
Stan Functions Reference
Stan Development Team

Version 2.18

Contents

Overview 8

Built-In Functions 10

1. Void Functions 11

1.1 Print Statement 11

1.2 Reject Statement 11

2. Integer-Valued Basic Functions 13

2.1 Integer-Valued Arithmetic Operators 13

2.2 Absolute Functions 15

2.3 Bound Functions 15

3. Real-Valued Basic Functions 16

3.1 Vectorization of Real-Valued Functions 16

3.2 Mathematical Constants 18

3.3 Special Values 18

3.4 Log Probability Function 18

3.5 Logical Functions 19

3.6 Real-Valued Arithmetic Operators 22

3.7 Step-like Functions 23

3.8 Power and Logarithm Functions 25

3.9 Trigonometric Functions 26

3.10 Hyperbolic Trigonometric Functions 26

3.11 Link Functions 27

3.12 Probability-Related Functions 27

3.13 Combinatorial Functions 28

3.14 Composed Functions 32

4. Array Operations 34

4.1 Reductions 34

4.2 Array Size and Dimension Function 36

2

CONTENTS 3

4.3 Array Broadcasting 37

4.4 Array Concatenation 38

4.5 Sorting functions 39

5. Matrix Operations 41

5.1 Integer-Valued Matrix Size Functions 41

5.2 Matrix Arithmetic Operators 41

5.3 Transposition Operator 45

5.4 Elementwise Functions 45

5.5 Dot Products and Specialized Products 45

5.6 Reductions 48

5.7 Broadcast Functions 49

5.8 Diagonal Matrix Functions 50

5.9 Slicing and Blocking Functions 51

5.10 Matrix Concatenation 52

5.11 Special Matrix Functions 54

5.12 Covariance Functions 55

5.13 Linear Algebra Functions and Solvers 55

5.14 Sort Functions 60

6. Sparse Matrix Operations 62

6.1 Compressed Row Storage 62

6.2 Conversion Functions 63

6.3 Sparse Matrix Arithmetic 63

7. Mixed Operations 65

8. Compound Arithmetic and Assignment 68

8.1 Compound Addition and Assignment 68

8.2 Compound Subtraction and Assignment 69

8.3 Compound Multiplication and Assignment 69

8.4 Compound Division and Assignment 70

8.5 Compound Elementwise Multiplication and Assignment 70

8.6 Compound Elementwise Division and Assignment 70

9. Higher-Order Functions 71

4 CONTENTS

9.1 Algebraic Equation Solver 71

9.2 Ordinary Differential Equation Solvers 73

9.3 Higher-Order Map 76

Discrete Distributions 78

10. Conventions for Probability Functions 79

10.1 Suffix Marks Type of Function 79

10.2 Argument Order and the Vertical Bar 79

10.3 Sampling Notation 79

10.4 Finite Inputs 80

10.5 Boundary Conditions 80

10.6 Pseudorandom Number Generators 80

10.7 Cumulative Distribution Functions 80

10.8 Vectorization 81

11. Binary Distributions 85

11.1 Bernoulli Distribution 85

11.2 Bernoulli Distribution, Logit Parameterization 85

11.3 Bernoulli-Logit Generalised Linear Model (Logistic Regression) 86

12. Bounded Discrete Distributions 88

12.1 Binomial Distribution 88

12.2 Binomial Distribution, Logit Parameterization 89

12.3 Beta-Binomial Distribution 90

12.4 Hypergeometric Distribution 91

12.5 Categorical Distribution 91

12.6 Ordered Logistic Distribution 92

12.7 Ordered Probit Distribution 93

13. Unbounded Discrete Distributions 94

13.1 Negative Binomial Distribution 94

13.2 Negative Binomial Distribution (alternative parameterization) 95

13.3 Negative Binomial Distribution (log alternative parameterization) 96

13.4 Negative-Binomial-2-Log Generalised Linear Model (Negative Binomial Re-

gression) 97

13.5 Poisson Distribution 97

CONTENTS 5

13.6 Poisson Distribution, Log Parameterization 98

13.7 Poisson-Log Generalised Linear Model (Poisson Regression) 99

14. Multivariate Discrete Distributions 100

14.1 Multinomial Distribution 100

Continuous Distributions 101

15. Unbounded Continuous Distributions 102

15.1 Normal Distribution 102

15.2 Normal-Id Generalised Linear Model (Linear Regression) 103

15.3 Exponentially Modified Normal Distribution 104

15.4 Skew Normal Distribution 105

15.5 Student-T Distribution 106

15.6 Cauchy Distribution 107

15.7 Double Exponential (Laplace) Distribution 107

15.8 Logistic Distribution 109

15.9 Gumbel Distribution 109

16. Positive Continuous Distributions 111

16.1 Lognormal Distribution 111

16.2 Chi-Square Distribution 112

16.3 Inverse Chi-Square Distribution 112

16.4 Scaled Inverse Chi-Square Distribution 113

16.5 Exponential Distribution 114

16.6 Gamma Distribution 115

16.7 Inverse Gamma Distribution 115

16.8 Weibull Distribution 116

16.9 Frechet Distribution 117

17. Non-negative Continuous Distributions 119

17.1 Rayleigh Distribution 119

17.2 Wiener First Passage Time Distribution 119

18. Positive Lower-Bounded Probabilities 121

18.1 Pareto Distribution 121

18.2 Pareto Type 2 Distribution 122

6 CONTENTS

19. Continuous Distributions on [0, 1] 123

19.1 Beta Distribution 123

19.2 Beta Proportion Distribution 124

20. Circular Distributions 125

20.1 Von Mises Distribution 125

21. Bounded Continuous Probabilities 127

21.1 Uniform Distribution 127

22. Distributions over Unbounded Vectors 128

22.1 Multivariate Normal Distribution 128

22.2 Multivariate Normal Distribution, Precision Parameterization 129

22.3 Multivariate Normal Distribution, Cholesky Parameterization 130

22.4 Multivariate Gaussian Process Distribution 131

22.5 Multivariate Gaussian Process Distribution, Cholesky parameterization 131

22.6 Multivariate Student-T Distribution 132

22.7 Gaussian Dynamic Linear Models 133

23. Simplex Distributions 135

23.1 Dirichlet Distribution 135

24. Correlation Matrix Distributions 137

24.1 LKJ Correlation Distribution 137

24.2 Cholesky LKJ Correlation Distribution 138

25. Covariance Matrix Distributions 140

25.1 Wishart Distribution 140

25.2 Inverse Wishart Distribution 140

Appendix 142

26. Mathematical Functions 143

26.1 Beta 143

26.2 Incomplete Beta 143

26.3 Gamma 143

26.4 Digamma 143

References 144

CONTENTS 7

Index 145

Overview

About

This is the reference for the functions defined in the Stan math library and available in
the Stan programming language.

The Stan project comprises a domain-specific language for probabilistic programming,
a differentiable mathematics and probability library, algorithms for Bayesian posterior
inference and posterior analysis, along with interfaces and analysis tools in all of the
popular data analysis languages.

Interfaces and Platforms

Stan runs under Windows, Mac OS X, and Linux.

Stan uses a domain-specific programming language that is portable across data anlsysi
languages. Stan has interfaces for R, Python, Julia, MATLAB, Mathematica, Stata, and
the command line, as well as an alternative language interface in Scala. See the web
site (link below) for links and getting started instructions.

Web Site

The official resource for all things related to Stan is the web site:

https://mc-stan.org

The web site links to all of the packages comprising Stan for both users and developers.
This is the place to get started with Stan. Find the interface in the language you want
to use and follow the download, installation, and getting started instructions.

GitHub Organization

Stan’s source code and much of the developer process is hosted on GitHub. Stan’s
organization is:

https://github.com

Each package has its own repository within the stan-dev organization. The web site
is also hosted and managed through GitHub. This is the place to peruse the source

8

https://mc-stan.org
https://github.com/stan-dev

CONTENTS 9

code, request features, and report bugs. Much of the ongoing design discussion is
hosted on the GitHub Wiki.

Forums

Stan hosts message boards for discussing all things related to Stan.

https://discourse.mc-stan.org

This is the place to ask questions about Stan, including modeling, programming, and
installation.

Licensing

• Computer code: BSD 3-clause license

The core C++ code underlying Stan, including the math library, language, and inference
algorithms, is licensed under the BSD 3-clause licensed as detailed in each repository
and on the web site along with the distribution links.

• Logo: Stan logo usage guidelines

Acknowledgements

The Stan project could not exist without the generous grant funding of many grant
agencies to the participants in the project. For more details of direct funding for the
project, see the web site and project pages of the Stan developers.

The Stan project could also not exist without the generous contributions of its users in
reporting and in many cases fixing bugs in the code and its documentation. We used
to try to list all of those who contributed patches and bug reports for the manual here,
but when that number passed into the hundreds, it became too difficult to manage
reliably. Instead, we will defer to GitHub (link above), where all contributions to the
project are made and tracked.

Finally, we should all thank the Stan developers, without whom this project could not
exist. We used to try and list the developers here, but like the bug reporters, once the
list grew into the dozens, it became difficult to track. Instead, we will defer to the Stan
web page and GitHub itself for a list of core developers and all developer contributions
respectively.

https://discourse.mc-stan.org
https://opensource.org/licenses/BSD-3-Clause
https://mc-stan.org/about/logo/

Built-In Functions

10

1. Void Functions

Stan does not technically support functions that do not return values. It does support
two types of statements that look like functions, one for printing and one for rejecting
outputs. Documentation on these functions is included here for completeness. The
special keyword void is used for the return type of void functions, because they
behave like variadic functions with void return type, even though they are special
kinds of statements.

Although print and reject appear to have the syntax of functions, they are actually
special kinds of statements with slightly different form and behavior than other
functions. First, they are the constructs that allow a variable number of arguments.
Second, they are the the only constructs to accept string literals (e.g., "hello world")
as arguments. Third, they have no effect on the log density function and operate solely
through side effects.

1.1. Print Statement
Printing has no effect on the model’s log probability function. Its sole purpose is
the side effect (i.e., an effect not represented in a return value) of arguments being
printed to whatever the standard output stream is connected to (e.g., the terminal in
command-line Stan or the R console in RStan).

void print(T1 x1,..., TN xN)
Print the values denoted by the arguments x1 through xN on the output message
stream. There are no spaces between items in the print, but a line feed (LF; Unicode
U+000A; C++ literal '\{n}') is inserted at the end of the printed line. The types T1
through TN can be any of Stan’s built-in numerical types or double quoted strings of
ASCII characters.

1.2. Reject Statement
The reject statement has the same syntax as the print statement, accepting an arbitrary
number of arguments of any type (including string literals). The effect of executing
a reject statement is to throw an exception internally that terminates the current
iteration with a rejection (the behavior of which will depend on the algorithmic context
in which it occurs).

void reject(T1 x1,..., TN xN)
Reject the current iteration and print the values denoted by the arguments x1 through
xN on the output message stream. There are no spaces between items in the print,

11

12 CHAPTER 1. VOID FUNCTIONS

but a line feed (LF; Unicode U+000A; C++ literal '\{n}') is inserted at the end of the
printed line. The types T1 through TN can be any of Stan’s built-in numerical types or
double quoted strings of ASCII characters.

2. Integer-Valued Basic Functions

This chapter describes Stan’s built-in function that take various types of arguments
and return results of type integer.

2.1. Integer-Valued Arithmetic Operators
Stan’s arithmetic is based on standard double-precision C++ integer and floating-point
arithmetic. If the arguments to an arithmetic operator are both integers, as in 2 + 2,
integer arithmetic is used. If one argument is an integer and the other a floating-point
value, as in 2.0 + 2 and 2 + 2.0, then the integer is promoted to a floating point
value and floating-point arithmetic is used.

Integer arithmetic behaves slightly differently than floating point arithmetic. The first
difference is how overflow is treated. If the sum or product of two integers overflows
the maximum integer representable, the result is an undesirable wraparound behavior
at the bit level. If the integers were first promoted to real numbers, they would not
overflow a floating-point representation. There are no extra checks in Stan to flag
overflows, so it is up to the user to make sure it does not occur.

Secondly, because the set of integers is not closed under division and there is no
special infinite value for integers, integer division implicitly rounds the result. If both
arguments are positive, the result is rounded down. For example, 1 / 2 evaluates to 0
and 5 / 3 evaluates to 1.

If one of the integer arguments to division is negative, the latest C++ specification (
C++11), requires rounding toward zero. This would have 1 / 2 and -1 / 2 evaluate
to 0, -7 / 2 evaluate to -3, and 7 / 2 evaluate to 3. Before the C++11 specification,
the behavior was platform dependent, allowing rounding up or down. All compilers
recent enough to be able to deal with Stan’s templating should follow the C++11
specification, but it may be worth testing if you are not sure and plan to use integer
division with negative values.

Unlike floating point division, where 1.0 / 0.0 produces the special positive infinite
value, integer division by zero, as in 1 / 0, has undefined behavior in the C++ standard.
For example, the clang++ compiler on Mac OS X returns 3764, whereas the g++ compiler
throws an exception and aborts the program with a warning. As with overflow, it is up
to the user to make sure integer divide-by-zero does not occur.

13

14 CHAPTER 2. INTEGER-VALUED BASIC FUNCTIONS

Binary Infix Operators
Operators are described using the C++ syntax. For instance, the binary operator of
addition, written X + Y, would have the Stan signature int operator+(int,int)
indicating it takes two real arguments and returns a real value. As noted previously, the
value of integer division is platform-dependent when rounding is platform dependent
before C++11; the descriptions below provide the C++11 definition.

int operator+(int x, int y)
The sum of the addends x and y

operator+(x, y) = (x+ y)

int operator-(int x, int y)
The difference between the minuend x and subtrahend y

operator-(x, y) = (x− y)

int operator*(int x, int y)
The product of the factors x and y

operator*(x, y) = (x× y)

int operator/(int x, int y)
The integer quotient of the dividend x and divisor y

operator/(x, y) =

bx/yc if x/y ≥ 0
−bfloor(−x/y)c if x/y < 0.

int operator%(int x, int y)
x modulo y, which is the positive remainder after dividing x by y. If both x and y are
non-negative, so is the result; otherwise, the sign of the result is platform dependent.

operator%(x, y) = x mod y = x− y ∗ bx/yc

Unary Prefix Operators
int operator-(int x)
The negation of the subtrahend x [operator-(x) = -x

int operator+(int x)
This is a no-op.

operator+(x) = x

2.2. ABSOLUTE FUNCTIONS 15

2.2. Absolute Functions
R abs(T x)
absolute value of x

int int_step(int x)

int int_step(real x)
Return the step function of x as an integer,

int_step(x) =

1 if x > 0

0 if x ≤ 0 or x is NaN

Warning: int_step(0) and int_step(NaN) return 0 whereas step(0) and
step(NaN) return 1.

See the warning in section step functions about the dangers of step functions applied
to anything other than data.

2.3. Bound Functions
int min(int x, int y)
Return the minimum of x and y.

min(x, y) =

x if x < y

y otherwise

int max(int x, int y)
Return the maximum of x and y.

max(x, y) =

x if x > y

y otherwise

3. Real-Valued Basic Functions

This chapter describes built-in functions that take zero or more real or integer argu-
ments and return real values.

3.1. Vectorization of Real-Valued Functions
Although listed in this chapter, many of Stan’s built-in functions are vectorized so that
they may be applied to any argument type. The vectorized form of these functions is
not any faster than writing an explicit loop that iterates over the elements applying
the function—it’s just easier to read and write and less error prone.

Unary Function Vectorization
Many of Stan’s unary functions can be applied to any argument type. For example, the
exponential function, exp, can be applied to real arguments or arrays of real argu-
ments. Other than for integer arguments, the result type is the same as the argument
type, including dimensionality and size. Integer arguments are first promoted to real
values, but the result will still have the same dimensionality and size as the argument.

Real and real array arguments

When applied to a simple real value, the result is a real value. When applied to arrays,
vectorized functions like exp() are defined elementwise. For example,

// declare some variables for arguments
real x0;
real x1[5];
real x2[4, 7];
...
// declare some variables for results
real y0;
real y1[5];
real y2[4, 7];
...
// calculate and assign results
y0 = exp(x0);
y1 = exp(x1);
y2 = exp(x2);

When exp is applied to an array, it applies elementwise. For example, the statement

16

3.1. VECTORIZATION OF REAL-VALUED FUNCTIONS 17

above,

y2 = exp(x2);

produces the same result for y2 as the explicit loop

for (i in 1:4)
for (j in 1:7)
y2[i, j] = exp(x2[i, j]);

Vector and matrix arguments

Vectorized functions also apply elementwise to vectors and matrices. For example,

vector[5] xv;
row_vector[7] xrv;
matrix[10, 20] xm;

vector[5] yv;
row_vector[7] yrv;
matrix[10, 20] ym;

yv = exp(xv);
yrv = exp(xrv);
ym = exp(xm);

Arrays of vectors and matrices work the same way. For example,

matrix[17, 93] u[12];

matrix[17, 93] z[12];

z = exp(u);

After this has been executed, z[i, j, k] will be equal to exp(u[i, j, k]).

Integer and integer array arguments

Integer arguments are promoted to real values in vectorized unary functions. Thus if
n is of type int, exp(n) is of type real. Arrays work the same way, so that if n2 is a
one dimensional array of integers, then exp(n2) will be a one-dimensional array of
reals with the same number of elements as n2. For example,

int n1[23];

18 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

real z1[23];
z1 = exp(n1);

It would be illegal to try to assign exp(n1) to an array of integers; the return type is a
real array.

3.2. Mathematical Constants
Constants are represented as functions with no arguments and must be called as such.
For instance, the mathematical constant π must be written in a Stan program as pi().

real pi()
π , the ratio of a circle’s circumference to its diameter

real e()
e, the base of the natural logarithm

real sqrt2()
The square root of 2

real log2()
The natural logarithm of 2

real log10()
The natural logarithm of 10

3.3. Special Values
real not_a_number()
Not-a-number, a special non-finite real value returned to signal an error

real positive_infinity()
Positive infinity, a special non-finite real value larger than all finite numbers

real negative_infinity()
Negative infinity, a special non-finite real value smaller than all finite numbers

real machine_precision()
The smallest number x such that (x+1) ≠ 1 in floating-point arithmetic on the current
hardware platform

3.4. Log Probability Function
The basic purpose of a Stan program is to compute a log probability function and
its derivatives. The log probability function in a Stan model outputs the log density
on the unconstrained scale. A log probability accumulator starts at zero and is then
incremented in various ways by a Stan program. The variables are first transformed
from unconstrained to constrained, and the log Jacobian determinant added to the

3.5. LOGICAL FUNCTIONS 19

log probability accumulator. Then the model block is executed on the constrained
parameters, with each sampling statement (~) and log probability increment statement
(increment_log_prob) adding to the accumulator. At the end of the model block
execution, the value of the log probability accumulator is the log probability value
returned by the Stan program.

Stan provides a special built-in function target() that takes no arguments and returns
the current value of the log probability accumulator.1 This function is primarily useful
for debugging purposes, where for instance, it may be used with a print statement to
display the log probability accumulator at various stages of execution to see where it
becomes ill defined.

real target()
Return the current value of the log probability accumulator.

real get_lp()
Return the current value of the log probability accumulator; deprecated; - use
target() instead.

Both target and the deprecated get_lp act like other functions ending in _lp, mean-
ing that they may only may only be used in the model block.

3.5. Logical Functions
Like C++, BUGS, and R, Stan uses 0 to encode false, and 1 to encode true. Stan supports
the usual boolean comparison operations and boolean operators. These all have the
same syntax and precedence as in C++; for the full list of operators and precedences,
see the reference manual.

Comparison Operators
All comparison operators return boolean values, either 0 or 1. Each operator has
two signatures, one for integer comparisons and one for floating-point comparisons.
Comparing an integer and real value is carried out by first promoting the integer value.

int operator<(int x, int y)

int operator<(real x, real y)
Return 1 if x is less than y and 0 otherwise.

operator<(x, y) =

1 if x < y

0 otherwise

1This function used to be called get_lp(), but that name has been deprecated; using it will print a
warning. The function get_lp() will be removed in a future release.

20 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

int operator<=(int x, int y)

int operator<=(real x, real y)
Return 1 if x is less than or equal y and 0 otherwise.

operator<=(x, y) =

1 if x ≤ y
0 otherwise

int operator>(int x, int y)

int operator>(real x, real y)
Return 1 if x is greater than y and 0 otherwise.

operator> =

1 if x > y

0 otherwise

int operator>=(int x, int y)

int operator>=(real x, real y)
Return 1 if x is greater than or equal to y and 0 otherwise.

operator>= =

1 if x ≥ y
0 otherwise

int operator==(int x, int y)

int operator==(real x, real y)
Return 1 if x is equal to y and 0 otherwise.

operator==(x, y) =

1 if x = y
0 otherwise

int operator!=(int x, int y)

int operator!=(real x, real y)
Return 1 if x is not equal to y and 0 otherwise.

operator!=(x, y) =

1 if x ≠ y

0 otherwise

3.5. LOGICAL FUNCTIONS 21

Boolean Operators
Boolean operators return either 0 for false or 1 for true. Inputs may be any real or
integer values, with non-zero values being treated as true and zero values treated as
false. These operators have the usual precedences, with negation (not) binding the
most tightly, conjunction the next and disjunction the weakest; all of the operators
bind more tightly than the comparisons. Thus an expression such as !a && b is
interpreted as (!a) && b, and a < b || c >= d && e != f as (a < b) || (((c
>= d) && (e != f))).

int operator!(int x)

int operator!(real x)
Return 1 if x is zero and 0 otherwise.

operator!(x) =

0 if x ≠ 0

1 if x = 0

int operator&&(int x, int y)

int operator&&(real x, real y)
Return 1 if x is unequal to 0 and y is unequal to 0.

operator&&(x, y) =

1 if x ≠ 0 and y ≠ 0

0 otherwise

int operator||(int x, int y)

int operator||(real x, real y)
Return 1 if x is unequal to 0 or y is unequal to 0.

operator||(x, y) =

1 if x ≠ 0 or y ≠ 0

0 otherwise

Boolean Operator Short Circuiting

Like in C++, the boolean operators && and || and are implemented to short circuit
directly to a return value after evaluating the first argument if it is sufficient to resolve
the result. In evaluating a || b, if a evaluates to a value other than zero, the expres-
sion returns the value 1 without evaluating the expression b. Similarly, evaluating a
&& b first evaluates a, and if the result is zero, returns 0 without evaluating b.

