
CmdStan User’s Guide
Version 2.24

Stan Development Team

Contents

Introduction 4

QuickStart Guide 6

1. CmdStan Installation 7

1.1 Installing the C++ Toolchain 7

1.2 GNU-Make Utility 9

1.3 Clone the GitHub CmdStan Repository 12

1.4 Building CmdStan 12

1.5 Trouble-shooting the installation 14

2. Example Model and Data 15

3. Compiling a Stan Program 16

3.1 Invoking the Make Utility 16

3.2 Dependencies 16

3.3 Compiler Errors 17

3.4 Troubleshooting C++ Compiler or Linker Errors 18

4. MCMC Sampling 19

4.1 Running the Sampler 19

4.2 Running Multiple Chains 20

4.3 Stan CSV Output File 22

4.4 Summarizing Sampler Output(s) with stansummary 23

5. Optimization 25

6. Variational Inference 28

7. Generating Quantities of Interest from a Fitted Model 32

Reference Manual 35

8. Command-Line Interface Overview 36

8.1 Input Data Argument 36

1

CONTENTS 2

8.2 Output Control Arguments 37

8.3 Initialize Model Parameters Argument 37

8.4 Random Number Generator Arguments 38

8.5 Chain Identifier Argument: id 38

8.6 Command Line Help 39

9. MCMC Sampling using Hamiltonian Monte Carlo 40

9.1 Iterations 41

9.2 Adaptation 42

9.3 Algorithm 44

9.4 Sampler Diagnostic File 46

9.5 Examples 46

10. Maximum Likelihood Estimation 53

10.1 Optimization Algorithms 53

10.2 The quasi-Newton optimizers 54

10.3 The Newton optimizer 55

11. Variational Inference Algorithm: ADVI 56

11.1 Variational Algorithms 57

11.2 Configuration 57

11.3 CSV Output 58

12. Standalone Generate Quantities 60

13. Diagnosing HMC by Comparison of Gradients 61

14. Parallelization 63

CmdStan Tools 64

15. stanc: Translating Stan to C++ 65

15.1 Instantiating the stanc Binary 65

15.2 The Stan Compiler Program 65

15.3 Command-Line Options for stanc3 66

15.4 Command-Line Options for stanc2 67

15.5 Using External C++ Code 68

16. stansummary: MCMC Output Analysis 70

CONTENTS 3

16.1 Building the stansummary Command 70

16.2 Running the stansummary Program 71

16.3 Command-line Options 73

17. diagnose: Diagnosing Biased Hamiltonian Monte Carlo Inferences 74

17.1 Building the diagnose Command 74

17.2 Running the diagnose Command 74

17.3 diagnose Warnings and Recommendations 77

18. print (deprecated): MCMC Output Analysis 79

Appendices 80

19. Stan CSV File Format 81

19.1 CSV Column Names and Order 81

19.2 MCMC Sampler CSV Output 82

19.3 Optimization Output 86

19.4 Variational Inference Output 86

19.5 Generate Quantities Outputs 86

19.6 Diagnose Method Outputs 86

20. JSON Format for CmdStan 87

20.1 Creating JSON Files 87

20.2 JSON Syntax Summary 87

20.3 Stan Data Types in JSON Notation 88

21. RDump Format for CmdStan 91

21.1 Creating Dump Files 91

21.2 Scalar Variables 91

21.3 Sequence Variables 91

21.4 Array Variables 92

21.5 Matrix- and Vector-Valued Variables 93

21.6 Integer- and Real-Valued Variables 94

21.7 Quoted Variable Names 95

21.8 Line Breaks 96

21.9 BNF Grammar for Dump Data 96

Bibliography 98

Introduction

This document is a user’s guide for CmdStan, the command-line interface. to the Stan
statistical modeling language. CmdStan is the command-line interface for Stan. Cmd-
Stan provides the tools to compile a statistical model written in the Stan probabalistic
programming language into a C++ executable program which can then be run to either:
do inference on data, producing an estimate of the posterior; generate new quantities
of interest from an existing estimate; or generate data from the model according to a
given set of parameters

CmdStan provides the programs and tools to compile Stan programs into C++ executa-
bles that can be run directly from the command line, together with a few utilities to
check and summarize the resulting outputs.

The packages CmdStanR and CmdStanPy which provide interfaces to CmdStan from R
and Python, respectively, similarly, JuliaStan also interfaces with CmdStan.

Stan Home Page

For links to up-to-date code, examples, manuals, bug reports, feature requests, and
everything else Stan related, see the Stan home page:

http://mc-stan.org/

Licensing

CmdStan, Stan, and the Stan Math Library are licensed under the new BSD license
(3-clause). See the Stan Reference Manual Licenses section for licensing terms for Stan
and the dependent packages Boost, Eigen, Sundials, and Intel TBB.

Stan Documentation: User’s Guide and Reference Manuals

The Stan user’s guide provides example models and programming techniques for
coding statistical models in Stan. It also serves as an example-driven introduction to
Bayesian modeling and inference:

http://mc-stan.org/docs/stan-users-guide

Stan’s modeling language is shared across all of its interfaces. The Stan Language
Reference Manual provides a concise definition of the language syntax for all elements

4

http://mc-stan.org/
https://mc-stan.org/docs/reference-manual/licensing-appendix.html
http://mc-stan.org/docs/stan-users-guide

CONTENTS 5

in the language.

http://mc-stan.org/docs/reference-manual

The Stan Functions Reference provides definitions and examples for all the functions
defined in the Stan math library and available in the Stan programming language,
including all probability distributions.

http://mc-stan.org/docs/functions-reference.

Benefits of CmdStan

• With every new Stan release, there is a corresponding CmdStan release, therefore
CmdStan provides access to the latest version of Stan, and can be used to run
the development version of Stan as well.

• Of the Stan interfaces, CmdStan has the lightest memory footprint, therefore
it can fit larger and more complex models. It has has the fewest dependencies,
which makes it easier to run in limited environments such as clusters.

• The output generated is in CSV format and can be post-processed using other
Stan interfaces or general tools.

http://mc-stan.org/docs/reference-manual
http://mc-stan.org/docs/functions-reference

QuickStart Guide

This section is designed to help users install CmdStan and get acquainted with the
CmdStan interface.

6

1. CmdStan Installation

To install CmdStan you need:

• A modern C++11 compiler. Supported versions are • Linux: g++ 4.9.3 or clang
6.0 • macOS: the XCode version of clang • Windows: g++ 8.1 (available with
RTools 4.0) is recommended; alternatively, g++ 4.9.3 (available with RTools 3.5).

• The GNU-Make utility program or the Windows equivalent mingw32-make. On
macOS, this is part of the XCode command line tools installed via command
xcode-select --install. On Windows, mingw32-make is installed as part of
RTools: https://cran.rstudio.com/bin/windows/Rtools/.

• The CmdStan C++ source code and libraries. The most recent CmdStan release
is available as a single compressed tarfile containing all of the CmdStan tools
and the Stan and math libraries from GitHub: https://github.com/stan-dev/cm
dstan/releases/latest or you can clone the GitHub repo.

The CmdStan release unpacks into a directory called cmdstan-<version>
where the version string consists of the major.minor.patch version numbers,
e.g. cmdstan-2.23.0. Cloning CmdStan from GitHub creates a directory simply called
cmdstan. Throughout this manual, we refer to this top-level CmdStan source directory
as <cmdstan-home>.

1.1. Installing the C++ Toolchain
The C++ toolchain consists of a modern C++ compiler and the GNU-Make utility,
described in greater detail in the following section.

Linux: g++ and make
On Linux, the C++ compiler command g++ and the GNU-Make command is make. These
are often installed by default. To check, run commands:

g++ --version
make --version

If these are at least at g++ version 4.9.3 or later and make version 3.81 or later, no
additional installations are necessary. It may still be desirable to update the C++
compiler g++, because later versions are faster.

To install the latest version of these tools (or upgrade an older version), use the
following commands or their equivalent for your distribution, install via the commands:

7

https://github.com/stan-dev/stan/wiki/Coding-Style-and-Idioms#supported-cpp-versions-and-compilers
https://www.gnu.org/software/make/manual/make.html
https://cran.rstudio.com/bin/windows/Rtools/
https://github.com/stan-dev/cmdstan/releases/latest
https://github.com/stan-dev/cmdstan/releases/latest

CHAPTER 1. CMDSTAN INSTALLATION 8

sudo apt install g++
sudo apt install make

If you can’t run sudo, you will need to ask your sysadmin or cluster administrator to
install these tools for you.

MacOS: clang++ and make
To install a C++ development environment on a Mac, use Apple’s Xcode development
environment https://developer.apple.com/xcode/.

From the Xcode home page View in Mac App Store.

• From the App Store, click Install, enter an Apple ID, and wait for Xcode to
finish installing.

• Open the Xcode application, click top-level menu Preferences, click top-row
button Downloads, click button for Components, click on the Install button to
the right of the Command Line Tools entry, then wait for it to finish installing.

• Click the top-level menu item Xcode, then click item Quit Xcode to quit.

To test, open the Terminal application and enter:

clang++ --version
make --version

If you have installed XCode, but don’t have make, you can install the XCode command-
line tools via command:

xcode-select --install

Note MacOS installations may include old version of the g++ compiler which is a
version 4.2.1. CmdStan requires g++ at 4.9.3 or later. Trying to install later versions of
g++ using homebrew or macports is no longer recommended; use the XCode toolchain.

Windows: g++ and mingw32-make
The Windows toolchain consists of programs g++, the C++ compiler, and
mingw32-make, the GNU-Make utility. To check if these are present, open a com-
mand shell1 and type:

g++ --version
mingw32-make --version

Rtools C++ Development Environment

1To open a Windows command shell, first open the Start Menu, (usually in the lower left of the screen),
select option All Programs, then option Accessories, then program Command Prompt. Alternatively, enter
[Windows+r] (both keys together on the keyboard), and enter cmd into the text field that pops up in the
Run window, then press [Return] on the keyboard to run.

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

CHAPTER 1. CMDSTAN INSTALLATION 9

The simplest way to install a full C++ build environment that will work for CmdStan is
to use the Rtools package designed for R developers on Windows (even if you don’t
plan to use R).

If you don’t have RTools, the latest version is Rtools40 (released April 2020) which
can be downloaded from:

• https://cran.r-project.org/bin/windows/Rtools/

After installation is complete, you need to perform one more step: you need to add the
location of the Rtools compiler and make utilities to the PATH environment variable. If
you have Rtools40, these should be:

C:\RTools\RTools40\usr\bin
C:\RTools\RTools40\mingw64\bin

If you have and earlier version of RTools, e.g., RTools 3.6, use RTools36 istead of
RTools40 in the above paths. See these instructions for details on changing the PATH.

32-bit Builds

CmdStan defaults to a 64-bit build. On a 32-bit operating system, include BIT=32 in
CmdStan make/local file described in the next section.

1.2. GNU-Make Utility
CmdStan relies on the GNU-make utility to build both the Stan model executables and
the CmdStan tools.

GNU-Make builds executable programs and libraries from source code by reading files
called Makefiles which specify how to derive the target program. A Makefile consists
of a set of recursive rules where each rule specifies a target, its dependencies, and the
specific operations required to build the target. Specifying dependencies for a target
provides a way to control the build process so that targets which depend on other files
will be updated as needed only when there are changes to those other files. Thus Make
provides an efficient way to manage complex software.

The CmdStan Makefile is in the <cmdstan-home> directory and is named makefile.
This is one of the default GNU Makefile names, which allows you to omit the
-f makefile argument to the Make command. Because the CmdStan Makefile in-
cludes several other Makefiles, Make only works properly when invoked from the
<cmdstan-home> directory; attempts to use this Makefile from another directory by
specifying the full path to the file makefile won’t work. For example, trying to call
Make from another directory by specifying the full path the the makefile results in the
following set of error messages:

https://cran.r-project.org/bin/windows/Rtools/
https://helpdeskgeek.com/windows-10/add-windows-path-environment-variable/
https://www.gnu.org/software/make/manual/html_node/Makefile-Names.html

CHAPTER 1. CMDSTAN INSTALLATION 10

make -f ~/github/stan-dev/cmdstan/makefile
/Users/mitzi/github/stan-dev/cmdstan/makefile:58: make/stanc: No such file or directory
/Users/mitzi/github/stan-dev/cmdstan/makefile:59: make/program: No such file or directory
/Users/mitzi/github/stan-dev/cmdstan/makefile:60: make/tests: No such file or directory
/Users/mitzi/github/stan-dev/cmdstan/makefile:61: make/command: No such file or directory
make: *** No rule to make target `make/command'. Stop.

Makefile syntax allows general pattern rules based on file suffixes. Stan programs
must be stored in files with suffix .stan; the CmdStan makefile rules specify how to
transform the Stan source code into a binary executable. For example, to compile
the Stan program my_program.stan in directory ../my_dir/, the make target is
../my_dir/my_program or ../my_dir/my_program.exe (on Windows).

Make is invoked with a list of target names which can be preceded by
zero or more Makefile variable name=value pairs. For example to compile
../my_dir/my_program.stan for an OpenCL (GPU) machine, the makefile variable
STAN_OPENCL is set to TRUE:

> make STAN_OPENCL=TRUE ../my_dir/my_program

Makefile variables can also be set by creating a file named local in the Cmd-
Stan make subdirectory which contains a list of <VARIABLE>=<VALUE> pairs,
one per line. The complete set of Makefile variables can be found in file
cmdstan/stan/lib/stan_math/make/compiler_flags.

When invoked without any arguments at all, Make prints a help message:

> make
--
CmdStan v2.23.0 help

Build CmdStan utilities:
> make build

This target will:
1. Install the Stan compiler bin/stanc from stanc3 binaries.
2. Build the print utility bin/print (deprecated; will be removed in v3.0)
3. Build the stansummary utility bin/stansummary
4. Build the diagnose utility bin/diagnose
5. Build all libraries and object files compile and link an executable Stan program

Note: to build using multiple cores, use the -j option to make, e.g.,
for 4 cores:

CHAPTER 1. CMDSTAN INSTALLATION 11

> make build -j4

Build a Stan program:

Given a Stan program at foo/bar.stan, build an executable by typing:
> make foo/bar

This target will:
1. Install the Stan compiler (bin/stanc or bin/stanc2), as needed.
2. Use the Stan compiler to generate C++ code, foo/bar.hpp.
3. Compile the C++ code using cc . to generate foo/bar

Additional make options:
STANCFLAGS: defaults to "". These are extra options passed to bin/stanc

when generating C++ code. If you want to allow undefined functions in the
Stan program, either add this to make/local or the command line:

STANCFLAGS = --allow_undefined
USER_HEADER: when STANCFLAGS has --allow_undefined, this is the name of the

header file that is included. This defaults to "user_header.hpp" in the
directory of the Stan program.

STANC2: When set, use bin/stanc2 to generate C++ code.

Example - bernoulli model: examples/bernoulli/bernoulli.stan

1. Build the model:
> make examples/bernoulli/bernoulli

2. Run the model:
> examples/bernoulli/bernoulli sample data file=examples/bernoulli/bernoulli.data.R

3. Look at the samples:
> bin/stansummary output.csv

Clean CmdStan:

Remove the built CmdStan tools:
> make clean-all

--

CHAPTER 1. CMDSTAN INSTALLATION 12

1.3. Clone the GitHub CmdStan Repository
This section can be skipped if you want to build CmdStan using the release tarfile,
which contains all source files an libraries needed to build CmdStan. However, if you
wish to use the current (stable) development version of CmdStan, you must clone the
CmdStan GitHub repo.

The CmdStan repo contains just the cmdstan module; the Stan inference engine
algorithms and Stan math library functions are specified as submodules and stored
in the GitHub repositories stan and math, respectively. By cloning the CmdStan
repository with argument --recursive, Git automatically initializes and updates each
submodule in the repository, including nested submodules if any of the submodules
in the repository have submodules themselves.

The following sequence of commands will check out the current CmdStan develop
branch on GitHub and assemble and build the command line interface and supporting
libraries:

> git clone https://github.com/stan-dev/cmdstan.git --recursive
> cd cmdstan
> make build

The resulting set of directories should have the same structure as the release:

• directory cmdstan/stan contains the sub-module stan (https://github.com/sta
n-dev/stan)

• directory cmdstan/stan/lib/stan_math contains the sub-module math (https:
//github.com/stan-dev/math)

1.4. Building CmdStan
Building CmdStan involves preparing a set of executable programs and compiling the
command line interface and supporting libraries. The CmdStan tools are:

• stanc: the Stan compiler (translates Stan language to C++).

• stansummary: a basic posterior analysis tool. The stansummary utility processes
one or more output files from a run or set of runs of Stan’s HMC sampler. For all
parameters and quantities of interest in the Stan program, stansummary reports
a set of statistics including mean, standard deviation, percentiles, effective
number of samples, and R̂ values.

• diagnose: a basic sampler diagnostic tool which checks for indications that the
HMC sampler was unable to sample from the full posterior.

CmdStan releases include pre-built binaries of the Stan language compiler

https://github.com/stan-dev/cmdstan
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/stan-dev/stan
https://github.com/stan-dev/math
https://github.com/stan-dev/stan
https://github.com/stan-dev/stan
https://github.com/stan-dev/math
https://github.com/stan-dev/math

CHAPTER 1. CMDSTAN INSTALLATION 13

https://github.com/stan-dev/stanc3: bin/linux-stanc, bin/mac-stanc and
bin/windows-stanc. The CmdStan makefile build task copies the appropriate binary
to bin/stanc. For CmdStan installations which have been cloned of downloaded
from the CmdStan GitHub repository, the makefile task will download the appropriate
OS-specific binary from the stanc3 repository’s nightly release.

Steps to build CmdStan:

• Download the latest release from https://github.com/stan-dev/cmdstan/releas
es/latest or clone the GitHub repo.

• Open a command-line terminal window and change directories to the CmdStan
home directory.

