (e.g., a hot spell or a cold snap). Cross-validation must be
tailored to the predictive goal. For example, in predicting energy consumption, the
quantity of interest may be the prediction for next week’s energy consumption given
historical data and current weather covariates. This suggests an alternative to cross-
validation, wherein individual weeks are each tested given previous data. This often
allows comparing how well prediction performs with more or less historical data.

Approximate cross-validation
Vehtari, Gelman, and Gabry (2017) introduce a method that approximates the
evaluation of leave-one-out cross validation inexpensively using only the data point
log likelihoods from a single model fit. This method is documented and implemented
in the R package loo (Gabry et al. 2019).



28. Poststratification

Stratification is a technique developed for survey sampling in which a population is
partitioned into subgroups (i.e., stratified) and each group (i.e., stratum) is sampled
independently. If the subgroups are more homogeneous (i.e., lower variance) than
the population as a whole, this can reduce variance in the estimate of a quantity of
interest at the population level.

Poststratification is a technique for adjusting a non-representative sample (i.e., a
convenience sample or other observational data) for which there are demographic
predictors characterizing the strata. It is carried out after a model is fit to the observed
data, hence the name poststratification (Little 1993). Poststratification can be fruitfully
combined with regression modeling (or more general parametric modeling), which
provides estimates based on combinations of predictors (or general parameters) rather
than raw counts in each stratum. Multilevel modeling is useful in determining how
much partial pooling to apply in the regressions, leading to the popularity of the
combination of multilevel regression and poststratification (MRP) (Park, Gelman, and
Bafumi 2004).

28.1. Some examples
Earth science
Stratification and poststratification can be applied to many applications beyond survey
sampling (Kennedy and Gelman 2019). For example, large-scale whole-earth soil-carbon
models are fit with parametric models of how soil-carbon depends on features of an
area such as soil composition, flora, fauna, temperature, humidity, etc. Given a model
that predicts soil-carbon concentration given these features, a whole-earth model can
be created by stratifying the earth into a grid of say 10km by 10km “squares” (they
can’t literally be square because the earth’s surface is topologically a sphere). Each
grid area has an estimated makeup of soil type, forestation, climate, etc. The global
level of soil carbon is then estimated using poststratification by simply summing
the expected soil carbon estimated for each square in the grid (Paustian et al. 1997).
Dynamic models can then be constructed by layering a time-series component, varying
the poststratification predictors over time, or both (Field et al. 1998).

Polling
Suppose a university’s administration would like to estimate the support for a given
proposal among its students. A poll is carried out in which 490 respondents are
undergraduates, 112 are graduate students, and 47 are continuing education students.

335
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Now suppose that support for the issue among the poll respondents is is 25% among
undergraduate students (subgroup 1), 40% among graduate students (subgroup 2),
and 80% among continuing education students (subgroup 3). Now suppose that the
student body is made up of 20,000 undergraduates, 5,000 graduate students, and
2,000 continuing education students. It is important that our subgroups are exclusive
and exhaustive, i.e., they form a partition of the population.

The proportion of support in the poll among students in each group provides a simple
maximum likelihood estimate θ∗ = (0.25,0.5,0.8) of support in each group for a
simple Bernoulli model where student n’s vote is modeled as

yn ∼ bernoulli(θjj[n]),

where jj[n] ∈ 1 : 3 is the subgroup to which the n-th student belongs.

An estimate of the population prevalence of support for the issue among students
can be constructed by simply multiplying estimated support in each group by the
size of each group. Letting N = (20000, 5000, 2000) be the subgroup sizes, the
poststratified estimate of support in the population φ∗ is estimated by

φ∗ =

3∑
j=1
θ∗j ·Nj

3∑
j=1
Nj

.

Plugging in our estimates and population counts yields

φ∗ = 0.25 · 20000+ 0.4 · 5000+ 0.8 · 2000
20000+ 5000+ 2000

= 8600
27000

≈ 0.32.

28.2. Bayesian poststratification
Considering the same polling data from the previous section in a Bayesian setting,
the uncertainty in the estimation of subgroup support is pushed through predictive
inference in order to get some idea of the uncertainty of estimated support. Continuing
the example of the previous section, the likelihood remains the same,

yn ∼ bernoulli(θjj[n]),
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where jj[n] ∈ 1 : J is the group to which item n belongs and θj is the proportion of
support in group j .

This can be reformulated from a Bernoulli model to a binomial model in the usual way.
Letting Aj be the number of respondents in group j and aj be the number of positive
responses in group j , the likelihood may be reduced to the form

aj ∼ binomial(Aj , θj).

A simple uniform prior on the proportion of support in each group completes the
model,

θj ∼ beta(1,1).

A more informative prior could be used if there is prior information available about
support among the student body.

Using sampling, draws θ(m) ∼ p(θ | y) from the posterior may be combined with the
population sizes N to estimate φ, the proportion of support in the population,

φ(m) =

J∑
j=1
θ(m)j ·Nj

J∑
j=1
Nj

.

The posterior draws for φ(m) characterize expected support for the issue in the entire
population. These draws may be used to estimate expected support (the average of
the φ(m)), posterior intervals (quantiles of the φ(m)), or to plot a histogram.

28.3. Poststratification in Stan
The maximum likelihood and Bayesian estimates can be handled with the same Stan
program. The model of individual votes is collapsed to a binomial, where Aj is the
number of voters from group j , aj is the number of positive responses from group j ,
and Nj is the size of group j in the population.

data {
int<lower = 1> J;
int<lower = 0> A[J];
int<lower = 0> a[J];
vector<lower = 0>[J] N;

}
parameters {

vector<lower = 0, upper = 1>[J] theta;
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}
model {

a ~ binomial(A, theta);
}
generated quantities {t

real<lower = 0, upper = 1> phi = dot(N, theta) / sum(N);
}

The likelihood is vectorized, and implicitly sums over the j . The prior is implicitly
uniform on (0,1), the support of θ. The summation is computed using a dot product
and the sum function, which is why N was declared as a vector rather than as an array
of integers.

28.4. Regression and poststratification
In applications to polling, there are often numerous demographic features like age,
gender, income, education, state of residence, etc. If each of these demographic
features induces a partition on the population, then their product also induces a
partition on the population. Often sources such as the census have matching (or at
least matchable) demographic data; otherwise it must be estimated.

The problem facing poststratification by demographic feature is that the number of
strata increases exponentially as a function of the number of features. For instance,
4 age brackets, 2 sexes, 5 income brackets, and 50 states of residence leads to
5 · 2 · 5 · 50 = 2000 strata. Adding another 5-way distinction, say for education
level, leads to 10,000 strata. A simple model like the one in the previous section that
takes an independent parameter θj for support in each stratum is unworkable in that
many groups will have zero respondents and almost all groups will have very few
respondents.