22 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Logical Functions
The logical functions introduce conditional behavior functionally and are primarily
provided for compatibility with BUGS and JAGS.

real step(real x)
Return 1 if x is positive and 0 otherwise.

step(x) =

0 if x < 0

1 otherwise

Warning: int_step(0) and int_step(NaN) return 0 whereas step(0) and
step(NaN) return 1.

The step function is often used in BUGS to perform conditional operations. For
instance, step(a-b) evaluates to 1 if a is greater than b and evaluates to 0 otherwise.
step is a step-like functions; see the warning in section step functions applied to
expressions dependent on parameters.

int is_inf(real x)
Return 1 if x is infinite (positive or negative) and 0 otherwise.

int is_nan(real x)
Return 1 if x is NaN and 0 otherwise.

Care must be taken because both of these indicator functions are step-like and thus
can cause discontinuities in gradients when applied to parameters; see section step-like
functions for details.

3.6. Real-Valued Arithmetic Operators
The arithmetic operators are presented using C++ notation. For instance
operator+(x,y) refers to the binary addition operator and operator-(x) to the
unary negation operator. In Stan programs, these are written using the usual infix and
prefix notations as x + y and -x, respectively.

Binary Infix Operators
real operator+(real x, real y)
Return the sum of x and y.

(x+ y) = operator+(x, y) = x+ y

real operator-(real x, real y)
Return the difference between x and y.

(x− y) = operator-(x, y) = x− y

3.7. STEP-LIKE FUNCTIONS 23

real operator*(real x, real y)
Return the product of x and y.

(x∗ y) = operator*(x, y) = xy

real operator/(real x, real y)
Return the quotient of x and y.

(x/y) = operator/(x, y) = x
y

real operatorˆ(real x, real y)
Return x raised to the power of y.

(x∧y) = operator∧(x, y) = xy

Unary Prefix Operators
real operator-(real x)
Return the negation of the subtrahend x.

operator-(x) = (−x)

real operator+(real x)
Return the value of x.

operator+(x) = x

3.7. Step-like Functions
Warning: These functions can seriously hinder sampling and optimization efficiency
for gradient-based methods (e.g., NUTS, HMC, BFGS) if applied to parameters (including
transformed parameters and local variables in the transformed parameters or model
block). The problem is that they break gradients due to discontinuities coupled with zero
gradients elsewhere. They do not hinder sampling when used in the data, transformed
data, or generated quantities blocks.

Absolute Value Functions
R fabs(T x)
absolute value of x

real fdim(real x, real y)
Return the positive difference between x and y, which is x - y if x is greater than y and
0 otherwise; see warning above.

fdim(x, y) =

x− y if x ≥ y
0 otherwise

24 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Bounds Functions
real fmin(real x, real y)
Return the minimum of x and y; see warning above.

fmin(x, y) =

x if x ≤ y
y otherwise

real fmax(real x, real y)
Return the maximum of x and y; see warning above.

fmax(x, y) =

x if x ≥ y
y otherwise

Arithmetic Functions
real fmod(real x, real y)
Return the real value remainder after dividing x by y; see warning above.

fmod(x, y) = x−
⌊
x
y

⌋
y

The operator buc is the floor operation; see below.

Rounding Functions
Warning: Rounding functions convert real values to integers. Because the output is
an integer, any gradient information resulting from functions applied to the integer is
not passed to the real value it was derived from. With MCMC sampling using HMC or
NUTS, the MCMC acceptance procedure will correct for any error due to poor gradient
calculations, but the result is likely to be reduced acceptance probabilities and less
efficient sampling.

The rounding functions cannot be used as indices to arrays because they return real
values. Stan may introduce integer-valued versions of these in the future, but as of
now, there is no good workaround.

R floor(T x)
floor of x, which is the largest integer less than or equal to x, converted to a real value;
see warning at start of section step-like functions

R ceil(T x)
ceiling of x, which is the smallest integer greater than or equal to x, converted to a real
value; see warning at start of section step-like functions

3.8. POWER AND LOGARITHM FUNCTIONS 25

R round(T x)
nearest integer to x, converted to a real value; see warning at start of section step-like
functions

R trunc(T x)
integer nearest to but no larger in magnitude than x, converted to a double value; see
warning at start of section step-like functions

3.8. Power and Logarithm Functions
R sqrt(T x)
square root of x

R cbrt(T x)
cube root of x

R square(T x)
square of x

R exp(T x)
natural exponential of x

R exp2(T x)
base-2 exponential of x

R log(T x)
natural logarithm of x

R log2(T x)
base-2 logarithm of x

R log10(T x)
base-10 logarithm of x

real pow(real x, real y)
Return x raised to the power of y.

pow(x, y) = xy

R inv(T x)
inverse of x

R inv_sqrt(T x)
inverse of the square root of x

R inv_square(T x)
inverse of the square of x

26 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

3.9. Trigonometric Functions
real hypot(real x, real y)
Return the length of the hypotenuse of a right triangle with sides of length x and y.

hypot(x, y) =


√
x2 + y2 if x, y ≥ 0

NaN otherwise

R cos(T x)
cosine of the angle x (in radians)

R sin(T x)
sine of the angle x (in radians)

R tan(T x)
tangent of the angle x (in radians)

R acos(T x)
principal arc (inverse) cosine (in radians) of x

R asin(T x)
principal arc (inverse) sine (in radians) of x

R atan(T x)
principal arc (inverse) tangent (in radians) of x, with values from −π to π

real atan2(real y, real x)
Return the principal arc (inverse) tangent (in radians) of y divided by x,

atan2(y, x) = arctan
(
y
x

)

3.10. Hyperbolic Trigonometric Functions
R cosh(T x)
hyperbolic cosine of x (in radians)

R sinh(T x)
hyperbolic sine of x (in radians)

R tanh(T x)
hyperbolic tangent of x (in radians)

R acosh(T x)
inverse hyperbolic cosine (in radians)

3.11. LINK FUNCTIONS 27

R asinh(T x)
inverse hyperbolic cosine (in radians)

R atanh(T x)
inverse hyperbolic tangent (in radians) of x

3.11. Link Functions
The following functions are commonly used as link functions in generalized lin-
ear models. The function Φ is also commonly used as a link function (see section
probability-related functions).

R logit(T x)
log odds, or logit, function applied to x

R inv_logit(T x)
logistic sigmoid function applied to x

R inv_cloglog(T x)
inverse of the complementary log-log function applied to x

3.12. Probability-Related Functions
Normal Cumulative Distribution Functions
The error function erf is related to the standard normal cumulative distribution func-
tion Φ by scaling. See section normal distribution for the general normal cumulative
distribution function (and its complement).

R erf(T x)
error function, also known as the Gauss error function, of x

R erfc(T x)
complementary error function of x

R Phi(T x)
standard normal cumulative distribution function of x

R inv_Phi(T x)
standard normal inverse cumulative distribution function of p, otherwise known as
the quantile function

R Phi_approx(T x)
fast approximation of the unit (may replace Phi for probit regression with maximum
absolute error of 0.00014, see (Bowling et al. 2009) for details)

28 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

Other Probability-Related Functions
real binary_log_loss(int y, real y_hat)
Return the log loss function for for predicting ŷ ∈ [0,1] for boolean outcome y ∈
{0,1}.

binary_log_loss(y, ŷ) =

− log ŷ if y = 0
− log(1− ŷ) otherwise

real owens_t(real h, real a)
Return the Owen’s T function for the probability of the event X > h and 0 < Y < aX
where X and Y are independent standard normal random variables.

owens_t(h, a) = 1
2π

∫ a
0

exp(− 12h2(1+ x2))
1+ x2 dx

3.13. Combinatorial Functions
real inc_beta(real alpha, real beta, real x)
Return the regularized incomplete beta function up to x applied to alpha and beta. See
section appendix for a definition.

real lbeta(real alpha, real beta)
Return the natural logarithm of the beta function applied to alpha and beta. The beta
function, B(α,β), computes the normalizing constant for the beta distribution, and is
defined for α > 0 and β > 0.

lbeta(α,β) = log Γ(a)+ log Γ(b)− log Γ(a+ b)

See section appendix for definition of B(α,β).

R tgamma(T x)
gamma function applied to x. The gamma function is the generalization of the factorial
function to continuous variables, defined so that Γ(n+ 1) = n!. See for a full definition
of Γ(x). The function is defined for positive numbers and non-integral negative
numbers,

R lgamma(T x)
natural logarithm of the gamma function applied to x,

R digamma(T x)
digamma function applied to x. The digamma function is the derivative of the natural
logarithm of the Gamma function. The function is defined for positive numbers and
non-integral negative numbers

3.13. COMBINATORIAL FUNCTIONS 29

R trigamma(T x)
trigamma function applied to x. The trigamma function is the second derivative of the
natural logarithm of the Gamma function

real lmgamma(int n, real x)
Return the natural logarithm of the multivariate gamma function Γn with n dimensions
applied to x.

lmgamma(n, x) =


n(n−1)
4 logπ +

∑n
j=1 log Γ

(
x+ 1−j

2

)
if x 6∈ {. . . ,−3,−2,−1,0}

error otherwise

real gamma_p(real a, real z)
Return the normalized lower incomplete gamma function of a and z defined for
positive a and nonnegative z.

gamma_p(a, z) =


1
Γ(a)

∫ z
0 ta−1e−tdt if a > 0, z ≥ 0

error otherwise

real gamma_q(real a, real z)
Return the normalized upper incomplete gamma function of a and z defined for
positive a and nonnegative z.

gamma_q(a, z) =


1
Γ(a)

∫∞
z ta−1e−tdt if a > 0, z ≥ 0

error otherwise

real binomial_coefficient_log(real x, real y)
Warning: This function is deprecated and should be replaced with lchoose. Return
the natural logarithm of the binomial coefficient of x and y. For non-negative integer
inputs, the binomial coefficient function is written as

(
x
y

)
and pronounced “x choose y.”

This function generalizes to real numbers using the gamma function. For 0 ≤ y ≤ x,

binomial_coefficient_log(x, y) = log Γ(x+ 1)− log Γ(y + 1)− log Γ(x− y + 1).

int choose(int x, int y)
Return the binomial coefficient of x and y. For non-negative integer inputs, the binomial
coefficient function is written as

(
x
y

)
and pronounced “x choose y.” In its the antilog

of the lchoose function but returns an integer rather than a real number with no
non-zero decimal places. For 0 ≤ y ≤ x, the binomial coefficient function can be
defined via the factorial function

choose(x, y) = x!
(y !) (x− y)! .

30 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

real bessel_first_kind(int v, real x)
Return the Bessel function of the first kind with order v applied to x.

bessel_first_kind(v, x) = Jv(x),

where

Jv(x) =
(
1
2
x
)v ∞∑

k=0

(
− 14x2

)k
k! Γ(v + k+ 1)

real bessel_second_kind(int v, real x)
Return the Bessel function of the second kind with order v applied to x defined for
positive x and v. For x, v > 0,

bessel_second_kind(v, x) =

Yv(x) if x > 0

error otherwise

where

Yv(x) =
Jv(x) cos(vπ)− J−v(x)

sin(vπ)

real modified_bessel_first_kind(int v, real z)
Return the modified Bessel function of the first kind with order v applied to z defined
for all z and v.

modified_bessel_first_kind(v, z) = Iv(z)

where

Iv(z) =
(
1
2
z
)v ∞∑

k=0

(
1
4z
2
)k

k!Γ(v + k+ 1)

real modified_bessel_second_kind(int v, real z)
Return the modified Bessel function of the second kind with order v applied to z
defined for positive z and v.

modified_bessel_second_kind(v, z) =

Kv(z) if z > 0

error if z ≤ 0

where

Kv(z) =
π
2
· I−v(z)− Iv(z)

sin(vπ)

3.13. COMBINATORIAL FUNCTIONS 31

real falling_factorial(real x, real n)
Return the falling factorial of x with power n defined for positive x and real n.

falling_factorial(x, n) =

(x)n if x > 0

error if x ≤ 0

where

(x)n =
Γ(x+ 1)

Γ(x− n+ 1)

real lchoose(real x, real y)
Return the natural logarithm of the generalized binomial coefficient of x and y. For
non-negative integer inputs, the binomial coefficient function is written as

(
x
y

)
and

pronounced “x choose y.” This function generalizes to real numbers using the gamma
function. For 0 ≤ y ≤ x,

binomial_coefficient_log(x, y) = log Γ(x+ 1)− log Γ(y + 1)− log Γ(x− y + 1).

real log_falling_factorial(real x, real n)
Return the log of the falling factorial of x with power n defined for positive x and real
n.

log_falling_factorial(x, n) =

log(x)n if x > 0

error if x ≤ 0

real rising_factorial(real x, real n)
Return the rising factorial of x with power n defined for positive x and real n.

rising_factorial(x, n) =

x(n) if x > 0

error if x ≤ 0

where

x(n) = Γ(x+ n)
Γ(x)

real log_rising_factorial(real x, real n)
Return the log of the rising factorial of x with power n defined for positive x and real
n.

log_rising_factorial(x, n) =

logx(n) if x > 0

error if x ≤ 0

32 CHAPTER 3. REAL-VALUED BASIC FUNCTIONS

3.14. Composed Functions
The functions in this section are equivalent in theory to combinations of other func-
tions. In practice, they are implemented to be more efficient and more numerically
stable than defining them directly using more basic Stan functions.

R expm1(T x)
natural exponential of x minus 1

real fma(real x, real y, real z)
Return z plus the result of x multiplied by y.

fma(x, y, z) = (x× y)+ z

real multiply_log(real x, real y)
Warning: This function is deprecated and should be replaced with lmultiply. Return
the product of x and the natural logarithm of y.

multiply_log(x, y) =


0 if x = y = 0
x logy if x, y ≠ 0

NaN otherwise

real lmultiply(real x, real y)
Return the product of x and the natural logarithm of y.

lmultiply(x, y) =


0 if x = y = 0
x logy if x, y ≠ 0

NaN otherwise

R log1p(T x)
natural logarithm of 1 plus x

R log1m(T x)
natural logarithm of 1 minus x

R log1p_exp(T x)
natural logarithm of one plus the natural exponentiation of x

R log1m_exp(T x)
logarithm of one minus the natural exponentiation of x

real log_diff_exp(real x, real y)
Return the natural logarithm of the difference of the natural exponentiation of x and

3.14. COMPOSED FUNCTIONS 33

the natural exponentiation of y.

log_diff_exp(x, y) =


log(exp(x)− exp(y)) if x > y

NaN otherwise

real log_mix(real theta, real lp1, real lp2)
Return the log mixture of the log densities lp1 and lp2 with mixing proportion theta,
defined by

log_mix(θ, λ1, λ2) = log
(
θ exp(λ1)+ (1− θ) exp(λ2)

)
= log_sum_exp

(
log(θ)+ λ1, log(1− θ)+ λ2

)
.

real log_sum_exp(real x, real y)
Return the natural logarithm of the sum of the natural exponentiation of x and the
natural exponentiation of y.

log_sum_exp(x, y) = log(exp(x)+ exp(y))

R log_inv_logit(T x)
natural logarithm of the inverse logit function of x

R log1m_inv_logit(T x)
natural logarithm of 1 minus the inverse logit function of x

4. Array Operations

4.1. Reductions
The following operations take arrays as input and produce single output values. The
boundary values for size 0 arrays are the unit with respect to the combination operation
(min, max, sum, or product).

Minimum and Maximum
real min(real[] x)
The minimum value in x, or +∞ if x is size 0.

int min(int[] x)
The minimum value in x, or error if x is size 0.

real max(real[] x)
The maximum value in x, or −∞ if x is size 0.

int max(int[] x)
The maximum value in x, or error if x is size 0.

Sum, Product, and Log Sum of Exp
int sum(int[] x)
The sum of the elements in x, defined for x of size N by

sum(x) =


∑N
n=1 xn ifN > 0

0 ifN = 0

real sum(real[] x)
The sum of the elements in x; see definition above.

real prod(real[] x)
The product of the elements in x, or 1 if x is size 0.

real prod(int[] x)
The product of the elements in x,

product(x) =


∏N
n=1 xn ifN > 0

1 ifN = 0

34

4.1. REDUCTIONS 35

real log_sum_exp(real[] x)
The natural logarithm of the sum of the exponentials of the elements in x, or −∞ if
the array is empty.

Sample Mean, Variance, and Standard Deviation
The sample mean, variance, and standard deviation are calculated in the usual way.
For i.i.d. draws from a distribution of finite mean, the sample mean is an unbiased
estimate of the mean of the distribution. Similarly, for i.i.d. draws from a distribution
of finite variance, the sample variance is an unbiased estimate of the variance.1 The
sample deviation is defined as the square root of the sample deviation, but is not
unbiased.

real mean(real[] x)
The sample mean of the elements in x. For an array x of size N > 0,

mean(x) = x̄ = 1
N

N∑
n=1
xn.

It is an error to the call the mean function with an array of size 0.

real variance(real[] x)
The sample variance of the elements in x. For N > 0,

variance(x) =


1
N−1

∑N
n=1(xn − x̄)2 if N > 1

0 if N = 1

It is an error to call the variance function with an array of size 0.

real sd(real[] x)
The sample standard deviation of elements in x.

sd(x) =


√

variance(x) if N > 1

0 if N = 0

It is an error to call the sd function with an array of size 0.

Euclidean Distance and Squared Distance
real distance(vector x, vector y)
The Euclidean distance between x and y, defined by

distance(x, y) =
√∑N

n=1(xn − yn)2

1Dividing by N rather than (N − 1) produces a maximum likelihood estimate of variance, which is biased
to underestimate variance.

36 CHAPTER 4. ARRAY OPERATIONS

where N is the size of x and y. It is an error to call distance with arguments of unequal
size.

real distance(vector x, row_vector y)
The Euclidean distance between x and y

real distance(row_vector x, vector y)
The Euclidean distance between x and y

real distance(row_vector x, row_vector y)
The Euclidean distance between x and y

real squared_distance(vector x, vector y)
The squared Euclidean distance between x and y, defined by

squared_distance(x, y) = distance(x, y)2 =
∑N
n=1(xn − yn)2,

where N is the size of x and y. It is an error to call squared_distance with arguments
of unequal size.

real squared_distance(vector x, row_vector [] y)
The squared Euclidean distance between x and y

real squared_distance(row_vector x, vector [] y)
The squared Euclidean distance between x and y

real squared_distance(row_vector x, row_vector[] y)
The Euclidean distance between x and y

4.2. Array Size and Dimension Function
The size of an array or matrix can be obtained using the dims() function. The dims()
function is defined to take an argument consisting of any variable with up to 8 array
dimensions (and up to 2 additional matrix dimensions) and returns an array of integers
with the dimensions. For example, if two variables are declared as follows,

real x[7,8,9];
matrix[8,9] y[7];

then calling dims(x) or dims(y) returns an integer array of size 3 containing the
elements 7, 8, and 9 in that order.

The size() function extracts the number of elements in an array. This is just the
top-level elements, so if the array is declared as

real a[M,N];

4.3. ARRAY BROADCASTING 37

the size of a is M.

The function num_elements, on the other hand, measures all of the elements, so that
the array a above has M ×N elements.

The specialized functions rows() and cols() should be used to extract the dimen-
sions of vectors and matrices.

int[] dims(T x)
Return an integer array containing the dimensions of x; the type of the argument T
can be any Stan type with up to 8 array dimensions.

int num_elements(T[] x)
Return the total number of elements in the array x including all elements in contained
arrays, vectors, and matrices. T can be any array type. For example, if x is of type
real[4,3] then num_elements(x) is 12, and if y is declared as matrix[3,4] y[5],
then size(y) evaluates to 60.

int size(T[] x)
Return the number of elements in the array x; the type of the array T can be any type,
but the size is just the size of the top level array, not the total number of elements
contained. For example, if x is of type real[4,3] then size(x) is 4.

4.3. Array Broadcasting
The following operations create arrays by repeating elements to fill an array of a
specified size. These operations work for all input types T, including reals, integers,
vectors, row vectors, matrices, or arrays.

T[] rep_array(T x, int n)
Return the n array with every entry assigned to x.

T[,] rep_array(T x, int m, int n)
Return the m by n array with every entry assigned to x.

T[„] rep_array(T x, int k, int m, int n)
Return the k by m by n array with every entry assigned to x.

For example, rep_array(1.0,5) produces a real array (type real[]) of size 5 with
all values set to 1.0. On the other hand, rep_array(1,5) produces an integer array
(type int[]) of size 5 with all values set to 1. This distinction is important because it
is not possible to assign an integer array to a real array. For example, the following
example contrasts legal with illegal array creation and assignment

real y[5];
int x[5];

38 CHAPTER 4. ARRAY OPERATIONS

x = rep_array(1,5); // ok
y = rep_array(1.0,5); // ok

x = rep_array(1.0,5); // illegal
y = rep_array(1,5); // illegal

x = y; // illegal
y = x; // illegal

If the value being repeated v is a vector (i.e., T is vector), then rep_array(v,27) is a
size 27 array consisting of 27 copies of the vector v.

vector[5] v;
vector[5] a[3];

a = rep_array(v,3); // fill a with copies of v
a[2,4] = 9.0; // v[4], a[1,4], a[2,4] unchanged

If the type T of x is itself an array type, then the result will be an array with one, two,
or three added dimensions, depending on which of the rep_array functions is called.
For instance, consider the following legal code snippet.

real a[5,6];
real b[3,4,5,6];

b = rep_array(a,3,4); // make (3 x 4) copies of a
b[1,1,1,1] = 27.9; // a[1,1] unchanged

After the assignment to b, the value for b[j,k,m,n] is equal to a[m,n] where it is
defined, for j in 1:3, k in 1:4, m in 1:5, and n in 1:6.