• Run the makefile target build which instantiates the CmdStan utilities and
compiles all necessary C++ libraries.

> cd <cmdstan-home>
> make build

If your computer has multiple cores and sufficient ram, the build process can be
parallelized by providing the -j option. For example, to build on 4 cores, type:

> make -j4 build

When make build is successful, the directory <cmdstan-home>/bin/ will contain the
executables stanc, stansummary, and diagnose (on Windows, corresponding .exe
files) and the final lines of console output will show the version of CmdStan that has
just been built, e.g.:

--- CmdStan v2.23.0 built ---

Warning: The Make program may take 10+ minutes and consume 2+ GB of memory to
build CmdStan.

Windows only: CmdStan requires that the Intel TBB library, which is built by the above
command, can be found by the Windows system. This requires that the directory
<cmdstan-home>/stan/lib/stan_math/lib/tbb is part of the PATH environment
variable. To permanently make this setting for the current user, you may execute:

> mingw32-make install-tbb

After changing the PATH environment variable, you must open an new shell in order
to these setting to take effect. (This is not necessary on Mac and Linux systems
because they can use the absolute path to the Intel TBB library when linking into Stan
programs.)

https://github.com/stan-dev/stanc3
https://github.com/stan-dev/cmdstan/releases/latest
https://github.com/stan-dev/cmdstan/releases/latest

CHAPTER 1. CMDSTAN INSTALLATION 14

1.5. Trouble-shooting the installation
To check that the CmdStan installation is complete and in working order, run the
following series of commands:

compile the example
> make examples/bernoulli/bernoulli

fit to provided data (results of 10 trials, 2 out of 10 successes)
> ./examples/bernoulli/bernoulli sample data file=examples/bernoulli/bernoulli.data.json

default output written to file `output.csv`,
default num_samples is 1000, output file should have approx 1050 lines
> ls -l output.csv

run the `bin/stansummary utility to summarize parameter estimates
> bin/stansummary output.csv

The sample data in file bernoulli.json.data specifies 2 out of 10 successes, there-
fore the range mean(theta)±sd(theta) should include 0.2.

Updates to CmdStan or changes in compiler options may result in errors when trying
to compile a Stan program. In some cases, these can be resolved by removing the
existing CmdStan build and recompiling. The Makefile target clean-all should be
run before rebuilding CmdStan:

> make clean-all
> make build

2. Example Model and Data

The following is a simple, complete Stan program for a Bernoulli model of binary data.1

The model assumes the binary observed data y[1],...,y[N] are i.i.d. with Bernoulli
chance-of-success theta.

data {
int<lower=0> N;
int<lower=0,upper=1> y[N];

}
parameters {

real<lower=0,upper=1> theta;
}
model {

theta ~ beta(1,1); // uniform prior on interval 0,1
y ~ bernoulli(theta);

}

The input data file contains definitions for the two variables N and y which are specified
in the data block of program bernoulli.stan (above).

A data set of N=10 observations is included in the example Bernoulli model directory
in both JSON notation and Rdump data format where 8 out of 10 trials had outcome 0
(failure) and 2 trials had outcome 1 (success). In JSON, this data is:

{
"N" : 10,
"y" : [0,1,0,0,0,0,0,0,0,1]

}

1The model is available with the CmdStan distribution at the path
<cmdstan-home>/examples/bernoulli/bernoulli.stan.

15

3. Compiling a Stan Program

A Stan program must be in a file with extension .stan. The CmdStan makefile rules
specify all necessary steps to translate files with suffix .stan to a CmdStan executable
program. This is a two-stage process:

• first the Stan program is translated to C++ by the stanc compiler
• then the C++ compiler compiles all C++ sources and links them together with

the CmdStan interface program and the Stan and math libraries.

3.1. Invoking the Make Utility
To compile Stan programs, you must invoke the Make program from the
<cmdstan-home> directory. The Stan program can be in a different directory, but
the directory path names cannot contain spaces - this limitation is imposed by Make.

> cd <cmdstan_home>

In the call to the Make program, the target is name of the CmdStan executable cor-
responding to the Stan program file. On Mac and Linux, this is the name of the Stan
program with the .stan omitted. On Windows, replace .stan with .exe, and make
sure that the path is given with slashes and not backslashes. To build the Bernoulli
example, on Mac and Linux:

> make examples/bernoulli/bernoulli

On Windows, the command is the same with the addition of .exe at the end of the
target (note the use of forward slashes):

> make examples/bernoulli/bernoulli.exe

The generated C++ code (bernoulli.hpp), object file (bernoulli.o) and the compiled
executable will be placed in the same directory as the Stan program.

The compiled executable consists of the Stan model and the CmdStan command line
interface which provides inference algorithms to do MCMC sampling, optimization,
and variational inference. The following sections provide examples of doing inference
using each method on the example model and data file.

3.2. Dependencies
When executing a Make target, all its dependencies are checked to see if they are up to
date, and if they are not, they are rebuilt. If the you call Make with target bernoulli

16

CHAPTER 3. COMPILING A STAN PROGRAM 17

twice in a row, without any editing bernoulli.stan or otherwise changing the system,
on the second invocation, Make will determine that the executable is already newer
than the Stan source file and will not recompile the program:

> make examples/bernoulli/bernoulli
make: `examples/bernoulli/bernoulli' is up to date.

If the file containing the Stan program is updated, the next call to make will rebuild
the CmdStan executable.

3.3. Compiler Errors
The Stan probabilistic programming language is a programming language with a rich
syntax, as such, it is often the case that a carefully written program contains errors.

The simplest class of errors are simple syntax errors such as forgetting the semi-colon
statement termination marker at the end of a line, or typos such as a misspelled
variable name. For example, if in the bernoulli.stan program, we introduce a typo
on line 9 by writing thata instead of theta, the Make command fails with the following

--- Translating Stan model to C++ code ---
bin/stanc --o=bernoulli.hpp bernoulli.stan

Semantic error in 'bernoulli.stan', line 9, column 2 to column 7:

7: }
8: model {
9: thata ~ beta(1,1); // uniform prior on interval 0,1

^
10: y ~ bernoulli(theta);
11: }

Identifier 'thata' not in scope.

make: *** [bernoulli.hpp] Error 1

Stan is a strongly-typed language; and the compiler will throw an error if statements
or expressions violate the type rules. The following trivial program foo.stan contains
an illegal assignment statement:

data {
real x;

}

https://mc-stan.org/docs/reference-manual/data-types-chapter.html

CHAPTER 3. COMPILING A STAN PROGRAM 18

transformed data {
int y = x;

}

The Make command fails with the following:

Semantic error in 'foo.stan', line 5, column 2 to column 12:

3: }
4: transformed data {
5: int y = x;

^
6: }

Ill-typed arguments supplied to assignment operator =: lhs has type int and rhs has type real

The Stan Reference Manual provides a complete specification of the Stan programming
language.

3.4. Troubleshooting C++ Compiler or Linker Errors
If the stanc compiler successfully translates a Stan program to C++, the resulting
C++ code should be valid C++ which can be compiled into an executable. The stanc
compiler is also a program, and while it has been extensively tested, it may still contain
errors such that the generated C++ code fails to compile.

The Make command prints the following message to the terminal at the point when it
compiles and links the C++ file:

--- Compiling, linking C++ code ---

If the program fails to compile for any reason, the C++ compiler and linker will most
likely print a long series of error messages to the console.

If this happens, please report the error, together with the Stan program on either the
Stan Forums or on the Stan compiler GitHub issues tracker.

https://mc-stan.org/docs/reference-manual/language.html#language
https://discourse.mc-stan.org/
https://github.com/stan-dev/stanc3/issues

4. MCMC Sampling

4.1. Running the Sampler
To generate a sample from the posterior distribution of the model conditioned on the
data, we run the executable program with the argument sample or method=sample
together with the input data. The executable can be run from any directory.
Here, we run it in the directory which contains the Stan program and input data,
<cmdstan-home>/examples/bernoulli:

> cd examples/bernoulli

To execute sampling of the model under Linux or Mac, use:

> ./bernoulli sample data file=bernoulli.data.json

In Windows, the ./ prefix is not needed:

> bernoulli.exe sample data file=bernoulli.data.json

The output is the same across all supported platforms. First, the configuration of the
program is echoed to the standard output:

method = sample (Default)
sample
num_samples = 1000 (Default)
num_warmup = 1000 (Default)
save_warmup = 0 (Default)
thin = 1 (Default)
adapt
engaged = 1 (Default)
gamma = 0.050000000000000003 (Default)
delta = 0.80000000000000004 (Default)
kappa = 0.75 (Default)
t0 = 10 (Default)
init_buffer = 75 (Default)
term_buffer = 50 (Default)
window = 25 (Default)

algorithm = hmc (Default)
hmc

engine = nuts (Default)

19

CHAPTER 4. MCMC SAMPLING 20

nuts
max_depth = 10 (Default)

metric = diag_e (Default)
metric_file = (Default)
stepsize = 1 (Default)
stepsize_jitter = 0 (Default)

id = 0 (Default)
data

file = bernoulli.data.json
init = 2 (Default)
random

seed = 3252652196 (Default)
output

file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

After the configuration has been displayed, a short timing message is given.

Gradient evaluation took 1.2e-05 seconds
1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
Adjust your expectations accordingly!

Next, the sampler reports the iteration number, reporting the percentage complete.

Iteration: 1 / 2000 [0%] (Warmup)
....
Iteration: 2000 / 2000 [100%] (Sampling)

Finally, the sampler reports timing information:

Elapsed Time: 0.007 seconds (Warm-up)
0.017 seconds (Sampling)
0.024 seconds (Total)

4.2. Running Multiple Chains
A Markov chain generates samples from the target distribution only after it has
converged to equilibrium. In theory, convergence is only guaranteed asymptotically as
the number of draws grows without bound. In practice, diagnostics must be applied
to monitor convergence for the finite number of draws actually available. One way to
monitor whether a chain has converged to the equilibrium distribution is to compare its
behavior to other randomly initialized chains. For robust diagnostics, we recommend
running 4 chains.

CHAPTER 4. MCMC SAMPLING 21

To run multiple chains given a model and data, either sequentially or in parallel, we
use the Unix or DOS shell for loop to set up index variables needed to identify each
chain and its outputs.

On MacOS or Linux, the for-loop syntax for both the bash and zsh interpreters is:

for NAME [in LIST]; do COMMANDS; done

The list can be a simple sequence of numbers, or you can use the shell expansion
syntax {1..N} which expands to the sequence from 1 to N, e.g. {1..4} expands to 1
2 3 4. Note that the expression {1..N} cannot contain spaces.

To run 4 chains for the example bernoulli model on MacOS or Linux:

> for i in {1..4}
do

./bernoulli sample data file=bernoulli.data.json \
output file=output_${i}.csv

done

The backslash (\) indicates a line continuation in Unix. The expression ${i} substitutes
in the value of loop index variable i. To run chains in parallel, put an ampersand (&) at
the end of the nested sampler command:

> for i in {1..4}
do

./bernoulli sample data file=bernoulli.data.json \
output file=output_${i}.csv &

done

This pushes each process into the background which allows the loop to continue
without waiting for the current chain to finish.

On Windows, the DOS for-loop syntax is one of:

for %i in (SET) do COMMAND COMMAND-ARGUMENTS
for /l %i in (START, STEP, END) do COMMAND COMMAND-ARGUMENTS

To run 4 chains in parallel on Windows:

>for /l %i in (1, 1, 4) do start /b bernoulli.exe sample ^
data file=bernoulli.data.json my_data ^
output file=output_%i.csv

The caret (ˆ) indicates a line continuation in DOS.

https://linuxcourse.rutgers.edu/documents/Bash-Beginners-Guide/sect_09_01.html
https://www.windows-commandline.com/windows-for-loop-examples/

CHAPTER 4. MCMC SAMPLING 22

4.3. Stan CSV Output File
Each execution of the model results in draws from a single Markov chain being written
to a file in comma-separated value (CSV) format. The default name of the output file is
output.csv.

The first part of the output file records the version of the underlying Stan library and
the configuration as comments (i.e., lines beginning with the pound sign (#)).

stan_version_major = 2
stan_version_minor = 23
stan_version_patch = 0
model = bernoulli_model
method = sample (Default)
sample
num_samples = 1000 (Default)
num_warmup = 1000 (Default)
...
output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

This is followed by a CSV header indicating the names of the values sampled.

lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,theta

The first output columns report the HMC sampler information:

• lp__ - the total log probability density (up to an additive constant) at each
sample

• accept_stat__ - the average Metropolis acceptance probability over each simu-
lated Hamiltonian trajectory

• stepsize__ - integrator step size
• treedepth__ - depth of tree used by NUTS (NUTS sampler)
• n_leapfrog__ - number of leapfrog calculations (NUTS sampler)
• divergent__ - has value 1 if trajectory diverged, otherwise 0. (NUTS sampler)
• energy__ - value of the Hamiltonian
• int_time__ - total integration time (static HMC sampler)

Because the above header is from the NUTS sampler, it has columns treedepth__,
n_leapfrog__, and divergent__ and doesn’t have column int_time__. The remain-
ing columns correspond to model parameters. For the Bernoulli model, it is just the
final column, theta.

CHAPTER 4. MCMC SAMPLING 23

The header line is written to the output file before warmup begins. If option
save_warmup is set to 1, the warmup draws are output directly after the header.
The total number of warmup draws saved is num_warmup divided by thin, rounded
up (i.e., ceiling).

Following the warmup draws (if any), are comments which record the results of
adaptation: the stepsize, and inverse mass metric used during sampling:

Adaptation terminated
Step size = 0.884484
Diagonal elements of inverse mass matrix:
0.535006

The default sampler is NUTS with an adapted step size and a diagonal inverse mass
matrix. For this example, the step size is 0.884484, and the inverse mass contains the
single entry 0.535006 corresponding to the parameter theta.

Draws from the posterior distribution are printed out next, each line containing a
single draw with the columns corresponding to the header.

-6.84097,0.974135,0.884484,1,3,0,6.89299,0.198853
-6.91767,0.985167,0.884484,1,1,0,6.92236,0.182295
-7.04879,0.976609,0.884484,1,1,0,7.05641,0.162299
-6.88712,1,0.884484,1,1,0,7.02101,0.188229
-7.22917,0.899446,0.884484,1,3,0,7.73663,0.383596
...

The output ends with timing details:

Elapsed Time: 0.007 seconds (Warm-up)
0.017 seconds (Sampling)
0.024 seconds (Total)

4.4. Summarizing Sampler Output(s) with stansummary
The stansummary utility processes one or more output files from a run or set of
runs of Stan’s HMC sampler given a model and data. For all columns in the Stan CSV
output file stansummary reports a set of statistics including mean, standard deviation,
percentiles, effective number of samples, and R̂ values.

To run stansummary on the output files generated by the for loop above, by the above
run of the bernoulli model on Mac or Linux:

<cmdstan-home>/bin/stansummary output_*.csv

On Windows, use backslashes to call the stansummary.exe.

CHAPTER 4. MCMC SAMPLING 24

<cmdstan-home>\bin\stansummary.exe output_*.csv

The stansummary output consists of one row of statistics per column in the Stan CSV
output file. Therefore, the first rows in the stansummary report statistics over the
sampler state. The final row of output summarizes the estimates of the model variable
theta:

Inference for Stan model: bernoulli_model
4 chains: each with iter=(1000,1000,1000,1000); warmup=(0,0,0,0); thin=(1,1,1,1); 4000 iterations saved.

Warmup took (0.0070, 0.0070, 0.0070, 0.0070) seconds, 0.028 seconds total
Sampling took (0.020, 0.017, 0.021, 0.019) seconds, 0.077 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ -7.3 1.8e-02 0.75 -8.8 -7.0 -6.8 1.8e+03 2.4e+04 1.0e+00
accept_stat__ 0.89 2.7e-03 0.17 0.52 0.96 1.0 3.9e+03 5.1e+04 1.0e+00
stepsize__ 1.1 7.5e-02 0.11 0.93 1.2 1.2 2.0e+00 2.6e+01 2.5e+13
treedepth__ 1.4 8.1e-03 0.49 1.0 1.0 2.0 3.6e+03 4.7e+04 1.0e+00
n_leapfrog__ 2.3 1.7e-02 0.98 1.0 3.0 3.0 3.3e+03 4.3e+04 1.0e+00
divergent__ 0.00 nan 0.00 0.00 0.00 0.00 nan nan nan
energy__ 7.8 2.6e-02 1.0 6.8 7.5 9.9 1.7e+03 2.2e+04 1.0e+00
theta 0.25 2.9e-03 0.12 0.079 0.23 0.46 1.7e+03 2.1e+04 1.0e+00

Samples were drawn using hmc with nuts.
For each parameter, N_Eff is a crude measure of effective sample size,
and R_hat is the potential scale reduction factor on split chains (at
convergence, R_hat=1).

In this example, we conditioned the model on a dataset consisting of the outcomes
of 10 bernoulli trials, where only 2 trials reported success. The 5%, 50%, and 95%
percentile values for theta reflect the uncertainty in our estimate, due to the small
amount of data, given the prior of beta(1, 1)

5. Optimization

The CmdStan executable can run Stan’s optimization algorithms for penalized maxi-
mum likelihood estimation which provide a deterministic method to find the posterior
mode. If the posterior is not convex, there is no guarantee Stan will be able to find the
global mode as opposed to a local optimum of log probability.

The executable does not need to be recompiled in order to switch from sampling to
optimization, and the data input format is the same. The following is a minimal call to
Stan’s optimizer using defaults for everything but the location of the data file.

> ./bernoulli optimize data file=bernoulli.data.json

Executing this command prints both output to the console and to a csv file.