A practical approach to overcoming the problem of low data size per stratum is to use
a regression model. Each demographic feature will require a regression coefficient for
each of its subgroups, but now the parameters add to rather than multiply the total
number of parameters. For example, with 4 age brackets, 2 sexes, 5 income brackets,
and 50 states of residence, there are only 4+ 2+ 5+ 50 = 61 regression coefficients to
estimate. Now suppose that item n has demographic features agen ∈ 1 : 5, sexn ∈ 1 : 2,
incomen ∈ 1 : 5, and staten ∈ 1 : 50. A logistic regression may be formulated as

yn ∼ bernoulli(logit−1(α+ βage[n] + γsex[n] + δincome[n] + εstate[n])),

where age[n] is the age of the n-th respondent, sex[n] is their sex, income[n] their
income and state[n] their state of residence. These coefficients can be assigned priors,
resulting in a Bayesian regression model.
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To poststratify the results, the population size for each combination of predictors
must still be known. Then the population estimate is constructed as

5∑
i=1

2∑
j=1

∑
k = 15

∑
m = 150logit−1(α+ βi + γj + δk + ηm) · popi,j,k,m,

where popi,j,k,m is the size of the subpopulation with age i, sex j , income level k, and
state of residence m.

As formulated, it should be clear that any kind of prediction could be used as a basis
for poststratification. For example, a Gaussian process or neural network could be
used to produce a non-parametric model of outcomes y given predictors x.

28.5. Multilevel regression and poststratification
With large numbers of demographic features, each cell may have very few items in
it with which to estimate regression coefficients. For example, even in a national-
level poll of 10,000 respondents, if they are divided by the 50 states, that’s only 200
respondents per state on average. When data sizes are small, parameter estimation
can be stabilized and sharpened by providing hierarchical priors. With hierarchical
priors, the data determines the amount of partial pooling among the groups. The only
drawback is that if the number of groups is small, it can be hard to fit these models
without strong hyperpriors.

The model introduced in the previous section had likelihood

yn ∼ bernoulli(logit−1(α+ βage[n] + γsex[n] + δincome[n] + εstate[n])).

The overall intercept can be given a broad fixed prior,

α ∼ normal(0,5).

The other regression parameters can be given hierarchical priors,

β1:4 ∼ normal(0, σβ)

γ1:2 ∼ normal(0, σγ)

δ1:5 ∼ normal(0, σδ)

ε1:50 ∼ normal(0, σ ε)

The hyperparameters for scale of variation within a group can be given simple standard
hyperpriors,

σβ, σγ , σδ, σ ε ∼ normal(0,1).

The scales of these fixed hyperpriors need to be determined on a problem-by-problem
basis, though ideally they will be close to standard (mean zero, unit variance).
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Dealing with small partitions and non-identifiability
The multilevel structure of the models used for multilevel regression and
poststratification consist of a sum of intercepts that vary by demographic feature. This
immediately introduces non-identifiability. A constant added to each state coefficient
and subtracted from each age coefficient leads to exactly the same likelihood.

This is non-identifiability that is only mitigated by the (hierarchical) priors. When
demographic partitions are small, as they are with several categories in the example,
it can be more computationally tractable to enforce a sum-to-zero constraint on the
coefficients. Other values than zero will by necessity be absorbed into the intercept,
which is why it typically gets a broader prior even with standardized data. With a sum
to zero constraint, coefficients for binary features will be negations of each other. For
example, because there are only two sex categories, γ2 = −γ1.

To implement sum-to-zero constraints,

parameters {
vector[K - 1] alpha_raw;

...
transformed parameters {

vector<multiplier = sigma_alpha>[K] alpha
= append_row(alpha_raw, -sum(alpha_raw));

...
model {

alpha ~ normal(0, sigma_alpha);

This prior is hard to interpret in that there are K normal distributions, but only K - 1
free parameters. An alternative is to put the prior only on alpha_raw, but that is also
difficult to interpret.

Soft constraints can be more computationally tractable. They are also simpler to
implement.

parameters {
vector<multiplier = alpha>[K] alpha;

...
model {

alpha ~ normal(0, sigma_alpha);
sum(alpha) ~ normal(0, 0.001);

This leaves the regular prior, but adds a second prior that concentrates the sum near
zero. The scale of the second prior will need to be established on a problem and
data-set specific basis so that it doesn’t shrink the estimates beyond the shrinkage of
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the hierarchical scale parameters.

Note that in the hierarchical model, the values of the coefficients when there are only
two coefficients should be the same absolute value but opposite signs. Any other
difference could be combined into the overall intercept α. Even with a wide prior
on the intercept, the hyperprior on σγ may not be strong enough to enforce that,
leading to a weak form non-identifiability in the posterior. Enforcing a (hard or soft)
sum-to-zero constraint can help mitigate non-identifiability. Whatever prior is chosen,
prior predictive checks can help diagnose problems with it.

None of this work to manage identifiability in multilevel regressions has anything to
do with the poststratification; it’s just required to fit a large multilevel regression
with multiple discrete categories. Having multiple intercepts always leads to weak
non-identifiability, even with the priors on the intercepts all centered at zero.

28.6. Coding MRP in Stan
Multilevel regression and poststratification can be coded directly in Stan. To code
the non-centered parameterization for each coefficient, which will be required for
sampling efficiency, the multiplier transform is used on each of the parameters. The
combination of

vector<multiplier = s>[K] a;
...
a ~ normal(0, s);

implements a non-centered parameterization for a; a centered parameterization would
drop the multiplier specification. The prior scale s is being centered here. The prior
location is fixed to zero in multilevel regressions because there is an overall intercept;
introducing a location parameters in the prior would introduce non-identifiability with
the overall intercept. The centered parameterization drops the multiplier.

Here is the full Stan model, which performs poststratification in the generated
quantities using population sizes made available through data variable P.

data {
int<lower = 0> N;
int<lower = 1, upper = 4> age[N];
int<lower = 1, upper = 5> income[N];
int<lower = 1, upper = 50> state[N];
int<lower = 0> y[N];
int<lower = 0> P[4, 5, 50];

}
parameters {
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real alpha;
real<lower = 0> sigma_beta;
vector<multiplier = sigma_beta>[4] beta;
real<lower = 0> sigma_gamma;
vector<multiplier = sigma_gamma>[5] gamma;
real<lower = 0> sigma_delta;
vector<multiplier = sigma_delta>[50] delta;
real epsilon;

}
model {

y ~ bernoulli_logit(alpha + beta[age] + gamma[income] + delta[state]);
alpha ~ normal(0, 2);
beta ~ normal(0, sigma_beta);
gamma ~ normal(0, sigma_gamma);
delta ~ normal(0, sigma_delta);
{ sigma_beta, sigma_gamma, sigma_delta } ~ normal(0, 1);

}
generated quantities {

real expect_pos = 0;
int total = 0;
for (b in 1:4)
for (c in 1:5)
for (d in 1:50) {

total += P[b, c, d];
expect_pos
+= P[b, c, d]

* inv_logit(alpha + beta[b] + gamma[c] + delta[d]);
}

real<lower = 0, upper = 1> phi = expect_pos / total;
}

Unlike in posterior predictive inference aimed at uncertainty, there is no need to
introduce binomial sampling uncertainty into the estimate of expected positive votes.
Instead, generated quantities are computed as expectations. In general, it is more
efficient to work in expectation if possible (the Rao-Blackwell theorem says it’s at least
as efficient to work in expectation, but in practice, it can be much much more efficient,
especially for discrete quantities).