4.4. Array Concatenation
T append_array(T x, T y)
Return the concatenation of two arrays in the order of the arguments. T must be an
N-dimensional array of any Stan type (with a maximum N of 7). All dimensions but the
first must match.

For example, the following code appends two three dimensional arrays of matrices
together. Note that all dimensions except the first match. Any mismatches will cause
an error to be thrown.

matrix[4, 6] x1[2, 1, 7];

4.5. SORTING FUNCTIONS 39

matrix[4, 6] x2[3, 1, 7];
matrix[4, 6] x3[5, 1, 7];

x3 = append_array(x1, x2);

4.5. Sorting functions
Sorting can be used to sort values or the indices of those values in either ascending or
descending order. For example, if v is declared as a real array of size 3, with values

v = (1,−10.3,20.987),

then the various sort routines produce

sort_asc(v) = (−10.3,1,20.987)

sort_desc(v) = (20.987,1,−10.3)

sort_indices_asc(v) = (2,1,3)

sort_indices_desc(v) = (3,1,2)

real[] sort_asc(real[] v)
Sort the elements of v in ascending order

int[] sort_asc(int[] v)
Sort the elements of v in ascending order

real[] sort_desc(real[] v)
Sort the elements of v in descending order

int[] sort_desc(int[] v)
Sort the elements of v in descending order

int[] sort_indices_asc(real[] v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.

int[] sort_indices_asc(int[] v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.

int[] sort_indices_desc(real[] v)
Return an array of indices between 1 and the size of v, sorted to index v in descending
order.

40 CHAPTER 4. ARRAY OPERATIONS

int[] sort_indices_desc(int[] v)
Return an array of indices between 1 and the size of v, sorted to index v in descending
order.

int rank(real[] v, int s)
Number of components of v less than v[s]

int rank(int[] v, int s)
Number of components of v less than v[s]

5. Matrix Operations

5.1. Integer-Valued Matrix Size Functions
int num_elements(vector x)
The total number of elements in the vector x (same as function rows)

int num_elements(row_vector x)
The total number of elements in the vector x (same as function cols)

int num_elements(matrix x)
The total number of elements in the matrix x. For example, if x is a 5× 3 matrix, then
num_elements(x) is 15

int rows(vector x)
The number of rows in the vector x

int rows(row_vector x)
The number of rows in the row vector x, namely 1

int rows(matrix x)
The number of rows in the matrix x

int cols(vector x)
The number of columns in the vector x, namely 1

int cols(row_vector x)
The number of columns in the row vector x

int cols(matrix x)
The number of columns in the matrix x

5.2. Matrix Arithmetic Operators
Stan supports the basic matrix operations using infix, prefix and postfix operations.
This section lists the operations supported by Stan along with their argument and
result types.

Negation Prefix Operators
vector operator-(vector x)
The negation of the vector x.

row_vector operator-(row_vector x)
The negation of the row vector x.

41

42 CHAPTER 5. MATRIX OPERATIONS

matrix operator-(matrix x)
The negation of the matrix x.

Infix Matrix Operators
vector operator+(vector x, vector y)
The sum of the vectors x and y.

row_vector operator+(row_vector x, row_vector y)
The sum of the row vectors x and y.

matrix operator+(matrix x, matrix y)
The sum of the matrices x and y

vector operator-(vector x, vector y)
The difference between the vectors x and y.

row_vector operator-(row_vector x, row_vector y)
The difference between the row vectors x and y

matrix operator-(matrix x, matrix y)
The difference between the matrices x and y

vector operator*(real x, vector y)
The product of the scalar x and vector y

row_vector operator*(real x, row_vector y)
The product of the scalar x and the row vector y

matrix operator*(real x, matrix y)
The product of the scalar x and the matrix y

vector operator*(vector x, real y)
The product of the scalar y and vector x

matrix operator*(vector x, row_vector y)
The product of the vector x and row vector y

row_vector operator*(row_vector x, real y)
The product of the scalar y and row vector x

real operator*(row_vector x, vector y)
The product of the row vector x and vector y

row_vector operator*(row_vector x, matrix y)
The product of the row vector x and matrix y

5.2. MATRIX ARITHMETIC OPERATORS 43

matrix operator*(matrix x, real y)
The product of the scalar y and matrix x

vector operator*(matrix x, vector y)
The product of the matrix x and vector y

matrix operator*(matrix x, matrix y)
The product of the matrices x and y

Broadcast Infix Operators
vector operator+(vector x, real y)
The result of adding y to every entry in the vector x

vector operator+(real x, vector y)
The result of adding x to every entry in the vector y

row_vector operator+(row_vector x, real y)
The result of adding y to every entry in the row vector x

row_vector operator+(real x, row_vector y)
The result of adding x to every entry in the row vector y

matrix operator+(matrix x, real y)
The result of adding y to every entry in the matrix x

matrix operator+(real x, matrix y)
The result of adding x to every entry in the matrix y

vector operator-(vector x, real y)
The result of subtracting y from every entry in the vector x

vector operator-(real x, vector y)
The result of adding x to every entry in the negation of the vector y

row_vector operator-(row_vector x, real y)
The result of subtracting y from every entry in the row vector x

row_vector operator-(real x, row_vector y)
The result of adding x to every entry in the negation of the row vector y

matrix operator-(matrix x, real y)
The result of subtracting y from every entry in the matrix x

matrix operator-(real x, matrix y)
The result of adding x to every entry in negation of the matrix y

44 CHAPTER 5. MATRIX OPERATIONS

vector operator/(vector x, real y)
The result of dividing each entry in the vector x by y

row_vector operator/(row_vector x, real y)
The result of dividing each entry in the row vector x by y

matrix operator/(matrix x, real y)
The result of dividing each entry in the matrix x by y

Elementwise Arithmetic Operations
vector operator.*(vector x, vector y)
The elementwise product of y and x

row_vector operator.*(row_vector x, row_vector y)
The elementwise product of y and x

matrix operator.*(matrix x, matrix y)
The elementwise product of y and x

vector operator./(vector x, vector y)
The elementwise quotient of y and x

vector operator./(vector x, real y)
The elementwise quotient of y and x

vector operator./(real x, vector y)
The elementwise quotient of y and x

row_vector operator./(row_vector x, row_vector y)
The elementwise quotient of y and x

row_vector operator./(row_vector x, real y)
The elementwise quotient of y and x

row_vector operator./(real x, row_vector y)
The elementwise quotient of y and x

matrix operator./(matrix x, matrix y)
The elementwise quotient of y and x

matrix operator./(matrix x, real y)
The elementwise quotient of y and x

matrix operator./(real x, matrix y)
The elementwise quotient of y and x

5.3. TRANSPOSITION OPERATOR 45

5.3. Transposition Operator
Matrix transposition is represented using a postfix operator.

matrix operator'(matrix x)
The transpose of the matrix x, written as x'

row_vector operator'(vector x)
The transpose of the vector x, written as x'

vector operator'(row_vector x)
The transpose of the row vector x, written as x'

5.4. Elementwise Functions
Elementwise functions apply a function to each element of a vector or matrix, returning
a result of the same shape as the argument. There are many functions that are
vectorized in addition to the ad hoc cases listed in this section; see section function
vectorizationfor the general cases.

5.5. Dot Products and Specialized Products
real dot_product(vector x, vector y)
The dot product of x and y

real dot_product(vector x, row_vector y)
The dot product of x and y

real dot_product(row_vector x, vector y)
The dot product of x and y

real dot_product(row_vector x, row_vector y)
The dot product of x and y

row_vector columns_dot_product(vector x, vector y)
The dot product of the columns of x and y

row_vector columns_dot_product(row_vector x, row_vector y)
The dot product of the columns of x and y

row_vector columns_dot_product(matrix x, matrix y)
The dot product of the columns of x and y

vector rows_dot_product(vector x, vector y)
The dot product of the rows of x and y

vector rows_dot_product(row_vector x, row_vector y)
The dot product of the rows of x and y

46 CHAPTER 5. MATRIX OPERATIONS

vector rows_dot_product(matrix x, matrix y)
The dot product of the rows of x and y

real dot_self(vector x)
The dot product of the vector x with itself

real dot_self(row_vector x)
The dot product of the row vector x with itself

row_vector columns_dot_self(vector x)
The dot product of the columns of x with themselves

row_vector columns_dot_self(row_vector x)
The dot product of the columns of x with themselves

row_vector columns_dot_self(matrix x)
The dot product of the columns of x with themselves

vector rows_dot_self(vector x)
The dot product of the rows of x with themselves

vector rows_dot_self(row_vector x)
The dot product of the rows of x with themselves

vector rows_dot_self(matrix x)
The dot product of the rows of x with themselves

Specialized Products
matrix tcrossprod(matrix x)
The product of x postmultiplied by its own transpose, similar to the tcrossprod(x)
function in R. The result is a symmetric matrix x x>.

matrix crossprod(matrix x)
The product of x premultiplied by its own transpose, similar to the crossprod(x)
function in R. The result is a symmetric matrix x> x.

The following functions all provide shorthand forms for common expressions, which
are also much more efficient.

matrix quad_form(matrix A, matrix B)
The quadratic form, i.e., B' * A * B.

real quad_form(matrix A, vector B)
The quadratic form, i.e., B' * A * B.

matrix quad_form_diag(matrix m, vector v)
The quadratic form using the column vector v as a diagonal matrix, i.e.,

5.5. DOT PRODUCTS AND SPECIALIZED PRODUCTS 47

diag_matrix(v) * m * diag_matrix(v).

matrix quad_form_diag(matrix m, row_vector rv)
The quadratic form using the row vector rv as a diagonal matrix, i.e., diag_matrix(rv)

* m * diag_matrix(rv).

matrix quad_form_sym(matrix A, matrix B)
Similarly to quad_form, gives B' * A * B, but additionally checks if A is symmetric
and ensures that the result is also symmetric.

real quad_form_sym(matrix A, vector B)
Similarly to quad_form, gives B' * A * B, but additionally checks if A is symmetric
and ensures that the result is also symmetric.

real trace_quad_form(matrix A, matrix B)
The trace of the quadratic form, i.e., trace(B' * A * B).

real trace_gen_quad_form(matrix D,matrix A, matrix B)
The trace of a generalized quadratic form, i.e., trace(D * B' * A * B).

matrix multiply_lower_tri_self_transpose(matrix x)
The product of the lower triangular portion of x (including the diagonal) times its own
transpose; that is, if L is a matrix of the same dimensions as x with L(m,n) equal to
x(m,n) for n ≤m and L(m,n) equal to 0 if n >m, the result is the symmetric matrix
L L>. This is a specialization of tcrossprod(x) for lower-triangular matrices. The input
matrix does not need to be square.

matrix diag_pre_multiply(vector v, matrix m)
Return the product of the diagonal matrix formed from the vector v and the matrix m,
i.e., diag_matrix(v) * m.

matrix diag_pre_multiply(row_vector rv, matrix m)
Return the product of the diagonal matrix formed from the vector rv and the matrix
m, i.e., diag_matrix(rv) * m.

matrix diag_post_multiply(matrix m, vector v)
Return the product of the matrix m and the diagonal matrix formed from the vector v,
i.e., m * diag_matrix(v).

matrix diag_post_multiply(matrix m, row_vector rv)
Return the product of the matrix m and the diagonal matrix formed from the the row
vector rv, i.e., m * diag_matrix(rv).

48 CHAPTER 5. MATRIX OPERATIONS

5.6. Reductions
Log Sum of Exponents
real log_sum_exp(vector x)
The natural logarithm of the sum of the exponentials of the elements in x

real log_sum_exp(row_vector x)
The natural logarithm of the sum of the exponentials of the elements in x

real log_sum_exp(matrix x)
The natural logarithm of the sum of the exponentials of the elements in x

Minimum and Maximum
real min(vector x)
The minimum value in x, or +∞ if x is empty

real min(row_vector x)
The minimum value in x, or +∞ if x is empty

real min(matrix x)
The minimum value in x, or +∞ if x is empty

real max(vector x)
The maximum value in x, or −∞ if x is empty

real max(row_vector x)
The maximum value in x, or −∞ if x is empty

real max(matrix x)
The maximum value in x, or −∞ if x is empty

Sums and Products
real sum(vector x)
The sum of the values in x, or 0 if x is empty

real sum(row_vector x)
The sum of the values in x, or 0 if x is empty

real sum(matrix x)
The sum of the values in x, or 0 if x is empty

real prod(vector x)
The product of the values in x, or 1 if x is empty

real prod(row_vector x)
The product of the values in x, or 1 if x is empty

5.7. BROADCAST FUNCTIONS 49

real prod(matrix x)
The product of the values in x, or 1 if x is empty

Sample Moments
Full definitions are provided for sample moments in section array reductions.

real mean(vector x)
The sample mean of the values in x; see section array reductions for details.

real mean(row_vector x)
The sample mean of the values in x; see section array reductions for details.

real mean(matrix x)
The sample mean of the values in x; see section array reductions for details.

real variance(vector x)
The sample variance of the values in x; see section array reductions for details.

real variance(row_vector x)
The sample variance of the values in x; see section array reductions for details.

real variance(matrix x)
The sample variance of the values in x; see section array reductions for details.

real sd(vector x)
The sample standard deviation of the values in x; see section array reductions for
details.

real sd(row_vector x)
The sample standard deviation of the values in x; see section array reductions for
details.

real sd(matrix x)
The sample standard deviation of the values in x; see section array reductions for
details.

5.7. Broadcast Functions
The following broadcast functions allow vectors, row vectors and matrices to be
created by copying a single element into all of their cells. Matrices may also be created
by stacking copies of row vectors vertically or stacking copies of column vectors
horizontally.

vector rep_vector(real x, int m)
Return the size m (column) vector consisting of copies of x.

50 CHAPTER 5. MATRIX OPERATIONS

row_vector rep_row_vector(real x, int n)
Return the size n row vector consisting of copies of x.

matrix rep_matrix(real x, int m, int n)
Return the m by n matrix consisting of copies of x.

matrix rep_matrix(vector v, int n)
Return the m by n matrix consisting of n copies of the (column) vector v of size m.

matrix rep_matrix(row_vector rv, int m)
Return the m by n matrix consisting of m copies of the row vector rv of size n.

Unlike the situation with array broadcasting (see section array broadcasting), where
there is a distinction between integer and real arguments, the following two statements
produce the same result for vector broadcasting; row vector and matrix broadcasting
behave similarly.

vector[3] x;
x = rep_vector(1, 3);
x = rep_vector(1.0, 3);

There are no integer vector or matrix types, so integer values are automatically pro-
moted.

5.8. Diagonal Matrix Functions
vector diagonal(matrix x)
The diagonal of the matrix x

matrix diag_matrix(vector x)
The diagonal matrix with diagonal x

Although the diag_matrix function is available, it is unlikely to ever show up in an
efficient Stan program. For example, rather than converting a diagonal to a full matrix
for use as a covariance matrix,

y ~ multi_normal(mu, diag_matrix(square(sigma)));

it is much more efficient to just use a univariate normal, which produces the same
density,

y ~ normal(mu, sigma);

Rather than writing m * diag_matrix(v) where m is a matrix and v is a vector, it
is much more efficient to write diag_post_multiply(m, v) (and similarly for pre-
multiplication). By the same token, it is better to use quad_form_diag(m, v) rather
than quad_form(m, diag_matrix(v)).

5.9. SLICING AND BLOCKING FUNCTIONS 51

5.9. Slicing and Blocking Functions
Stan provides several functions for generating slices or blocks or diagonal entries for
matrices.

Columns and Rows
vector col(matrix x, int n)
The n-th column of matrix x

row_vector row(matrix x, int m)
The m-th row of matrix x

The row function is special in that it may be used as an lvalue in an assignment
statement (i.e., something to which a value may be assigned). The row function is
also special in that the indexing notation x[m] is just an alternative way of writing
row(x,m). The col function may not, be used as an lvalue, nor is there an indexing
based shorthand for it.

Block Operations
Matrix Slicing Operations

Block operations may be used to extract a sub-block of a matrix.

matrix block(matrix x, int i, int j, int n_rows, int n_cols)
Return the submatrix of x that starts at row i and column j and extends n_rows rows
and n_cols columns.

The sub-row and sub-column operations may be used to extract a slice of row or
column from a matrix

vector sub_col(matrix x, int i, int j, int n_rows)
Return the sub-column of x that starts at row i and column j and extends n_rows rows
and 1 column.

row_vector sub_row(matrix x, int i, int j, int n_cols)
Return the sub-row of x that starts at row i and column j and extends 1 row and n_cols
columns.

Vector and Array Slicing Operations

The head operation extracts the first n elements of a vector and the tail operation the
last. The segment operation extracts an arbitrary subvector.

vector head(vector v, int n)
Return the vector consisting of the first n elements of v.

52 CHAPTER 5. MATRIX OPERATIONS

row_vector head(row_vector rv, int n)
Return the row vector consisting of the first n elements of rv.

T[] head(T[] sv, int n)
Return the array consisting of the first n elements of sv; applies to up to three-
dimensional arrays containing any type of elements T.

vector tail(vector v, int n)
Return the vector consisting of the last n elements of v.

row_vector tail(row_vector rv, int n)
Return the row vector consisting of the last n elements of rv.

T[] tail(T[] sv, int n)
Return the array consisting of the last n elements of sv; applies to up to three-
dimensional arrays containing any type of elements T.

vector segment(vector v, int i, int n)
Return the vector consisting of the n elements of v starting at i; i.e., elements i through
through i + n - 1.

row_vector segment(row_vector rv, int i, int n)
Return the row vector consisting of the n elements of rv starting at i; i.e., elements i
through through i + n - 1.

T[] segment(T[] sv, int i, int n)
Return the array consisting of the n elements of sv starting at i; i.e., elements i through
through i + n - 1. Applies to up to three-dimensional arrays containing any type of
elements T.

5.10. Matrix Concatenation
Stan’s matrix concatenation operations append_col and append_row are like the
operations cbind and rbind in R.

Horizontal concatenation

matrix append_col(matrix x, matrix y)
Combine matrices x and y by columns. The matrices must have the same number of
rows.

matrix append_col(matrix x, vector y)
Combine matrix x and vector y by columns. The matrix and the vector must have the
same number of rows.

5.10. MATRIX CONCATENATION 53

matrix append_col(vector x, matrix y)
Combine vector x and matrix y by columns. The vector and the matrix must have the
same number of rows.

matrix append_col(vector x, vector y)
Combine vectors x and y by columns. The vectors must have the same number of
rows.

row_vector append_col(row_vector x, row_vector y)
Combine row vectors x and y of any size into another row vector.

row_vector append_col(real x, row_vector y)
Append x to the front of y, returning another row vector.

row_vector append_col(row_vector x, real y)
Append y to the end of x, returning another row vector.

Vertical concatenation

matrix append_row(matrix x, matrix y)
Combine matrices x and y by rows. The matrices must have the same number of
columns.

matrix append_row(matrix x, row_vector y)
Combine matrix x and row vector y by rows. The matrix and the row vector must have
the same number of columns.

matrix append_row(row_vector x, matrix y)
Combine row vector x and matrix y by rows. The row vector and the matrix must have
the same number of columns.

matrix append_row(row_vector x, row_vector y)
Combine row vectors x and y by row. The row vectors must have the same number of
columns.

vector append_row(vector x, vector y)
Concatenate vectors x and y of any size into another vector.

vector append_row(real x, vector y)
Append x to the top of y, returning another vector.

vector append_row(vector x, real y)
Append y to the bottom of x, returning another vector.

54 CHAPTER 5. MATRIX OPERATIONS

5.11. Special Matrix Functions
Softmax
The softmax function maps1 y ∈ RK to the K-simplex by

softmax(y) = exp(y)∑K
k=1 exp(yk)

,

where exp(y) is the componentwise exponentiation of y . Softmax is usually calculated
on the log scale,

log softmax(y) = y − log
K∑
k=1

exp(yk)

= y − log_sum_exp(y).

where the vector y minus the scalar log_sum_exp(y) subtracts the scalar from each
component of y .

Stan provides the following functions for softmax and its log.

vector softmax(vector x)
The softmax of x

vector log_softmax(vector x)
The natural logarithm of the softmax of x

Cumulative Sums
The cumulative sum of a sequence x1, . . . , xN is the sequence y1, . . . , yN , where

yn =
n∑
m=1

xm.

real[] cumulative_sum(real[] x)
The cumulative sum of x

vector cumulative_sum(vector v)
The cumulative sum of v

row_vector cumulative_sum(row_vector rv)
The cumulative sum of rv

1The softmax function is so called because in the limit as yn → ∞ with ym for m ≠ n held constant,
the result tends toward the “one-hot” vector θ with θn = 1 and θm = 0 for m ≠ n, thus providing a “soft”
version of the maximum function.

5.12. COVARIANCE FUNCTIONS 55

5.12. Covariance Functions
Exponentiated quadratic covariance function
The exponentiated quadratic kernel defines the covariance between f (xi) and f (xj)
where f : RD , R as a function of the squared Euclidian distance between xi ∈ RD and
xj ∈ RD :

cov(f (xi), f (xj)) = k(xi , xj) = α2 exp

− 1
2ρ2

D∑
d=1
(xi,d − xj,d)2


with α and ρ constrained to be positive.