The first part of the console output reports on the configuration used. The above
command uses all default configurations, therefore the optimizer used is the L-BFGS
optimizer and its default initial stepsize and tolerances for monitoring convergence:

./bernoulli optimize data file=bernoulli.data.json
method = optimize

optimize
algorithm = lbfgs (Default)
lbfgs

init_alpha = 0.001 (Default)
tol_obj = 1e-12 (Default)
tol_rel_obj = 10000 (Default)
tol_grad = 1e-08 (Default)
tol_rel_grad = 10000000 (Default)
tol_param = 1e-08 (Default)
history_size = 5 (Default)

iter = 2000 (Default)
save_iterations = 0 (Default)

id = 0 (Default)
data

file = bernoulli.data.json
init = 2 (Default)
random

seed = 87122538 (Default)

25

CHAPTER 5. OPTIMIZATION 26

output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

The second part of the output indicates how well the algorithm fared, here converging
and terminating normally. The numbers reported indicate that it took 5 iterations and
8 gradient evaluations. This is, not surprisingly, far fewer iterations than required
for sampling; even fewer iterations would be used with less stringent user-specified
convergence tolerances. The alpha value is for step size used. In the final state the
change in parameters was roughly 0.002 and the length of the gradient roughly 3e-05
(0.00003).

Initial log joint probability = -6.85653
Iter log prob ||dx|| ||grad|| alpha alpha0 # evals Notes

5 -5.00402 0.00184936 3.35074e-05 1 1 8
Optimization terminated normally:

Convergence detected: relative gradient magnitude is below tolerance

The output from optimization is written into the file output.csv by default. The
output follows the same pattern as the output for sampling, first dumping the entire
set of parameters used as comment lines:

stan_version_major = 2
stan_version_minor = 23
stan_version_patch = 0
model = bernoulli_model
method = optimize
optimize
algorithm = lbfgs (Default)
...

Following the config information, are two lines of output: the CSV headers and the
recorded values:

lp__,theta
-5.00402,0.200003

Note that everything is a comment other than a line for the header, and a line for the
values. Here, the header indicates the unnormalized log probability with lp__ and the
model parameter theta. The maximum log probability is -5.0 and the posterior mode
for theta is 0.20. The mode exactly matches what we would expect from the data.1

1The Jacobian adjustment included for the sampler’s log probability function is not applied during

CHAPTER 5. OPTIMIZATION 27

Because the prior was uniform, the result 0.20 represents the maximum likelihood
estimate (MLE) for the very simple Bernoulli model. Note that no uncertainty is
reported.

All of the optimizers stream per-iteration intermediate approximations to the com-
mand line console. The sub-argument save_iterations specifies whether or not
to save the intermediate iterations to the output file. Allowed values are 0 or 1,
corresponding to False and True respectively. The default value is 0, i.e., inter-
mediate iterations are not saved to the output file. Running the optimizer with
save_iterations=1 writes both the initial log joint probability and values for all
iterations to the output CSV file.

Running the example model with option save_iterations=1, i.e., the command

> ./bernoulli optimize save_iterations=1 data file=bernoulli.data.json

produces CSV file output rows:

lp__,theta
-6.85653,0.493689
-6.10128,0.420936
-5.02953,0.22956
-5.00517,0.206107
-5.00403,0.200299
-5.00402,0.200003

optimization, because it can change the shape of the posterior and hence the solution.

6. Variational Inference

CmdStan can approximate the posterior distribution using variational inference. The
approximation is a Gaussian in the unconstrained variable space. Stan implements
two variational algorithms. The algorithm=meanfield option uses a fully factorized
Gaussian for the approximation. The algorithm=fullrank option uses a Gaussian
with a full-rank covariance matrix for the approximation.

The executable does not need to be recompiled in order to switch to variational
inference, and the data input format is the same. The following is a minimal call to
Stan’s variational inference algorithm using defaults for everything but the location of
the data file.

> ./bernoulli variational data file=bernoulli.data.R

Executing this command prints both output to the console and to a csv file.

The first part of the console output reports on the configuration used. Here it indicates
the default mean-field setting of the variational inference algorithm. It also indicates
the default parameter sizes and tolerances for monitoring the algorithm’s convergence.

method = variational
variational
algorithm = meanfield (Default)
meanfield

iter = 10000 (Default)
grad_samples = 1 (Default)
elbo_samples = 100 (Default)
eta = 1 (Default)
adapt

engaged = 1 (Default)
iter = 50 (Default)

tol_rel_obj = 0.01 (Default)
eval_elbo = 100 (Default)
output_samples = 1000 (Default)

id = 0 (Default)
data

file = bernoulli.data.json
init = 2 (Default)

28

CHAPTER 6. VARIATIONAL INFERENCE 29

random
seed = 3323783840 (Default)

output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

After the configuration has been displayed, informational and timing messages are
output:

--
EXPERIMENTAL ALGORITHM:

This procedure has not been thoroughly tested and may be unstable
or buggy. The interface is subject to change.

--

Gradient evaluation took 2.1e-05 seconds
1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
Adjust your expectations accordingly!

The rest of the output describes the progression of the algorithm. An adaptation
phase finds a good value for the step size scaling parameter eta. The evidence lower
bound (ELBO) is the variational objective function and is evaluated based on a Monte
Carlo estimate. The variational inference algorithm in Stan is stochastic, which makes
it challenging to assess convergence. That is, while the algorithm appears to have
converged in ∼ 250 iterations, the algorithm runs for another few thousand iterations
until mean change in ELBO drops below the default tolerance of 0.01.

Begin eta adaptation.
Iteration: 1 / 250 [0%] (Adaptation)
Iteration: 50 / 250 [20%] (Adaptation)
Iteration: 100 / 250 [40%] (Adaptation)
Iteration: 150 / 250 [60%] (Adaptation)
Iteration: 200 / 250 [80%] (Adaptation)
Success! Found best value [eta = 1] earlier than expected.

Begin stochastic gradient ascent.
iter ELBO delta_ELBO_mean delta_ELBO_med notes
100 -6.131 1.000 1.000
200 -6.458 0.525 1.000
300 -6.300 0.359 0.051
400 -6.137 0.276 0.051

CHAPTER 6. VARIATIONAL INFERENCE 30

500 -6.243 0.224 0.027
600 -6.305 0.188 0.027
700 -6.289 0.162 0.025
800 -6.402 0.144 0.025
900 -6.103 0.133 0.025
1000 -6.314 0.123 0.027
1100 -6.348 0.024 0.025
1200 -6.244 0.020 0.018
1300 -6.293 0.019 0.017
1400 -6.250 0.017 0.017
1500 -6.241 0.015 0.010 MEDIAN ELBO CONVERGED

Drawing a sample of size 1000 from the approximate posterior...
COMPLETED.

The output from variational is written into the file output.csv by default. The output
follows the same pattern as the output for sampling, first dumping the entire set of
parameters used as CSV comments:

stan_version_major = 2
stan_version_minor = 23
stan_version_patch = 0
model = bernoulli_model
method = variational
variational
algorithm = meanfield (Default)
meanfield
iter = 10000 (Default)
grad_samples = 1 (Default)
elbo_samples = 100 (Default)
eta = 1 (Default)
adapt
engaged = 1 (Default)
iter = 50 (Default)
tol_rel_obj = 0.01 (Default)
eval_elbo = 100 (Default)
output_samples = 1000 (Default)
...

Next is the column header line, followed more CSV comments reporting the adapted
value for the stepsize, followed by the values. The first line is special: it is the mean

CHAPTER 6. VARIATIONAL INFERENCE 31

of the variational approximation. The rest of the output contains output_samples
number of samples drawn from the variational approximation.

lp__,log_p__,log_g__,theta
Stepsize adaptation complete.
eta = 1
0,0,0,0.236261
0,-6.82318,-0.0929121,0.300415
0,-6.89701,-0.158687,0.321982
0,-6.99391,-0.23916,0.343643
0,-7.35801,-0.51787,0.401554
0,-7.4668,-0.539473,0.123081
...

The header indicates the unnormalized log probability with lp__. This is a legacy
feature that we do not use for variational inference. The ELBO is not stored unless a
diagnostic option is given.

For further details, see Kucukelbir, Alp, Rajesh Ranganath, Andrew Gelman, and
David M. Blei. 2015. Automatic Variational Inference in Stan. arXiv 1506.03431.
http://arxiv.org/abs/1506.03431.

http://arxiv.org/abs/1506.03431

7. Generating Quantities of Interest from a Fit-

ted Model

The generated quantities block computes quantities of interest (QOIs) based on the
data, transformed data, parameters, and transformed parameters. It can be used to:

• generate simulated data for model testing by forward sampling
• generate predictions for new data
• calculate posterior event probabilities, including multiple comparisons, sign

tests, etc.
• calculating posterior expectations
• transform parameters for reporting
• apply full Bayesian decision theory
• calculate log likelihoods, deviances, etc. for model comparison

The generate_quantities method allows you to generate additional quantities of
interest from a fitted model without re-running the sampler. Instead, you write a
modified version of the original Stan program and add a generated quantities block
or modify the existing one which specifies how to compute the new quantities of
interest. Running the generate_quantities method on the new program together
with sampler outputs (i.e., a set of draws) from the fitted model runs the generated
quantities block of the new program using the the existing sample by plugging in
the per-draw parameter estimates for the computations in the generated quantities
block. See the Stan User’s Guide section Stand-alone generated quantities and ongoing
prediction for further details.

To illustrate how this works we use the generate_quantities method to do posterior
predictive checks using the estimate of theta given the example bernoulli model and
data, following the posterior predictive simulation procedure in the Stan User’s Guide.

We write a program bernoulli_ppc.stan which contains the following generated
quantities block, with comments to explain the procedure:

generated quantities {
real<lower=0,upper=1> theta_rep;
int y_sim[N];
// use current estimate of theta to generate new sample
for (n in 1:N)

32

https://mc-stan.org/docs/reference-manual/program-block-generated-quantities.html
https://mc-stan.org/docs/stan-users-guide/stand-alone-generated-quantities-and-ongoing-prediction.html
https://mc-stan.org/docs/stan-users-guide/stand-alone-generated-quantities-and-ongoing-prediction.html
https://mc-stan.org/docs/stan-users-guide/posterior-predictive-simulation-in-stan.html

CHAPTER 7. GENERATING QUANTITIES OF INTEREST FROM A FITTED MODEL 33

y_sim[n] = bernoulli_rng(theta);
// estimate theta_rep from new sample
theta_rep = sum(y_sim) * 1.0 / N;

}

The rest of the program is the same as in bernoulli.stan.

The generate_method requires the sub-argument fitted_params which takes as
its value the name of a Stan CSV file. The per-draw parameter estimates from the
fitted_params file will be used to run the generated quantities block.

If we run the bernoulli.stan program for a single chain to generate a sample in file
bernoulli_fit.csv:

> ./bernoulli sample data file=bernoulli.data.json output file=bernoulli_fit.csv

Then we can run the bernoulli_ppc.stan to carry out the posterior predictive checks:

> ./bernoulli_ppc generate_quantities fitted_params=bernoulli_fit.csv \
data file=bernoulli.data.json \
output file=bernoulli_ppc.csv

The output file bernoulli_ppc.csv consists of just the values for the variables
declared in the generated quantities block, i.e., theta_rep and the elements of y_sim:

model = bernoulli_ppc_model
method = generate_quantities
generate_quantities
fitted_params = bernoulli_fit.csv
id = 0 (Default)
data
file = bernoulli.data.json
init = 2 (Default)
random
seed = 2135140492 (Default)
output
file = bernoulli_ppc.csv
diagnostic_file = (Default)
refresh = 100 (Default)
theta_rep,y_sim.1,y_sim.2,y_sim.3,y_sim.4,y_sim.5,y_sim.6,y_sim.7,y_sim.8,y_sim.9,y_sim.10
0.2,0,0,1,0,0,0,0,0,1,0
0.3,1,0,0,1,0,1,0,0,0,0
0.8,1,0,1,1,1,1,1,1,1,0
0.1,0,0,0,0,0,1,0,0,0,0

CHAPTER 7. GENERATING QUANTITIES OF INTEREST FROM A FITTED MODEL 34

0.3,0,0,0,0,0,0,1,1,1,0

Note: the only relevant analysis of the resulting CSV output is computing per-column
statistics; this can easily be done in Python, R, Excel or similar, or you can use the
CmdStanPy and CmdStanR interfaces which provide a better user experience for this
workflow.

Given the current implementation, to see the fitted parameter values for each draw,
create a copy variable in the generated quantities block, e.g.:

generated quantities {
real<lower=0,upper=1> theta_cp = theta;
real<lower=0,upper=1> theta_rep;
int y_sim[N];
// use current estimate of theta to generate new sample
for (n in 1:N)
y_sim[n] = bernoulli_rng(theta);

// estimate theta_rep from new sample
theta_rep = sum(y_sim) * 1.0 / N;

}

Now the output is slightly more interpretable: theta_cp is the same as the theta used
to generate the values y_sim[1] through y_sim[1]. Comparing columns theta_cp
and theta_rep allows us to see how the uncertainty in our estimate of theta is
carried forward into our predictions:

theta_cp,theta_rep,y_sim.1,y_sim.2,y_sim.3,y_sim.4,y_sim.5,y_sim.6,y_sim.7,y_sim.8,y_sim.9,y_sim.10
0.102391,0,0,0,0,0,0,0,0,0,0,0
0.519567,0.2,0,1,0,0,1,0,0,0,0,0
0.544634,0.6,1,0,0,0,0,1,1,1,1,1
0.167651,0,0,0,0,0,0,0,0,0,0,0
0.167651,0.1,1,0,0,0,0,0,0,0,0,0

Reference Manual

This section provides a complete reference for all CmdStan methods:

• sample
• optimize
• variational
• generate_quantities
• diagnose
• help

35

8. Command-Line Interface Overview

A CmdStan executable is built from the Stan model concept and the CmdStan command
line parser. The command line argument syntax consists of sets of keywords and
keyword-value pairs. Arguments are grouped by the following keywords:

• method - specifies the kind of inference done on the model. Each kind of
inference requires further configuration via sub-arguments. The method ar-
gument is required. It can be specified overtly as the a keyword-value pair
method=<inference> or implicitly as one of the following:

– sample - obtain a sample from the posterior using HMC
– optimize - penalized maximum likelihood estimation
– variational - automatic variational inference
– generate_quantities - run model’s generated quantities block on

existing sample to obtain new quantities of interest.

– diagnose - compute and compare sampler gradient calculations to finite
differences.

• data - specifies the input data file, if any.

• output - specifies program outputs, both disk files and terminal window outputs.

• init - specifies initial values for the model parameters, if any.

• random - specifies the seed for the psuedo-random number.

The remainder of this chapter covers the general configuration options used for all
processing. The following chapters cover the per-inference configuration options.

8.1. Input Data Argument
The values for all variables declared in the data block of the model are read in from
an input data file in either JSON or Rdump format. The syntax for the input data
argument is:

data file=<filepath>

The keyword data must be followed directly by the keyword-value pair
file=<filepath>. If the model doesn’t declare any data variables, this argument is
ignored.

36

CHAPTER 8. COMMAND-LINE INTERFACE OVERVIEW 37

The input data file must contain definitions for all data variables declared in the
data block. If one or more data block variables are missing from the input data file,
the program will print and error message to the terminal. For example, the model
bernoulli.stan defines two data variables N and y. If the input data file doesn’t
include both variables, or if the data variable doesn’t match the declared type and
dimensions, the program will exit with an error message at the point where it first
encounters missing data.

For example if the input data file doesn’t include the definition for variable y, the
executable exits with the following message:

Exception: variable does not exist; processing stage=data initialization; variable name=y; base type=int (in 'examples/bernoulli/bernoulli.stan', line 3, column 2 to column 28)

8.2. Output Control Arguments
The output keyword is used to specify non-default options for output files and
messages written to the terminal window. The output keyword takes several keyword-
value pair sub-arguments.

The keyword value pair file=<filepath> specifies the location of the Stan CSV
output file. If unspecified, the output file is written to a file named output.csv in the
current working directory.

The keyword value pair diagnostic_file=<filepath> specifies the location of the
auxiliary output file. By default, no auxiliary output file is produced. This option is
only valid for the iterative algorithms sample and variational.

The keyword value pair refresh=<int> specifies the number of iterations between
progress messages written to the terminal window. The default value is 100 iterations.

Note: Numeric values in the Stan CSV output and diagnostics file provide only 6
decimal places of precision.

8.3. Initialize Model Parameters Argument
Initialization is only applied to parameters defined in the parameters block. By default,
all parameters are initialized to random draws from a uniform distribution over
the range [−2,2]. These values are on the unconstrained scale, so must be inverse
transformed back to satisfy the constraints declared for parameters. Because zero is
chosen to be a reasonable default initial value for most parameters, the interval around
zero provides a fairly diffuse starting point. For instance, unconstrained variables
are initialized randomly in (−2,2), variables constrained to be positive are initialized
roughly in (0.14,7.4), variables constrained to fall between 0 and 1 are initialized with
values roughly in (0.12,0.88).

The initialization argument is specified as keyword-value pair with keyword init. The

CHAPTER 8. COMMAND-LINE INTERFACE OVERVIEW 38

value can be one of the following:

• positive real number x. All parameters will be initialized to random draws from
a uniform distribution over the range [−x, x].

• 0 - All parameters will be initialized to zero values on the unconstrained scale.
The transforms are arranged in such a way that zero initialization provides
reasonable variable initializations: 0 for unconstrained parameters; 1 for param-
eters constrained to be positive; 0.5 for variables to constrained to lie between
0 and 1; a symmetric (uniform) vector for simplexes; unit matrices for both
correlation and covariance matrices; and so on.

• filepath - A data file in JSON or Rdump format containing initial parameters
values for some or all of the model parameters. User specified initial values must
satisfy the constraints declared in the model (i.e., they are on the constrained
scale). Parameters which aren’t explicitly initializied will be initialized randomly
over the range [−2,2].