Binomial coding
In some cases, it can be more efficient to break the data down by group. Suppose there
are 4× 5× 2× 50 = 2000 groups. The data can be broken down into a size-2000 array,
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with entries corresponding to total vote counts in that group

int<lower = 0> G;
int<lower = 1, upper = 4> age[G];
int<lower = 1, upper = 5> income[G];
int<lower = 1, upper = 50> state[G];

Then the number of positive votes and the number of total votes are collected into
two parallel arrays indexed by group.

int<lower = 0> pos_votes[G];
int<lower = 0> total_votes[G];

Finally, the likelihood is converted to binomial.

pos_votes ~ binomial_logit(total_votes,
alpha + beta[age] + ...);

The predictors look the same because of the way the age and other data items are
coded.

Coding binary groups
In this first model, sex is not included as a predictor. With only two categories, it
needs to be modeled separately, because it is not feasible to build a hierarchical model
with only two cases. A sex predictor is straightforward to add to the data block; it
takes on values 1 or 2 for each of the N data points.

int<lower = 1, upper = 2>[N] sex;

Then add a single regression coefficient as a parameter,

real epsilon;

In the log odds calculation, introduce a new term

{epsilon, -epsilon}[sex];

That is, the likelihood will now look like

y ~ bernoulli_logit(alpha + beta[age] + gamma[income] + delta[state]
+ {epsilon, -epsilon}[sex]);

For data point n, the expression {epsilon, -epsilon}[sex] takes on value
{epsilon, -epsilon}[sex][n], which with Stan’s multi-indexing reduces to
{epsilon, -epsilon}[sex[n]]. This term evaluates to epsilon if sex[n] is 1
and to -epsilon if sex[n] is 2. The result is effectively a sum-to-zero constraint on
two sex coefficients.
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Finally, a prior is needed for the coefficient in the model block,

epsilon ~ normal(0, 2);

As with other priors in multilevel models, the posterior for epsilon should be
investigated to make sure it is not unrealistically wide.

28.7. Adding group-level predictors
If there are group-level predictors, such as average income in a state, or vote share in
a previous election, these may be used as predictors in the regression. They will not
pose an obstacle to poststratification because they are at the group level. For example,
suppose the average income level in the state is available as the data variable

real<lower = 0> income[50];

then a regression coefficient psi can be added for the effect of average state income,

real income;

with a fixed prior,

income ~ normal(0, 2);

This prior assumes the income predictor has been standardized. Finally, a term is
added to the regression for the fixed predictor,

y ~ bernoulli_logit(alpha + beta[age] + ... + delta[state]
+ income[state] * psi);

And finally, the formula in the generated quantities block is also updated,

expect_pos
+= P[b, c, d]

* inv_logit(alpha + beta[b] + gamma[c] + delta[d]
+ income[d] * psi);

Here d is the loop variable looping over states. This ensures that the poststratification
formula matches the likelihood formula.



29. Decision Analysis

Statistical decision analysis is about making decisions under uncertainty. In order to
make decisions, outcomes must have some notion of “utility” associated with them.
The so-called “Bayes optimal” decision is the one that maximizes expected utility (or
equivalently, minimizes expected loss). This chapter shows how Stan can be used to
simultaneously estimate the distribution of outcomes based on decisions and compute
the required expected utilities.

29.1. Outline of decision analysis
Following Gelman et al. (2013), Bayesian decision analysis can be factored into the
following four steps.

1. Define a set X of possible outcomes and a set D of possible decisions.

2. Define a probability distribution of outcomes conditional on decisions through a
conditional density function p(x | d) for x ∈ X and d ∈ D.

3. Define a utility function U : X → R mapping outcomes to their utility.

4. Choose action d∗ ∈ D with highest expected utility,

d∗ = arg maxd E[U(x) | d].

The outcomes should represent as much information as possible that is relevant to
utility. In Bayesian decision analysis, the distribution of outcomes will typically be
a posterior predictive distribution conditioned on observed data. There is a large
literature in psychology and economics related to defining utility functions. For
example, the utility of money is usually assumed to be strictly concave rather than
linear (i.e., the marginal utility of getting another unit of money decreases the more
money one has).

29.2. Example decision analysis
This section outlines a very simple decision analysis for a commuter deciding among
modes of transportation to get to work: walk, bike share, public transportation, or
cab. Suppose the commuter has been taking various modes of transportation for the
previous year and the transportation conditions and costs have not changed during
that time. Over the year, such a commuter might accumulate two hundred observations
of the time it takes to get to work given a choice of commute mode.

345
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Step 1. Define decisions and outcomes
A decision consists of the choice of commute mode and the outcome is a time and
cost. More formally,

• the set of decisions is D = 1 : 4, corresponding to the commute types walking,
bicycling, public transportation, and cab, respectively, and

• the set of outcomes X = R×R+ contains pairs of numbers x = (c, t) consisting
of a cost c and time t ≥ 0.

Step 2. Define density of outcome conditioned on decision
The density required is p(x | d), where d ∈ D is a decision and x = (c, t) ∈ X is
an outcome. Being a statistical decision problem, this density will the a posterior
predictive distribution conditioned on previously observed outcome and decision pairs,
based on a parameter model with parameters θ,

p(x | d, xobs, dobs) =
∫
p(x | d, θ) · p(θ | xobs, dobs)dθ.

The observed data for a year of commutes consists of choice of the chosen commute
mode dobs

n and observed costs and times xobs
n = (cobs

n , tobs
n ) for n ∈ 1 : 200.

For simplicity, commute time tn for trip n will be modeled as lognormal for a given
choice of transportation dn ∈ 1 : 4,

tn ∼ lognormal(µd[n], σd[n]).

To understand the notation, dn, also written d[n], is the mode of transportation used
for trip n. For example if trip n was by bicycle, then tn ∼ lognormal(µ2, σ2), where µ2
and σ2 are the lognormal parameters for bicycling.

Simple fixed priors are used for each mode of transportation k ∈ 1 : 4,

µk ∼ normal(0,5)

σk ∼ lognormal(0,1).

These priors are consistent with a broad range of commute times; in a more realistic
model each commute mode would have its own prior based on knowledge of the city
and the time of day would be used as a covariate; here the commutes are taken to be
exchangeable.

Cost is usually a constant function for public transportation, walking, and bicycling.
Nevertheless, for simplicity, all costs will be modeled as lognormal,

cn ∼ lognormal(νd[n], τd[n]).
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Again, the priors are fixed for the modes of transportation,

νk ∼ normal(0,5)

τk ∼ lognormal(0,1).

A more realistic approach would model cost conditional on time, because the cost of a
cab depends on route chosen and the time it takes.

The full set of parameters that are marginalized in the posterior predictive distribution
is

θ = (µ1:4, σ1:4, ν1:4, τ1:4).

Step 3. Define the utility function
For the sake of concreteness, the utility function will be assumed to be a simple
function of cost and time. Further suppose the commuter values their commute time
at $25 per hour and has a utility function that is linear in the commute cost and time.
Then the utility function may be defined as

U(c, t) = −(c + 25 · t).