There are two variants of the exponentiated quadratic covariance function in Stan. One
builds a covariance matrix, K ∈ RN×N for x1, . . . , xN , where Ki,j = k(xi , xj), which is
necessarily symmetric and positive semidefinite by construction. There is a second
variant of the exponentiated quadratic covariance function that builds a K ∈ RN×M
covariance matrix for x1, . . . , xN and x′1, . . . , x

′
M , where xi ∈ RD and x′i ∈ RD and

Ki,j = k(xi , x′j).

matrix cov_exp_quad(row_vectors x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.

matrix cov_exp_quad(vectors x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.

matrix cov_exp_quad(real[] x, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x.

matrix cov_exp_quad(row_vectors x1, row_vectors x2, real alpha, real
rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.

matrix cov_exp_quad(vectors x1, vectors x2, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.

matrix cov_exp_quad(real[] x1, real[] x2, real alpha, real rho)
The covariance matrix with an exponentiated quadratic kernel of x1 and x2.

5.13. Linear Algebra Functions and Solvers
Matrix Division Operators and Functions
In general, it is much more efficient and also more arithmetically stable to use matrix
division than to multiply by an inverse. There are specialized forms for lower triangular
matrices and for symmetric, positive-definite matrices.

56 CHAPTER 5. MATRIX OPERATIONS

Matrix division operators

row_vector operator/(row_vector b, matrix A)
The right division of b by A; equivalently b * inverse(A)

matrix operator/(matrix B, matrix A)
The right division of B by A; equivalently B * inverse(A)

vector operator\(matrix A, vector b)

matrix operator\(matrix A, matrix B)

Lower-triangular matrix division functions

There are four division functions which use lower triangular views of a matrix. The
lower triangular view of a matrix tri(A) is used in the definitions and defined by

tri(A)[m,n] =

 A[m,n] if m ≥ n, and

0 otherwise.

When a lower triangular view of a matrix is used, the elements above the diagonal are
ignored.

vector mdivide_left_tri_low(matrix A, vector b)
The left division of b by a lower-triangular view of A; algebraically equivalent to the less
efficient and stable form inverse(tri(A)) * b, where tri(A) is the lower-triangular
portion of A with the above-diagonal entries set to zero.

matrix mdivide_left_tri_low(matrix A, matrix B)
The left division of B by a triangular view of A; algebraically equivalent to the less
efficient and stable form inverse(tri(A)) * B, where tri(A) is the lower-triangular
portion of A with the above-diagonal entries set to zero.

row_vector mdivide_right_tri_low(row_vector b, matrix A)
The right division of b by a triangular view of A; algebraically equivalent to the less
efficient and stable form b * inverse(tri(A)), where tri(A) is the lower-triangular
portion of A with the above-diagonal entries set to zero.

matrix mdivide_right_tri_low(matrix B, matrix A)
The right division of B by a triangular view of A; algebraically equivalent to the less
efficient and stable form B * inverse(tri(A)), where tri(A) is the lower-triangular
portion of A with the above-diagonal entries set to zero.

5.13. LINEAR ALGEBRA FUNCTIONS AND SOLVERS 57

Symmetric positive-definite matrix division functions
There are four division functions which are specialized for efficiency and stability for
symmetric positive-definite matrix dividends. If the matrix dividend argument is not
symmetric and positive definite, these will reject and print warnings.

matrix mdivide_left_spd(matrix A, vector b)
The left division of b by the symmetric, positive-definite matrix A; algebraically equiva-
lent to the less efficient and stable form inverse(A) * b.

vector mdivide_left_spd(matrix A, matrix B)
The left division of B by the symmetric, positive-definite matrix A; algebraically equiva-
lent to the less efficient and stable form inverse(A) * B.

row_vector mdivide_right_spd(row_vector b, matrix A)
The right division of b by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form b * inverse(A).

matrix mdivide_right_spd(matrix B, matrix A)
The right division of B by the symmetric, positive-definite matrix A; algebraically
equivalent to the less efficient and stable form B * inverse(A).

Matrix Exponential
The exponential of the matrix A is formally defined by the convergent power series:

eA =
∞∑
n=0

An

n!

matrix matrix_exp(matrix A)
The matrix exponential of A

matrix matrix_exp_multiply(matrix A, matrix B)
The multiplication of matrix exponential of A and matrix B; algebraically equivalent to
the less efficient form matrix_exp(t * A) * B.

matrix scale_matrix_exp_multiply(real t, matrix A, matrix B)
The multiplication of matrix exponential of tA and matrix B; algebraically equivalent
to the less efficient form matrix_exp(t * A) * B.

Linear Algebra Functions
Trace

real trace(matrix A)
The trace of A, or 0 if A is empty; A is not required to be diagonal

58 CHAPTER 5. MATRIX OPERATIONS

Determinants

real determinant(matrix A)
The determinant of A

real log_determinant(matrix A)
The log of the absolute value of the determinant of A

Inverses

It is almost never a good idea to use matrix inverses directly because they are both
inefficient and arithmetically unstable compared to the alternatives. Rather than
inverting a matrix m and post-multiplying by a vector or matrix a, as in inverse(m) *
a, it is better to code this using matrix division, as in m \ a. The pre-multiplication
case is similar, with b * inverse(m) being more efficiently coded as as b / m. There
are also useful special cases for triangular and symmetric, positive-definite matrices
that use more efficient solvers.

Warning: The function inv(m) is the elementwise inverse function, which returns 1
/ m[i, j] for each element.

matrix inverse(matrix A)
The inverse of A

matrix inverse_spd(matrix A)
The inverse of A where A is symmetric, positive definite. This version is faster and
more arithmetically stable when the input is symmetric and positive definite.

Eigendecomposition

vector eigenvalues_sym(matrix A)
The vector of eigenvalues of a symmetric matrix A in ascending order

matrix eigenvectors_sym(matrix A)
The matrix with the (column) eigenvectors of symmetric matrix A in the same order as
returned by the function eigenvalues_sym

Because multiplying an eigenvector by −1 results in an eigenvector, eigenvectors
returned by a decomposition are only identified up to a sign change. In order to
compare the eigenvectors produced by Stan’s eigendecomposition to others, signs may
need to be normalized in some way, such as by fixing the sign of a component, or
doing comparisons allowing a multiplication by −1.

The condition number of a symmetric matrix is defined to be the ratio of the largest

5.13. LINEAR ALGEBRA FUNCTIONS AND SOLVERS 59

eigenvalue to the smallest eigenvalue. Large condition numbers lead to difficulty
in numerical algorithms such as computing inverses, and thus known as “ill condi-
tioned.” The ratio can even be infinite in the case of singular matrices (i.e., those with
eigenvalues of 0).

QR Decomposition

matrix qr_thin_Q(matrix A)
The orthogonal matrix in the thin QR decomposition of A, which implies that the
resulting matrix has the same dimensions as A

matrix qr_thin_R(matrix A)
The upper triangular matrix in the thin QR decomposition of A, which implies that the
resulting matrix is square with the same number of columns as A

matrix qr_Q(matrix A)
The orthogonal matrix in the fat QR decomposition of A, which implies that the
resulting matrix is square with the same number of rows as A

matrix qr_R(matrix A)
The upper trapezoidal matrix in the fat QR decomposition of A, which implies that the
resulting matrix will be rectangular with the same dimensions as A

The thin QR decomposition is always preferable because it will consume much less
memory when the input matrix is large than will the fat QR decomposition. Both
versions of the decomposition represent the input matrix as

A = QR.

Multiplying a column of an orthogonal matrix by −1 still results in an orthogonal
matrix, and you can multiply the corresponding row of the upper trapezoidal matrix
by −1 without changing the product. Thus, Stan adopts the normalization that the
diagonal elements of the upper trapezoidal matrix are strictly positive and the columns
of the orthogonal matrix are reflected if necessary. Also, these QR decomposition
algorithms do not utilize pivoting and thus may be numerically unstable on input
matrices that have less than full rank.

Cholesky Decomposition

Every symmetric, positive-definite matrix (such as a correlation or covariance matrix)
has a Cholesky decomposition. If Σ is a symmetric, positive-definite matrix, its
Cholesky decomposition is the lower-triangular vector L such that

Σ = LL>.

60 CHAPTER 5. MATRIX OPERATIONS

matrix cholesky_decompose(matrix A)
The lower-triangular Cholesky factor of the symmetric positive-definite matrix A

Singular Value Decomposition

Stan only provides functions for the singular values, not for the singular vectors
involved in a singular value decomposition (SVD).

vector singular_values(matrix A)
The singular values of A in descending order

5.14. Sort Functions
see section sorting functions for examples of how the functions work.

vector sort_asc(vector v)
Sort the elements of v in ascending order

row_vector sort_asc(row_vector v)
Sort the elements of v in ascending order

vector sort_desc(vector v)
Sort the elements of v in descending order

row_vector sort_desc(row_vector v)
Sort the elements of v in descending order

int[] sort_indices_asc(vector v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.

int[] sort_indices_asc(row_vector v)
Return an array of indices between 1 and the size of v, sorted to index v in ascending
order.

int[] sort_indices_desc(vector v)
Return an array of indices between 1 and the size of v, sorted to index v in descending
order.

int[] sort_indices_desc(row_vector v)
Return an array of indices between 1 and the size of v, sorted to index v in descending
order.

int rank(vector v, int s)
Number of components of v less than v[s]

5.14. SORT FUNCTIONS 61

int rank(row_vector v, int s)
Number of components of v less than v[s]

6. Sparse Matrix Operations

For sparse matrices, for which many elements are zero, it is more efficient to use
specialized representations to save memory and speed up matrix arithmetic (including
derivative calculations). Given Stan’s implementation, there is substantial space
(memory) savings by using sparse matrices. Because of the ease of optimizing dense
matrix operations, speed improvements only arise at 90% or even greater sparsity;
below that level, dense matrices are faster but use more memory.

Because of this speedup and space savings, it may even be useful to read in a dense
matrix and convert it to a sparse matrix before multiplying it by a vector. This chapter
covers a very specific form of sparsity consisting of a sparse matrix multiplied by a
dense vector.

6.1. Compressed Row Storage
Sparse matrices are represented in Stan using compressed row storage (CSR). For
example, the matrix

A =


19 27 0 0
0 0 0 0
0 0 0 52
81 0 95 33


is translated into a vector of the non-zero real values, read by row from the matrix A,

w(A) =
[
19 27 52 81 95 33

]>
,

an array of integer column indices for the values,

v(A) =
[
1 2 4 1 3 4

]
,

and an array of integer indices indicating where in w(A) a given row’s values start,

u(A) =
[
1 3 3 4 7

]
,

with a padded value at the end to guarantee that

u(A)[n+ 1]− u(A)[n]

is the number of non-zero elements in row n of the matrix (here 2, 0, 1, and 3). Note
that because the second row has no non-zero elements both the second and third

62

6.2. CONVERSION FUNCTIONS 63

elements of u(A) correspond to the third element of w(A), which is 52. The values
(w(A), v(A), u(A)) are sufficient to reconstruct A.

The values are structured so that there is a real value and integer column index for
each non-zero entry in the array, plus one integer for each row of the matrix, plus
one for padding. There is also underlying storage for internal container pointers
and sizes. The total memory usage is roughly 12K +M bytes plus a small constant
overhead, which is often considerably fewer bytes than the M ×N required to store
a dense matrix. Even more importantly, zero values do not introduce derivatives
under multiplication or addition, so many storage and evaluation steps are saved when
sparse matrices are multiplied.

6.2. Conversion Functions
Conversion functions between dense and sparse matrices are provided.

Dense to Sparse Conversion
Converting a dense matrix m to a sparse representation produces a vector w and two
integer arrays, u and v .

vector csr_extract_w(matrix a)
Return non-zero values in matrix a; see section compressed row storage.

int[] csr_extract_v(matrix a)
Return column indices for values in csr_extract_w(a); see compressed row storage.

int[] csr_extract_u(matrix a)
Return array of row starting indices for entries in csr_extract_w(a) followed by the
size of csr_extract_w(a) plus one; see section compressed row storage.

Sparse to Dense Conversion
To convert a sparse matrix representation to a dense matrix, there is a single function.

matrix csr_to_dense_matrix(int m, int n, vector w, int[] v, int[] u)
Return dense m× n matrix with non-zero matrix entries w, column indices v, and row
starting indices u; the vector w and arrays v and u must all be the same size, and the
arrays v and u must have index values bounded by m and n. see section compressed
row storage for more details.

6.3. Sparse Matrix Arithmetic
Sparse Matrix Multiplication
The only supported operation is the multiplication of a sparse matrix A and a dense
vector b to produce a dense vector Ab. Multiplying a dense row vector b and a sparse

64 CHAPTER 6. SPARSE MATRIX OPERATIONS

matrix A can be coded using transposition as

bA = (A> b>)>,

but care must be taken to represent A> rather than A as a sparse matrix.

vector csr_matrix_times_vector(int m, int n, vector w, int[] v, int[]
u, vector b)
Multiply the m× n matrix represented by values w, column indices v, and row start
indices u by the vector b; see compressed row storage.

7. Mixed Operations

These functions perform conversions between Stan containers matrix, vector, row
vector and arrays.

matrix to_matrix(matrix m)
Return the matrix m itself.

matrix to_matrix(vector v)
Convert the column vector v to a size(v) by 1 matrix.

matrix to_matrix(row_vector v)
Convert the row vector v to a 1 by size(v) matrix.

matrix to_matrix(matrix m, int m, int n)
Convert a matrix m to a matrix with m rows and n columns filled in column-major
order.

matrix to_matrix(vector v, int m, int n)
Convert a vector v to a matrix with m rows and n columns filled in column-major
order.

matrix to_matrix(row_vector v, int m, int n)
Convert a row_vector a to a matrix with m rows and n columns filled in column-major
order.

matrix to_matrix(matrix m, int m, int n, int col_major)
Convert a matrix m to a matrix with m rows and n columns filled in row-major order if
col_major equals 0 (otherwise, they get filled in column-major order).

matrix to_matrix(vector v, int m, int n, int col_major)
Convert a vector v to a matrix with m rows and n columns filled in row-major order if
col_major equals 0 (otherwise, they get filled in column-major order).

matrix to_matrix(row_vector v, int m, int n, int col_major)
Convert a row_vector a to a matrix with m rows and n columns filled in row-major
order if col_major equals 0 (otherwise, they get filled in column-major order).

matrix to_matrix(real[] a, int m, int n)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
column-major order.

65

66 CHAPTER 7. MIXED OPERATIONS

matrix to_matrix(int[] a, int m, int n)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
column-major order.

matrix to_matrix(real[] a, int m, int n, int col_major)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
row-major order if col_major equals 0 (otherwise, they get filled in column-major
order).

matrix to_matrix(int[] a, int m, int n, int col_major)
Convert a one-dimensional array a to a matrix with m rows and n columns filled in
row-major order if col_major equals 0 (otherwise, they get filled in column-major
order).

matrix to_matrix(real[,] a)
Convert the two dimensional array a to a matrix with the same dimensions and
indexing order.

matrix to_matrix(int[,] a)
Convert the two dimensional array a to a matrix with the same dimensions and
indexing order. If any of the dimensions of a are zero, the result will be a 0× 0 matrix.

vector to_vector(matrix m)
Convert the matrix m to a column vector in column-major order.

vector to_vector(vector v)
Return the column vector v itself.

vector to_vector(row_vector v)
Convert the row vector v to a column vector.

vector to_vector(real[] a)
Convert the one-dimensional array a to a column vector.

vector to_vector(int[] a)
Convert the one-dimensional integer array a to a column vector.

row_vector to_row_vector(matrix m)
Convert the matrix m to a row vector in column-major order.

row_vector to_row_vector(vector v)
Convert the column vector v to a row vector.

row_vector to_row_vector(row_vector v)
Return the row vector v itself.

67

row_vector to_row_vector(real[] a)
Convert the one-dimensional array a to a row vector.

row_vector to_row_vector(int[] a)
Convert the one-dimensional array a to a row vector.

real[,] to_array_2d(matrix m)
Convert the matrix m to a two dimensional array with the same dimensions and
indexing order.

real[] to_array_1d(vector v)
Convert the column vector v to a one-dimensional array.

real[] to_array_1d(row_vector v)
Convert the row vector v to a one-dimensional array.

real[] to_array_1d(matrix m)
Convert the matrix m to a one-dimensional array in column-major order.

real[] to_array_1d(real[...] a)
Convert the array a (of any dimension up to 10) to a one-dimensional array in row-major
order.

int[] to_array_1d(int[...] a)
Convert the array a (of any dimension up to 10) to a one-dimensional array in row-major
order.

8. Compound Arithmetic and Assignment

Compound arithmetic and assignment statements combine an arithmetic operation
and assignment,

x = x op y;

replacing them with the compound form

x op= y;

For example, x = x + 1 may be replaced with x += 1.

The signatures of the supported compound arithmetic and assignment operations are
as follows.

8.1. Compound Addition and Assignment
void operator+=(int x, int y)
x += y is equivalent to x = x + y.

void operator+=(real x, real y)
x += y is equivalent to x = x + y.

void operator+=(vector x, real y)
x += y is equivalent to x = x + y.

void operator+=(row_vector x, real y)
x += y is equivalent to x = x + y.

void operator+=(matrix x, real y)
x += y is equivalent to x = x + y.

void operator+=(vector x, vector y)
x += y is equivalent to x = x + y.

void operator+=(row_vector x, row_vector y)
x += y is equivalent to x = x + y.

void operator+=(matrix x, matrix y)
x += y is equivalent to x = x + y.

68

8.2. COMPOUND SUBTRACTION AND ASSIGNMENT 69

8.2. Compound Subtraction and Assignment
void operator-=(int x, int y)
x -= y is equivalent to x = x - y.

void operator-=(real x, real y)
x -= y is equivalent to x = x - y.

void operator-=(vector x, real y)
x -= y is equivalent to x = x - y.

void operator-=(row_vector x, real y)
x -= y is equivalent to x = x - y.

void operator-=(matrix x, real y)
x -= y is equivalent to x = x - y.

void operator-=(vector x, vector y)
x -= y is equivalent to x = x - y.

void operator-=(row_vector x, row_vector y)
x -= y is equivalent to x = x - y.

void operator-=(matrix x, matrix y)
x -= y is equivalent to x = x - y.

8.3. Compound Multiplication and Assignment
void operator*=(int x, int y)
x *= y is equivalent to x = x * y.

void operator*=(real x, real y)
x *= y is equivalent to x = x * y.

void operator*=(vector x, real y)
x *= y is equivalent to x = x * y.

void operator*=(row_vector x, real y)
x *= y is equivalent to x = x * y.

void operator*=(matrix x, real y)
x *= y is equivalent to x = x * y.

void operator*=(row_vector x, matrix y)
x *= y is equivalent to x = x * y.

void operator*=(matrix x, matrix y)
x *= y is equivalent to x = x * y.

70 CHAPTER 8. COMPOUND ARITHMETIC AND ASSIGNMENT

8.4. Compound Division and Assignment
void operator/=(int x, int y)
x /= y is equivalent to x = x / y.

void operator/=(real x, real y)
x /= y is equivalent to x = x / y.

void operator/=(vector x, real y)
x /= y is equivalent to x = x / y.

void operator/=(row_vector x, real y)
x /= y is equivalent to x = x / y.

void operator/=(matrix x, real y)
x /= y is equivalent to x = x / y.

8.5. Compound Elementwise Multiplication and Assignment
void operator.*=(vector x, vector y)
x .*= y is equivalent to x = x .* y.

void operator.*=(row_vector x, row_vector y)
x .*= y is equivalent to x = x .* y.

void operator.*=(matrix x, matrix y)
x .*= y is equivalent to x = x .* y.

8.6. Compound Elementwise Division and Assignment
void operator./=(vector x, vector y)
x ./= y is equivalent to x = x ./ y.

void operator./=(row_vector x, row_vector y)
x ./= y is equivalent to x = x ./ y.

void operator./=(matrix x, matrix y)
x ./= y is equivalent to x = x ./ y.

void operator./=(vector x, real y)
x ./= y is equivalent to x = x ./ y.

void operator./=(row_vector x, real y)
x ./= y is equivalent to x = x ./ y.

void operator./=(matrix x, real y)
x ./= y is equivalent to x = x ./ y.

9. Higher-Order Functions

Stan provides a few higher-order functions that act on other functions. In all cases,
the function arguments to the higher-order functions are defined as functions within
the Stan language and passed by name to the higher-order functions.

9.1. Algebraic Equation Solver
Stan provides a built-in algebraic equation solver. Although it looks like other function
applications, the algebraic solver is special in two ways.

First, the algebraic solver is a higher-order function, i.e. it takes another function as
one of its arguments. The only other functions in Stan which share this feature are
the ordinary differential equation solvers (see section Ordinary Differential Equation
Solvers. Ordinary Stan functions do not allow functions as arguments.

Second, some of the arguments of the algebraic solvers are restricted to data only
expressions. These expressions must not contain variables other than those declared
in the data or transformed data blocks. Ordinary Stan functions place no restriction
on the origin of variables in their argument expressions.

Specifying an Algebraic Equation as a Function
An algebraic system is specified as an ordinary function in Stan within the function
block. The algebraic system function must have this signature:

vector algebra_system(vector y, vector theta,
real[] x_r, int[] x_i)

The algebraic system function should return the value of the algebraic function which
goes to 0, when we plug in the solution to the algebraic system.

The argument of this function are:

• y, the unknowns we wish to solve for

• theta, parameter values used to evaluate the algebraic system

• x_r, data values used to evaluate the algebraic system

• x_i, integer data used to evaluate the algebraic system

The algebraic system function separates parameter values, theta, from data values,
x_r, for efficiency in computing the gradients of the algebraic system.

71

72 CHAPTER 9. HIGHER-ORDER FUNCTIONS

Call to the Algebraic Solver
vector algebra_solver(function algebra_system, vector y_guess, vector
theta, real[] x_r, int[] x_i)
Solves the algebraic system, given an initial guess, using the Powell hybrid algorithm.

vector algebra_solver(function algebra_system, vector y_guess,
vector theta, real[] x_r, int[] x_i, real rel_tol, real f_tol, int
max_steps)
Solves the algebraic system, given an initial guess, using the Powell hybrid algorithm
with additional control parameters for the solver.