8.4. Random Number Generator Arguments
The random-number generator’s behavior is determined by the unsigned seed (positive
integer) it is started with. If a seed is not specified, or a seed of 0 or less is specified,
the system time is used to generate a seed. The seed is recorded and included with
Stan’s output regardless of whether it was specified or generated randomly from the
system time.

The syntax for the random seed argument is:

random seed=<int>

The keyword random must be followed directly by the keyword-value pair seed=<int>.

8.5. Chain Identifier Argument: id
The chain identifier argument is used in conjunction with the random seed argument
when running multiple Markov chains for sampling. The chain identifier is used to
advance the random number generator a very large number of random variates so that
two chains with the same seed and different identifiers draw from non-overlapping
subsequences of the random-number sequence determined by the seed. Together, the
seed and chain identifier determine the behavior of the random number generator.

The syntax for the random seed argument is:

id=<int>

The default value is 0.

CHAPTER 8. COMMAND-LINE INTERFACE OVERVIEW 39

When running a set of chains from the command line with a specified seed, this
argument should be set to the chain index. E.g., when running 4 chains, the value
should be 1,..,4, successively. When running multiple chains from a single command,
Stan’s interfaces manage the chain identifier arguments automatically.

For complete reproducibility, every aspect of the environment needs to be locked down
from the OS and version to the C++ compiler and version to the version of Stan and all
dependent libraries. See the Stan Reference Manual Reproducibility chapter for further
details.

8.6. Command Line Help
CmdStan provides a help and help-all mechanism that displays either the available
top-level or keyword-specific key-value argument pairs. To display top-level help, call
the CmdStan executable with keyword help:

> ./bernoulli help
Usage: ./bernoulli <arg1> <subarg1_1> ... <subarg1_m> ... <arg_n> <subarg_n_1> ... <subarg_n_m>

Begin by selecting amongst the following inference methods and diagnostics,
sample Bayesian inference with Markov Chain Monte Carlo
optimize Point estimation
variational Variational inference
diagnose Model diagnostics
generate_quantities Generate quantities of interest

Or see help information with
help Prints help
help-all Prints entire argument tree

Additional configuration available by specifying
id Unique process identifier
data Input data options
init Initialization method: "x" initializes randomly between [-x, x], "0" initializes to 0, anything else identifies a file of values
random Random number configuration
output File output options

See ./bernoulli <arg1> [help | help-all] for details on individual arguments.

https://mc-stan.org/docs/reference-manual/reproducibility-chapter.html

9. MCMC Sampling using Hamiltonian Monte

Carlo

The sample method provides Bayesian inference over the model conditioned on data
using Hamiltonian Monte Carlo (HMC) sampling. By default, the inference engine
used is the No-U-Turn sampler (NUTS), an adaptive form of Hamiltonian Monte Carlo
sampling. For details on HMC and NUTS, see the Stan Reference Manual chapter on
MCMC Sampling.

The full set of configuration options available for the sample method is reported at
the beginning of the sampler output file as CSV comments. When the example model
bernoulli.stan is run via the command line with all default arguments, the resulting
Stan CSV file header comments show the complete set of default configuration options:

model = bernoulli_model
method = sample (Default)
sample
num_samples = 1000 (Default)
num_warmup = 1000 (Default)
save_warmup = 0 (Default)
thin = 1 (Default)
adapt
engaged = 1 (Default)
gamma = 0.05 (Default)
delta = 0.8 (Default)
kappa = 0.75 (Default)
t0 = 10 (Default)
init_buffer = 75 (Default)
term_buffer = 50 (Default)
window = 25 (Default)
algorithm = hmc (Default)
hmc
engine = nuts (Default)
nuts
max_depth = 10 (Default)
metric = diag_e (Default)
metric_file = (Default)

40

https://mc-stan.org/docs/reference-manual/hmc-chapter.html

CHAPTER 9. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 41

stepsize = 1 (Default)
stepsize_jitter = 0 (Default)

9.1. Iterations
At every sampler iteration, the sampler returns a set of estimates for all parameters
and quantities of interest in the model. During warmup, the NUTS algorithm adjusts
the HMC algorithm parameters metric and stepsize in order to efficiently sample
from typical set, the neighborhood substantial posterior probability mass through
which the Markov chain will travel in equilibrium. After warmup, the fixed metric and
stepsize are used to produce a set of draws.

The following keyword-value arguments control the total number of iterations:

• num_samples
• num_warmup
• save_warmup
• thin

The values for arguments num_samples and num_warmup must be a non-negative
integer. The default value for both is 1000.

For well-specified models and data, the sampler may converge faster and this many
warmup iterations may be overkill. Conversely, complex models which have difficult
posterior geometries may require more warmup iterations in order to arrive at good
values for the step size and metric.

The number of sampling iterations to runs depends on the effective sample size (EFF)
reported for each parameter and the desired precision of your estimates. An EFF of at
least 100 is required to make a viable estimate. The precision of your estimate is

√
N;

therefore every additional decimal place of accuracy increases this by a factor of 10.

Argument save_warmup takes values 0 or 1, corresponding to False and True respec-
tively. The default value is 0, i.e., warmup draws are not saved to the output file. When
the value is 1, the warmup draws are written to the CSV output file directly after the
CSV header line.

Argument thin controls the number of draws from the posterior written to the output
file. Some users familiar with older approaches to MCMC sampling might be used to
thinning to eliminate an expected autocorrelation in the samples. HMC is not nearly as
susceptible to this autocorrelation problem and thus thinning is generally not required
nor advised, as HMC can produce anticorrelated draws, which increase the effective
sample size beyond the number of draws from the posterior. Thinning should only be
used in circumstances where storage of the samples is limited and/or RAM for later

CHAPTER 9. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 42

processing the samples is limited.

The value of argument thin must be a positive integer. When thin is set to value N,
every Nth iteration is written to the output file. Should the value of thin exceed the
specified number of iterations, the first iteration is saved to the output. This is because
the iteration counter starts from zero and whenever the counter modulo the value
of thin equals zero, the iteration is saved to the output file. Since zero modulo any
positive integer is zero, the first iteration is always saved. When num_sampling=M and
thin=N, the number of iterations written to the output CSV file will be ceiling(M/N).
If save_warmup=1, thinning is applied to the warmup iterations as well.

9.2. Adaptation
The adapt keyword is used to specify non-default options for the sampler adaptation
schedule and settings.

Adaptation can be turned off by setting sub-argument engaged to value 0. If
engaged=0, no adaptation will be done, and all other adaptation sub-arguments will
be ignored. Since the default argument is engaged=1, this keyword-value pair can be
omitted from the command.

There are two sets of adaptation sub-arguments: step size optimization parameters
and the warmup schedule. These are described in detail in the Reference Manual
section Automatic Parameter Tuning.

Step size optimization configuration
The Stan User’s Guide section on model conditioning and curvature provides a discus-
sion of adaptation and stepsize issues. The Stan Reference Manual section on HMC
algorithm parameters explains the NUTS-HMC adaptation schedule and the tuning
parameters for setting the step size.

The following keyword-value arguments control the settings used to optimize the step
size:

• delta - The target Metropolis acceptance rate. The default value is 0.8. Its
value must be strictly between 0 and 1. Increasing the default value forces
the algorithm to use smaller step sizes. This can improve sampling efficiency
(effective sample size per iteration) at the cost of increased iteration times.
Raising the value of delta will also allow some models that would otherwise get
stuck to overcome their blockages. Models with difficult posterior geometries
may required increasing the delta argument closer to 1; we recommend first
trying to raise it to 0.9 or at most 0.95. Values about 0.95 are strong indication
of bad geometry; the better solution is to change the model geometry through
reparameterization which could yield both more efficient and faster sampling.

https://mc-stan.org/docs/2_23/reference-manual/hmc-algorithm-parameters.html
https://mc-stan.org/docs/stan-users-guide/model-conditioning-and-curvature.html
https://mc-stan.org/docs/reference-manual/hmc-algorithm-parameters.html
https://mc-stan.org/docs/reference-manual/hmc-algorithm-parameters.html
https://mc-stan.org/docs/stan-users-guide/reparameterization-section.html

CHAPTER 9. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 43

• gamma - Adaptation regularization scale. Must be a positive real number, default
value is 0.05. This is a parameter of the Nesterov dual-averaging algorithm. We
recommend always using the default value.

• kappa - Adaptation relaxation exponent. Must be a positive real number, default
value is 0.75. This is a parameter of the Nesterov dual-averaging algorithm. We
recommend always using the default value.

• t_0 - Adaptation iteration offset. Must be a positive real number, default value is
10. This is a parameter of the Nesterov dual-averaging algorithm. We recommend
always using the default value.

Warmup schedule configuration
When adaptation is engaged, the warmup schedule is specified by sub-arguments, all
of which take positive integers as values:

• init_buffer - The number of iterations spent tuning the step size at the outset
of adaptation.

• window - The initial number of iterations devoted to tune the metric, will be
doubled successively.

• term_buffer - The number of iterations used to re-tune the step size once the
metric has been tuned.

The specified values may be modified slightly in order to ensure alignment between
the warmup schedule and total number of warmup iterations.

The following figure is taken from the Stan Reference Manual, where label “I” cor-
respond to init_buffer, the initial “II” corresponds to window, and the final “III”
corresponds to term_buffer:

Warmup Epochs Figure. Adaptation during warmup occurs in three stages: an initial
fast adaptation interval (I), a series of expanding slow adaptation intervals (II), and a
final fast adaptation interval (III). For HMC, both the fast and slow intervals are used for
adapting the step size, while the slow intervals are used for learning the (co)variance
necessitated by the metric. Iteration numbering starts at 1 on the left side of the figure
and increases to the right.

CHAPTER 9. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 44

9.3. Algorithm
The algorithm keyword-value pair specifies the algorithm used to generate the sample.
There are two possible values: hmc, which generates from an HMC-driven Markov chain;
and fixed_param which generates a new sample without changing the state of the
Markov chain. The default argument is algorithm=hmc.

Samples from a set of fixed parameters
If a model doesn’t specify any parameters, then argument algorithm=fixed_param
is mandatory.

The fixed parameter sampler generates a new sample without changing the current
state of the Markov chain. This can be used to write models which generate pseudo-
data via calls to RNG functions in the transformed data and generated quantities
blocks.

HMC samplers
All HMC algorithms have three parameters:

• step size
• metric
• integration time - the number of steps taken along the Hamiltonian trajectory

See the Stan Reference Manual section on HMC algorithm parameters for further
details.

Step size

The HMC algorithm simulates the evolution of a Hamiltonian system. The step size
parameter controls the resolution of the sampler. Low step sizes can get HMC samplers
unstuck that would otherwise get stuck with higher step sizes.

The following keyword-value arguments control the step size:

• stepsize - How far to move each time the Hamiltonian system evolves forward.
Must be a positive real number, default value is 1.

https://mc-stan.org/docs/reference-manual/hmc-algorithm-parameters.html

CHAPTER 9. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 45

• stepsize_jitter - Allows step size to be “jittered” randomly during sampling
to avoid any poor interactions with a fixed step size and regions of high cur-
vature. Must be a real value between 0 and 1. The default value is 0. Setting
stepsize_jitter to 1 causes step sizes to be selected in the range of 0 to twice
the adapted step size. Jittering below the adapted value will increase the number
of steps required and will slow down sampling, while jittering above the adapted
value can cause premature rejection due to simulation error in the Hamiltonian
dynamics calculation. We strongly recommend always using the default value.

Metric

All HMC implementations in Stan utilize quadratic kinetic energy functions which are
specified up to the choice of a symmetric, positive-definite matrix known as a mass
matrix or, more formally, a metric Betancourt (2017).

The metric argument specifies the choice of Euclidean HMC implementations:

• metric=unit specifies unit metric (diagonal matrix of ones).
• metric=diag_e specifies a diagonal metric (diagonal matrix with positive diago-

nal entries). This is the default value.
• metric=dense_e specifies a dense metric (a dense, symmetric positive definite

matrix).

By default, the metric is estimated during warmup. However, when metric=diag_e or
metric=dense_e, an initial guess for the metric can be specified with the metric_file
argument whose value is the filepath to a JSON or Rdump file which contains a single
variable inv_metric. For a diag_e metric the inv_metric value must be a vector
of positive values, one for each parameter in the system. For a dense_e metric,
inv_metric value must be a positive-definite square matrix with number of rows and
columns equal to the number of parameters in the model.

The metric_file option can be used with and without adaptation enabled. If adapta-
tion is enabled, the provided metric will be used as the initial guess in the adaptation
process. If the initial guess is good, then adaptation should not change it much. If the
metric is no good, then the adaptation will override the initial guess.

If adaptation is disabled, both the metric_file and stepsize arguments should be
specified.

Integration Time

The total integration time is determined by the argument engine which take possible
values:

CHAPTER 9. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 46

• nuts - the No-U-Turn Sampler which dynamically determines the optimal inte-
gration time.

• static - an HMC sampler which uses a user-specified integration time.

The default argument is engine=nuts.

The NUTS sampler generates a proposal by starting at an initial position determined
by the parameters drawn in the last iteration. It then evolves the initial system both
forwards and backwards in time to form a balanced binary tree. The algorithm is
iterative; at each iteration the tree depth is increased by one, doubling the number
of leapfrog steps thus effectively doubling the computation time. The algorithm
terminates in one of two ways: either the NUTS criterion (i.e., a U-turn in Euclidean
space on a subtree) is satisfied for a new subtree or the completed tree; or the depth
of the completed tree hits the maximum depth allowed.

When engine=nuts, the subargument max_depth can be used to control the depth
of the tree. The default argument is max_depth=10. In the case where a model has a
difficult posterior from which to sample, max_depth should be increased to ensure
that that the NUTS tree can grow as large as necessary.

When the argument engine=static is specified, the user must specify the integration
time via keyword int_time which takes as a value a positive number. The default
value is 2π .

9.4. Sampler Diagnostic File
The output keyword sub-argument diagnostic_file=<filepath> specifies the lo-
cation of the auxiliary output file which contains sampler information for each draw,
and the gradients on the unconstrained scale and log probabilities for all parameters
in the model. By default, no auxiliary output file is produced.

9.5. Examples
The Quickstart Guide MCMC Sampling chapter section on multiple chains showed how
to run multiple chains given a model and data, using the minimal required command
line options: the method, the name of the data file, and a chain-specific name for the
output file.

To run 4 chains in parallel on Mac OS and Linux, the syntax in both bash and zsh is
the same:

> for i in {1..4}
do

./bernoulli sample data file=my_model.data.json \
output file=output_${i}.csv &

CHAPTER 9. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 47

done

The backslash (\) indicates a line continuation in Unix. The expression ${i} substitutes
in the value of loop index variable i. The ampersand (&) pushes each process into the
background which allows the loop to continue without waiting for the current chain to
finish.

On Windows the corresponding loop is:

>for /l %i in (1, 1, 4) do start /b bernoulli.exe sample ^
data file=my_model.data.json my_data ^
output file=output_%i.csv

The caret (ˆ) indicates a line continuation in DOS. The expression %i is the loop index.

In the following examples, we focus on just the nested sampler command for Unix.

Running multiple chains with a specified RNG seed
For reproducibility, we specify the same RNG seed across all chains and use the chain
id argument to specify the RNG offset.

The RNG seed is specified by random seed=<int> and the offset is specified by
id=<loop index>, so the call to the sampler is:

./my_model sample data file=my_model.data.json \
output file=output_${i}.csv \
random seed=12345 id=${i}

Changing the default warmup and sampling iterations
The warmup and sampling iteration keyword-value arguments must follow the sample
keyword. The call to the sampler which overrides the default warmup and sampling
iterations is:

./my_model sample num_warmup=500 num_sampling=500 \
data file=my_model.data.json \
output file=output_${i}.csv

Saving warmup draws
To save warmup draws as part of the Stan CSV output file, use the keyword-value
argument save_warmup=1. This must be grouped with the other sample keyword
sub-arguments.

./my_model sample num_warmup=500 num_sampling=500 save_warmup=1 \
data file=my_model.data.json \
output file=output_${i}.csv

CHAPTER 9. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 48

Initializing parameters
By default, all parameters are initialized on an unconstrained scale to random draws
from a uniform distribution over the range [−2,2]. To initialize some or all parameters
to good starting points on the constrained scale from a data file in JSON or Rdump
format, use the keyword-value argument init=<filepath>:

./my_model sample init=my_param_inits.json data file=my_model.data.json \
output file=output_${i}.csv

To verify that the specified values will be used by the sampler, you can run the sampler
with option algorithm=fixed_param, so that the initial values are used to generate
the sample. Since this generates a set of idential draws, setting num_warmp=0 and
num_samples=1 will save unnecessary iterations. As the output values are also on
the constrained scale, the set of reported values will match the set of specified initial
values.

For example, if we run the example Bernoulli model with specified initial value for
parameter “theta”:

{ "theta" : 0.5 }

via command:

./bernoulli sample algorithm=fixed_param num_warmup=0 num_samples=1 \
init=bernoulli.init.json data file=bernoulli.data.json

The resulting output CSV file contains a single draw:

lp__,accept_stat__,theta
0,0,0.5
#
Elapsed Time: 0 seconds (Warm-up)
0 seconds (Sampling)
0 seconds (Total)
#

Specifying the metric and stepsize
An initial guess for the metric can be specified with the metric_file argument
whose value is the filepath to a JSON or Rdump file which contains a single variable
inv_metric. The metric_file option can be used with and without adaptation
enabled.

By default, the metric is estimated during warmup adaptation. If the initial guess
is good, then adaptation should not change it much. If the metric is no good,

CHAPTER 9. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 49

then the adaptation will override the initial guess. For example, the JSON file
bernoulli.diag_e.json, contents

{ "inv_metric" : [0.296291] }

can be used as the initial metric as follows:

../my_model sample algorithm=hmc metric_file=bernoulli.diag_e.json \
data file=my_model.data.json \
output file=output_${i}.csv

If adaptation is disabled, both the metric_file and stepsize arguments should be
specified.