The sign is negative because high cost is undesirable. A better utility function might
have a step function or increasing costs for being late, different costs for different
modes of transportation because of their comfort and environmental impact, and
non-linearity of utility in cost.

Step 4. Maximize expected utility
At this point, all that is left is to calculate expected utility for each decision and choose
the optimum. If the decisions consist of a small set of discrete choices, expected utility
can be easily coded in Stan. The utility function is coded as a function, the observed
data is coded as data, the model parameters coded as parameters, and the model block
itself coded to follow the sampling distributions of each parameter.

functions {
real U(real c, real t) {
return -(c + 25 * t);

}
}
data {

int<lower = 0> N;
int<lower = 1, upper = 4> d[N];
real c[N];
real<lower = 0> t[N];
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}
parameters {

vector[4] mu;
vector<lower = 0>[4] sigma;
real[4] nu;
real<lower = 0> tau[4];

}
model {

mu ~ normal(0, 1);
sigma ~ lognormal(0, 0.25);
t ~ lognormal(mu, sigma);
nu ~ normal(0, 20);
tau ~ lognormal(0, 0.25);
c ~ lognormal(nu, tau);

}
generated quantities {

real util[4];
for (k in 1:4)
util[k] = U(lognormal_rng(mu[k], sigma[k]),

lognormal_rng(nu[k], tau[k]));
}

The generated quantities block defines an array variable util where util[k], which
will hold the utility derived from a random commute for choice k generated according
to the model parameters for that choice. This randomness is required to appropriately
characterize the posterior predictive distribution of utility.

For simplicity in this initial formulation, all four commute options have their costs
estimated, even though cost is fixed for three of the options. To deal with the fact that
some costs are fixed, the costs would have to be hardcoded or read in as data, nu and
tau would be declared as univariate, and the RNG for cost would only be employed
when k == 4.

Defining the utility function for pairs of vectors would allow the random number
generation in the generated quantities block to be vectorized.

All that is left is to run Stan. The posterior mean for util[k] is the expected utility,
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which written out with full conditioning, is

E
[
U(x) | d = k, dobs, xobs

]
=

∫
U(x) · p(x | d = k, θ) · p(θ | dobs, xobs)dθ

≈ 1
M

M∑
m=1

U(x(m)),

where
x(m) ∼ p(x | d = k, θ(m))

and
θ(m) ∼ p(θ | dobs, xobs).

In terms of Stan’s execution, the random generation of x(m) is carried out with the
lognormal_rng operations after θ(m) is drawn from the model posterior. The average
is then calculated after multiple chains are run and combined.

It only remains to make the decision k with highest expected utility, which will
correspond to the choice with the highest posterior mean for util[k]. This can be read
off of the mean column of the Stan’s summary statistics or accessed programmatically
through Stan’s interfaces.

29.3. Continuous choices
Many choices, such as how much to invest for retirement or how long to spend at the
gym are not discrete, but continuous. In these cases, the continuous choice can be
coded as data in the Stan program. Then the expected utilities may be calculated. In
other words, Stan can be used as a function from a choice to expected utilities. Then
an external optimizer can call that function. This optimization can be difficult without
gradient information. Gradients could be supplied by automatic differentiation, but
Stan is not currently instrumented to calculate those derivatives.



30. The Bootstrap and Bagging

The bootstrap is a technique for approximately sampling from the error distribution
for an estimator. Thus it can be used as a Monte Carlo method to estimate standard
errors and confidence intervals for point estimates (Efron and Tibshirani 1986, 1994).
It works by subsampling the original data and computing sample estimates from the
subsample. Like other Monte Carlo methods, the bootstrap is plug-and-play, allowing
great flexibility in both model choice and estimator.

Bagging is a technique for combining bootstrapped estimators for model criticism and
more robust inference (Breiman 1996; Huggins and Miller 2019).

30.1. The bootstrap
Estimators
An estimator is nothing more than a function mapping a data set to one or more
numbers, which are called “estimates”. For example, the mean function maps a data
set y1,...,N to a number by

mean(y) = 1
N

N∑
n=1
yn,

and hence meets the definition of an estimator. Given the likelihood function

p(y | µ) =
N∏
n=1

normal(yn | µ,1),

the mean is the maximum likelihood estimator,

mean(y) = arg maxµ p(y | µ,1)
A Bayesian approach to point estimation would be to add a prior and use the posterior
mean or median as an estimator. Alternatively, a penalty function could be added to
the likelihood so that optimization produces a penalized maximum likelihood estimate.
With any of these approaches, the estimator is just a function from data to a number.

In analyzing estimators, the data set is being modeled as a random variable. It is
assumed that the observed data is just one of many possible random samples of data
that may have been produced. If the data is modeled a random variable, then the
estimator applied to the data is also a random variable. The simulations being done
for the bootstrap are attempts to randomly sample replicated data sets and compute
the random properties of the estimators using standard Monte Carlo methods.

350
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The bootstrap in pseudocode
The bootstrap works by applying an estimator to replicated data sets. These replicates
are created by subsampling the original data with replacement. The sample quantiles
may then be used to estimate standard errors and confidence intervals.

The following pseudocode estimates 95% confidence intervals and standard errors for
a generic estimate θ̂ that is a function of data y .

for (m in 1:M) {
y_rep[m] <- sample_uniform(y)
theta_hat[m] <- estimate_theta(y_rep[m])

}
std_error = sd(theta_hat)
conf_95pct = [ quantile(theta_hat, 0.025),

quantile(theta_hat, 0.975) ]

The sample_uniform function works by independently assigning each element of
y_rep an element of y drawn uniformly at random. This produces a sample with
replacement. That is, some elements of y may show up more than once in y_rep and
some may not appear at all.

30.2. Coding the bootstrap in Stan
The bootstrap procedure can be coded quite generally in Stan models. The following
code illustrates a Stan model coding the likelihood for a simple linear regression.
There is a parallel vector x of predictors in addition to outcomes y. To allow a single
program to fit both the original data and random subsamples, the variable resample
is set to 1 to resample and 0 to use the original data.

data {
int<lower = 0> N;
vector[N] x;
vector[N] y;
int<lower = 0, upper = 1> resample;

}
transformed data {

simplex[N] uniform = rep_vector(1.0 / N, N);
int<lower = 1, upper = N> boot_idxs[N];
for (n in 1:N)
boot_idxs[n] = resample ? categorical_rng(uniform) : n;

}
parameters {

real alpha;
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real beta;
real<lower = 0> sigma;

}
model {

y[boot_idxs] ~ normal(alpha + beta * x[boot_idxs], sigma);
}

The model accepts data in the usual form for a linear regression as a number of
observations N with a size N vector x of predictors and a size N vector of outcomes.
The transformed data block generates a set of indexes into the data that is the same
size as the data. This is done by independently sampling each entry of boot_idxs
from 1:N, using a discrete uniform distribution coded as a categorical random number
generator with an equal chance for each outcome. If resampling is not done, the array
boot_idxs is defined to be the sequence 1:N, because x == x[1:N] and y = y[1:N].

For example, when resample == 1, if N = 4, the value of boot_idxs might be {2,
1, 1, 3}, resulting in a bootstrap sample {y[2], y[1], y[1], y[3]} with the first
element repeated twice and the fourth element not sampled at all.