Arguments to the Algebraic Solver

The arguments to the algebraic solver are as follows:

• algebra_system: function literal referring to a function specifying the
system of algebraic equations with signature (vector, vector, real[],
int[]):vector. The arguments represent

(1) unknowns, (2) parameters, (3) real data, and (4) integer data, and the return
value contains the value of the algebraic function, which goes to 0 when we plug
in the solution to the algebraic system,

• y_guess: initial guess for the solution, type vector,

• theta: parameters only, type vector,

• x_r: real data only, type real[], and

• x_i: integer data only, type int[].

For more fine-grained control of the algebraic solver, these parameters can also be
provided:

• rel_tol: relative tolerance for the algebraic solver, type real, data only,

• function_tol: function tolerance for the algebraic solver, type real, data only,

• max_num_steps: maximum number of steps to take in the algebraic solver, type
int, data only.

Return value

The return value for the algebraic solver is an object of type vector, with values which,
when plugged in as y make the algebraic function go to 0.

9.2. ORDINARY DIFFERENTIAL EQUATION SOLVERS 73

Sizes and parallel arrays

Certain sizes have to be consistent. The initial guess, return value of the solver, and
return value of the algebraic function must all be the same size.

The parameters, real data, and integer data will be passed from the solver directly to
the system function.

Algorithmic details

The algebraic solver uses the Powell hybrid method (Powell 1970), which in turn uses
first-order derivatives. The Stan code builds on the implementation of the hybrid
solver in the unsupported module for nonlinear optimization problems of the Eigen
library (Guennebaud, Jacob, and others 2010). This solver is in turn based on the
algorithm developed for the package MINPACK-1 (Jorge J. More 1980).

The Jacobian of the solution with respect to auxiliary parameters is computed using
the implicit function theorem. Intermediate Jacobians (of the the algebraic function’s
output with respect to the unknowns y and with respect to the auxiliary parameters
theta) are computed using Stan’s automatic differentiation.

9.2. Ordinary Differential Equation Solvers
Stan provides built-in ordinary differential equation (ODE) solvers. Although they look
like function applications, the ODE solvers are special in two ways.

First, the first argument to each of the solvers is a function specifying the ODE system
as an argument, like PKBugs (Lunn et al. 1999). Ordinary Stan functions do not allow
functions as arguments.

Second, some of the arguments to the ODE solvers are restricted to data only expres-
sions. These expressions must not contain variables other than those declared in the
data or transformed data blocks. Ordinary Stan functions place no restriction on the
origin of variables in their argument expressions.

Specifying an Ordinary Differential Equation as a Function
A system of ODEs is specified as an ordinary function in Stan within the functions
block. The ODE system function must have this function signature:

real[] ode(real time, real[] state, real[] theta,
real[] x_r, int[] x_i)

The ODE system function should return the derivative of the state with respect to time
at the time provided. The length of the returned real array must match the length of
the state input into the function.

74 CHAPTER 9. HIGHER-ORDER FUNCTIONS

The arguments to this function are:

• time, the time to evaluate the ODE system

• state, the state of the ODE system at the time specified

• theta, parameter values used to evaluate the ODE system

• x_r, data values used to evaluate the ODE system

• x_i, integer data values used to evaluate the ODE system.

The ODE system function separates parameter values, theta, from data values, x_r,
for efficiency in computing the gradients of the ODE.

Non-Stiff Solver
real[,] integrate_ode_rk45(function ode, real[] initial_state, real
initial_time, real[] times, real[] theta, real[] x_r, int[] x_i)
Solves the ODE system for the times provided using the Runge Kutta Dopri algorithm
with the implementation from Boost.

real[,] integrate_ode_rk45(function ode, real[] initial_state, real
initial_time, real[] times, real[] theta, real[] x_r, int[] x_i,
real rel_tol, real abs_tol, int max_num_steps)
Solves the ODE system for the times provided using the Runge Kutta Dopri algorithm
with the implementation from Boost with additional control parameters for the solver.

real[,] integrate_ode(function ode, real[] initial_state, real
initial_time, real[] times, real[] theta, real[] x_r, int[] x_i)
Deprecated. Solves the ODE system for the times provided with a non-stiff solver. This
calls the Runge Kutta Dopri algorithm.

Stiff Solver
real[] integrate_ode_bdf(function ode, real[] initial_state, real
initial_time, real[] times, real[] theta, data real[] x_r, data
int[] x_i)
Solves the ODE system for the times provided using the backward differentiation
formula (BDF) method with the implementation from CVODES.

real[] integrate_ode_bdf(function ode, real[] initial_state,
real initial_time, real[] times, real[] theta, data real[] x_r,
data int[] x_i, data real rel_tol, data real abs_tol, dta int
max_num_steps)
Solves the ODE system for the times provided using the backward differentiation

9.2. ORDINARY DIFFERENTIAL EQUATION SOLVERS 75

formula (BDF) method with the implementation from CVODES with additional control
parameters for the CVODES solver.

Arguments to the ODE solvers
The arguments to the ODE solvers in both the stiff and non-stiff cases are as follows.

• ode: function literal referring to a function specifying the system of differential
equations with signature described in ode functions:

(real, real[], real[], data real[], data int[]):real[]

The arguments represent (1) time, (2) system state, (3) parameters, (4) real data, and
(5) integer data, and the return value contains the derivatives with respect to time of
the state,

• initial_state: initial state, type real[],

• initial_time: initial time, type int or real,

• times: solution times, type real[],

• theta: parameters, type real[],

• data x_r: real data, type real[], data only, and

• data x_i: integer data, type int[], data only.

For more fine-grained control of the ODE solvers, these parameters can also be pro-
vided:

• data rel_tol: relative tolerance for the ODE solver, type real, data only,

• data abs_tol: absolute tolerance for the ODE solver, type real, data only, and

• data max_num_steps: maximum number of steps to take in the ODE solver,
type int, data only.

Return values

The return value for the ODE solvers is an array of type real[,], with values consisting
of solutions at the specified times.

Sizes and parallel arrays

The sizes must match, and in particular, the following groups are of the same size:

76 CHAPTER 9. HIGHER-ORDER FUNCTIONS

• state variables passed into the system function, derivatives returned by the
system function, initial state passed into the solver, and rows of the return value
of the solver,

• solution times and number of rows of the return value of the solver,

• parameters, real data and integer data passed to the solver will be passed to the
system function

9.3. Higher-Order Map
Stan provides a higher-order map function. This allows map-reduce functionality to be
coded in Stan as described in the user’s guide.

Specifying the Mapped Function
The function being mapped must have a signature identical to that of the function f
in the following declaration.

vector f(vector phi, vector theta,
data real[] x_r, data int[] x_i);

The map function returns the sequence of results for the particular shard being
evaluated. The arguments to the mapped function are:

• phi, the sequence of parameters shared across shards

• theta, the sequence of parameters specific to this shard

• x_r, sequence of real-valued data

• x_i, sequence of integer data

All input for the mapped function must be packed into these sequences and all output
from the mapped function must be packed into a single vector. The vector of output
from each mapped function is concatenated into the final result.

Rectangular Map
The rectangular map function operates on rectangular (not ragged) data structures,
with parallel data structures for job-specific parameters, job-specific real data, and
job-specific integer data.

vector map_rect(F f, vector phi, vector[] theta, data real[,] x_r,
data int[,] x_i)
Return the concatenation of the results of applying the function f, of type (vector,
vector, real[], int[]):vector elementwise, i.e., f(phi, theta[n], x_r[n],
x_i[n]) for each n in 1:N, where N is the size of the parallel arrays of job-specific/local

9.3. HIGHER-ORDER MAP 77

parameters theta, real data x_r, and integer data x_r. The shared/global parameters
phi are passed to each invocation of f.

Discrete Distributions

78

10. Conventions for Probability Functions

Functions associated with distributions are set up to follow the same naming conven-
tions for both built-in distributions and for user-defined distributions.

10.1. Suffix Marks Type of Function
The suffix is determined by the type of function according to the following table.

function outcome suffix

log probability mass function discrete _lpmf
log probability density function continuous _lpdf
log cumulative distribution function any _lcdf
log complementary cumulative distribution function any _lccdf
random number generator any _rng

For example, normal_lpdf is the log of the normal probability density function (pdf)
and bernoulli_lpmf is the log of the bernoulli probability mass function (pmf). The
log of the corresponding cumulative distribution functions (cdf) use the same suffix,
normal_lcdf and bernoulli_lcdf.

10.2. Argument Order and the Vertical Bar
Each probability function has a specific outcome value and a number of parameters.
Following conditional probability notation, probability density and mass functions use
a vertical bar to separate the outcome from the parameters of the distribution. For
example, normal_lpdf(y | mu, sigma) returns the value of mathematical formula
logNormal(y |µ,σ). Cumulative distribution functions separate the outcome from the
parameters in the same way (e.g., normal_lcdf(y_low | mu, sigma)

10.3. Sampling Notation
The notation

y ~ normal(mu, sigma);

provides the same (proportional) contribution to the model log density as the explicit
target density increment,

target += normal_lpdf(y | mu, sigma);

79

80 CHAPTER 10. CONVENTIONS FOR PROBABILITY FUNCTIONS

In both cases, the effect is to add terms to the target log density. The only difference
is that the example with the sampling (~) notation drops all additive constants in the
log density; the constants are not necessary for any of Stan’s sampling, approximation,
or optimization algorithms.

10.4. Finite Inputs
All of the distribution functions are configured to throw exceptions (effectively reject-
ing samples or optimization steps) when they are supplied with non-finite arguments.
The two cases of non-finite arguments are the infinite values and not-a-number value—
these are standard in floating-point arithmetic.

10.5. Boundary Conditions
Many distributions are defined with support or constraints on parameters forming an
open interval. For example, the normal density function accepts a scale parameter
σ > 0. If σ = 0, the probability function will throw an exception.

This is true even for (complementary) cumulative distribution functions, which will
throw exceptions when given input that is out of the support.

10.6. Pseudorandom Number Generators
For most of the probability functions, there is a matching pseudorandom number
generator (PRNG) with the suffix _rng. For example, the function normal_rng(real,
real) accepts two real arguments, an unconstrained location µ and positive scale
σ > 0, and returns an unconstrained pseudorandom value drawn from Normal(µ,σ).
There are also vectorized forms of random number generators which return more than
one random variate at a time.

Restricted to Transformed Data and Generated Quantities
Unlike regular functions, the PRNG functions may only be used in the transformed
data or generated quantities block.

Limited Vectorization
Unlike the probability functions, only some of the PRNG functions are vectorized.

10.7. Cumulative Distribution Functions
For most of the univariate probability functions, there is a corresponding cumulative
distribution function, log cumulative distribution function, and log complementary
cumulative distribution function.

For a univariate random variable Y with probability function pY (y |θ), the cumulative
distribution function (CDF) FY is defined by

FY (y) = Pr[Y < y] =
∫ y
−∞
p(y |θ) dy.

10.8. VECTORIZATION 81

The complementary cumulative distribution function (CCDF) is defined as

Pr[Y ≥ y] = 1− FY (y).

The reason to use CCDFs instead of CDFs in floating-point arithmetic is that it is
possible to represent numbers very close to 0 (the closest you can get is roughly
10−300), but not numbers very close to 1 (the closest you can get is roughly 1− 10−15).

In Stan, there is a cumulative distribution function for each probability function. For
instance, normal_cdf(y, mu, sigma) is defined by∫ y

−∞
Normal(y |µ,σ) dy.

There are also log forms of the CDF and CCDF for most univariate distributions. For
example, normal_lcdf(y | mu, sigma) is defined by

log
(∫ y
−∞

Normal(y |µ,σ) dy
)

and normal_lccdf(y | mu, sigma) is defined by

log
(
1−

∫ y
−∞

Normal(y |µ,σ) dy
)
.

10.8. Vectorization
Stan’s univariate log probability functions, including the log density functions, log
mass functions, log CDFs, and log CCDFs, all support vectorized function application,
with results defined to be the sum of the elementwise application of the function. Some
of the PRNG functions support vectorization, see section vectorized PRNG functions
for more details.

In all cases, matrix operations are at least as fast and usually faster than loops and
vectorized log probability functions are faster than their equivalent form defined with
loops. This isn’t because loops are slow in Stan, but because more efficient automatic
differentiation can be used. The efficiency comes from the fact that a vectorized
log probably function only introduces one new node into the expression graph, thus
reducing the number of virtual function calls required to compute gradients in C++, as
well as from allowing caching of repeated computations.

Stan also overloads the multivariate normal distribution, including the Cholesky-factor
form, allowing arrays of row vectors or vectors for the variate and location parameter.
This is a huge savings in speed because the work required to solve the linear system
for the covariance matrix is only done once.

82 CHAPTER 10. CONVENTIONS FOR PROBABILITY FUNCTIONS

Stan also overloads some scalar functions, such as log and exp, to apply to vectors
(arrays) and return vectors (arrays). These vectorizations are defined elementwise
and unlike the probability functions, provide only minimal efficiency speedups over
repeated application and assignment in a loop.

Vectorized Function Signatures
Vectorized Scalar Arguments

The normal probability function is specified with the signature

normal_lpdf(reals | reals, reals);

The pseudotype reals is used to indicate that an argument position may be vectorized.
Argument positions declared as reals may be filled with a real, a one-dimensional
array, a vector, or a row-vector. If there is more than one array or vector argument,
their types can be anything but their size must match. For instance, it is legal to use
normal_lpdf(row_vector | vector, real) as long as the vector and row vector
have the same size.

Vectorized Vector and Row Vector Arguments

The multivariate normal distribution accepting vector or array of vector arguments is
written as

multi_normal_lpdf(vectors | vectors, matrix);

These arguments may be row vectors, column vectors, or arrays of row vectors or
column vectors.

Vectorized Integer Arguments

The pseudotype ints is used for vectorized integer arguments. Where it appears
either an integer or array of integers may be used.

Evaluating Vectorized Log Probability Functions
The result of a vectorized log probability function is equivalent to the sum of the
evaluations on each element. Any non-vector argument, namely real or int, is
repeated. For instance, if y is a vector of size N, mu is a vector of size N, and sigma is a
scalar, then

ll = normal_lpdf(y | mu, sigma);

is just a more efficient way to write

ll = 0;

10.8. VECTORIZATION 83

for (n in 1:N)
ll = ll + normal_lpdf(y[n] | mu[n], sigma);

With the same arguments, the vectorized sampling statement

y ~ normal(mu, sigma);

has the same effect on the total log probability as

for (n in 1:N)
y[n] ~ normal(mu[n], sigma);

Evaluating Vectorized PRNG Functions
Some PRNG functions accept sequences as well as scalars as arguments. Such func-
tions are indicated by argument pseudotypes reals or ints. In cases of sequence
arguments, the output will also be a sequence. For example, the following is allowed
in the generated quantities block.

vector[3] mu = ...;
real x[3] = normal_rng(mu, 3);

Argument types

In the case of PRNG functions, arguments marked ints may be integers or integer
arrays, whereas arguments marked reals may be integers or reals, integer or real
arrays, vectors, or row vectors.

pseudotype allowable PRNG arguments

ints int, int[]
reals int, int[], real, real[], vector, row_vector

Dimension matching

In general, if there are multiple non-scalar arguments, they must all have the same
dimensions, but need not have the same type. For example, the normal_rng function
may be called with one vector argument and one real array argument as long as they
have the same number of elements.

vector[3] mu = ...;
real sigma[3] = ...;
real x[3] = normal_rng(mu, sigma);

84 CHAPTER 10. CONVENTIONS FOR PROBABILITY FUNCTIONS

Return type

The result of a vectorized PRNG function depends on the size of the arguments and
the distribution’s support. If all arguments are scalars, then the return type is a scalar.
For a continuous distribution, if there are any non-scalar arguments, the return type
is a real array (real[]) matching the size of any of the non-scalar arguments, as all
non-scalar arguments must have matching size. Discrete distributions return ints
and continuous distributions return reals, each of appropriate size. The symbol R
denotes such a return type.

11. Binary Distributions

Binary probability distributions have support on {0,1}, where 1 represents the value
true and 0 the value false.

11.1. Bernoulli Distribution
Probability Mass Function
If θ ∈ [0,1], then for y ∈ {0,1},

Bernoulli(y | θ) =
{
θ if y = 1, and
1− θ if y = 0.

Sampling Statement
y ~ bernoulli(theta)

Increment target log probability density with bernoulli_lpmf(y | theta) drop-
ping constant additive terms.

Stan Functions
real bernoulli_lpmf(ints y | reals theta)
The log Bernoulli probability mass of y given chance of success theta

real bernoulli_cdf(ints y, reals theta)
The Bernoulli cumulative distribution function of y given chance of success theta

real bernoulli_lcdf(ints y | reals theta)
The log of the Bernoulli cumulative distribution function of y given chance of success
theta

real bernoulli_lccdf(ints y | reals theta)
The log of the Bernoulli complementary cumulative distribution function of y given
chance of success theta

R bernoulli_rng(reals theta)
Generate a Bernoulli variate with chance of success theta; may only be used in gen-
erated quantities block. For a description of argument and return types, see section
vectorized PRNG functions.

11.2. Bernoulli Distribution, Logit Parameterization
Stan also supplies a direct parameterization in terms of a logit-transformed chance-of-
success parameter. This parameterization is more numerically stable if the chance-

85

86 CHAPTER 11. BINARY DISTRIBUTIONS

of-success parameter is on the logit scale, as with the linear predictor in a logistic
regression.

Probability Mass Function
If α ∈ R, then for y ∈ {0,1},

BernoulliLogit(y | α) = Bernoulli(y|logit−1(α)) =
{

logit−1(α) if y = 1, and

1− logit−1(α) if y = 0.

Sampling Statement
y ~ bernoulli_logit(alpha)

Increment target log probability density with bernoulli_logit_lpmf(y | alpha)
dropping constant additive terms.

Stan Functions
real bernoulli_logit_lpmf(ints y | reals alpha)
The log Bernoulli probability mass of y given chance of success inv_logit(alpha)

R bernoulli_logit_rng(reals alpha)
Generate a Bernoulli variate with chance of success logit−1(α); may only be used in
generated quantities block. For a description of argument and return types, see section
vectorized PRNG functions.

11.3. Bernoulli-Logit Generalised Linear Model (Logistic Regression)
Stan also supplies a single primitive for a Generalised Linear Model with Bernoulli
likelihood and logit link function, i.e. a primitive for a logistic regression. This should
provide a more efficient implementation of logistic regression than a manually written
regression in terms of a Bernoulli likelihood and matrix multiplication.

Probability Mass Function
If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, then for y ∈ {0,1}n,

BernoulliLogitGLM(y | x,α,β) =
∏
1≤i≤n

Bernoulli(yi | logit−1(αi + xi · β))

=
∏
1≤i≤n

{
logit−1(αi +

∑
1≤j≤m xij · βj) if yi = 1, and

1− logit−1(αi +
∑
1≤j≤m xij · βj) if yi = 0.

Sampling Statement
y ~ bernoulli_logit_glm(x, alpha, beta)

Increment target log probability density with bernoulli_logit_glm_lpmf(y | x,
alpha, beta) dropping constant additive terms.

11.3. BERNOULLI-LOGIT GENERALISED LINEAR MODEL (LOGISTIC REGRESSION) 87

Stan Functions
real bernoulli_logit_glm_lpmf(int[] y | matrix x, real alpha, vector
beta)
The log Bernoulli probability mass of y given chance of success
inv_logit(alpha+x*beta), where a constant intercept alpha is used for all
observations. The number of rows of the independent variable matrix x needs to
match the length of the dependent variable vector y and the number of columns of x
needs to match the length of the weight vector beta.

real bernoulli_logit_glm_lpmf(int[] y | matrix x, vector alpha,
vector beta)
The log Bernoulli probability mass of y given chance of success
inv_logit(alpha+x*beta), where an intercept alpha is used that is allowed
to vary with the different observations. The number of rows of the independent
variable matrix x needs to match the length of the dependent variable vector y and
alpha and the number of columns of x needs to match the length of the weight vector
beta.

12. Bounded Discrete Distributions

Bounded discrete probability functions have support on {0, . . . ,N} for some upper
bound N.

12.1. Binomial Distribution
Probability Mass Function
Suppose N ∈ N and θ ∈ [0,1], and n ∈ {0, . . . ,N}.

Binomial(n | N,θ) =
(
N
n

)
θn(1− θ)N−n.

Log Probability Mass Function

log Binomial(n | N,θ) = log Γ(N + 1)− log Γ(n+ 1)− log Γ(N − n+ 1)

+ n logθ + (N − n) log(1− θ),

Gradient of Log Probability Mass Function

∂
∂θ

log Binomial(n | N,θ) = n
θ
− N − n
1− θ

Sampling Statement
n ~ binomial(N, theta)

Increment target log probability density with binomial_lpmf(n | N, theta) drop-
ping constant additive terms.

Stan Functions
real binomial_lpmf(ints n | ints N, reals theta)
The log binomial probability mass of n successes in N trials given chance of success
theta

real binomial_cdf(ints n, ints N, reals theta)
The binomial cumulative distribution function of n successes in N trials given chance
of success theta

88

12.2. BINOMIAL DISTRIBUTION, LOGIT PARAMETERIZATION 89

real binomial_lcdf(ints n | ints N, reals theta)
The log of the binomial cumulative distribution function of n successes in N trials
given chance of success theta

real binomial_lccdf(ints n | ints N, reals theta)
The log of the binomial complementary cumulative distribution function of n successes
in N trials given chance of success theta

R binomial_rng(ints N, reals theta)
Generate a binomial variate with N trials and chance of success theta; may only be
used in generated quantities block. For a description of argument and return types,
see section vectorized PRNG functions.