../my_model sample adapt engaged=0 \
algorithm=hmc stepsize=0.9 \
metric_file=bernoulli.diag_e.json \
data file=my_model.data.json \
output file=output_${i}.csv

The resulting output CSV file will contain the following set of comment lines:

Adaptation terminated
Step size = 0.9
Diagonal elements of inverse mass matrix:
0.296291

Changing the NUTS-HMC adaptation parameters
The keyword-value arguments for these settings are grouped together under the adapt
keyword which itself is a sub-argument of the sample keyword.

Models with difficult posterior geometries may required increasing the delta argument
closer to 1.

./my_model sample adapt delta=0.95 \
data file=my_model.data.json \
output file=output_${i}.csv

To skip adaptation altogether, use the keyword-value argument engaged=0. Disabling
adaptation disables both metric and stepsize adaptation, so a stepsize should be
provided along with a metric to enable efficient sampling.

../my_model sample adapt engaged=0 \
algorithm=hmc stepsize=0.9 \
metric_file=bernoulli.diag_e.json \
data file=my_model.data.json \

CHAPTER 9. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 50

output file=output_${i}.csv

Even with adaptation disabled, it is still advisable to run warmup iterations in order
to allow the initial parameter values to be adjusted to estimates which fall within the
typical set.

To skip warmup altogether requires specifying both num_warmup=0 and adapt
engaged=0.

../my_model sample num_warmup=0 adapt engaged=0 \
algorithm=hmc stepsize=0.9 \
metric_file=bernoulli.diag_e.json \
data file=my_model.data.json \
output file=output_${i}.csv

Increasing the tree-depth
Models with difficult posterior geometries may required increasing the max_depth
argument from its default value 10. This requires specifying a series of keyword-
argument pairs:

./my_model sample adapt delta=0.95 \
algorithm=hmc engine=nuts max_depth=15 \
data file=my_model.data.json \
output file=output_${i}.csv

Capturing Hamiltonian diagnostics and gradients
The output keyword sub-argument diagnostic_file=<filepath> write the sampler
parameters and gradients of all model parameters for each draw to a CSV file:

./my_model sample data file=my_model.data.json \
output file=output_${i}.csv \
diagnostic_file=diagnostics_${i}.csv

Suppressing progress updates to the console
The output keyword sub-argument refresh=<int> specifies the number of iterations
between progress messages written to the terminal window. The default value is 100
iterations. The progress updates look like:

Iteration: 1 / 2000 [0%] (Warmup)
Iteration: 100 / 2000 [5%] (Warmup)
Iteration: 200 / 2000 [10%] (Warmup)
Iteration: 300 / 2000 [15%] (Warmup)

For simple models which fit quickly, such updates can be annoying; to suppress
them altogether, set refresh=0. This only turns off the Iteration: messages; the

https://mc-stan.org/docs/stan-users-guide/model-conditioning-and-curvature.html

CHAPTER 9. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 51

configuration and timing information are still written to the terminal.

./my_model sample data file=my_model.data.json \
output file=output_${i}.csv \
refresh=0

For complicated models which take a long time to fit, setting the refresh rate to a low
number, e.g. 10 or even 1, provides a way to more closely monitor the sampler.

Everything Example
The CmdStan argument parser requires keeping sampler config sub-arguments to-
gether; interleaving sampler config with the inputs, outputs, inits, RNG seed and chain
id config results in an error message such as the following:

./bernoulli sample data file=bernoulli.data.json adapt delta=0.95
adapt is either mistyped or misplaced.
Perhaps you meant one of the following valid configurations?

method=sample sample adapt
method=variational variational adapt

Failed to parse arguments, terminating Stan

The following example provides a template for a call to the sampler which specifies
input data, initial parameters, initial step-size and metric, adaptation, output, and RNG
initialization.

./my_model sample num_warmup=2000 \
init=my_param_inits.json \
adapt delta=0.95 init_buffer=100 \
window=50 term_buffer=100 \
algorithm=hmc engine=nuts max_depth=15 \
metric=dense_e metric_file=my_metric.json \
stepsize=0.6555 \
data file=my_model.data.json \
output file=output_${i}.csv refresh=10 \
random seed=12345 id=${i}

The keywords sample, data, output, and random are the top-level argument groups.
Within the sample config arguments, the keyword adapt groups the adaptation al-
gorithm parameters and the keyword-value algorithm=hmc groups the NUTS-HMC
parameters.

The top-level groups can be freely ordered with respect to one another. The following
is also a valid command:

CHAPTER 9. MCMC SAMPLING USING HAMILTONIAN MONTE CARLO 52

./my_model random seed=12345 id=${i} \
data file=my_model.data.json \
output file=output_${i}.csv refresh=10 \
sample num_warmup=2000 \
init=my_param_inits.json \
algorithm=hmc engine=nuts max_depth=15 \
metric=dense_e metric_file=my_metric.json \
stepsize=0.6555 \
adapt delta=0.95 init_buffer=100 \
window=50 term_buffer=100

10. Maximum Likelihood Estimation

The optimize method finds the mode of the posterior distribution, assuming that
there is one. If the posterior is not convex, there is no guarantee Stan will be able to find
the global mode as opposed to a local optimum of log probability. For optimization,
the mode is calculated without the Jacobian adjustment for constrained variables,
which shifts the mode due to the change of variables. Thus modes correspond to
modes of the model as written.

The full set of configuration options available for the optimize method is reported at
the beginning of the sampler output file as CSV comments. When the example model
bernoulli.stan is run with method=optimize via the command line with all default
arguments, the resulting Stan CSV file header comments show the complete set of
default configuration options:

model = bernoulli_model
method = optimize
optimize
algorithm = lbfgs (Default)
lbfgs
init_alpha = 0.001 (Default)
tol_obj = 9.9999999999999998e-13 (Default)
tol_rel_obj = 10000 (Default)
tol_grad = 1e-08 (Default)
tol_rel_grad = 10000000 (Default)
tol_param = 1e-08 (Default)
history_size = 5 (Default)
iter = 2000 (Default)
save_iterations = 0 (Default)

10.1. Optimization Algorithms
The algorithm argument specifies the optimization algorithm. This argument takes
one of the following three values:

• lbfgs A quasi-Newton optimizer. This is the default optimizer and also much
faster than the other optimizers.

• bfgs A quasi-Newton optimizer.

53

CHAPTER 10. MAXIMUM LIKELIHOOD ESTIMATION 54

• newton A Newton optimizer. This is the least efficient optimization algorithm,
but has the advantage of setting its own stepsize.

See the Stan Reference Manual’s Optimization chapter for a description of these
algorithms.

All of the optimizers stream per-iteration intermediate approximations to the com-
mand line console. The sub-argument save_iterations specifies whether or not to
save the intermediate iterations to the output file. Allowed values are 0 or 1, corre-
sponding to False and True respectively. The default value is 0, i.e., intermediate
iterations are not saved to the output file.

10.2. The quasi-Newton optimizers
For both BFGS and L-BFGS optimizers, convergence monitoring is controlled by a
number of tolerance values, any one of which being satisfied causes the algorithm to
terminate with a solution. See the BFGS and L-BFGS configuration chapter for details
on the convergence tests.

Both BFGS and L-BFGS have the following configuration arguments:

• init_alpha - The initial step size parameter. Must be a positive real number.
Default value is 0.001

• tol_obj - Convergence tolerance on changes in objective function value. Must
be a positive real number. Default value is 1−12.

• tol_rel_obj - Convergence tolerance on relative changes in objective function
value. Must be a positive real number. Default value is 14.

• tol_grad - Convergence tolerance on the norm of the gradient. Must be a
positive real number. Default value is 1−8.

• tol_rel_grad - Convergence tolerance on the relative norm of the gradient.
Must be a positive real number. Default value is 17.

• tol_param - Convergence tolerance on changes in parameter value. Must be a
positive real number. Default value is 1−8.

The init_alpha argument specifies the first step size to try on the initial iteration.
If the first iteration takes a long time (and requires a lot of function evaluations),
set init_alpha to be the roughly equal to the alpha used in that first iteration. The
default value is very small, which is reasonable for many problems but might be too
large or too small depending on the objective function and initialization. Being too
big or too small just means that the first iteration will take longer (i.e., require more
gradient evaluations) before the line search finds a good step length.

https://mc-stan.org/docs/reference-manual/optimization-algorithms-chapter.html
https://mc-stan.org/docs/reference-manual/bfgs-and-l-bfgs-configuration.html

CHAPTER 10. MAXIMUM LIKELIHOOD ESTIMATION 55

In addition to the above, the L-BFGS algorithm has argument history which controls
the size of the history it uses to approximate the Hessian. The value should be less
than the dimensionality of the parameter space and, in general, relatively small values
(5-10) are sufficient; the default value is 5.

If L-BFGS performs poorly but BFGS performs well, consider increasing the history size.
Increasing history size will increase the memory usage, although this is unlikely to be
an issue for typical Stan models.

10.3. The Newton optimizer
There are no configuration parameters for the Newton optimizer. It is not recom-
mended because of the slow Hessian calculation involving finite differences.

11. Variational Inference Algorithm: ADVI

CmdStan can approximate the posterior distribution using variational inference. The
approximation is a Gaussian in the unconstrained variable space.

Stan implements an automatic variational inference algorithm, called Automatic Dif-
ferentiation Variational Inference (ADVI) Kucukelbir et al. (2015). ADVI uses Monte
Carlo integration to approximate the variational objective function, the ELBO (evidence
lower bound). ADVI optimizes the ELBO in the real-coordinate space using stochastic
gradient ascent. The measures of convergence are similar to the relative tolerance
scheme of Stan’s optimization algorithms.

The algorithm progression consists of an adaptation phase followed by a sampling
phase. The adaptation phase finds a good value for the step size scaling parameter
eta. The evidence lower bound (ELBO) is the variational objective function and is
evaluated based on a Monte Carlo estimate. The variational inference algorithm in
Stan is stochastic, which makes it challenging to assess convergence. The algorithm
runs until the mean change in ELBO drops below the specified tolerance.

The full set of configuration options available for the variational method is reported
at the beginning of the sampler output file as CSV comments. When the example
model bernoulli.stan is run with method=variational via the command line with
all default arguments, the resulting Stan CSV file header comments show the complete
set of default configuration options:

method = variational
variational
algorithm = meanfield (Default)
meanfield
iter = 10000 (Default)
grad_samples = 1 (Default)
elbo_samples = 100 (Default)
eta = 1 (Default)
adapt
engaged = 1 (Default)
iter = 50 (Default)
tol_rel_obj = 0.01 (Default)
eval_elbo = 100 (Default)
output_samples = 1000 (Default)

56

https://mc-stan.org/docs/reference-manual/stochastic-gradient-ascent.html
https://mc-stan.org/docs/reference-manual/stochastic-gradient-ascent.html
https://mc-stan.org/docs/reference-manual/optimization-algorithms-chapter.html

CHAPTER 11. VARIATIONAL INFERENCE ALGORITHM: ADVI 57

The console output includes a notice that this algorithm is considered to be experi-
mental:

EXPERIMENTAL ALGORITHM:
This procedure has not been thoroughly tested and may be unstable
or buggy. The interface is subject to change.

11.1. Variational Algorithms
Stan implements two variational algorithms. The algorithm argument specifies the
variational algorithm.

• algorithm=meanfield - Use a fully factorized Gaussian for the approximation.
This is the default algorithm.

• algorithm=fullrank Use a Gaussian with a full-rank covariance matrix for the
approximation.

11.2. Configuration
• iter=<int> Maximum number of iterations. Must be < 0. Default is 10000.

• grad_samples=<int> Number of samples for Monte Carlo estimate of gradients.
Must be < 0. Default is 1.

• elbo_samples=<int> Number of samples for Monte Carlo estimate of ELBO
(objective function). Must be < 0. Default is 100.

• eta=<double> Stepsize weighting parameter for adaptive stepsize sequence.
Must be < 0. Default is 1.0.

• adapt Warmup Adaptation keyword, takes sub-arguments:

– engaged=<boolean> Adaptation engaged? Valid values: (0,1). Default is
1.

– iter=<int> Maximum number of adaptation iterations. Must be < 0.
Default is 50.

• tol_rel_obj=<double> Convergence tolerance on the relative norm of the
objective. Must be < 0. Default is 0.01.

• eval_elbo=<int> Evaluate ELBO every Nth iteration. Must be < 0. Default is
100.

• output_samples=<int> Number of posterior samples to draw and save. Must
be < 0. Default is 1000.

CHAPTER 11. VARIATIONAL INFERENCE ALGORITHM: ADVI 58

11.3. CSV Output
The output file consists of the following pieces of information:

• The full set of configuration options available for the variational method is
reported at the beginning of the sampler output file as CSV comments.

• The first three output columns are labelled lp__, log_p__, log_g__, the rest
are the model parameters.

• The stepsize adaptation information is output as CSV comments following
column header row.

• The following line contains the mean of the variational approximation.

• The rest of the output contains output_samples number of samples drawn
from the variational approximation.

To illustrate, we call Stan’s variational inference on the example model and data:

> ./bernoulli variational data file=bernoulli.data.R

By default, the output file is output.csv. Lines 1 - 28 contain configuration informa-
tion:

stan_version_major = 2
stan_version_minor = 23
stan_version_patch = 0
model = bernoulli_model
method = variational
variational
algorithm = meanfield (Default)
meanfield
iter = 10000 (Default)
grad_samples = 1 (Default)
elbo_samples = 100 (Default)
eta = 1 (Default)
adapt
engaged = 1 (Default)
iter = 50 (Default)
tol_rel_obj = 0.01 (Default)
eval_elbo = 100 (Default)
output_samples = 1000 (Default)
...

The column header row is:

CHAPTER 11. VARIATIONAL INFERENCE ALGORITHM: ADVI 59

lp__,log_p__,log_g__,theta

The stepsize adaptation information is:

Stepsize adaptation complete.
eta = 1

The reported mean variational approximations information is:

0,0,0,0.214911

That is, the estimate for theta given the data is 0.2.

The following is a sample based on this approximation:

0,-14.0252,-5.21718,0.770397
0,-7.05063,-0.10025,0.162061
0,-6.75031,-0.0191099,0.241606
...

12. Standalone Generate Quantities

The generate_quantities method allows you to generate additional quantities of
interest from a fitted model without re-running the sampler. For an overview of the
uses of this feature, see the QuickStart Guide section and the Stan User’s Guide section
on Stand-alone generated quantities and ongoing prediction.

This method requires sub-argument fitted_params which takes as its value an exist-
ing Stan CSV file that contains a sample from an equivalent model, i.e., a model with
the same parameters, transformed parameters, and model blocks, conditioned on the
same data.

If we run the bernoulli.stan program for a single chain to generate a sample in file
bernoulli_fit.csv:

> ./bernoulli sample data file=bernoulli.data.json output file=bernoulli_fit.csv

Then we can run the bernoulli_ppc.stan to carry out the posterior predictive checks:

> ./bernoulli_ppc generate_quantities fitted_params=bernoulli_fit.csv \
data file=bernoulli.data.json \
output file=bernoulli_ppc.csv

The fitted_params file must be a Stan CSV file; attempts to use a regular CSV file will
result an error message of the form:

Error reading fitted param names from sample csv file <filename.csv>

The fitted_params file must contain columns corresponding to legal values for all
parameters defined in the model. If any parameters are missing, the program will exit
with an error message of the form:

Error reading fitted param names from sample csv file <filename.csv>

The parameter values of the fitted_params are on the constrained scale and must
obey all constraints. For example, if we modify the contencts of the first reported draw
in bernoulli_fit.csv so that the value of theta is outside the declared bounds
real<lower=0,upper=1>, the program will return the following error message:

Exception: lub_free: Bounded variable is 1.21397, but must be in the interval [0, 1] (in 'bernoulli_ppc.stan', line 5, column 2 to column 30)

60

https://mc-stan.org/docs/stan-users-guide/stand-alone-generated-quantities-and-ongoing-prediction.html

13. Diagnosing HMC by Comparison of Gradi-

ents

CmdStan has a basic diagnostic feature that will calculate the gradients of the initial
state and compare them with gradients calculated by finite differences. Discrepancies
between the two indicate that there is a problem with the model or initial states or
else there is a bug in Stan.

To allow for the possibility of adding other kinds of diagnostic tests, the diagnose
method argument configuration has subargument test which currently only takes
value gradient. There are two available gradient test configuration arguments:

• epsilon - The finite difference step size. Must be a positive real number. Default
value is 1−6

• error - The error threshold. Must be a positive real number. Default value is 1−6

To run on the different platforms with the default configuration, use one of the
following.

Mac OS and Linux

> ./my_model diagnose data file=my_data

Windows

> my_model diagnose data file=my_data

To relax the test threshold, specify the error argument as follows:

> ./my_model diagnose test=gradient error=0.0001 data file=my_data

To see how this works, we run diagnostics on the example bernoulli model:

> ./bernoulli diagnose data file=bernoulli.data.R

Executing this command prints output to the console and as a series of comment lines
to the output csv file. The console output is:

method = diagnose
diagnose
test = gradient (Default)
gradient

61

CHAPTER 13. DIAGNOSING HMC BY COMPARISON OF GRADIENTS 62

epsilon = 9.9999999999999995e-07 (Default)
error = 9.9999999999999995e-07 (Default)

id = 0 (Default)
data

file = bernoulli.data.json
init = 2 (Default)
random

seed = 2152196153 (Default)
output

file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

TEST GRADIENT MODE

Log probability=-8.42814

param idx value model finite diff error
0 0.0361376 -3.1084 -3.1084 -2.37554e-10

The same information is printed to the output file as csv comments, i.e., each line is
prefixed with a pound sign #.