The parameters are the usual regression coefficients for the intercept alpha, slope
beta, and error scale sigma. The model uses the bootstrap index variable boot_idx
to index the predictors as x[boot_idx] and outcomes as y[boot_idx]. This
generates a new size-N vector whose entries are defined by x[boot_idx][n] =
x[boot_idx[n]] and similarly for y. For example, if N = 4 and boot_idxs = {2, 1,
1, 3}, then x[boot_idxs] = [x[2], x[1], x[1], x[3]]' and y[boot_idxs] =
[y[2], y[1], y[1], y[3]]'. The predictor and outcome vectors remain aligned,
with both elements of the pair x[1] and y[1] repeated twice.

With the model defined this way, if resample is 1, the model is fit to a bootstrap
subsample of the data. If resample is 0, the model is fit to the original data as given.
By running the bootstrap fit multiple times, confidence intervals can be generated
from quantiles of the results.

30.3. Error statistics from the bootstrap
Running the model multiple times produces a Monte Carlo sample of estimates from
multiple alternative data sets subsampled from the original data set. The error
distribution is just the distribution of the bootstrap estimates minus the estimate for
the original data set.

To estimate standard errors and confidence intervals for maximum likelihood estimates
the Stan program is executed multiple times using optimization (which turns off
Jacobian adjustments for constraints and finds maximum likelihood estimates). On
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the order of one hundred replicates is typically enough to get a good sense of standard
error; more will be needed to accurate estimate the boundaries of a 95% confidence
interval. On the other hand, given that there is inherent variance due to sampling
the original data y , it is usually not worth calculating bootstrap estimates to high
precision.

Standard errors
Here’s the result of calculating standard errors for the linear regression model above
with N = 50 data points, α = 1.2, β = −0.5, and σ = 1.5. With a total of M = 100
bootstrap samples, there are 100 estimates of α, 100 of β, and 100 of σ . These are
then treated like Monte Carlo draws. For example, the sample standard deviation of
the draws for α provide the bootstrap estimate of the standard error in the estimate
for α. Here’s what it looks like for the above model with M = 100

parameter estimate std err
--------- -------- -------

alpha 1.359 0.218
beta -0.610 0.204

sigma 1.537 0.142

With the data set fixed, these estimates of standard error will display some Monte
Carlo error. For example, here are the standard error estimates from five more runs
holding the data the same, but allowing the subsampling to vary within Stan:

parameter estimate std err
--------- -------- -------

alpha 1.359 0.206
alpha 1.359 0.240
alpha 1.359 0.234
alpha 1.359 0.249
alpha 1.359 0.227

Increasing M will reduce Monte Carlo error, but this is not usually worth the extra
computation time as there is so much other uncertainty due to the original data sample
y .

Confidence intervals
As usual with Monte Carlo methods, confidence intervals are estimated using quantiles
of the draws. That is, if there are M = 1000 estimates of α̂ in different subsamples,
the 2.5% quantile and 97.5% quantile pick out the boundaries of the 95% confidence
interval around the estimate for the actual data set y . To get accurate 97.5% quantile
estimates requires a much larger number of Monte Carlo simulations (roughly twenty
times as large as needed for the median).
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30.4. Bagging
When bootstrapping is carried through inference it is known as bootstrap aggregation,
or bagging, in the machine-learning literature (Breiman 1996). In the simplest case,
this involves bootstrapping the original data, fitting a model to each bootstrapped
data set, then averaging the predictions. For instance, rather than using an estimate σ̂
from the original data set, bootstrapped data sets yboot(1), . . . , yboot(N) are generated.
Each is used to generate an estimate σ̂ boot(n). The final estimate is

σ̂ = 1
N

N∑
n=1
σ̂ boot(n).

The same would be done to estimate a predictive quantity ỹ for as yet unseen data.

ˆ̃y = 1
N

N∑
n=1

ˆ̃yboot(n).

For discrete parameters, voting is used to select the outcome.

One way of viewing bagging is as a classical attempt to get something like averaging
over parameter estimation uncertainty.

30.5. Bayesian bootstrap and bagging
A Bayesian estimator may be analyzed with the bootstrap in exactly the same way
as a (penalized) maximum likelihood estimate. For example, the posterior mean and
posterior median are two different Bayesian estimators. The bootstrap may be used
estimate standard errors and confidence intervals, just as for any other estimator.

(Huggins and Miller 2019) use the bootstrap to assess model calibration and fitting
in a Bayesian framework and further suggest using bagged estimators as a guard
against model misspecification. Bagged posteriors will typically have wider posterior
intervals than those fit with just the original data, showing that the method is not a
pure Bayesian approach to updating, and indicating it would not be calibrated if the
model were well specified. The hope is that it can guard against over-certainty in a
poorly specified model.



Appendices

These are the appendices for the book, including a program style guide and a guide to
translating BUGS or JAGS programs.
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31. Stan Program Style Guide

This chapter describes the preferred style for laying out Stan models. These are not
rules of the language, but simply recommendations for laying out programs in a text
editor. Although these recommendations may seem arbitrary, they are similar to
those of many teams for many programming languages. Like rules for typesetting
text, the goal is to achieve readability without wasting white space either vertically or
horizontally.

31.1. Choose a Consistent Style
The most important point of style is consistency. Consistent coding style makes it
easier to read not only a single program, but multiple programs. So when departing
from this style guide, the number one recommendation is to do so consistently.

31.2. Line Length
Line lengths should not exceed 80 characters.1

This is a typical recommendation for many programming language style guides because
it makes it easier to lay out text edit windows side by side and to view the code on the
web without wrapping, easier to view diffs from version control, etc. About the only
thing that is sacrificed is laying out expressions on a single line.

31.3. File Extensions
The recommended file extension for Stan model files is .stan. For Stan data dump
files, the recommended extension is .R, or more informatively, .data.R.

31.4. Variable Naming
The recommended variable naming is to follow C/C++ naming conventions, in which
variables are lowercase, with the underscore character (_) used as a separator. Thus it
is preferred to use sigma_y, rather than the run together sigmay, camel-case sigmaY,
or capitalized camel-case SigmaY. Even matrix variables should be lowercased.

The exception to the lowercasing recommendation, which also follows the C/C++
conventions, is for size constants, for which the recommended form is a single
uppercase letter. The reason for this is that it allows the loop variables to match. So
loops over the indices of an M ×N matrix a would look as follows.

1Even 80 characters may be too many for rendering in print; for instance, in this manual, the number of
code characters that fit on a line is about 65.
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for (m in 1:M)
for (n in 1:N)

a[m,n] = ...

31.5. Local Variable Scope
Declaring local variables in the block in which they are used aids in understanding
programs because it cuts down on the amount of text scanning or memory required to
reunite the declaration and definition.