12.2. Binomial Distribution, Logit Parameterization
Stan also provides a version of the binomial probability mass function distribution
with the chance of success parameterized on the unconstrained logistic scale.

Probability Mass Function
Suppose N ∈ N, α ∈ R, and n ∈ {0, . . . ,N}. Then

BinomialLogit(n | N,α) = Binomial(n | N, logit−1(α))

=
(
N
n

)(
logit−1(α)

)n (
1− logit−1(α)

)N−n
.

Log Probability Mass Function

log BinomialLogit(n | N,α) = log Γ(N + 1)− log Γ(n+ 1)− log Γ(N − n+ 1)

+ n log logit−1(α)+ (N − n) log
(
1− logit−1(α)

)
,

Gradient of Log Probability Mass Function

∂
∂α

log BinomialLogit(n | N,α) = n
logit−1(−α)

− N − n
logit−1(α)

Sampling Statement
n ~ binomial_logit(N, alpha)

Increment target log probability density with binomial_logit_lpmf(n | N,
alpha) dropping constant additive terms.

90 CHAPTER 12. BOUNDED DISCRETE DISTRIBUTIONS

Stan Functions
real binomial_logit_lpmf(ints n | ints N, reals alpha)
The log binomial probability mass of n successes in N trials given logit-scaled chance
of success alpha

12.3. Beta-Binomial Distribution
Probability Mass Function
If N ∈ N, α ∈ R+, and β ∈ R+, then for n ∈ 0, . . . ,N,

BetaBinomial(n | N,α,β) =
(
N
n

)
B(n+α,N − n+ β)

B(α,β)
,

where the beta function B(u, v) is defined for u ∈ R+ and v ∈ R+ by

B(u, v) = Γ(u) Γ(v)
Γ(u+ v) .

Sampling Statement
n ~ beta_binomial(N, alpha, beta)

Increment target log probability density with beta_binomial_lpmf(n | N, alpha,
beta) dropping constant additive terms.

Stan Functions
real beta_binomial_lpmf(ints n | ints N, reals alpha, reals beta)
The log beta-binomial probability mass of n successes in N trials given prior success
count (plus one) of alpha and prior failure count (plus one) of beta

real beta_binomial_cdf(ints n, ints N, reals alpha, reals beta)
The beta-binomial cumulative distribution function of n successes in N trials given
prior success count (plus one) of alpha and prior failure count (plus one) of beta

real beta_binomial_lcdf(ints n | ints N, reals alpha, reals beta)
The log of the beta-binomial cumulative distribution function of n successes in N trials
given prior success count (plus one) of alpha and prior failure count (plus one) of beta

real beta_binomial_lccdf(ints n | ints N, reals alpha, reals beta)
The log of the beta-binomial complementary cumulative distribution function of n
successes in N trials given prior success count (plus one) of alpha and prior failure
count (plus one) of beta

R beta_binomial_rng(ints N, reals alpha, reals beta)
Generate a beta-binomial variate with N trials, prior success count (plus one) of alpha,
and prior failure count (plus one) of beta; may only be used in generated quantities

12.4. HYPERGEOMETRIC DISTRIBUTION 91

block. For a description of argument and return types, see section vectorized PRNG
functions.

12.4. Hypergeometric Distribution
Probability Mass Function
If a ∈ N, b ∈ N, and N ∈ {0, . . . , a+ b}, then for n ∈ {max(0, N − b), . . . ,min(a,N)},

Hypergeometric(n | N,a, b) =

(
a
n

)(
b
N−n

)
(
a+b
N

) .

Sampling Statement
n ~ hypergeometric(N, a, b)

Increment target log probability density with hypergeometric_lpmf(n | N, a, b)
dropping constant additive terms.

Stan Functions
real hypergeometric_lpmf(int n ~|~ int N, int a, int b)
The log hypergeometric probability mass of n successes in N trials given total success
count of a and total failure count of b

int hypergeometric_rng(int N, int a, int2 b)
Generate a hypergeometric variate with N trials, total success count of a, and total
failure count of b; may only be used in generated quantities block

12.5. Categorical Distribution
Probability Mass Functions
If N ∈ N, N > 0, and if θ ∈ RN forms an N-simplex (i.e., has nonnegative entries
summing to one), then for y ∈ {1, . . . ,N},

Categorical(y | θ) = θy .

In addition, Stan provides a log-odds scaled categorical distribution,

CategoricalLogit(y | β) = Categorical(y | softmax(β)).

See section softmax for the definition of the softmax function.

Sampling Statement
y ~ categorical(theta)

Increment target log probability density with categorical_lpmf(y | theta) drop-
ping constant additive terms.

92 CHAPTER 12. BOUNDED DISCRETE DISTRIBUTIONS

Sampling Statement
y ~ categorical_logit(beta)

Increment target log probability density with categorical_logit_lpmf(y | beta)
dropping constant additive terms.

Stan Functions
All of the categorical distributions are vectorized so that the outcome y can be a single
integer (type int) or an array of integers (type int[]).

real categorical_lpmf(ints y | vector theta)
The log categorical probability mass function with outcome(s) y in 1 : N given N-vector
of outcome probabilities theta. The parameter theta must have non-negative entries
that sum to one, but it need not be a variable declared as a simplex.

real categorical_logit_lpmf(ints y | vector beta)
The log categorical probability mass function with outcome(s) y in 1 : N given log-odds
of outcomes beta.

int categorical_rng(vector theta)
Generate a categorical variate with N-simplex distribution parameter theta; may only
be used in generated quantities block

int categorical_logit_rng(vector beta)
Generate a categorical variate with outcome in range 1 : N from log-odds vector beta;
may only be used in generated quantities block

12.6. Ordered Logistic Distribution
Probability Mass Function
If K ∈ N with K > 2, c ∈ RK−1 such that ck < ck+1 for k ∈ {1, . . . , K − 2}, and η ∈ R,
then for k ∈ {1, . . . , K},

OrderedLogistic(k | η, c) =


1− logit−1(η− c1) if k = 1,
logit−1(η− ck−1)− logit−1(η− ck) if 1 < k < K, and

logit−1(η− cK−1)− 0 if k = K.

The k = K case is written with the redundant subtraction of zero to illustrate the
parallelism of the cases; the k = 1 and k = K edge cases can be subsumed into
the general definition by setting c0 = −∞ and cK = +∞ with logit−1(−∞) = 0 and
logit−1(∞) = 1.

Sampling Statement
k ~ ordered_logistic(eta, c)

12.7. ORDERED PROBIT DISTRIBUTION 93

Increment target log probability density with ordered_logistic_lpmf(k | eta,
c) dropping constant additive terms.

Stan Functions
real ordered_logistic_lpmf(ints k | vector eta, vectors c)
The log ordered logistic probability mass of k given linear predictors eta, and cutpoints
c.

int ordered_logistic_rng(real eta, vector c)
Generate an ordered logistic variate with linear predictor eta and cutpoints c; may only
be used in generated quantities block

12.7. Ordered Probit Distribution
Probability Mass Function
If K ∈ N with K > 2, c ∈ RK−1 such that ck < ck+1 for k ∈ {1, . . . , K − 2}, and η ∈ R,
then for k ∈ {1, . . . , K},

OrderedProbit(k | η, c) =


1− Φ(η− c1) if k = 1,
Φ(η− ck−1)− Φ(η− ck) if 1 < k < K, and

Φ(η− cK−1)− 0 if k = K.

The k = K case is written with the redundant subtraction of zero to illustrate the
parallelism of the cases; the k = 1 and k = K edge cases can be subsumed into the
general definition by setting c0 = −∞ and cK = +∞ with Φ(−∞) = 0 and Φ(∞) = 1.

Sampling Statement
k ~ ordered_probit(eta, c)

Increment target log probability density with ordered_probit_lpmf(k | eta, c)
dropping constant additive terms.

Stan Functions
real ordered_probit_lpmf(ints k | vector eta, vectors c)
The log ordered probit probability mass of k given linear predictors eta, and cutpoints
c.

int ordered_probit_rng(real eta, vector c)
Generate an ordered probit variate with linear predictor eta and cutpoints c; may only
be used in generated quantities block

13. Unbounded Discrete Distributions

The unbounded discrete distributions have support over the natural numbers (i.e., the
non-negative integers).

13.1. Negative Binomial Distribution
For the negative binomial distribution Stan uses the parameterization described in
Gelman et al. (2013). For alternative parameterizations, see section negative binomial
glm.

Probability Mass Function
If α ∈ R+ and β ∈ R+, then for y ∈ N,

NegBinomial(y | α,β) =
(
y +α− 1
α− 1

) (
β

β+ 1

)α (
1

β+ 1

)y
.

The mean and variance of a random variable y ∼ NegBinomial(α,β) are given by

E[y] = α
β

and Var[Y] = α
β2
(β+ 1).

Sampling Statement
n ~ neg_binomial(alpha, beta)

Increment target log probability density with neg_binomial_lpmf(n | alpha,
beta) dropping constant additive terms.

Stan Functions
real neg_binomial_lpmf(ints n | reals alpha, reals beta)
The log negative binomial probability mass of n given shape alpha and inverse scale
beta

real neg_binomial_cdf(ints n, reals alpha, reals beta)
The negative binomial cumulative distribution function of n given shape alpha and
inverse scale beta

real neg_binomial_lcdf(ints n | reals alpha, reals beta)
The log of the negative binomial cumulative distribution function of n given shape
alpha and inverse scale beta

94

13.2. NEGATIVE BINOMIAL DISTRIBUTION (ALTERNATIVE PARAMETERIZATION) 95

real neg_binomial_lccdf(ints n | reals alpha, reals beta)
The log of the negative binomial complementary cumulative distribution function of n
given shape alpha and inverse scale beta

R neg_binomial_rng(reals alpha, reals beta)
Generate a negative binomial variate with shape alpha and inverse scale beta; may
only be used in generated quantities block. alpha / beta must be less than 229. For a
description of argument and return types, see section vectorized function signatures.

13.2. Negative Binomial Distribution (alternative parameterization)
Stan also provides an alternative parameterization of the negative binomial distribu-
tion directly using a mean (i.e., location) parameter and a parameter that controls
overdispersion relative to the square of the mean. Section combinatorial functions,
below, provides a second alternative parameterization directly in terms of the log
mean.

Probability Mass Function
The first parameterization is for µ ∈ R+ and φ ∈ R+, which for y ∈ N is defined as

NegBinomial2(y |µ,φ) =
(
y +φ− 1

y

) (
µ

µ +φ

)y (
φ

µ +φ

)φ
.

The mean and variance of a random variable y ∼ NegBinomial2(y | µ,φ) are

E[Y] = µ and Var[Y] = µ + µ
2

φ
.

Recall that Poisson(µ) has variance µ, so µ2/φ > 0 is the additional variance of the
negative binomial above that of the Poisson with mean µ. So the inverse of parameter
φ controls the overdispersion, scaled by the square of the mean, µ2.

Sampling Statement
y ~ neg_binomial_2(mu, phi)

Increment target log probability density with neg_binomial_2_lpmf(y | mu, phi)
dropping constant additive terms.

Stan Functions
real neg_binomial_2_lpmf(ints y | reals mu, reals phi)
The negative binomial probability mass of n given location mu and precision phi.

real neg_binomial_2_cdf(ints n, reals mu, reals phi)
The negative binomial cumulative distribution function of n given location mu and
precision phi.

96 CHAPTER 13. UNBOUNDED DISCRETE DISTRIBUTIONS

real neg_binomial_2_lcdf(ints n | reals mu, reals phi)
The log of the negative binomial cumulative distribution function of n given location
mu and precision phi.

real neg_binomial_2_lccdf(ints n | reals mu, reals phi)
The log of the negative binomial complementary cumulative distribution function of n
given location mu and precision phi.

R neg_binomial_2_rng(reals mu, reals phi)
Generate a negative binomial variate with location mu and precision phi; may only be
used in generated quantities block. mu must be less than 229. For a description of
argument and return types, see section vectorized function signatures.

13.3. Negative Binomial Distribution (log alternative parameteriza-
tion)

Related to the parameterization in section negative binomial, alternative parameteriza-
tion, the following parameterization uses a log mean parameter η = log(µ), defined
for η ∈ R, φ ∈ R+, so that for y ∈ N,

NegBinomial2Log(y |η,φ) = NegBinomial2(y| exp(η),φ).

This alternative may be used for sampling, as a function, and for random number
generation, but as of yet, there are no CDFs implemented for it.

Sampling Statement
y ~ neg_binomial_2_log(eta, phi)

Increment target log probability density with neg_binomial_2_log_lpmf(y | eta,
phi) dropping constant additive terms.

Stan Functions
real neg_binomial_2_log_lpmf(ints y | reals eta, reals phi)
The log negative binomial probability mass of n given log-location eta and inverse
overdispersion control phi. This is especially useful for log-linear negative binomial
regressions.

R neg_binomial_2_log_rng(reals eta, reals phi)
Generate a negative binomial variate with log-location eta and inverse overdispersion
control phi; may only be used in generated quantities block. eta must be less than
29 log2. For a description of argument and return types, see section vectorized
function signatures.

13.4. NEGATIVE-BINOMIAL-2-LOG GENERALISED LINEAR MODEL (NEGATIVE BINOMIAL REGRESSION)97

13.4. Negative-Binomial-2-Log Generalised Linear Model (Negative
Binomial Regression)

Stan also supplies a single primitive for a Generalised Linear Model with negative
binomial likelihood and log link function, i.e. a primitive for a negative binomial
regression. This should provide a more efficient implementation of negative binomial
regression than a manually written regression in terms of a negative binomial likelihood
and matrix multiplication.

Probability Mass Function
If x ∈ Rn·m, α ∈ Rn, β ∈ Rm,φ ∈ R+, then for y ∈ Nn,

NegBinomial2LogGLM(y | x,α,β,φ) =
∏
1≤i≤n

NegBinomial2(yi | exp(αi + xi · β),φ).

Sampling Statement
y ~ neg_binomial_2_log_glm(x, alpha, beta, phi)

Increment target log probability density with neg_binomial_2_log_glm_lpmf(y |
x, alpha, beta, phi) dropping constant additive terms.

Stan Functions
real neg_binomial_2_log_glm_lpmf(int[] y | matrix x, real alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha+x*beta and
inverse overdispersion control phi, where a constant intercept alpha and phi is used
for all observations. The number of rows of the independent variable matrix x needs
to match the length of the dependent variable vector y and the number of columns of
x needs to match the length of the weight vector beta.

real neg_binomial_2_log_glm_lpmf(int[] y | matrix x, vector alpha,
vector beta, real phi)
The log negative binomial probability mass of y given log-location alpha+x*beta and
inverse overdispersion control phi, where a constant phi is used for all observations
and an intercept alpha is used that is allowed to vary with the different observations.
The number of rows of the independent variable matrix x needs to match the length
of the dependent variable vector y and alpha and the number of columns of x needs
to match the length of the weight vector beta.

13.5. Poisson Distribution
Probability Mass Function
If λ ∈ R+, then for n ∈ N,

Poisson(n|λ) = 1
n!
λn exp(−λ).

98 CHAPTER 13. UNBOUNDED DISCRETE DISTRIBUTIONS

Sampling Statement
n ~ poisson(lambda)

Increment target log probability density with poisson_lpmf(n | lambda) dropping
constant additive terms.

Stan Functions
real poisson_lpmf(ints n | reals lambda)
The log Poisson probability mass of n given rate lambda

real poisson_cdf(ints n, reals lambda)
The Poisson cumulative distribution function of n given rate lambda

real poisson_lcdf(ints n | reals lambda)
The log of the Poisson cumulative distribution function of n given rate lambda

real poisson_lccdf(ints n | reals lambda)
The log of the Poisson complementary cumulative distribution function of n given rate
lambda

R poisson_rng(reals lambda)
Generate a Poisson variate with rate lambda; may only be used in generated quantities
block. lambda must be less than 230. For a description of argument and return types,
see section vectorized function signatures.

13.6. Poisson Distribution, Log Parameterization
Stan also provides a parameterization of the Poisson using the log rate α = logλ as
a parameter. This is useful for log-linear Poisson regressions so that the predictor
does not need to be exponentiated and passed into the standard Poisson probability
function.

Probability Mass Function
If α ∈ R, then for n ∈ N,

PoissonLog(n|α) = 1
n!

exp
(
nα− exp(α)

)
.

Sampling Statement
n ~ poisson_log(alpha)

Increment target log probability density with poisson_log_lpmf(n | alpha) drop-
ping constant additive terms.

Stan Functions
real poisson_log_lpmf(ints n | reals alpha)
The log Poisson probability mass of n given log rate alpha

13.7. POISSON-LOG GENERALISED LINEAR MODEL (POISSON REGRESSION) 99

R poisson_log_rng(reals alpha)
Generate a Poisson variate with log rate alpha; may only be used in generated quantities
block. alpha must be less than 30 log2. For a description of argument and return
types, see section vectorized function signatures.

13.7. Poisson-Log Generalised Linear Model (Poisson Regression)
Stan also supplies a single primitive for a Generalised Linear Model with poisson
likelihood and log link function, i.e. a primitive for a poisson regression. This should
provide a more efficient implementation of poisson regression than a manually written
regression in terms of a poisson likelihood and matrix multiplication.

Probability Mass Function
If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, then for y ∈ Nn,

PoisonLogGLM(y|x,α,β) =
∏
1≤i≤n

Poisson(yi| exp(αi + xi · β)).

Sampling Statement
y ~ poisson_log_glm(x, alpha, beta)

Increment target log probability density with poisson_log_glm_lpmf(y | x,
alpha, beta) dropping constant additive terms.

Stan Functions
real poisson_log_glm_lpmf(int[] y | matrix x, real alpha, vector
beta)
The log poisson probability mass of y given log-rate alpha+x*beta, where a constant
intercept alpha is used for all observations. The number of rows of the independent
variable matrix x needs to match the length of the dependent variable vector y and the
number of columns of x needs to match the length of the weight vector beta.

real poisson_log_glm_lpmf(int[] y | matrix x, vector alpha, vector
beta)
The log poisson probability mass of y given log-rate alpha+x*beta, where an intercept
alpha is used that is allowed to vary with the different observations. The number of
rows of the independent variable matrix x needs to match the length of the dependent
variable vector y and the number of columns of x needs to match the length of the
weight vector beta.

14. Multivariate Discrete Distributions

The multivariate discrete distributions are over multiple integer values, which are
expressed in Stan as arrays.

14.1. Multinomial Distribution
Probability Mass Function

If K ∈ N, N ∈ N, and θ ∈ K-simplex, then for y ∈ NK such that
∑K
k=1 yk = N,

Multinomial(y|θ) =
(

N
y1, . . . , yK

) K∏
k=1
θykk ,

where the multinomial coefficient is defined by(
N

y1, . . . , yk

)
= N!∏K

k=1 yk!
.

Sampling Statement
y ~ multinomial(theta)

Increment target log probability density with multinomial_lpmf(y | theta) drop-
ping constant additive terms.

Stan Functions
real multinomial_lpmf(int[] y | vector theta)
The log multinomial probability mass function with outcome array y of size K given
the K-simplex distribution parameter theta and (implicit) total count N = sum(y)

int[] multinomial_rng(vector theta, int N)
Generate a multinomial variate with simplex distribution parameter theta and total
count N; may only be used in generated quantities block

100

Continuous Distributions

101

15. Unbounded Continuous Distributions

The unbounded univariate continuous probability distributions have support on all
real numbers.

15.1. Normal Distribution
Probability Density Function
If µ ∈ R and σ ∈ R+, then for y ∈ R,

Normal(y|µ,σ) = 1√
2π σ

exp

(
− 1
2

(
y − µ
σ

)2)
.

Sampling Statement
y ~ normal(mu, sigma)

Increment target log probability density with normal_lpdf(y | mu, sigma) drop-
ping constant additive terms.

Stan Functions
real normal_lpdf(reals y | reals mu, reals sigma)
The log of the normal density of y given location mu and scale sigma

real normal_cdf(reals y, reals mu, reals sigma)
The cumulative normal distribution of y given location mu and scale sigma; normal_cdf
will underflow to 0 for y−µ

σ below -37.5 and overflow to 1 for y−µ
σ above 8.25; the

function Phi_approx is more robust in the tails, but must be scaled and translated
for anything other than a standard normal.

real normal_lcdf(reals y | reals mu, reals sigma)
The log of the cumulative normal distribution of y given location mu and scale sigma;
normal_lcdf will underflow to −∞ for y−µ

σ below -37.5 and overflow to 0 for y−µ
σ above

8.25; see above for discussion of Phi_approx as an alternative.

real normal_lccdf(reals y | reals mu, reals sigma)
The log of the complementary cumulative normal distribution of y given location mu
and scale sigma; normal_lccdf will overflow to 0 for y−µ

σ below -37.5 and underflow to
−∞ for y−µ

σ above 8.25; see above for discussion of Phi_approx as an alternative.

R normal_rng(reals mu, reals sigma)
Generate a normal variate with location mu and scale sigma; may only be used in

102

15.2. NORMAL-ID GENERALISED LINEAR MODEL (LINEAR REGRESSION) 103

generated quantities block. For a description of argument and return types, see section
vectorized PRNG functions.

Standard Normal Distribution
The standard normal distribution is so-called because its parameters are the units
for their respective operations—the location (mean) is zero and the scale (standard
deviation) one. The standard normal is parameter free and the unit parameters allow
considerable simplification of the expression for the density.

StdNormal(y) = Normal(y | 0,1) = 1√
2π

exp

(
−y2
2

)
.

Up to a proportion on the log scale, where Stan computes,

log Normal(y | 0,1) = −y2
2
+ const.

With no logarithm, no subtraction, and no division by a parameter, the standard
normal log density is much more efficient to compute than the normal log density
with constant location 0 and scale 1.