14. Parallelization

Stan provides high-level parallelization via multi-threading by use of the reduce_sum
and map_rect functions in a Stan program. Stan also provides low-level parallelization
on GPU hardware using the OpenCL framework to speed up matrix operations. Both of
these features require building executibles which call the appropriate libraries. This is
done via makefile variables which set the appropriate C++ compiler and linker flags:

• STAN_THREADS - compiler directives for threading
• STAN_OPENCL - compiler directives for GPU-aware matrix operations

These options can be combined, it is possible to run a program which uses multi-
threading operations on a machine with GPU hardware, in which case, the call to
Make

For example to compile program parallel_logistic.stan which uses reduce_sum
for within-chain parallelization on an OpenCL (GPU) machine:

> make STAN_THREADS=TRUE STAN_OPENCL=TRUE /path/to/parallel_logistic

In addition, for multi-threaded programs, it is necessary to specify the number of avail-
able threads via the shell environment variable STAN_NUM_THREADS which specifies
how many threads to run in parallel. Generally, this number should not exceed the
number of available cores. If this variable isn’t set, then the program will run single-
threaded. To run a single chain on a 4-core machine for program parallel_logistic:

export STAN_NUM_THREADS=4
./parallel_logistic sample data file=data.csv ...

63

https://mc-stan.org/docs/stan-users-guide/parallelization-chapter.html
https://arxiv.org/pdf/1907.01063.pdf
https://www.khronos.org/opencl/
https://mc-stan.org/docs/stan-users-guide/reduce-sum.html

CmdStan Tools

This section provides a reference for the CmdStan tools:

• stanc
• stansummary
• diagnose
• print (deprecated)

64

15. stanc: Translating Stan to C++

CmdStan translates Stan programs to C++ using the Stan compiler program which is
included in the CmdStan release bin directory as program stanc.

As of release 2.22, the CmdStan Stan to C++ compiler is written in OCaml. This compiler
is called “stanc3” and has has its own repository https://github.com/stan-dev/stanc3,
from which pre-built binaries for Linux, Mac, and Windows can be downloaded.

Prior to release 2.22, the Stan compiler program was compiled from C++ source code
that was part of the core Stan library. This C++ compiler is still available as program
bin/stanc2. This compiler is no longer being maintained, i.e., existing bugs will not
be fixed and new functions and features are only available in the stanc3 compiler. Its
intended use is as a diagnostic tool and backup for the new stanc3 compiler. For some
future version, it will be dropped from the release altogether.

15.1. Instantiating the stanc Binary
Before the Stan compiler can be used, the binary stanc must be created. This can be
done using the makefile as follows. For Mac and Linux:

make bin/stanc

For Windows:

make bin/stanc.exe

To build the bin/stanc2 program, specify:

make bin/stanc2

15.2. The Stan Compiler Program
The Stan compiler program stanc converts Stan programs to C++ concepts. If the
compiler encounters syntax errors in the program, it will provide an error message
indicating the location in the input where the failure occurred and reason for the
failure. The following example illustrates a fully qualified call to stanc to generate the
C++ translation of the example model bernoulli.stan. For Linux and Mac:

> cd <cmdstan-home>
> bin/stanc --o=bernoulli.hpp examples/bernoulli/bernoulli.stan

For Windows:

65

https://github.com/stan-dev/stanc3

CHAPTER 15. STANC: TRANSLATING STAN TO C++ 66

> cd <cmdstan-home>
> bin/stanc.exe --o=bernoulli.hpp examples/bernoulli/bernoulli.stan

The base name of the Stan program file determines the name of the C++ model class.
Because this name is the name of a C++ class, it must start with an alphabetic character
(a--z or A--Z) and contain only alphanumeric characters (a--z, A--Z, and 0--9) and
underscores (_) and should not conflict with any C++ reserved keyword.

The C++ code implementing the class is written to the file bernoulli.hpp in the
current directory. The final argument, bernoulli.stan, is the file from which to read
the Stan program.

In practice, stanc is invoked indirectly, via the GNU Make utility, which contains rules
that compile a Stan program to its corresponding executable. To build the simple
Bernoulli model via make, we specify the name of the target executable file. On Mac
and Linux, this is the name of the Stan program with the .stan omitted. On Windows,
replace .stan with .exe, and make sure that the path is given with slashes and not
backslashes. For Linux and Mac:

> make examples/bernoulli/bernoulli

For Windows:

> make examples/bernoulli/bernoulli.exe

The makefile rules first invoke the stanc compiler to translate the Stan model to C++ ,
then compiles and links the C++ code to a binary executable. The makefile variable
STANCFLAGS can be used to to override the default arguments to stanc, e.g.,

> make STANCFLAGS="--include-paths=~/foo" examples/bernoulli/bernoulli

To use the stanc2 compiler instead of the stanc3 compiler, set the make option STANC2:

> make STANC2=TRUE examples/bernoulli/bernoulli

15.3. Command-Line Options for stanc3
The stanc3 compiler has the following command-line syntax:

> stanc (options) <model_file>

where <model_file> is a path to a Stan model file ending in suffix .stan.

The stanc3 options are:

• --help - Displays the complete list of stanc3 options, then exits.

• --version - Display stanc version number

CHAPTER 15. STANC: TRANSLATING STAN TO C++ 67

• --name=<model_name> - Specify the name of the class used for the implementa-
tion of the Stan model in the generated C++ code.

• --o=<file_name> - Specify the name of the file into which the generated C++ is
written.

• --allow-undefined - Do not throw a parser error if there is a function in the
Stan program that is declared but not defined in the functions block.

• --include_paths=<dir1,...dirN> - Takes a comma-separated list of directo-
ries that may contain a file in an #include directive.

• --use-opencl - If set, will use additional Stan OpenCL features enabled in the
Stan-to-C++ compiler.

• --auto-format - Pretty prints the program to the console.

• --print-canonical - Prints the canonicalized program to the console.

• --print-cpp - If set, output the generated C++ Stan model class to stdout.

• --O - Allow the compiler to apply all optimizations to the Stan code. WARNING:
This is currently an experimental feature!

• --warn-uninitialized - Emit warnings about uninitialized variables to stderr.
Currently an experimental feature.

The compiler also provides a number of debug options which are primarily of interest
to stanc3 developers; use the --help option to see the full set.

15.4. Command-Line Options for stanc2
The stanc2 compiler has the same command-line syntax as the stanc3 compiler, but
has fewer options:

• --help - Displays the complete list of stanc3 options, then exits.

• --version - Display stanc version number

• --name=<model_name> - Specify the name of the class used for the implementa-
tion of the Stan model in the generated C++ code.

• --o=<file_name> - Specify the name of the file into which the generated C++ is
written.

• --allow_undefined - Do not throw a parser error if there is a function in the
Stan program that is declared but not defined in the functions block.

CHAPTER 15. STANC: TRANSLATING STAN TO C++ 68

• --include_paths=<dir1,...dirN> - Takes a comma-separated list of directo-
ries that may contain a file in an #include directive.

15.5. Using External C++ Code
The --allow_undefined flag can be passed to the call to stanc, which will al-
low undefined functions in the Stan language to be parsed without an error. We
can then include a definition of the function in a C++ header file. This re-
quires specifying two makefile variables: - STANCFLAGS=--allow_undedefined -
USER_HEADER=<header_file.hpp>, where <header_file.hpp> is the name of a
header file that defines a function with the same name and signature in a names-
pace that is formed by concatenating the class_name argument to stanc documented
above to the string _namespace

As an example, consider the following variant of the Bernoulli example

functions {
real make_odds(real theta);

}
data {

int<lower=0> N;
int<lower=0,upper=1> y[N];

}
parameters {

real<lower=0,upper=1> theta;
}
model {

theta ~ beta(1,1); // uniform prior on interval 0,1
y ~ bernoulli(theta);

}
generated quantities {

real odds;
odds = make_odds(theta);

}

Here the make_odds function is declared but not defined, which would ordinarily
result in a parser error. However, if you put STANCFLAGS = --allow_undefined into
the make/local file or into the stanc call, then the stanc compiler will translate this
program to C++, but the generated C++ code will not compile unless you write a file
such as examples/bernoulli/make_odds.hpp with the following lines

namespace bernoulli_model_namespace {
template <typename T0__> inline typename

CHAPTER 15. STANC: TRANSLATING STAN TO C++ 69

boost::math::tools::promote_args<T0__>::type make_odds(const T0__&
theta, std::ostream* pstream__) {

return theta / (1 - theta); }
}

Given the above, the following make invocation should work

> make STANCFLAGS=--allow_undefined USER_HEADER=examples/bernoulli/make_odds.hpp examples/bernoulli/bernoulli # on Windows add .exe

Alternatively, you could put STANCFLAGS and USER_HEADER into the make/local file
instead of specifying them on the command-line.

If the function were more complicated and involved functions in the Stan Math Library,
then you would need to prefix the function calls with stan::math:: The pstream__
argument is mandatory in the signature but need not be used if your function does
not print any output. To see the necessary boilerplate look at the corresponding lines
in the generated C++ file.

For more details about how to write C++ code using the Stan Math Library, see
https://arxiv.org/abs/1509.07164.

https://arxiv.org/abs/1509.07164

16. stansummary: MCMC Output Analysis

The CmdStan stansummary program reports statistics for one or more sampler chains
over all sampler and model parameters and quantities of interest. The statistics
reported include both summary statistics of the estimates and diagnostic statistics on
the sampler chains, reported in the following order:

• Mean - sample mean
• MCSE - Monte Carlo Standard Error, a measure of the amount of noise in the

sample
• StdDev - sample standard deviation
• Quantiles - default 5%, 50%, 95%
• N_eff - effective sample size - the number of independent draws in the sample
• N_eff/S - the number of independent draws per second
• R_hat - R̂ statistic, a measure of chain equilibrium, must be within 0.05 of 1.0.

When reviewing the stansummary output, it is important to check the final three output
columns first - these are the diagnostic statistics on chain convergence and number of
independent draws in the sample. A R̂ statistic of greater than 1.05 indicates that the
chain has not converged and therefore the sample is not drawn from the posterior,
thus the estimates of the mean and all other summary statistics are invalid.

Estimation by sampling produces an approximate value for the model parameters; the
MCSE statistic indicates the amount of noise in the estimate. Therefore MCSE column
is placed next to the sample mean column, in order to make it easy to compare this
sample with others.

For more information, see the Posterior Analysis chapter of the Stan Reference Manual
which describes both the theory and practice of MCMC estimation techniques. The
summary statistics and the algorithms used to compute them are described in sections
Notation for samples and Effective Sample Size.

16.1. Building the stansummary Command
The CmdStan makefile task build compiles the stansummary utility into the bin
directory. It can be compiled directly using the makefile as follows:

> cd <cmdstan-home>
> make bin/stansummary

70

https://mc-stan.org/docs/reference-manual/analysis-chapter.html
https://mc-stan.org/docs/reference-manual/notation-for-samples-chains-and-draws.html
https://mc-stan.org/docs/reference-manual/effective-sample-size-section.html

CHAPTER 16. STANSUMMARY: MCMC OUTPUT ANALYSIS 71

16.2. Running the stansummary Program
The stansummary utility processes one or more output files from a set of chains from
one run of the HMC sampler. To run stansummary on the output file or files generated
by a run of the sampler, on Mac or Linux:

<cmdstan-home>/bin/stansummary <file_1.csv> ... <file_N.csv>

On Windows, use backslashes to call the stansummary.exe.

<cmdstan-home>\bin\stansummary.exe <file_1.csv> ... <file_N.csv>

For example, after running 4 chains to fit the example model eight_schools.stan to
the supplied example data file, we run stansummary on the resulting Stan CSV output
files to get the following report:

> bin/stansummary eight_*.csv
Input files: eight_1.csv, eight_2.csv, eight_3.csv, eight_4.csv
Inference for Stan model: eight_schools_model
4 chains: each with iter=(1000,1000,1000,1000); warmup=(0,0,0,0); thin=(1,1,1,1); 4000 iterations saved.

Warmup took (0.048, 0.060, 0.047, 0.045) seconds, 0.20 seconds total
Sampling took (0.057, 0.058, 0.061, 0.066) seconds, 0.24 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat

lp__ -18 0.33 5.1 -26 -19 -9.1 233 963 1.0
accept_stat__ 0.88 1.6e-02 0.23 0.21 0.98 1.00 203 838 1.0e+00
stepsize__ 0.18 2.2e-02 0.031 0.14 0.20 0.22 2.0 8.3 3.9e+13
treedepth__ 3.8 5.9e-02 0.78 2.0 4.0 5.0 175 724 1.0e+00
n_leapfrog__ 18 1.3e+00 9.4 7.0 15 31 51 212 1.0e+00
divergent__ 0.015 4.1e-03 0.12 0.00 0.00 0.00 865 3576 1.0e+00
energy__ 23 3.4e-01 5.5 13 23 32 258 1066 1.0e+00

mu 7.9 0.16 5.1 -0.23 7.9 16 1021 4221 1.0
theta[1] 12 0.30 8.6 -0.48 11 28 837 3459 1.0
theta[2] 7.8 0.15 6.4 -2.7 7.7 18 1717 7096 1.00
theta[3] 6.1 0.19 7.7 -6.5 6.5 18 1684 6958 1.0
theta[4] 7.5 0.15 6.7 -3.1 7.4 18 2026 8373 1.0
theta[5] 4.7 0.17 6.4 -6.7 5.3 15 1391 5747 1.00
theta[6] 5.9 0.16 6.7 -5.8 6.2 16 1673 6915 1.00
theta[7] 11 0.22 7.0 0.057 10 23 1069 4419 1.0
theta[8] 8.3 0.20 7.9 -4.2 8.0 22 1503 6209 1.00

CHAPTER 16. STANSUMMARY: MCMC OUTPUT ANALYSIS 72

tau 7.2 0.26 5.2 1.5 5.9 17 401 1657 1.0

Samples were drawn using hmc with nuts.
For each parameter, N_Eff is a crude measure of effective sample size,
and R_hat is the potential scale reduction factor on split chains (at
convergence, R_hat=1).

The console output information consists of

• Model, chains, and timing summaries
• Sampler parameter statistics
• Model parameter statistics
• Sampling algorithm - either nuts (shown here) or static HMC.

There is one row per parameter and the row order in the summary report corresponds
to the column order in the Stan CSV output file.

Sampler Parameters
The initial Stan CSV columns provide information on the sampler state for each draw:

• lp__ - the total log probability density (up to an additive constant) at each
sample

• accept_stat__ - the average Metropolis acceptance probability over each simu-
lated Hamiltonian trajectory

• stepsize__ - integrator step size
• treedepth__ - depth of tree used by NUTS (NUTS sampler)
• n_leapfrog__ - number of leapfrog calculations (NUTS sampler)
• divergent__ - has value 1 if trajectory diverged, otherwise 0. (NUTS sampler)
• energy__ - value of the Hamiltonian
• int_time__ - total integration time (static HMC sampler)

Because we ran the NUTS sampler, the above summary reports sampler parameters
treedepth__, n_leapfrog__, and divergent__; the static HMC sampler would re-
port int_time__ instead.

Model Parameters and Quantities of Interest
The remaining Stan CSV columns report the values of all parameters, transformed
parameters, and generated quantities in the order in which these variables are declared
in the Stan program. For container variables, i.e., vector, row_vector, matrix, and
array variables, the statistics for each element are reported separately, in row-major
order. The eight_schools.stan program parameters block contains the following
parameter variable declarations:

real mu;

CHAPTER 16. STANSUMMARY: MCMC OUTPUT ANALYSIS 73

real theta[J];
real<lower=0> tau;

In the example data, J is 8; therefore the stansummary listing reports on theta[1]
through theta[8].

16.3. Command-line Options
The stansummary command syntax provides a set of flags to customize the output
which must precede the list of filenames. When invoked with no arguments or with the
-h or --help option, the program prints the usage message to the console and exits.

Report statistics for one or more Stan CSV files from a HMC sampler run.
Example: stansummary model_chain_1.csv model_chain_2.csv
Options:

-a, --autocorr [n] Display the chain autocorrelation for the n-th
input file, in addition to statistics.

-c, --csv_filename [file] Write statistics to a CSV file.
-h, --help Produce help message, then exit.
-p, --percentiles [values] Percentiles to report as ordered set of

comma-separated integers from (1,99), inclusive.
Default is 5,50,95.

-s, --sig_figs [n] Significant figures reported. Default is 2.
Must be an integer from (1, 10), inclusive.

Both short an long option names are allowed. Short names are specified as -<o>
<value>; long option names can be specified either as --<option>=<value> or
--<option> <value>.

17. diagnose: Diagnosing Biased Hamiltonian

Monte Carlo Inferences

CmdStan is distributed with a utility that is able to read in and analyze the output of
one or more Markov chains to check for the following potential problems:

• Divergent transitions
• Transitions that hit the maximum treedepth
• Low E-BFMI values
• Low effective sample sizes
• High R̂ values

The meanings of several of these problems are discussed in https://arxiv.org/abs/17
01.02434.

17.1. Building the diagnose Command
The CmdStan makefile task build compiles the diagnose utility into the bin directory.
It can be compiled directly using the makefile as follows:

> cd <cmdstan-home>
> make bin/diagnose

17.2. Running the diagnose Command
The diagnose command is executed on one or more output files, which are provided
as command-line arguments separated by spaces. If there are no apparent problems
with the output files passed to diagnose, it outputs a message that all transitions are
within treedepth limit and that no divergent transitions were found. It problems are
detected, it outputs a summary of the problem along with possible ways to mitigate it.

To fully exercise the diagnose command, we run 4 chains to sample from the Neal’s
funnel distribution, discussed in the Stan User’s Guide reparameterization section
https://mc-stan.org/docs/stan-users-guide/reparameterization-section.html. This
program defines a distribution which exemplifies the difficulties of sampling from
some hierarchical models:

parameters {
real y;
vector[9] x;

}

74

https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1701.02434
https://mc-stan.org/docs/stan-users-guide/reparameterization-section.html

CHAPTER 17. DIAGNOSE: DIAGNOSING BIASED HAMILTONIAN MONTE CARLO INFERENCES75

model {
y ~ normal(0, 3);
x ~ normal(0, exp(y/2));

}

This program is available on GitHub: https://github.com/stan-dev/example-models/b
lob/master/misc/funnel/funnel.stan

Stan has trouble sampling from the region where y is small and thus x is constrained
to be near 0. This is due to the fact that the density’s scale changes with y, so that a
step size that works well when y is large is inefficient when y is small and vice-versa.