The following Stan program corresponds to a direct translation of a BUGS model, which
uses a different element of mu in each iteration.

model {
real mu[N];
for (n in 1:N) {
mu[n] = alpha * x[n] + beta;
y[n] ~ normal(mu[n],sigma);

}
}

Because variables can be reused in Stan and because they should be declared locally
for clarity, this model should be recoded as follows.

model {
for (n in 1:N) {
real mu;
mu = alpha * x[n] + beta;
y[n] ~ normal(mu,sigma);

}
}

The local variable can be eliminated altogether, as follows.

model {
for (n in 1:N)
y[n] ~ normal(alpha * x[n] + beta, sigma);

}

There is unlikely to be any measurable efficiency difference between the last two
implementations, but both should be a bit more efficient than the BUGS translation.



CHAPTER 31. STAN PROGRAM STYLE GUIDE 358

Scope of Compound Structures with Componentwise Assignment

In the case of local variables for compound structures, such as arrays, vectors, or
matrices, if they are built up component by component rather than in large chunks, it
can be more efficient to declare a local variable for the structure outside of the block
in which it is used. This allows it to be allocated once and then reused.

model {
vector[K] mu;
for (n in 1:N) {
for (k in 1:K)
mu[k] = ...;

y[n] ~ multi_normal(mu,Sigma);
}

In this case, the vector mu will be allocated outside of both loops, and used a total of N
times.

31.6. Parentheses and Brackets
Optional Parentheses for Single-Statement Blocks
Single-statement blocks can be rendered in one of two ways. The fully explicit
bracketed way is as follows.

for (n in 1:N) {
y[n] ~ normal(mu,1);

}

The following statement without brackets has the same effect.

for (n in 1:N)
y[n] ~ normal(mu,1);

Single-statement blocks can also be written on a single line, as in the following example.

for (n in 1:N) y[n] ~ normal(mu,1);

These can be much harder to read than the first example. Only use this style if the
statement is simple, as in this example. Unless there are many similar cases, it’s almost
always clearer to put each sampling statement on its own line.

Conditional and looping statements may also be written without brackets.

The use of for loops without brackets can be dangerous. For instance, consider this
program.

for (n in 1:N)
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z[n] ~ normal(nu,1);
y[n] ~ normal(mu,1);

Because Stan ignores whitespace and the parser completes a statement as eagerly as
possible (just as in C++), the previous program is equivalent to the following program.

for (n in 1:N) {
z[n] ~ normal(nu,1);

}
y[n] ~ normal(mu,1);

Parentheses in Nested Operator Expressions
The preferred style for operators minimizes parentheses. This reduces clutter in code
that can actually make it harder to read expressions. For example, the expression a +
b * c is preferred to the equivalent a + (b * c) or (a + (b * c)). The operator
precedences and associativities follow those of pretty much every programming
language including Fortran, C++, R, and Python; full details are provided in the
reference manual.

Similarly, comparison operators can usually be written with minimal bracketing, with
the form y[n] > 0 || x[n] != 0 preferred to the bracketed form (y[n] > 0) ||
(x[n] != 0).

No Open Brackets on Own Line
Vertical space is valuable as it controls how much of a program you can see. The
preferred Stan style is as shown in the previous section, not as follows.

for (n in 1:N)
{

y[n] ~ normal(mu,1);
}

This also goes for parameters blocks, transformed data blocks, which should look as
follows.

transformed parameters {
real sigma;
...

}

31.7. Conditionals
Stan supports the full C++-style conditional syntax, allowing real or integer values to
act as conditions, as follows.
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real x;
...
if (x) {

// executes if x not equal to 0
...

}

Explicit Comparisons of Non-Boolean Conditions
The preferred form is to write the condition out explicitly for integer or real values
that are not produced as the result of a comparison or boolean operation, as follows.

if (x != 0) ...

31.8. Functions
Functions are laid out the same way as in languages such as Java and C++. For example,

real foo(real x, real y) {
return sqrt(x * log(y));

}

The return type is flush left, the parentheses for the arguments are adjacent to the
arguments and function name, and there is a space after the comma for arguments
after the first. The open curly brace for the body is on the same line as the function
name, following the layout of loops and conditionals. The body itself is indented; here
we use two spaces. The close curly brace appears on its own line.

If function names or argument lists are long, they can be written as

matrix
function_to_do_some_hairy_algebra(matrix thingamabob,

vector doohickey2) {
...body...

}

The function starts a new line, under the type. The arguments are aligned under each
other.

Function documentation should follow the Javadoc and Doxygen styles. Here’s an
example repeated from the documenting functions section.

/**
* Return a data matrix of specified size with rows

* corresponding to items and the first column filled

* with the value 1 to represent the intercept and the
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* remaining columns randomly filled with unit-normal draws.

*
* @param N Number of rows correspond to data items

* @param K Number of predictors, counting the intercept, per

* item.

* @return Simulated predictor matrix.

*/
matrix predictors_rng(int N, int K) {

...

The open comment is /**, asterisks are aligned below the first asterisk of the open
comment, and the end comment */ is also aligned on the asterisk. The tags @param
and @return are used to label function arguments (i.e., parameters) and return values.

31.9. White Space
Stan allows spaces between elements of a program. The white space characters allowed
in Stan programs include the space (ASCII 0x20), line feed (ASCII 0x0A), carriage return
(0x0D), and tab (0x09). Stan treats all whitespace characters interchangeably, with any
sequence of whitespace characters being syntactically equivalent to a single space
character. Nevertheless, effective use of whitespace is the key to good program layout.

Line Breaks Between Statements and Declarations
It is dispreferred to have multiple statements or declarations on the same line, as in
the following example.

transformed parameters {
real mu_centered; real sigma;
mu = (mu_raw - mean_mu_raw); sigma = pow(tau,-2);

}

These should be broken into four separate lines.

No Tabs
Stan programs should not contain tab characters. They are legal and may be used
anywhere other whitespace occurs. Using tabs to layout a program is highly unportable
because the number of spaces represented by a single tab character varies depending
on which program is doing the rendering and how it is configured.

Two-Character Indents
Stan has standardized on two space characters of indentation, which is the standard
convention for C/C++ code. Another sensible choice is four spaces, which is the
convention for Java and Python. Just be consistent.
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Space Between if, { and Condition
Use a space after ifs. For instance, use if (x < y) ..., not if(x < y) ....

No Space For Function Calls
There is no space between a function name and the function it applies to. For instance,
use normal(0,1), not normal (0,1).

Spaces Around Operators
There should be spaces around binary operators. For instance, use y[1] = x, not
y[1]=x, use (x + y) * z not (x+y)*z.

Breaking Expressions across Lines
Sometimes expressions are too long to fit on a single line. In that case, the
recommended form is to break before an operator,2 aligning the operator to indicate
scoping. For example, use the following form (though not the content; inverting
matrices is almost always a bad idea).

target += (y - mu)' * inv(Sigma) * (y - mu);

Here, the multiplication operator (*) is aligned to clearly signal the multiplicands in
the product.

For function arguments, break after a comma and line the next argument up
underneath as follows.

y[n] ~ normal(alpha + beta * x + gamma * y,
pow(tau,-0.5));

Optional Spaces after Commas
Optionally use spaces after commas in function arguments for clarity. For example,
normal(alpha * x[n] + beta,sigma) can also be written as normal(alpha *
x[n] + beta, sigma).