Stan Functions
Only the log probabilty density function is available for the standard normal distri-
bution; for other functions, use the normal_ versions with parameters µ = 0 and
σ = 1.

real std_normal_lpdf(reals y)
The standard normal (location zero, scale one) log probability density of y.

Sampling Statement
y ~ std_normal(\pitemTwo{y)

Increment target log probability density with std_normal_lpdf(y | \pitemTwo{y)
dropping constant additive terms.

15.2. Normal-Id Generalised Linear Model (Linear Regression)
Stan also supplies a single primitive for a Generalised Linear Model with normal
likelihood and identity link function, i.e. a primitive for a linear regression. This
should provide a more efficient implementation of linear regression than a manually
written regression in terms of a normal likelihood and matrix multiplication.

Probability Mass Function
If x ∈ Rn·m, α ∈ Rn, β ∈ Rm, σ ∈ R+, then for y ∈ Rn,

NormalIdGLM(y|x,α,β,σ) =
∏
1≤i≤n

Normal(yi|αi + xi · β,σ).

104 CHAPTER 15. UNBOUNDED CONTINUOUS DISTRIBUTIONS

Sampling Statement
y ~ normal_id_glm(x, alpha, beta, sigma)

Increment target log probability density with normal_id_glm_lpmf(y | x, alpha,
beta, sigma) dropping constant additive terms.

Stan Functions
real normal_id_glm_lpmf(vector y | matrix x, real alpha, vector beta,
real sigma)
The log normal probability density of y given location alpha+x*beta and scale sigma,
where a constant intercept alpha and sigma is used for all observations. The number
of rows of the independent variable matrix x needs to match the length of the depen-
dent variable vector y and the number of columns of x needs to match the length of
the weight vector beta.

real normal_id_glm_lpmf(vector y | matrix x, vector alpha, vector
beta, real sigma)
The log normal probability density of y given location alpha+x*beta and scale sigma,
where a constant sigma is used for all observations and an intercept alpha is used
that is allowed to vary with the different observations. The number of rows of the
independent variable matrix x needs to match the length of the dependent variable
vector y and the number of columns of x needs to match the length of the weight
vector beta.

15.3. Exponentially Modified Normal Distribution
Probability Density Function
If µ ∈ R, σ ∈ R+, and λ ∈ R+, then for y ∈ R,

ExpModNormal(y|µ,σ , λ) = λ
2

exp
(
λ
2

(
2µ + λσ 2 − 2y

))
erfc

(
µ + λσ 2 − y√

2σ

)
.

Sampling Statement
y ~ exp_mod_normal(mu, sigma, lambda)

Increment target log probability density with exp_mod_normal_lpdf(y | mu,
sigma, lambda) dropping constant additive terms.

Stan Functions
real exp_mod_normal_lpdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal density of y given location mu, scale
sigma, and shape lambda

15.4. SKEW NORMAL DISTRIBUTION 105

real exp_mod_normal_cdf(reals y, reals mu, reals sigma, reals lambda)
The exponentially modified normal cumulative distribution function of y given location
mu, scale sigma, and shape lambda

real exp_mod_normal_lcdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal cumulative distribution function of y
given location mu, scale sigma, and shape lambda

real exp_mod_normal_lccdf(reals y | reals mu, reals sigma, reals
lambda)
The log of the exponentially modified normal complementary cumulative distribution
function of y given location mu, scale sigma, and shape lambda

R exp_mod_normal_rng(reals mu, reals sigma, reals lambda)
Generate a exponentially modified normal variate with location mu, scale sigma, and
shape lambda; may only be used in generated quantities block. For a description of
argument and return types, see section vectorized PRNG functions.

15.4. Skew Normal Distribution
Probability Density Function
If ξ ∈ R, ω ∈ R+, and α ∈ R, then for y ∈ R,

SkewNormal(y | ξ,ω,α) = 1
ω
√
2π

exp

(
− 1
2

(
y − ξ
ω

)2) (
1+ erf

(
α
(
y − ξ
ω
√
2

)))
.

Sampling Statement
y ~ skew_normal(xi, omega, alpha)

Increment target log probability density with skew_normal_lpdf(y | xi, omega,
alpha) dropping constant additive terms.

Stan Functions
real skew_normal_lpdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal density of y given location xi, scale omega, and shape alpha

real skew_normal_cdf(reals y, reals xi, reals omega, reals alpha)
The skew normal distribution function of y given location xi, scale omega, and shape
alpha

real skew_normal_lcdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal cumulative distribution function of y given location xi,
scale omega, and shape alpha

106 CHAPTER 15. UNBOUNDED CONTINUOUS DISTRIBUTIONS

real skew_normal_lccdf(reals y | reals xi, reals omega, reals alpha)
The log of the skew normal complementary cumulative distribution function of y given
location xi, scale omega, and shape alpha

R skew_normal_rng(reals xi, reals omega, real alpha)
Generate a skew normal variate with location xi, scale omega, and shape alpha; may
only be used in generated quantities block. For a description of argument and return
types, see section vectorized PRNG functions.

15.5. Student-T Distribution
Probability Density Function
If ν ∈ R+, µ ∈ R, and σ ∈ R+, then for y ∈ R,

StudentT(y|ν, µ,σ) = Γ ((ν + 1)/2)
Γ(ν/2)

1√
νπ σ

(
1+ 1

ν

(
y − µ
σ

)2)−(ν+1)/2
.

Sampling Statement
y ~ student_t(nu, mu, sigma)

Increment target log probability density with student_t_lpdf(y | nu, mu,
sigma) dropping constant additive terms.

Stan Functions
real student_t_lpdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t density of y given degrees of freedom nu, location mu, and
scale sigma

real student_t_cdf(reals y, reals nu, reals mu, reals sigma)
The Student-t cumulative distribution function of y given degrees of freedom nu,
location mu, and scale sigma

real student_t_lcdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t cumulative distribution function of y given degrees of freedom
nu, location mu, and scale sigma

real student_t_lccdf(reals y | reals nu, reals mu, reals sigma)
The log of the Student-t complementary cumulative distribution function of y given
degrees of freedom nu, location mu, and scale sigma

R student_t_rng(reals nu, reals mu, reals sigma)
Generate a Student-t variate with degrees of freedom nu, location mu, and scale sigma;
may only be used in generated quantities block. For a description of argument and
return types, see section vectorized PRNG functions.

15.6. CAUCHY DISTRIBUTION 107

15.6. Cauchy Distribution
Probability Density Function
If µ ∈ R and σ ∈ R+, then for y ∈ R,

Cauchy(y|µ,σ) = 1
πσ

1
1+ ((y − µ)/σ)2

.

Sampling Statement
y ~ cauchy(mu, sigma)

Increment target log probability density with cauchy_lpdf(y | mu, sigma) drop-
ping constant additive terms.

Stan Functions
real cauchy_lpdf(reals y | reals mu, reals sigma)
The log of the Cauchy density of y given location mu and scale sigma

real cauchy_cdf(reals y, reals mu, reals sigma)
The Cauchy cumulative distribution function of y given location mu and scale sigma

real cauchy_lcdf(reals y | reals mu, reals sigma)
The log of the Cauchy cumulative distribution function of y given location mu and
scale sigma

real cauchy_lccdf(reals y | reals mu, reals sigma)
The log of the Cauchy complementary cumulative distribution function of y given
location mu and scale sigma

R cauchy_rng(reals mu, reals sigma)
Generate a Cauchy variate with location mu and scale sigma; may only be used in
generated quantities block. For a description of argument and return types, see section
vectorized PRNG functions.

15.7. Double Exponential (Laplace) Distribution
Probability Density Function
If µ ∈ R and σ ∈ R+, then for y ∈ R,

DoubleExponential(y|µ,σ) = 1
2σ

exp
(
− |y − µ|

σ

)
.

Note that the double exponential distribution is parameterized in terms of the scale, in
contrast to the exponential distribution (see section exponential distribution), which is
parameterized in terms of inverse scale.

108 CHAPTER 15. UNBOUNDED CONTINUOUS DISTRIBUTIONS

The double-exponential distribution can be defined as a compound exponential-normal
distribution. Specifically, if

α ∼ Exponential
(
1
λ

)
and

β ∼ Normal(µ,α),

then
β ∼ DoubleExponential(µ, λ).

This may be used to code a non-centered parameterization by taking

βraw ∼ Normal(0,1)

and defining
β = µ +αβraw.

Sampling Statement
y ~ double_exponential(mu, sigma)

Increment target log probability density with double_exponential_lpdf(y | mu,
sigma) dropping constant additive terms.

Stan Functions
real double_exponential_lpdf(reals y | reals mu, reals sigma)
The log of the double exponential density of y given location mu and scale sigma

real double_exponential_cdf(reals y, reals mu, reals sigma)
The double exponential cumulative distribution function of y given location mu and
scale sigma

real double_exponential_lcdf(reals y | reals mu, reals sigma)
The log of the double exponential cumulative distribution function of y given location
mu and scale sigma

real double_exponential_lccdf(reals y | reals mu, reals sigma)
The log of the double exponential complementary cumulative distribution function of
y given location mu and scale sigma

R double_exponential_rng(reals mu, reals sigma)
Generate a double exponential variate with location mu and scale sigma; may only be
used in generated quantities block. For a description of argument and return types,
see section vectorized PRNG functions.

15.8. LOGISTIC DISTRIBUTION 109

15.8. Logistic Distribution
Probability Density Function
If µ ∈ R and σ ∈ R+, then for y ∈ R,

Logistic(y|µ,σ) = 1
σ

exp
(
− y − µ

σ

) (
1+ exp

(
− y − µ

σ

))−2
.

Sampling Statement
y ~ logistic(mu, sigma)

Increment target log probability density with logistic_lpdf(y | mu, sigma)
dropping constant additive terms.

Stan Functions
real logistic_lpdf(reals y | reals mu, reals sigma)
The log of the logistic density of y given location mu and scale sigma

real logistic_cdf(reals y, reals mu, reals sigma)
The logistic cumulative distribution function of y given location mu and scale sigma

real logistic_lcdf(reals y | reals mu, reals sigma)
The log of the logistic cumulative distribution function of y given location mu and
scale sigma

real logistic_lccdf(reals y | reals mu, reals sigma)
The log of the logistic complementary cumulative distribution function of y given
location mu and scale sigma

R logistic_rng(reals mu, reals sigma)
Generate a logistic variate with location mu and scale sigma; may only be used in
generated quantities block. For a description of argument and return types, see section
vectorized PRNG functions.

15.9. Gumbel Distribution
Probability Density Function
If µ ∈ R and β ∈ R+, then for y ∈ R,

Gumbel(y|µ,β) = 1
β

exp

(
−y − µ

β
− exp

(
−y − µ

β

))
.

Sampling Statement
y ~ gumbel(mu, beta)

Increment target log probability density with gumbel_lpdf(y | mu, beta) drop-
ping constant additive terms.

110 CHAPTER 15. UNBOUNDED CONTINUOUS DISTRIBUTIONS

Stan Functions
real gumbel_lpdf(reals y | reals mu, reals beta)
The log of the gumbel density of y given location mu and scale beta

real gumbel_cdf(reals y, reals mu, reals beta)
The gumbel cumulative distribution function of y given location mu and scale beta

real gumbel_lcdf(reals y | reals mu, reals beta)
The log of the gumbel cumulative distribution function of y given location mu and
scale beta

real gumbel_lccdf(reals y | reals mu, reals beta)
The log of the gumbel complementary cumulative distribution function of y given
location mu and scale beta

R gumbel_rng(reals mu, reals beta)
Generate a gumbel variate with location mu and scale beta; may only be used in
generated quantities block. For a description of argument and return types, see section
vectorized PRNG functions.

16. Positive Continuous Distributions

The positive continuous probability functions have support on the positive real num-
bers.

16.1. Lognormal Distribution
Probability Density Function
If µ ∈ R and σ ∈ R+, then for y ∈ R+,

LogNormal(y|µ,σ) = 1√
2π σ

1
y

exp

(
− 1
2

(
logy − µ
σ

)2)
.

Sampling Statement
y ~ lognormal(mu, sigma)

Increment target log probability density with lognormal_lpdf(y | mu, sigma)
dropping constant additive terms.

Stan Functions
real lognormal_lpdf(reals y | reals mu, reals sigma)
The log of the lognormal density of y given location mu and scale sigma

real lognormal_cdf(reals y, reals mu, reals sigma)
The cumulative lognormal distribution function of y given location mu and scale sigma

real lognormal_lcdf(reals y | reals mu, reals sigma)
The log of the lognormal cumulative distribution function of y given location mu and
scale sigma

real lognormal_lccdf(reals y | reals mu, reals sigma)
The log of the lognormal complementary cumulative distribution function of y given
location mu and scale sigma

R lognormal_rng(reals mu, reals beta)
Generate a lognormal variate with location mu and scale sigma; may only be used
in generated quantities block. For a description of argument and return types, see
section vectorized PRNG functions.

111

112 CHAPTER 16. POSITIVE CONTINUOUS DISTRIBUTIONS

16.2. Chi-Square Distribution
Probability Density Function
If ν ∈ R+, then for y ∈ R+,

ChiSquare(y|ν) = 2−ν/2

Γ(ν/2)
yν/2−1 exp

(
− 1
2
y
)
.

Sampling Statement
y ~ chi_square(nu)

Increment target log probability density with chi_square_lpdf(y | nu) dropping
constant additive terms.

Stan Functions
real chi_square_lpdf(reals y | reals nu)
The log of the Chi-square density of y given degrees of freedom nu

real chi_square_cdf(reals y, reals nu)
The Chi-square cumulative distribution function of y given degrees of freedom nu

real chi_square_lcdf(reals y | reals nu)
The log of the Chi-square cumulative distribution function of y given degrees of
freedom nu

real chi_square_lccdf(reals y | reals nu)
The log of the complementary Chi-square cumulative distribution function of y given
degrees of freedom nu

R chi_square_rng(reals nu)
Generate a Chi-square variate with degrees of freedom nu; may only be used in
generated quantities block. For a description of argument and return types, see section
vectorized PRNG functions.

16.3. Inverse Chi-Square Distribution
Probability Density Function
If ν ∈ R+, then for y ∈ R+,

InvChiSquare(y |ν) = 2−ν/2

Γ(ν/2)
y−ν/2−1 exp

(
− 1
2
1
y

)
.

Sampling Statement
y ~ inv_chi_square(nu)

Increment target log probability density with inv_chi_square_lpdf(y | nu) drop-
ping constant additive terms.

16.4. SCALED INVERSE CHI-SQUARE DISTRIBUTION 113

Stan Functions
real inv_chi_square_lpdf(reals y | reals nu)
The log of the inverse Chi-square density of y given degrees of freedom nu

real inv_chi_square_cdf(reals y, reals nu)
The inverse Chi-squared cumulative distribution function of y given degrees of freedom
nu

real inv_chi_square_lcdf(reals y | reals nu)
The log of the inverse Chi-squared cumulative distribution function of y given degrees
of freedom nu

real inv_chi_square_lccdf(reals y | reals nu)
The log of the inverse Chi-squared complementary cumulative distribution function of
y given degrees of freedom nu

R inv_chi_square_rng(reals nu)
Generate an inverse Chi-squared variate with degrees of freedom nu; may only be used
in generated quantities block. For a description of argument and return types, see
section vectorized PRNG functions.

16.4. Scaled Inverse Chi-Square Distribution
Probability Density Function
If ν ∈ R+ and σ ∈ R+, then for y ∈ R+,

ScaledInvChiSquare(y|ν,σ) = (ν/2)
ν/2

Γ(ν/2)
σ ν y−(ν/2+1) exp

(
− 1
2
ν σ 2

1
y

)
.

Sampling Statement
y ~ scaled_inv_chi_square(nu, sigma)

Increment target log probability density with scaled_inv_chi_square_lpdf(y |
nu, sigma) dropping constant additive terms.

Stan Functions
real scaled_inv_chi_square_lpdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square density of y given degrees of freedom nu and
scale sigma

real scaled_inv_chi_square_cdf(reals y, reals nu, reals sigma)
The scaled inverse Chi-square cumulative distribution function of y given degrees of
freedom nu and scale sigma

real scaled_inv_chi_square_lcdf(reals y | reals nu, reals sigma)

114 CHAPTER 16. POSITIVE CONTINUOUS DISTRIBUTIONS

The log of the scaled inverse Chi-square cumulative distribution function of y given
degrees of freedom nu and scale sigma

real scaled_inv_chi_square_lccdf(reals y | reals nu, reals sigma)
The log of the scaled inverse Chi-square complementary cumulative distribution
function of y given degrees of freedom nu and scale sigma

R scaled_inv_chi_square_rng(reals nu, reals sigma)
Generate a scaled inverse Chi-squared variate with degrees of freedom nu and scale
sigma; may only be used in generated quantities block. For a description of argument
and return types, see section vectorized PRNG functions.

16.5. Exponential Distribution
Probability Density Function
If β ∈ R+, then for y ∈ R+,

Exponential(y|β) = β exp(−βy).

Sampling Statement
y ~ exponential(beta)

Increment target log probability density with exponential_lpdf(y | beta) drop-
ping constant additive terms.

Stan Functions
real exponential_lpdf(reals y | reals beta)
The log of the exponential density of y given inverse scale beta

real exponential_cdf(reals y, reals beta)
The exponential cumulative distribution function of y given inverse scale beta

real exponential_lcdf(reals y | reals beta)
The log of the exponential cumulative distribution function of y given inverse scale
beta

real exponential_lccdf(reals y | reals beta)
The log of the exponential complementary cumulative distribution function of y given
inverse scale beta

R exponential_rng(reals beta)
Generate an exponential variate with inverse scale beta; may only be used in generated
quantities block. For a description of argument and return types, see section vectorized
PRNG functions.

16.6. GAMMA DISTRIBUTION 115

16.6. Gamma Distribution
Probability Density Function
If α ∈ R+ and β ∈ R+, then for y ∈ R+,

Gamma(y|α,β) = βα

Γ(α)
yα−1 exp(−βy).

Sampling Statement
y ~ gamma(alpha, beta)

Increment target log probability density with gamma_lpdf(y | alpha, beta) drop-
ping constant additive terms.

Stan Functions
real gamma_lpdf(reals y | reals alpha, reals beta)
The log of the gamma density of y given shape alpha and inverse scale beta

real gamma_cdf(reals y, reals alpha, reals beta)
The cumulative gamma distribution function of y given shape alpha and inverse scale
beta

real gamma_lcdf(reals y | reals alpha, reals beta)
The log of the cumulative gamma distribution function of y given shape alpha and
inverse scale beta

real gamma_lccdf(reals y | reals alpha, reals beta)
The log of the complementary cumulative gamma distribution function of y given
shape alpha and inverse scale beta

R gamma_rng(reals alpha, reals beta)
Generate a gamma variate with shape alpha and inverse scale beta; may only be used
in generated quantities block. For a description of argument and return types, see
section vectorized PRNG functions.

16.7. Inverse Gamma Distribution
Probability Density Function
If α ∈ R+ and β ∈ R+, then for y ∈ R+,

InvGamma(y|α,β) = βα

Γ(α)
y−(α+1) exp

(
−β 1
y

)
.

Sampling Statement
y ~ inv_gamma(alpha, beta)

116 CHAPTER 16. POSITIVE CONTINUOUS DISTRIBUTIONS

Increment target log probability density with inv_gamma_lpdf(y | alpha, beta)
dropping constant additive terms.

Stan Functions
real inv_gamma_lpdf(reals y | reals alpha, reals beta)
The log of the inverse gamma density of y given shape alpha and scale beta

real inv_gamma_cdf(reals y, reals alpha, reals beta)
The inverse gamma cumulative distribution function of y given shape alpha and scale
beta

real inv_gamma_lcdf(reals y | reals alpha, reals beta)
The log of the inverse gamma cumulative distribution function of y given shape alpha
and scale beta

real inv_gamma_lccdf(reals y | reals alpha, reals beta)
The log of the inverse gamma complementary cumulative distribution function of y
given shape alpha and scale beta

R inv_gamma_rng(reals alpha, reals beta)
Generate an inverse gamma variate with shape alpha and scale beta; may only be used
in generated quantities block. For a description of argument and return types, see
section vectorized PRNG functions.

16.8. Weibull Distribution
Probability Density Function
If α ∈ R+ and σ ∈ R+, then for y ∈ [0,∞),

Weibull(y|α,σ) = α
σ

(
y
σ

)α−1
exp

(
−
(
y
σ

)α)
.

Note that if Y ∝ Weibull(α,σ), then Y−1 ∝ Frechet(α,σ−1).

Sampling Statement
y ~ weibull(alpha, sigma)

Increment target log probability density with weibull_lpdf(y | alpha, sigma)
dropping constant additive terms.

Stan Functions
real weibull_lpdf(reals y | reals alpha, reals sigma)
The log of the Weibull density of y given shape alpha and scale sigma

real weibull_cdf(reals y, reals alpha, reals sigma)
The Weibull cumulative distribution function of y given shape alpha and scale sigma

16.9. FRECHET DISTRIBUTION 117

real weibull_lcdf(reals y | reals alpha, reals sigma)
The log of the Weibull cumulative distribution function of y given shape alpha and
scale sigma

real weibull_lccdf(reals y | reals alpha, reals sigma)
The log of the Weibull complementary cumulative distribution function of y given
shape alpha and scale sigma

R weibull_rng(reals alpha, reals sigma)
Generate a weibull variate with shape alpha and scale sigma; may only be used in
generated quantities block. For a description of argument and return types, see section
vectorized PRNG functions.

16.9. Frechet Distribution
Probability Density Function
If α ∈ R+ and σ ∈ R+, then for y ∈ R+,

Frechet(y|α,σ) = α
σ

(
y
σ

)−α−1
exp

(
−
(
y
σ

)−α)
.

Note that if Y ∝ Frechet(α,σ), then Y−1 ∝ Weibull(α,σ−1).

Sampling Statement
y ~ frechet(alpha, sigma)

Increment target log probability density with frechet_lpdf(y | alpha, sigma)
dropping constant additive terms.