Running 4 chains produces output files output_1.csv, . . . , output_4.csv. We run
diagnose command on this fileset:

> bin/diagnose output_*.csv

The output is printed to the terminal window:

Processing csv files: output_1.csv, output_2.csv, output_3.csv, output_4.csv

Checking sampler transitions treedepth.
9 of 4000 (0.23%) transitions hit the maximum treedepth limit of 10, or 2^10 leapfrog steps.
Trajectories that are prematurely terminated due to this limit will result in slow exploration.
For optimal performance, increase this limit.

Checking sampler transitions for divergences.
9 of 4000 (0.23%) transitions ended with a divergence.
These divergent transitions indicate that HMC is not fully able to explore the posterior distribution.
Try increasing adapt delta closer to 1.
If this doesn't remove all divergences, try to reparameterize the model.

Checking E-BFMI - sampler transitions HMC potential energy.
The E-BFMI, 0.078, is below the nominal threshold of 0.3 which suggests that HMC may have trouble exploring the target distribution.
If possible, try to reparameterize the model.

Effective sample size satisfactory.

The following parameters had split R-hat greater than 1.1:
y

Such high values indicate incomplete mixing and biased estimation.
You should consider regularizing your model with additional prior information or a more effective parameterization.

https://github.com/stan-dev/example-models/blob/master/misc/funnel/funnel.stan
https://github.com/stan-dev/example-models/blob/master/misc/funnel/funnel.stan

CHAPTER 17. DIAGNOSE: DIAGNOSING BIASED HAMILTONIAN MONTE CARLO INFERENCES76

Processing complete.

In this example, changing the model to use a non-centered parameterization is the
only way to correct these problems. In this second model, the parameters x_raw and
y_raw are sampled as independent standard normals, which is easy for Stan.

parameters {
real y_raw;
vector[9] x_raw;

}
transformed parameters {

real y;
vector[9] x;

y = 3.0 * y_raw;
x = exp(y/2) * x_raw;

}
model {

y_raw ~ std_normal(); // implies y ~ normal(0, 3)
x_raw ~ std_normal(); // implies x ~ normal(0, exp(y/2))

}

This program is available on GitHub: https://github.com/stan-dev/example-models/b
lob/master/misc/funnel/funnel_reparam.stan

We compile the program and run 4 chains, as before. Now the diagnose command
doesn’t detect any problems:

Processing csv files: output_1.csv, output_2.csv, output_3.csv, output_4.csv

Checking sampler transitions treedepth.
Treedepth satisfactory for all transitions.

Checking sampler transitions for divergences.
No divergent transitions found.

Checking E-BFMI - sampler transitions HMC potential energy.
E-BFMI satisfactory for all transitions.

Effective sample size satisfactory.

Split R-hat values satisfactory all parameters.

https://github.com/stan-dev/example-models/blob/master/misc/funnel/funnel_reparam.stan
https://github.com/stan-dev/example-models/blob/master/misc/funnel/funnel_reparam.stan

CHAPTER 17. DIAGNOSE: DIAGNOSING BIASED HAMILTONIAN MONTE CARLO INFERENCES77

Processing complete, no problems detected.

17.3. diagnose Warnings and Recommendations
Divergent transitions after warmup
Stan uses Hamiltonian Monte Carlo (HMC) to explore the target distribution — the
posterior defined by a Stan program + data — by simulating the evolution of a Hamilto-
nian system. In order to approximate the exact solution of the Hamiltonian dynamics
we need to choose a step size governing how far we move each time we evolve the
system forward. That is, the step size controls the resolution of the sampler.

Unfortunately, for particularly hard problems there are features of the target distri-
bution that are too small for this resolution. Consequently the sampler misses those
features and returns biased estimates. Fortunately, this mismatch of scales manifests
as divergences which provide a practical diagnostic. If there are any divergences after
warmup, then the samples may be biased.

If the divergent transitions cannot be eliminated by increasing the adapt_delta pa-
rameter, we have to find a different way to write the model that is logically equivalent
but simplifies the geometry of the posterior distribution. This problem occurs fre-
quently with hierarchical models and one of the simplest examples is Neal’s Funnel,
which is discussed in the reparameterization section of the Stan User’s Guide.

Maximum treedepth exceeded
Warnings about hitting the maximum treedepth are not as serious as warnings about
divergent transitions. While divergent transitions are a validity concern, hitting the
maximum treedepth is an efficiency concern. Configuring the No-U-Turn-Sampler (the
variant of HMC used by Stan) requires putting a cap on the depth of the trees that it
evaluates during each iteration (for details on this see the Hamiltonian Monte Carlo
Sampling chapter in the Stan Reference Manual. When the maximum allowed tree
depth is reached it indicates that NUTS is terminating prematurely to avoid excessively
long execution time.

This is controlled through the max_depth argument. If the number of transitions
which exceed maximum treedepth is low, increasing max_depth may correct this
problem.

Low E-BFMI values - sampler transitions HMC potential energy.
The sampler csv output column energy__ is used to diagnose the accuracy of any
Hamiltonian Monte Carlo sampler. If the standard deviation of energy is much larger
than

√
D/2, where D is the number of unconstrained parameters, then the sampler is

unlikely to be able to explore the posterior adequately. This is usually due to heavy-

https://en.wikipedia.org/wiki/Hamiltonian_system
https://en.wikipedia.org/wiki/Hamiltonian_system
https://mc-stan.org/docs/stan-users-guide/reparameterization-section.html
https://mc-stan.org/docs/reference-manual/hmc-chapter.html

CHAPTER 17. DIAGNOSE: DIAGNOSING BIASED HAMILTONIAN MONTE CARLO INFERENCES78

tailed posteriors and can sometimes be remedied by reparameterizing the model.

The warning that some number of chains had an estimated Bayesian Fraction of
Missing Information (BFMI) that was too low implies that the adaptation phase of
the Markov Chains did not turn out well and those chains likely did not explore
the posterior distribution efficiently. For more details on this diagnostic, see https:
//arxiv.org/abs/1604.00695. Should this occur, you can either run the sampler for
more iterations, or consider reparameterizing your model.

Low effective sample sizes
Roughly speaking, the effective sample size (ESS) of a quantity of interest captures how
many independent draws contain the same amount of information as the dependent
sample obtained by the MCMC algorithm. Clearly, the higher the ESS the better. Stan
uses R̂ adjustment to use the between-chain information in computing the ESS. For
example, in case of multimodal distributions with well-separated modes, this leads to
an ESS estimate that is close to the number of distinct modes that are found.

Bulk-ESS refers to the effective sample size based on the rank normalized draws. This
does not directly compute the ESS relevant for computing the mean of the parameter,
but instead computes a quantity that is well defined even if the chains do not have
finite mean or variance. Overall bulk-ESS estimates the sampling efficiency for the
location of the distribution (e.g. mean and median).

Often quite smaller ESS would be sufficient for the desired estimation accuracy, but
the estimation of ESS and convergence diagnostics themselves require higher ESS. We
recommend requiring that the bulk-ESS is greater than 100 times the number of chains.
For example, when running four chains, this corresponds to having a rank-normalized
effective sample size of at least 400.

High R̂
R̂ (R-hat) convergence diagnostic compares the between- and within-chain estimates
for model parameters and other univariate quantities of interest. If chains have not
mixed well (ie, the between- and within-chain estimates don’t agree), R̂ is larger than 1.
We recommend running at least four chains by default and only using the sample if R̂
is less than 1.01. Stan reports R̂ which is the maximum of rank normalized split-R-hat
and rank normalized folded-split-R-hat, which works for thick tailed distributions
and is sensitive also to differences in scale. For more details on this diagnostic, see
https://arxiv.org/abs/1903.08008.

There is further discussion in https://arxiv.org/abs/1701.02434; however the correct
resolution is necessarily model specific, hence all suggestions general guidelines only.

https://arxiv.org/abs/1604.00695
https://arxiv.org/abs/1604.00695
https://arxiv.org/abs/1903.08008
https://arxiv.org/abs/1701.02434

18. print (deprecated): MCMC Output Analy-

sis

The print utility is deprecated, but is still available until CmdStan v3.0. Use the
stansummary utility instead.

79

Appendices

This section contains the following appendices:

• Stan CSV File Format
• JSON format
• RDump data format

80

19. Stan CSV File Format

The output from all CmdStan methods is in CSV format. A Stan CSV file is a data table
where the columns are the method and model parameters and quantities of interest.
Each row contains one record’s worth of data in plain-text format using the comma
character (‘,’) as the field delimiter (hence the name).

For the Stan CSV files, data is strictly numerical, however, possible values include both
positive and negative infinity and “Not-a-Number” which are represented as the strings
NaN, inf, +inf, -inf. All other values are written in decimal notation with at most 6
digits of precision.

Stan CSV files have a header row containing the column names. They also make
extensive use of CSV comments, i.e., lines which begin with the # character. In addition
to initial and final comment rows, some methods also put comment rows in the middle
of the data table, which makes it difficult to use many of the commonly used CSV
parser packages.

19.1. CSV Column Names and Order
The data table is laid out with zero or more method-specific columns followed by
the Stan program variables declared in the parameter block, then the variables in the
transformed parameters block, finally variables declared in the generated quantities,
in declaration order.

Stan provides three types of container objects: arrays, vectors, and matrices. In order
to output all elements of a container object, it is necessary to choose an indexing
notation and a serialization order. The Stan CSV file indexing notation is

• The column name consists of the variable name followed by the element indices.
• Indices are delimited by periods (‘.’).
• Indexing is 1-based, i.e., given a dimension of size N, the first element index is 1

and the last element index is N.

Container variables are serialized in column major order, a.k.a. “Fortran” order. In
column major-order, all elements of column 1 are listed in ascending order, followed
by all elements of column 2, thus the first index changes the slowest and the last index
changes the fastest.

To see how this works, consider a 3-dimensional variable with dimension sizes 2, 3,
and 4, e.g., an array of matrices, a 2-D array of vectors or row_vectors, or a 3-D array

81

https://en.wikipedia.org/wiki/Comma-separated_values
https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

CHAPTER 19. STAN CSV FILE FORMAT 82

of scalars. Given a Stan program with model parameter variable:

real foo[2, 3, 4];

The Stan CSV file will require 24 columns to output the elements of foo. The first 6
columns will be labeled:

foo.1.1.1, foo.1.1.2, foo.1.1.3, foo.1.1.4, foo.1.2.1, foo.1.2.2

The final 6 columns will be labeled:

foo.2.2.3, foo.2.2.4, foo.2.3.1, foo.2.3.2, foo.2.3.3, foo.2.3.4

19.2. MCMC Sampler CSV Output
The sample method produces both a Stan CSV output file and a diagnostic file which
contains the sampler parameters together with the gradients on the unconstrained
scale and log probabilities for all parameters in the model.

To see how this works, we show snippets of the output file resulting from the following
command:

./bernoulli sample save_warmup=1 num_warmup=200 num_samples=100 \
data file=bernoulli.data.json \
output file=bernoulli_samples.csv

Sampler Stan CSV output file
The sampler output file contains the following:

• Initial comment rows listing full CmdStan argument configuration.
• Header row
• Data rows containing warmup draws, if run with option save_warmup=1
• Comment rows for adaptation listing step size and metric used for sampling
• Sampling draws
• Comment rows giving timing information

Initial comments rows: argument configuration

All configuration arguments are listed, one per line, indented according to CmdStan’s
hierarchy of arguments and sub-arguments. Arguments not overtly specified on the
command line are annotated as (Default).

In the above example the num_samples, num_warmup, and save_warmup arguments
were specified, whereas subargument thin is left at its default value, as seen in the
initial comment rows:

stan_version_major = 2
stan_version_minor = 24

CHAPTER 19. STAN CSV FILE FORMAT 83

stan_version_patch = 0
model = bernoulli_model
method = sample (Default)
sample
num_samples = 100
num_warmup = 200
save_warmup = 1
thin = 1 (Default)
adapt
engaged = 1 (Default)
gamma = 0.050000000000000003 (Default)
delta = 0.80000000000000004 (Default)
kappa = 0.75 (Default)
t0 = 10 (Default)
init_buffer = 75 (Default)
term_buffer = 50 (Default)
window = 25 (Default)
algorithm = hmc (Default)
hmc
engine = nuts (Default)
nuts
max_depth = 10 (Default)
metric = diag_e (Default)
metric_file = (Default)
stepsize = 1 (Default)
stepsize_jitter = 0 (Default)
id = 0 (Default)
data
file = bernoulli.data.json
init = 2 (Default)
random
seed = 2991989946 (Default)
output
file = bernoulli_samples.csv
diagnostic_file = bernoulli_diagnostics.csv
refresh = 100 (Default)

Note that when running multi-threaded programs which use reduce_sum for high-
level parallelization, the number of threads used will also be included in this initial
comment header.

CHAPTER 19. STAN CSV FILE FORMAT 84

Column headers

The CSV header row lists all sampler parameters, model parameters, transformed
parameters, and quantities of interest. The sampler parameters are described in detail
in the output file section of the Quickstart Guide chapter on MCMC Sampling. The
example model bernoulli.stan only contains one parameter theta, therefore the
CSV file data table consists of 7 sampler parameter columns and one column for the
model parameter:

lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,theta

As a second example, we show the output of the eight_schools.stan model on run
on example dataset. This model has 3 parameters: mu, theta a vector whose length is
dependent on the input data, here N = 8, and tau. The initial columns are for the 7
sampler parameters, as before. The column headers for the model parameters are:

mu,theta.1,theta.2,theta.3,theta.4,theta.5,theta.6,theta.7,theta.8,tau

Data rows containing warmup draws

When run with option save_warmup=1, the thinned warmup draws are written to
the CSV output file directly after the CSV header line. Since the default option is
save_warmup=0, this section is usually not present in the output file.

Here we specified num_warmup=200 and left thin at the default value 1, therefore the
next 200 lines are data rows containing the sampler and model parameter values for
each warmup draw.

-6.74827,1,1,1,1,0,6.75348,0.247195
-6.74827,4.1311e-103,14.3855,1,1,0,6.95087,0.247195
-6.74827,1.74545e-21,2.43117,1,1,0,7.67546,0.247195
-6.77655,0.99873,0.239791,2,7,0,6.81982,0.280619
-6.7552,0.999392,0.323158,1,3,0,6.79175,0.26517

Comment rows for adaptation

During warmup, the sampler adjusts the stepsize and the metric. At the end warmup,
the sampler outputs this information as comments.

Adaptation terminated
Step size = 0.813694
Diagonal elements of inverse mass matrix:
0.592879

As the example bernoulli model only contains a single parameter, and as the default
metric is diag_e, the inverse mass matrix is a 1 × 1 matrix, and the length of the

CHAPTER 19. STAN CSV FILE FORMAT 85

diagonal vector is also 1.

In contrast, if we run the eight schools example model with metric dense_e, the
adaptation comments section lists both the stepsize and the full 10× 10 inverse mass
matrix:

Adaptation terminated
Step size = 0.211252
Elements of inverse mass matrix:
25.6389, 17.3379, 13.9455, 15.9036, 15.1953, 8.73729, 16.9486, 14.4231, 17.4969, 0.518757
17.3379, 79.8719, 12.2989, -1.28006, 9.92895, -3.51622, 10.073, 22.0196, 19.8151, 4.71028
13.9455, 12.2989, 36.1572, 12.8734, 11.9446, 9.09582, 9.74519, 10.9539, 12.1204, 0.211353
15.9036, -1.28006, 12.8734, 59.9998, 10.245, 8.03461, 16.9754, 3.13443, 9.68292, -1.36097
15.1953, 9.92895, 11.9446, 10.245, 43.548, 15.3403, 13.0537, 7.69818, 10.1093, 0.155245
8.73729, -3.51622, 9.09582, 8.03461, 15.3403, 39.981, 12.7695, 1.16248, 6.13749, -2.08507
16.9486, 10.073, 9.74519, 16.9754, 13.0537, 12.7695, 45.8884, 11.6074, 8.96413, -1.15946
14.4231, 22.0196, 10.9539, 3.13443, 7.69818, 1.16248, 11.6074, 49.4083, 18.9169, 3.15661
17.4969, 19.8151, 12.1204, 9.68292, 10.1093, 6.13749, 8.96413, 18.9169, 68.0228, 1.74104
0.518757, 4.71028, 0.211353, -1.36097, 0.155245, -2.08507, -1.15946, 3.15661, 1.74104, 1.50433

Note that when the sampler is run with arguments algorithm=fixed_param, this
section will be missing.

Data rows containing sampling draws

The output file contains the values for the thinned set draws during sampling. Here we
specified num_sampling=100 and left thin at the default value 1, therefore the next
100 lines are data rows containing the sampler and model parameter values for each
sampling iteration.

-8.76921,0.796814,0.813694,1,1,0,9.75854,0.535093
-6.79143,0.979604,0.813694,1,3,0,9.13092,0.214431
-6.79451,0.955359,0.813694,2,3,0,7.19149,0.289341

Timing information

Upon successful completion, the sampler writes timing information to the output CSV
file as a series of final comment lines:

#
Elapsed Time: 0.005 seconds (Warm-up)
0.002 seconds (Sampling)
0.007 seconds (Total)
#

CHAPTER 19. STAN CSV FILE FORMAT 86

Diagnostic CSV output file
The diagnostic file contains the following:

• Initial comment rows listing full CmdStan argument configuration.
• Header row
• Data rows containing warmup draws, if run with option save_warmup=1
• Sampling draws
• Comment rows giving timing information

The columns in this file contain, in order: - all sampler parameters - all model pa-
rameter estimates - the latent Hamiltonian for each parameter - the gradient for each
parameters

The labels for the latent Hamiltonian columns are the parameter column label with
prefix p_ and the labels for the gradient columns are the parameter column label with
prefix g_.