Unix Newlines
Wherever possible, Stan programs should use a single line feed character to separate
lines. All of the Stan developers (so far, at least) work on Unix-like operating systems
and using a standard newline makes the programs easier for us to read and share.

Platform Specificity of Newlines

Newlines are signaled in Unix-like operating systems such as Linux and Mac OS X
with a single line-feed (LF) character (ASCII code point 0x0A). Newlines are signaled

2This is the usual convention in both typesetting and other programming languages. Neither R nor
BUGS allows breaks before an operator because they allow newlines to signal the end of an expression or
statement.
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in Windows using two characters, a carriage return (CR) character (ASCII code point
0x0D) followed by a line-feed (LF) character.



32. Transitioning from BUGS

From the outside, Stan and BUGS1 are similar—they use statistically-themed modeling
languages (which are similar but with some differences; see below), they can be called
from R, running some specified number of chains to some specified length, producing
posterior simulations that can be assessed using standard convergence diagnostics.
This is not a coincidence: in designing Stan: we wanted to keep many of the useful
features of Bugs.

32.1. Some Differences in How BUGS and Stan Work
BUGS is interpreted, Stan is compiled
Stan is compiled in two steps, first a model is translated to templated C++ and then to
a platform-specific executable. Stan, unlike BUGS, allows the user to directly program
in C++, but we do not describe how to do this in this Stan manual (see the getting
started with C++ section of https://mc-stan.org for more information on using Stan
directly from C++).

BUGS performs MCMC updating one scalar parameter at a time, Stan uses HMC
which moves in the entire space of all the parameters at each step
BUGS performs MCMC updating one scalar parameter at a time, (with some exceptions
such as JAGS’s implementation of regression and generalized linear models and some
conjugate multivariate parameters), using conditional distributions (Gibbs sampling)
where possible and otherwise using adaptive rejection sampling, slice sampling,
and Metropolis jumping. BUGS figures out the dependence structure of the joint
distribution as specified in its modeling language and uses this information to compute
only what it needs at each step. Stan moves in the entire space of all the parameters
using Hamiltonian Monte Carlo (more precisely, the no-U-turn sampler), thus avoiding
some difficulties that occur with one-dimension-at-a-time sampling in high dimensions
but at the cost of requiring the computation of the entire log density at each step.

Differences in tuning during warmup
BUGS tunes its adaptive jumping (if necessary) during its warmup phase (traditionally
referred to as “burn-in”). Stan uses its warmup phase to tune the no-U-turn sampler
(NUTS).

1Except where otherwise noted, we use “BUGS” to refer to WinBUGS, OpenBUGS, and JAGS,
indiscriminately.
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The Stan language is directly executable, the BUGS modeling language is not
The BUGS modeling language is not directly executable. Rather, BUGS parses its model
to determine the posterior density and then decides on a sampling scheme. In contrast,
the statements in a Stan model are directly executable: they translate exactly into
C++ code that is used to compute the log posterior density (which in turn is used to
compute the gradient).

Differences in statement order
In BUGS, statements are executed according to the directed graphical model so that
variables are always defined when needed. A side effect of the direct execution of
Stan’s modeling language is that statements execute in the order in which they are
written. For instance, the following Stan program, which sets mu before using it to
sample y:

mu = a + b * x;
y ~ normal(mu, sigma);

translates to the following C++ code:

mu = a + b * x;
target += normal_lpdf(y | mu, sigma);

Contrast this with the following Stan program:

y ~ normal(mu, sigma);
mu = a + b * x;

This program is well formed, but is almost certainly a coding error, because it attempts
to use mu before it is set. The direct translation to C++ code highlights the potential
error of using mu in the first statement:

target += normal_lpdf(y | mu, sigma);
mu = a + b * x;

To trap these kinds of errors, variables are initialized to the special not-a-number (NaN)
value. If NaN is passed to a log probability function, it will raise a domain exception,
which will in turn be reported by the sampler. The sampler will reject the sample out
of hand as if it had zero probability.

Stan computes the gradient of the log density, BUGS computes the log density but
not its gradient
Stan uses its own C++ algorithmic differentiation packages to compute the gradient of
the log density (up to a proportion). Gradients are required during the Hamiltonian
dynamics simulations within the leapfrog algorithm of the Hamiltonian Monte Carlo
and NUTS samplers.
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Both BUGS and Stan are semi-automatic
Both BUGS and Stan are semi-automatic in that they run by themselves with no outside
tuning required. Nevertheless, the user needs to pick the number of chains and
number of iterations per chain. We usually pick 4 chains and start with 10 iterations
per chain (to make sure there are no major bugs and to approximately check the
timing), then go to 100, 1000, or more iterations as necessary. Compared to Gibbs
or Metropolis, Hamiltonian Monte Carlo can take longer per iteration (as it typically
takes many “leapfrog steps” within each iteration), but the iterations typically have
lower autocorrelation. So Stan might work fine with 1000 iterations in an example
where BUGS would require 100,000 for good mixing. We recommend monitoring
potential scale reduction statistics (R̂) and the effective sample size to judge when to
stop (stopping when R̂ values do not counter-indicate convergence and when enough
effective samples have been collected).

Licensing
WinBUGS is closed source. OpenBUGS and JAGS are both licensed under the Gnu
Public License (GPL), otherwise known as copyleft due to the restrictions it places on
derivative works. Stan is licensed under the much more liberal new BSD license.

Interfaces
Like WinBUGS, OpenBUGS and JAGS, Stan can be run directly from the command line
or through common analytics platforms like R, Python, Julia, MATLAB, Mathematica,
and the command line.

Platforms
Like OpenBUGS and JAGS, Stan can be run on Linux, Mac, and Windows platforms.

32.2. Some Differences in the Modeling Languages
The BUGS modeling language follows an R-like syntax in which line breaks are
meaningful. Stan follows the rules of C, in which line breaks are equivalent to spaces,
and each statement ends in a semicolon. For example:

y ~ normal(mu, sigma);

and

for (i in 1:n) y[i] ~ normal(mu, sigma);

Or, equivalently (recall that a line break is just another form of whitespace),

for (i in 1:n)
y[i] ~ normal(mu, sigma);

and also equivalently,
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for (i in 1:n) {
y[i] ~ normal(mu, sigma);

}

There’s a semicolon after the model statement but not after the brackets indicating
the body of the for loop.

In Stan, variables can have names constructed using letters, numbers, and the
underscore (_) symbol, but nothing else (and a variable name cannot begin with
a number). BUGS variables can also include the dot, or period (.) symbol.

In Stan, the second argument to the “normal” function is the standard deviation (i.e.,
the scale), not the variance (as in Bayesian Data Analysis) and not the inverse-variance
(i.e., precision) (as in BUGS). Thus a normal with mean 1 and standard deviation 2 is
normal(1,2), not normal(1,4) or normal(1,0.25).

Similarly, the second argument to the “multivariate normal” function is the covariance
matrix and not the inverse covariance matrix (i.e., the precision matrix) (as in BUGS).
The same is true for the “multivariate student” distribution.

The distributions have slightly different names:

BUGS Stan

dnorm normal
dbinom binomial
dpois poisson

. . . . . .