These are the column labels from the file bernoulli_diagnostic.csv:

lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,theta,p_theta,g_theta

19.3. Optimization Output
• Config as comments
• Header row
• Penalized maximum likelihood estimate

19.4. Variational Inference Output
• Config as comments
• Header row
• Adaptation as comments
• Variational estimate
• Sample draws from estimate of the posterior

19.5. Generate Quantities Outputs
• Header row
• Quantities of interest

19.6. Diagnose Method Outputs
• Header row
• Gradients

20. JSON Format for CmdStan

CmdStan can use JSON format for input data for both model data and parameters.
Model data is read in by the model constructor. Model parameters are used to initialize
the sampler and optimizer.

20.1. Creating JSON Files
You can create the JSON file yourself using the guidelines below, but a more convenient
way to create a JSON file for use with CmdStan is to use the write_stan_json()
function provided by the CmdStanR interface.

20.2. JSON Syntax Summary
JSON is a data interchange notation, defined by an ECMA standard. JSON data files
must in Unicode. JSON data is a series of structural tokens, literal tokens, and values:

• Structural tokens are the left and right curly bracket {}, left and right square
bracket [], the semicolon ;, and the comma ,.

• Literal tokens must always be in lowercase. There are three literal tokens: true,
false, null.

• A primitive value is a single token which is either a literal, a string, or a number.

• A string consists of zero or more Unicode characters enclosed in double quotes,
e.g. "foo". A backslash is used to escape the double quote character as well
as the backslash itself. JSON allows the use of Unicode character escapes,
e.g. "\\uHHHH" where HHHH is the Unicode code point in hex.

• All numbers are decimal numbers. Scientific notation is allowed. The following
are examples of numbers: 17, 17.2, -17.2, -17.2e8, 17.2e-8. Note: The
concepts of positive and negative infinity as well as “not a number” cannot
be expressed as numbers in JSON, but they can be encoded as strings "+inf",
"-inf", and "NaN", respectively, which can be mixed with numbers.

• A JSON array is an ordered, comma-separated list of zero or more JSON values
enclosed in square brackets. The elements of an array can be of any type. The
following are examples of arrays: [], [1], [0.2, "-inf", true].

• A name-value pair consists of a string followed by a colon followed by a value,
either primitive or compound.

87

https://mc-stan.org/cmdstanr/reference/write_stan_json
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

CHAPTER 20. JSON FORMAT FOR CMDSTAN 88

• A JSON object is a comma-separated series of zero or more name-value pairs
enclosed in curly brackets. Each name-value pair is a member of the object.
Membership is unordered. Member names are not required to be unique. The
following are examples of objects: { }, {"foo": null}, {"bar" : 17, "baz"
: [14,15,16.6] }.

20.3. Stan Data Types in JSON Notation
Stan follows the JSON standard. A Stan input file in JSON notation consists of single
JSON object which contains zero or more name-value pairs. This structure corresponds
to a Python data dictionary object. The following is an example of JSON data for the
simple Bernoulli example model:

{ "N" : 10, "y" : [0,1,0,0,0,0,0,0,0,1] }

Matrix data and multi-dimensional arrays are indexed in row-major order. For a Stan
program which has data block:

data {
int d1;
int d2;
int d3;
int ar[d1, d2, d3];

}

the following JSON input would be valid:

{ "d1" : 2,
"d2" : 3,
"d3" : 4,
"ar" : [[[0,1,2,3], [4,5,6,7], [8,9,10,11]],

[[12,13,14,15], [16,17,18,19], [20,21,22,23]]]
}

JSON ignores whitespace. In the above examples, the spaces and newlines are only
used to improve readability and can be omitted.

All data inputs are encoded as name-value pairs. The following table provides more
examples of JSON data. The left column contains a Stan data variable declaration and
the right column contains valid JSON data inputs.

Stan variable JSON data

int i "i": 17
real a "a" : 17

CHAPTER 20. JSON FORMAT FOR CMDSTAN 89

Stan variable JSON data

"a" : 17.2
"a" : "NaN"
"a" : "+inf"
"a" : "-inf"

int a[5] "a" : [1, 2, 3, 4, 5]

real a[5] "a" : [1, 2, 3.3, "NaN", 5]
vector[5] a "a" : [1, 2, 3.3, "NaN", 5]

row_vector[5] a "a" : [1, 2, 3.3, "NaN", 5]
real a[5] "a" : [1, 2, 3.3, "NaN", 5]

matrix[2,3] a "a" : [[1, 2, 3], [4, 5, 6]]

Empty arrays in JSON
JSON notation is not able to distinguish between multi-dimensional arrays where any
dimension is 0, e.g., a 2-D array with dimensions (1,0), i.e., an array which contains
a single array which is empty, has JSON representation []. To see how this works,
consider the following Stan program data block:

data {
int d;
int ar_1d[d];
int ar_2d[d,d];
int ar_3d[d,d,d];

}

In the case where variable d is 1, all arrays will contain a single value. If array variable
ar_d1 contains value 7, 2-D array variable ar_d2 contains (an array which contains)
value 8, and 3-D array variable ar_d3 contains (an array which contains an array which
contains) value 9, the JSON representation is:

{ "ar_d1" : [7],
"ar_d2" : [[8]],
"ar_d3" : [[[9]]]

}

However, in the case where variable d is 0, ar_d1 is empty, i.e., it contains no values,
as is ar_d2, ar_d3, and the JSON representation is

CHAPTER 20. JSON FORMAT FOR CMDSTAN 90

{ "d" : 0,
"ar_d1" : [],
"ar_d2" : [],
"ar_d3" : []

}

21. RDump Format for CmdStan

NOTE: Although the RDump format is still supported, I/O with JSON is faster and
recommended. See the chapter on JSON for more details.

RDump format can be used to represent values for Stan variables. This format was
introduced in SPLUS and is used in R, JAGS, and in BUGS (but with a different ordering).

A dump file is structured as a sequence of variable definitions. Each variable is
defined in terms of its dimensionality and its values. There are three kinds of variable
declarations: - scalars - sequences - general arrays

21.1. Creating Dump Files
Dump files can be created from R using RStan, via the rstan package function
stan_rdump. Stan RDump files must be created via stan_rdump and not by R’s
native dump function because R’s dump function uses a richer syntax than is supported
by the underlying Stan i/o libraries.

21.2. Scalar Variables
A simple scalar value can be thought of as having an empty list of dimensions. Its
declaration in the dump format follows the SPLUS assignment syntax. For example,
the following would constitute a valid dump file defining a single scalar variable y with
value 17.2:

y <- 17.2

21.3. Sequence Variables
One-dimensional arrays may be specified directly using the SPLUS sequence notation.
The following example defines an integer-value and a real-valued sequence.

n <- c(1,2,3) y <- c(2.0,3.0,9.7)

Arrays are provided without a declaration of dimensionality because the reader just
counts the number of entries to determine the size of the array.

Sequence variables may alternatively be represented with R’s colon-based notation.
For instance, the first example above could equivalently be written as

n <- 1:3

The sequence denoted by 1:3 is of length 3, running from 1 to 3 inclusive. The colon
notation allows sequences going from high to low. The following are equivalent:

91

CHAPTER 21. RDUMP FORMAT FOR CMDSTAN 92

n <- 2:-2
n <- c(2,1,0,-1,-2)

As a special case, a sequence of zeros can also be represented in the dump format
by integer(x) and double(x), for type int and double, respectively. Here x is a
non-negative integer to specify the length. If x is 0, it can be omitted. The following
are some examples.

x1 <- integer()
x2 <- integer(0)
x3 <- integer(2)
y1 <- double()
y2 <- double(0)
y3 <- double(2)

21.4. Array Variables
For more than one dimension, the dump format uses a dimensionality specification.
For example, the following defines a 2× 3 array:

y <- structure(c(1,2,3,4,5,6), .Dim = c(2,3))

Data is stored column-major, thus the values for y will be:

y[1,1] = 1
y[1,2] = 3
y[1,3] = 5
y[2,1] = 2
y[2,2] = 4
y[2,3] = 6

The structure keyword just wraps a sequence of values and a dimensionality decla-
ration, which is itself just a sequence of non-negative integer values. The product of
the dimensions must equal the length of the array.

If the values happen to form a contiguous sequence of integers, they may be written
with colon notation. Thus the example above is equivalent to the following.

y <- structure(1:6, .Dim = c(2,3))

Sequence notation can be used within any call to the generic c() function in R. In the
above example, c(2,3) could be written as c(2:3).

The generalization of column-major indexing is last-index major indexing. Arrays of
more than two dimensions are written in a last-index major form. For example,

CHAPTER 21. RDUMP FORMAT FOR CMDSTAN 93

z <- structure(1:24, .Dim = c(2,3,4))

produces a three-dimensional int (assignable to real) array z with values:

z[1,1,1] = 1
z[2,1,1] = 2
z[1,2,1] = 3
z[2,2,1] = 4
z[1,3,1] = 5
z[2,3,1] = 6
z[1,1,2] = 7
z[2,1,2] = 8
z[1,2,2] = 9
z[2,2,2] = 10
z[1,3,2] = 11
z[2,3,2] = 12
z[1,1,3] = 13
z[2,1,3] = 14
z[1,2,3] = 15
z[2,2,3] = 16
z[1,3,3] = 17
z[2,3,3] = 18
z[1,1,4] = 19
z[2,1,4] = 20
z[1,2,4] = 21
z[2,2,4] = 22
z[1,3,4] = 23
z[2,3,4] = 24

If the underlying 3-D array is stored as a 1-D array in last-index major format, the
innermost array elements will be contiguous.

The sequence of values inside structure can also be integer(x) or double(x). In
particular, if one or more dimensions is zero, integer() can be put inside structure.
For instance, the following example is supported by the dump format.

y <- structure(integer(), .Dim = c(2,0))

21.5. Matrix- and Vector-Valued Variables
The dump format for matrices and vectors, including arrays of matrices and vectors,
is the same as that for arrays of the same shape.

CHAPTER 21. RDUMP FORMAT FOR CMDSTAN 94

Vector Dump Format
The following three declarations have the same dump format for their data.

real a[K];
vector[K] b;
row_vector[K] c;

Matrix Dump Format
The following declarations have the same dump format.

real a[M,N];
matrix[M,N] b;

Arrays of Vectors and Matrices
The key to understanding arrays is that the array indexing comes before any of the
container indexing. That is, an array of vectors is just that: each array element is a
vector. See the chapter on array and matrix types in the user’s guide section of the
language manual for more information.

For the dump data format, the following declarations have the same arrangement.

real a[M,N];
matrix[M,N] b;
vector[N] c[M];
row_vector[N] d[M];

Similarly, the following also have the same dump format.

real a[P,M,N];
matrix[M,N] b[P];
vector[N] c[P,M];
row_vector[N] d[P,M];

21.6. Integer- and Real-Valued Variables
There is no declaration in a dump file that distinguishes integer versus continuous
values. If a value in a dump file’s definition of a variable contains a decimal point (e.g.,
132.3) or uses scientific notation (e.g., 1.323e2), Stan assumes that the values are real.

For a single value, if there is no decimal point, it may be assigned to an int or real
variable in Stan. An array value may only be assigned to an int array if there is no
decimal point or scientific notation in any of the values. This convention is compatible
with the way R writes data.

The following dump file declares an integer value for y.

CHAPTER 21. RDUMP FORMAT FOR CMDSTAN 95

y <- 2

This definition can be used for a Stan variable y declared as real or as int. Assigning
an integer value to a real variable automatically promotes the integer value to a real
value.

Integer values may optionally be followed by L or l, denoting long integer values. The
following example, where the type is explicit, is equivalent to the above.

y <- 2L

The following dump file provides a real value for y.

y <- 2.0

Even though this is a round value, the occurrence of the decimal point in the value,
2.0, causes Stan to infer that y is real valued. This dump file may only be used for
variables y declared as real in Stan.

Scientific Notation
Numbers written in scientific notation may only be used for real values in Stan. R will
write out the integer one million as 1e+ 06.

Infinite and Not-a-Number Values
Stan’s reader supports infinite and not-a-number values for scalar quantities (see the
section of the reference manual section of the language manual for more information
on Stan’s numerical data types). Both infinite and not-a-number values are supported
by Stan’s dump-format readers.

Value Preferred Form Alternative Forms

positive infinity Inf Infinity, infinity
negative infinity -Inf -Infinity, -infinity

not a number NaN

These strings are not case sensitive, so inf may also be used for positive infinity, or
NAN for not-a-number.

21.7. Quoted Variable Names
In order to support JAGS data files, variables may be double quoted. For instance, the
following definition is legal in a dump file.

"y" <- c(1,2,3) \end{Verbatim}

CHAPTER 21. RDUMP FORMAT FOR CMDSTAN 96

21.8. Line Breaks
The line breaks in a dump file are required to be consistent with the way R reads in
data. Both of the following declarations are legal.

y <- 2
y <-
3

Also following R, breaking before the assignment arrow are not allowed, so the follow-
ing is invalid.

y
<- 2 # Syntax Error

Lines may also be broken in the middle of sequences declared using the c(...)
notation., as well as between the comma following a sequence definition and the
dimensionality declaration. For example, the following declaration of a 2× 2× 3 array
is valid.

y <-
structure(c(1,2,3,
4,5,6,7,8,9,10,11,
12), .Dim = c(2,2,
3))

Because there are no decimal points in the values, the resulting dump file may be used
for three-dimensional array variables declared as int or real.

21.9. BNF Grammar for Dump Data
A more precise definition of the dump data format is provided by the following (mildly
templated) Backus-Naur form grammar.

definition ::= name <- value optional_semicolon

name ::= char* | ''' char* ''' | '"' char* '"'

value ::= value<int> | value<double>

value<T> ::= T | seq<T> | zero_array<T> |
'structure' '(' seq<T> ',' ".Dim" '=' seq<int> ')' | 'structure'
'(' zero_array<T> ',' ".Dim" '=' seq<int> ')'

seq<int> ::= int ':' int | cseq<int>

CHAPTER 21. RDUMP FORMAT FOR CMDSTAN 97

zero_array<int> ::= "integer" '(' <non-negative int>? ')'

zero_array<real> ::= "double" '(' <non-negative int>? ')'

seq<real> ::= cseq<real>

cseq<T> ::= 'c' '(' vseq<T> ')'

vseq<T> ::= T | T ',' vseq<T>

The template parameters T will be set to either int or real. Because Stan allows
promotion of integer values to real values, an integer sequence specification in the
dump data format may be assigned to either an integer- or real-based variable in Stan.

Bibliography

Betancourt, Michael. 2017. “A Conceptual Introduction to Hamiltonian Monte Carlo.”
arXiv 1701.02434. https://arxiv.org/abs/1701.02434.

Kucukelbir, Alp, Rajesh Ranganath, Andrew Gelman, and David M. Blei. 2015. “Auto-
matic Variational Inference in Stan.” arXiv 1506.03431. http://arxiv.org/abs/1506
.03431.

98

https://arxiv.org/abs/1701.02434
http://arxiv.org/abs/1506.03431
http://arxiv.org/abs/1506.03431

	Introduction
	QuickStart Guide
	CmdStan Installation
	Installing the C++ Toolchain
	GNU-Make Utility
	Clone the GitHub CmdStan Repository
	Building CmdStan
	Trouble-shooting the installation

	Example Model and Data
	Compiling a Stan Program
	Invoking the Make Utility
	Dependencies
	Compiler Errors
	Troubleshooting C++ Compiler or Linker Errors

	MCMC Sampling
	Running the Sampler
	Running Multiple Chains
	Stan CSV Output File
	Summarizing Sampler Output(s) with stansummary

	Optimization
	Variational Inference
	Generating Quantities of Interest from a Fitted Model
	Reference Manual
	Command-Line Interface Overview
	Input Data Argument
	Output Control Arguments
	Initialize Model Parameters Argument
	Random Number Generator Arguments
	Chain Identifier Argument: id
	Command Line Help

	MCMC Sampling using Hamiltonian Monte Carlo
	Iterations
	Adaptation
	Algorithm
	Sampler Diagnostic File
	Examples

	Maximum Likelihood Estimation
	Optimization Algorithms
	The quasi-Newton optimizers
	The Newton optimizer

	Variational Inference Algorithm: ADVI
	Variational Algorithms
	Configuration
	CSV Output

	Standalone Generate Quantities
	Diagnosing HMC by Comparison of Gradients
	Parallelization
	CmdStan Tools
	stanc: Translating Stan to C++
	Instantiating the stanc Binary
	The Stan Compiler Program
	Command-Line Options for stanc3
	Command-Line Options for stanc2
	Using External C++ Code

	stansummary: MCMC Output Analysis
	Building the stansummary Command
	Running the stansummary Program
	Command-line Options

	diagnose: Diagnosing Biased Hamiltonian Monte Carlo Inferences
	Building the diagnose Command
	Running the diagnose Command
	diagnose Warnings and Recommendations

	print (deprecated): MCMC Output Analysis
	Appendices
	Stan CSV File Format
	CSV Column Names and Order
	MCMC Sampler CSV Output
	Optimization Output
	Variational Inference Output
	Generate Quantities Outputs
	Diagnose Method Outputs

	JSON Format for CmdStan
	Creating JSON Files
	JSON Syntax Summary
	Stan Data Types in JSON Notation

	RDump Format for CmdStan
	Creating Dump Files
	Scalar Variables
	Sequence Variables
	Array Variables
	Matrix- and Vector-Valued Variables
	Integer- and Real-Valued Variables
	Quoted Variable Names
	Line Breaks
	BNF Grammar for Dump Data

	Bibliography