Stan, unlike BUGS, allows intermediate quantities, in the form of local variables, to be
reassigned. For example, the following is legal and meaningful (if possibly inefficient)
Stan code.

{
total = 0;
for (i in 1:n){
theta[i] ~ normal(total, sigma);
total = total + theta[i];

}
}

In BUGS, the above model would not be legal because the variable total is defined
more than once. But in Stan, the loop is executed in order, so total is overwritten in
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each step.

Stan uses explicit declarations. Variables are declared with base type integer or real,
and vectors, matrices, and arrays have specified dimensions. When variables are
bounded, we give that information also. For data and transformed parameters, the
bounds are used for error checking. For parameters, the constraints are critical to
sampling as they determine the geometry over which the Hamiltonian is simulated.

In Stan, variables can be declared as data, transformed data, parameters, transformed
parameters, or generated quantities. They can also be declared as local variables
within blocks. For more information, see the part of this manual devoted to the Stan
programming language and examine at the example models.

Stan allows all sorts of tricks with vector and matrix operations which can make
Stan models more compact. For example, arguments to probability functions may be
vectorized,2 allowing

for (i in 1:n)
y[i] ~ normal(mu[i], sigma[i]);

to be expressed more compactly as

y ~ normal(mu, sigma);

The vectorized form is also more efficient because Stan can unfold the computation of
the chain rule during algorithmic differentiation.

Stan also allows for arrays of vectors and matrices. For example, in a hierarchical
model might have a vector of K parameters for each of J groups; this can be declared
using

vector[K] theta[J];

Then theta[j] is an expression denoting a K-vector and may be used in the code just
like any other vector variable.

An alternative encoding would be with a two-dimensional array, as in

real theta[J,K];

The vector version can have some advantages, both in convenience and in
computational speed for some operations.

A third encoding would use a matrix:

2Most distributions have been vectorized, but currently the truncated versions may not exist and may
not be vectorized.
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matrix[J,K] theta;

but in this case, theta[j] is a row vector, not a vector, and accessing it as a vector
is less efficient than with an array of vectors. The transposition operator, as in
theta[j]', may be used to convert the row vector theta[j] to a (column) vector.
Column vector and row vector types are not interchangeable everywhere in Stan;
see the function signature declarations in the programming language section of this
manual.

Stan supports general conditional statements using a standard if-else syntax. For
example, a zero-inflated (or -deflated) Poisson mixture model is defined using the
if-else syntax as described in the zero inflation section.

Stan supports general while loops using a standard syntax. While loops give Stan
full Turing equivalent computational power. They are useful for defining iterative
functions with complex termination conditions. As an illustration of their syntax, the
for-loop

model {
....
for (n in 1:N) {

... do something with n ....
}

}

may be recoded using the following while loop.

model {
int n;
...
n = 1;
while (n <= N) {

... do something with n ...
n = n + 1;

}
}

32.3. Some Differences in the Statistical Models that are Allowed
Stan does not yet support declaration of discrete parameters. Discrete data variables
are supported. Inference is supported for discrete parameters as described in the
mixture and latent discrete parameters chapters of the manual.

Stan has some distributions on covariance matrices that do not exist in BUGS, including
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a uniform distribution over correlation matrices which may be rescaled, and the priors
based on C-vines defined in Lewandowski, Kurowicka, and Joe (2009). In particular,
the Lewandowski et al. prior allows the correlation matrix to be shrunk toward the
unit matrix while the scales are given independent priors.

In BUGS you need to define all variables. In Stan, if you declare but don’t define a
parameter it implicitly has a flat prior (on the scale in which the parameter is defined).
For example, if you have a parameter p declared as

real<lower = 0, upper = 1> p;

and then have no sampling statement for p in the model block, then you are implicitly
assigning a uniform [0,1] prior on p.

On the other hand, if you have a parameter theta declared with

real theta;

and have no sampling statement for theta in the model block, then you are implicitly
assigning an improper uniform prior on (−∞,∞) to theta.

BUGS models are always proper (being constructed as a product of proper marginal
and conditional densities). Stan models can be improper. Here is the simplest improper
Stan model:

parameters {
real theta;

}
model { }

Although parameters in Stan models may have improper priors, we do not want
improper posterior distributions, as we are trying to use these distributions for
Bayesian inference. There is no general way to check if a posterior distribution
is improper. But if all the priors are proper, the posterior will be proper also.

Each statement in a Stan model is directly translated into the C++ code for computing
the log posterior. Thus, for example, the following pair of statements is legal in a Stan
model:

y ~ normal(0,1);
y ~ normal(2,3);

The second line here does not simply overwrite the first; rather, both statements
contribute to the density function that is evaluated. The above two lines have the
effect of including the product, normal(y | 0,1) ∗ normal(y | 2,3), into the density
function.
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For a perhaps more confusing example, consider the following two lines in a Stan
model:

x ~ normal(0.8 * y, sigma);
y ~ normal(0.8 * x, sigma);

At first, this might look like a joint normal distribution with a correlation of 0.8. But it
is not. The above are not interpreted as conditional entities; rather, they are factors
in the joint density. Multiplying them gives, normal(x | 0.8y,σ)× normal(y | 0.8x,σ),
which is what it is (you can work out the algebra) but it is not the joint distribution
where the conditionals have regressions with slope 0.8.

With censoring and truncation, Stan uses the censored-data or truncated-data
likelihood—this is not always done in BUGS. All of the approaches to censoring
and truncation discussed in Gelman et al. (2013) and Gelman and Hill (2007) may be
implemented in Stan directly as written.

Stan, like BUGS, can benefit from human intervention in the form of reparameterization.

32.4. Some Differences when Running from R
Stan can be set up from within R using two lines of code. Follow the instructions for
running Stan from R on the Stan web site. You don’t need to separately download Stan
and RStan. Installing RStan will automatically set up Stan.

In practice we typically run the same Stan model repeatedly. If you pass RStan the
result of a previously fitted model the model will not need be recompiled. An example
is given on the running Stan from R pages available from the Stan web site.

When you run Stan, it saves various conditions including starting values, some control
variables for the tuning and running of the no-U-turn sampler, and the initial random
seed. You can specify these values in the Stan call and thus achieve exact replication if
desired. (This can be useful for debugging.)

When running BUGS from R, you need to send exactly the data that the model needs.
When running RStan, you can include extra data, which can be helpful when playing
around with models. For example, if you remove a variable x from the model, you
can keep it in the data sent from R, thus allowing you to quickly alter the Stan model
without having to also change the calling information in your R script.

As in R2WinBUGS and R2jags, after running the Stan model, you can quickly summarize
using plot() and print(). You can access the simulations themselves using various
extractor functions, as described in the RStan documentation.

Various information about the sampler, such as number of leapfrog steps, log

https://mc-stan.org
https://mc-stan.org
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probability, and step size, is available through extractor functions. These can be
useful for understanding what is going wrong when the algorithm is slow to converge.

32.5. The Stan Community
Stan, like WinBUGS, OpenBUGS, and JAGS, has an active community, which you can
access via the user’s mailing list and the developer’s mailing list; see the Stan web site
for information on subscribing and posting and to look at archives.

https://mc-stan.org
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