Stan Functions
real frechet_lpdf(reals y | reals alpha, reals sigma)
The log of the Frechet density of y given shape alpha and scale sigma

real frechet_cdf(reals y, reals alpha, reals sigma)
The Frechet cumulative distribution function of y given shape alpha and scale sigma

real frechet_lcdf(reals y | reals alpha, reals sigma)
The log of the Frechet cumulative distribution function of y given shape alpha and
scale sigma

real frechet_lccdf(reals y | reals alpha, reals sigma)
The log of the Frechet complementary cumulative distribution function of y given
shape alpha and scale sigma

R frechet_rng(reals alpha, reals sigma)
Generate an Frechet variate with shape alpha and scale sigma; may only be used in

118 CHAPTER 16. POSITIVE CONTINUOUS DISTRIBUTIONS

generated quantities block. For a description of argument and return types, see section
vectorized PRNG functions.

17. Non-negative Continuous Distributions

The non-negative continuous probability functions have support on the non-negative
real numbers.

17.1. Rayleigh Distribution
Probability Density Function
If σ ∈ R+, then for y ∈ [0,∞),

Rayleigh(y|σ) = y
σ 2

exp(−y2/2σ 2).

Sampling Statement
y ~ rayleigh(sigma)

Increment target log probability density with rayleigh_lpdf(y | sigma) dropping
constant additive terms.

Stan Functions
real rayleigh_lpdf(reals y | reals sigma)
The log of the Rayleigh density of y given scale sigma

real rayleigh_cdf(real y, real sigma)
The Rayleigh cumulative distribution of y given scale sigma

real rayleigh_lcdf(real y | real sigma)
The log of the Rayleigh cumulative distribution of y given scale sigma

real rayleigh_lccdf(real y | real sigma)
The log of the Rayleigh complementary cumulative distribution of y given scale sigma

R rayleigh_rng(reals sigma)
Generate a Rayleigh variate with scale sigma; may only be used in generated quantities
block. For a description of argument and return types, see section vectorized PRNG
functions.

17.2. Wiener First Passage Time Distribution
Probability Density Function
If α ∈ R+, τ ∈ R+, β ∈ [0,1] and δ ∈ R, then for y > τ ,

Wiener(y|α,τ,β, δ) = α3

(y − τ)3/2 exp

(
−δαβ− δ

2(y − τ)
2

) ∞∑
k=−∞

(2k+β)φ
(
2kα+ β√
y − τ

)

119

120 CHAPTER 17. NON-NEGATIVE CONTINUOUS DISTRIBUTIONS

where φ(x) denotes the standard normal density function; see (Feller 1968), (Navarro
and Fuss 2009).

Sampling Statement
y ~ wiener(alpha, tau, beta, delta)

Increment target log probability density with wiener_lpdf(y | alpha, tau,
beta, delta) dropping constant additive terms.

Stan Functions
real wiener_lpdf(reals y | reals alpha, reals tau, reals beta, reals
delta)
The log of the Wiener first passage time density of y given boundary separation alpha,
non-decision time tau, a-priori bias beta and drift rate delta

Boundaries
Stan returns the first passage time of the accumulation process over the upper bound-
ary only. To get the result for the lower boundary, use

wiener(y|α,τ,1− β,−δ)

For more details, see the appendix of Vandekerckhove and Wabersich (2014).

18. Positive Lower-Bounded Probabilities

The positive lower-bounded probabilities have support on real values above some
positive minimum value.

18.1. Pareto Distribution
Probability Density Function
If ymin ∈ R+ and α ∈ R+, then for y ∈ R+ with y ≥ ymin,

Pareto(y|ymin, α) =
αyαmin

yα+1
.

Sampling Statement
y ~ pareto(y_min, alpha)

Increment target log probability density with pareto_lpdf(y | y_min, alpha)
dropping constant additive terms.

Stan Functions
real pareto_lpdf(reals y | reals y_min, reals alpha)
The log of the Pareto density of y given positive minimum value y_min and shape
alpha

real pareto_cdf(reals y, reals y_min, reals alpha)
The Pareto cumulative distribution function of y given positive minimum value y_min
and shape alpha

real pareto_lcdf(reals y | reals y_min, reals alpha)
The log of the Pareto cumulative distribution function of y given positive minimum
value y_min and shape alpha

real pareto_lccdf(reals y | reals y_min, reals alpha)
The log of the Pareto complementary cumulative distribution function of y given
positive minimum value y_min and shape alpha

R pareto_rng(reals y_min, reals alpha)
Generate a Pareto variate with positive minimum value y_min and shape alpha; may
only be used in generated quantities block. For a description of argument and return
types, see section vectorized PRNG functions.

121

122 CHAPTER 18. POSITIVE LOWER-BOUNDED PROBABILITIES

18.2. Pareto Type 2 Distribution
Probability Density Function
If µ ∈ R, λ ∈ R+, and α ∈ R+, then for y ≥ µ,

Pareto_Type_2(y|µ,λ,α) = α
λ

(
1+ y − µ

λ

)−(α+1)
.

Note that the Lomax distribution is a Pareto Type 2 distribution with µ = 0.

Sampling Statement
y ~ pareto_type_2(mu, lambda, alpha)

Increment target log probability density with pareto_type_2_lpdf(y | mu,
lambda, alpha) dropping constant additive terms.

Stan Functions
real pareto_type_2_lpdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 density of y given location mu, scale lambda, and shape
alpha

real pareto_type_2_cdf(reals y, reals mu, reals lambda, reals alpha)
The Pareto Type 2 cumulative distribution function of y given location mu, scale
lambda, and shape alpha

real pareto_type_2_lcdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 cumulative distribution function of y given location mu,
scale lambda, and shape alpha

real pareto_type_2_lccdf(reals y | reals mu, reals lambda, reals
alpha)
The log of the Pareto Type 2 complementary cumulative distribution function of y
given location mu, scale lambda, and shape alpha

R pareto_type_2_rng(reals mu, reals lambda, reals alpha)
Generate a Pareto Type 2 variate with location mu, scale lambda, and shape alpha; may
only be used in generated quantities block. For a description of argument and return
types, see section vectorized PRNG functions.

19. Continuous Distributions on [0, 1]

The continuous distributions with outcomes in the interval [0,1] are used to charac-
terized bounded quantities, including probabilities.

19.1. Beta Distribution
Probability Density Function
If α ∈ R+ and β ∈ R+, then for θ ∈ (0,1),

Beta(θ|α,β) = 1
B(α,β)

θα−1 (1− θ)β−1,

where the beta function B() is as defined in section combinatorial functions.

Warning: If θ = 0 or θ = 1, then the probability is 0 and the log probability is −∞.
Similarly, the distribution requires strictly positive parameters, α,β > 0.

Sampling Statement
theta ~ beta(alpha, beta)

Increment target log probability density with beta_lpdf(theta | alpha, beta)
dropping constant additive terms.

Stan Functions
real beta_lpdf(reals theta | reals alpha, reals beta)
The log of the beta density of theta in [0,1] given positive prior successes (plus one)
alpha and prior failures (plus one) beta

real beta_cdf(reals theta, reals alpha, reals beta)
The beta cumulative distribution function of theta in [0,1] given positive prior
successes (plus one) alpha and prior failures (plus one) beta

real beta_lcdf(reals theta | reals alpha, reals beta)
The log of the beta cumulative distribution function of theta in [0,1] given positive
prior successes (plus one) alpha and prior failures (plus one) beta

real beta_lccdf(reals theta | reals alpha, reals beta)
The log of the beta complementary cumulative distribution function of theta in [0,1]
given positive prior successes (plus one) alpha and prior failures (plus one) beta

R beta_rng(reals alpha, reals beta)
Generate a beta variate with positive prior successes (plus one) alpha and prior failures

123

124 CHAPTER 19. CONTINUOUS DISTRIBUTIONS ON [0, 1]

(plus one) beta; may only be used in generated quantities block. For a description of
argument and return types, see section vectorized PRNG functions.

19.2. Beta Proportion Distribution
Probability Density Function
If µ ∈ (0,1) and κ ∈ R+, then for θ ∈ (0,1),

Beta_Proportion(θ|µ, κ) = 1
B(µκ, (1− µ)κ) θ

µκ−1 (1− θ)(1−µ)κ−1,

where the beta function B() is as defined in section combinatorial functions.

Warning: If θ = 0 or θ = 1, then the probability is 0 and the log probability is −∞.
Similarly, the distribution requires µ ∈ (0,1) and strictly positive parameter, κ > 0.

Sampling Statement
theta ~ beta_proportion(mu, kappa)

Increment target log probability density with beta_proportion_lpdf(theta | mu,
kappa) dropping constant additive terms.

Stan Functions
real beta_proportion_lpdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion density of theta in (0,1) given mean mu and precision
kappa

real beta_proportion_lcdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion cumulative distribution function of theta in (0,1)
given mean mu and precision kappa

real beta_proportion_lccdf(reals theta | reals mu, reals kappa)
The log of the beta_proportion complementary cumulative distribution function of
theta in (0,1) given mean mu and precision kappa

R beta_proportion_rng(reals mu, reals kappa)
Generate a beta_proportion variate with mean mu and precision kappa; may only be
used in generated quantities block. For a description of argument and return types,
see section vectorized PRNG functions.

20. Circular Distributions

Circular distributions are defined for finite values y in any interval of length 2π .

20.1. Von Mises Distribution
Probability Density Function
If µ ∈ R and κ ∈ R+, then for y ∈ R,

VonMises(y|µ, κ) = exp(κ cos(y − µ))
2πI0(κ)

.

In order for this density to properly normalize, y must be restricted to some interval
(c, c + 2π) of length 2π , because∫ c+2π

c
VonMises(y|µ, κ)dy = 1.

Similarly, if µ is a parameter, it will typically be restricted to the same range as y .

A von Mises distribution with its 2π interval of support centered around its location µ
will have a single mode at µ; for example, restricting y to (−π,π) and taking µ = 0
leads to a single local optimum at the model µ. If the location µ is not in the center
of the support, the density is circularly translated and there will be a second local
maximum at the boundary furthest from the mode. Ideally, the parameterization and
support will be set up so that the bulk of the probability mass is in a continuous
interval around the mean µ.

Sampling Statement
y ~ von_mises(mu, kappa)

Increment target log probability density with von_mises_lpdf(y | mu, kappa)
dropping constant additive terms.

Stan Functions
R von_mises_lpdf(reals y | reals mu, reals kappa)
The log of the von mises density of y given location mu and scale kappa. For a
description of argument and return types, see section vectorized function signatures.

R von_mises_rng(reals mu, reals kappa)
Generate a Von Mises variate with location mu and scale kappa (i.e. returns values
in the interval [(µ mod 2π)−π, (µ mod 2π)+π]); may only be used in generated
quantities block. For a description of argument and return types, see section vectorized
PRNG functions.

125

126 CHAPTER 20. CIRCULAR DISTRIBUTIONS

Numerical Stability
Evaluating the Von Mises distribution for κ > 100 is numerically unstable in the
current implementation. Nathanael I.
Lichti suggested the following workaround on the Stan users group, based on the fact
that as κ →∞,

VonMises(y|µ, κ)→ Normal(µ,
√
1/κ).

The workaround is to replace y ~ von_mises(mu,kappa) with

if (kappa < 100)
y ~ von_mises(mu, kappa);

else
y ~ normal(mu, sqrt(1 / kappa));

21. Bounded Continuous Probabilities

The bounded continuous probabilities have support on a finite interval of real numbers.

21.1. Uniform Distribution
Probability Density Function
If α ∈ R and β ∈ (α,∞), then for y ∈ [α,β],

Uniform(y|α,β) = 1
β−α.

Sampling Statement
y ~ uniform(alpha, beta)

Increment target log probability density with uniform_lpdf(y | alpha, beta)
dropping constant additive terms.

Stan Functions
real uniform_lpdf(reals y | reals alpha, reals beta)
The log of the uniform density of y given lower bound alpha and upper bound beta

real uniform_cdf(reals y, reals alpha, reals beta)
The uniform cumulative distribution function of y given lower bound alpha and upper
bound beta

real uniform_lcdf(reals y | reals alpha, reals beta)
The log of the uniform cumulative distribution function of y given lower bound alpha
and upper bound beta

real uniform_lccdf(reals y | reals alpha, reals beta)
The log of the uniform complementary cumulative distribution function of y given
lower bound alpha and upper bound beta

R uniform_rng(reals alpha, reals beta)
Generate a uniform variate with lower bound alpha and upper bound beta; may only
be used in generated quantities block. For a description of argument and return types,
see section vectorized PRNG functions.

127

22. Distributions over Unbounded Vectors

The unbounded vector probability distributions have support on all of RK for some
fixed K.

22.1. Multivariate Normal Distribution
Probability Density Function
If K ∈ N, µ ∈ RK , and Σ ∈ RK×K is symmetric and positive definite, then for y ∈ RK ,

MultiNormal(y|µ,Σ) = 1
(2π)K/2

1√
|Σ|

exp
(
−1
2
(y − µ)> Σ−1 (y − µ)

)
,

where |Σ| is the absolute determinant of Σ.

Sampling Statement
y ~ multi_normal(mu, Sigma)

Increment target log probability density with multi_normal_lpdf(y | mu, Sigma)
dropping constant additive terms.

Stan Functions
The multivariate normal probability function is overloaded to allow the variate vector y
and location vector µ to be vectors or row vectors (or to mix the two types). The density
function is also vectorized, so it allows arrays of row vectors or vectors as arguments;
see section vectorized function signatures for a description of vectorization.

real multi_normal_lpdf(vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and covariance matrix Sigma

real multi_normal_lpdf(vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and covariance matrix Sigma

real multi_normal_lpdf(row_vectors y | vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and covariance matrix Sigma

real multi_normal_lpdf(row_vectors y | row_vectors mu, matrix Sigma)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and covariance matrix Sigma

128

22.2. MULTIVARIATE NORMAL DISTRIBUTION, PRECISION PARAMETERIZATION 129

Although there is a direct multi-normal RNG function, if more than one result is
required, it’s much more efficient to Cholesky factor the covariance matrix and call
multi_normal_cholesky_rng; see section multi-variate normal, cholesky parameteri-
zation.

vector multi_normal_rng(vector mu, matrix Sigma)
Generate a multivariate normal variate with location mu and covariance matrix Sigma;
may only be used in generated quantities block

vector multi_normal_rng(row_vector mu, matrix Sigma)
Generate a multivariate normal variate with location mu and covariance matrix Sigma;
may only be used in generated quantities block

vectors multi_normal_rng(vectors mu, matrix Sigma)
Generate an array of multivariate normal variates with locations mu and covariance
matrix Sigma; may only be used in generated quantities block

vectors multi_normal_rng(row_vectors mu, matrix Sigma)
Generate an array of multivariate normal variates with locations mu and covariance
matrix Sigma; may only be used in generated quantities block

22.2. Multivariate Normal Distribution, Precision Parameterization
Probability Density Function
If K ∈ N, µ ∈ RK , and Ω ∈ RK×K is symmetric and positive definite, then for y ∈ RK ,

MultiNormalPrecision(y|µ,Ω) = MultiNormal(y|µ,Σ−1)

Sampling Statement
y ~ multi_normal_prec(mu, Omega)

Increment target log probability density with multi_normal_prec_lpdf(y | mu,
Omega) dropping constant additive terms.

Stan Functions
real multi_normal_prec_lpdf(vectors y | vectors mu, matrix Omega)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and positive definite precision matrix Omega

real multi_normal_prec_lpdf(vectors y | row_vectors mu, matrix Omega)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and positive definite precision matrix Omega

real multi_normal_prec_lpdf(row_vectors y | vectors mu, matrix Omega)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and positive definite precision matrix Omega

130 CHAPTER 22. DISTRIBUTIONS OVER UNBOUNDED VECTORS

real multi_normal_prec_lpdf(row_vectors y | row_vectors mu, matrix
Omega)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and positive definite precision matrix Omega

22.3. Multivariate Normal Distribution, Cholesky Parameterization
Probability Density Function
If K ∈ N, µ ∈ RK , and L ∈ RK×K is lower triangular and such that LL> is positive
definite, then for y ∈ RK ,

MultiNormalCholesky(y|µ, L) = MultiNormal(y|µ, LL>).

If L is lower triangular and LLtop is a K ×K positive definite matrix, then Lk,k must be
strictly positive for k ∈ 1:K. If an L is provided that is not the Cholesky factor of a
positive-definite matrix, the probability functions will raise errors.

Sampling Statement
y ~ multi_normal_cholesky(mu, L)

Increment target log probability density with multi_normal_cholesky_lpdf(y |
mu, L) dropping constant additive terms.

Stan Functions
real multi_normal_cholesky_lpdf(vectors y | vectors mu, matrix L)
The log of the multivariate normal density of vector(s) y given location vector(s) mu
and lower-triangular Cholesky factor of the covariance matrix L

real multi_normal_cholesky_lpdf(vectors y | row_vectors mu, matrix L)
The log of the multivariate normal density of vector(s) y given location row vector(s)
mu and lower-triangular Cholesky factor of the covariance matrix L

real multi_normal_cholesky_lpdf(row_vectors y | vectors mu, matrix L)
The log of the multivariate normal density of row vector(s) y given location vector(s)
mu and lower-triangular Cholesky factor of the covariance matrix L

real multi_normal_cholesky_lpdf(row_vectors y | row_vectors mu,
matrix L)
The log of the multivariate normal density of row vector(s) y given location row
vector(s) mu and lower-triangular Cholesky factor of the covariance matrix L

vector multi_normal_cholesky_rng(vector mu, matrix L)
Generate a multivariate normal variate with location mu and lower-triangular Cholesky
factor of the covariance matrix L; may only be used in generated quantities block

22.4. MULTIVARIATE GAUSSIAN PROCESS DISTRIBUTION 131

vector multi_normal_cholesky_rng(row_vector mu, matrix L)
Generate a multivariate normal variate with location mu and lower-triangular Cholesky
factor of the covariance matrix L; may only be used in generated quantities block

vectors multi_normal_cholesky_rng(vectors mu, matrix L)
Generate an array of multivariate normal variates with locations mu and lower-
triangular Cholesky factor of the covariance matrix L; may only be used in generated
quantities block

vectors multi_normal_cholesky_rng(row_vectors mu, matrix L)
Generate an array of multivariate normal variates with locations mu and lower-
triangular Cholesky factor of the covariance matrix L; may only be used in generated
quantities block

22.4. Multivariate Gaussian Process Distribution
Probability Density Function
If K,N ∈ N, Σ ∈ RN×N is symmetric, positive definite kernel matrix and w ∈ RK is a
vector of positive inverse scales, then for y ∈ RK×N ,

MultiGP(y|Σ, w) =
K∏
i=1

MultiNormal(yi|0, w−1i Σ),

where yi is the ith row of y . This is used to efficiently handle Gaussian Processes with
multi-variate outputs where only the output dimensions share a kernel function but
vary based on their scale. Note that this function does not take into account the mean
prediction.

Sampling Statement
y ~ multi_gp(Sigma, w)

Increment target log probability density with multi_gp_lpdf(y | Sigma, w) drop-
ping constant additive terms.

Stan Functions
real multi_gp_lpdf(matrix y | matrix Sigma, vector w)
The log of the multivariate GP density of matrix y given kernel matrix Sigma and
inverses scales w

22.5. Multivariate Gaussian Process Distribution, Cholesky parame-
terization

Probability Density Function
If K,N ∈ N, L ∈ RN×N is lower triangular and such that LL> is positive definite kernel
matrix (implying Ln,n > 0 for n ∈ 1:N), and w ∈ RK is a vector of positive inverse

132 CHAPTER 22. DISTRIBUTIONS OVER UNBOUNDED VECTORS

scales, then for y ∈ RK×N ,

MultiGPCholesky(y | L,w) =
K∏
i=1

MultiNormal(yi|0, w−1i LL>),

where yi is the ith row of y . This is used to efficiently handle Gaussian Processes with
multi-variate outputs where only the output dimensions share a kernel function but
vary based on their scale. If the model allows parameterization in terms of Cholesky
factor of the kernel matrix, this distribution is also more efficient than MultiGP(). Note
that this function does not take into account the mean prediction.

Sampling Statement
y ~ multi_gp_cholesky(L, w)

Increment target log probability density with multi_gp_cholesky_lpdf(y | L, w)
dropping constant additive terms.

Stan Functions
real multi_gp_cholesky_lpdf(matrix y | matrix L, vector w)
The log of the multivariate GP density of matrix y given lower-triangular Cholesky
factor of the kernel matrix L and inverses scales w

22.6. Multivariate Student-T Distribution
Probability Density Function
If K ∈ N, ν ∈ R+, µ ∈ RK , and Σ ∈ RK×K is symmetric and positive definite, then for
y ∈ RK ,

MultiStudentT(y |ν, µ, Σ)
= 1
πK/2

1
νK/2

Γ((ν+K)/2)
Γ(ν/2)

1√
|Σ|

(
1+ 1

ν (y − µ)
> Σ−1 (y − µ)

)−(ν+K)/2
.

Sampling Statement
y ~ multi_student_t(nu, mu, Sigma)

Increment target log probability density with multi_student_t_lpdf(y | nu, mu,
Sigma) dropping constant additive terms.

Stan Functions
real multi_student_t_lpdf(vectors y | real nu, vectors mu, matrix
Sigma)
The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location vector(s) mu, and scale matrix Sigma

real multi_student_t_lpdf(vectors y | real nu, row_vectors mu, matrix
Sigma)

22.7. GAUSSIAN DYNAMIC LINEAR MODELS 133

The log of the multivariate Student-t density of vector(s) y given degrees of freedom
nu, location row vector(s) mu, and scale matrix Sigma

real multi_student_t_lpdf(row_vectors y | real nu, vectors mu, matrix
Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location vector(s) mu, and scale matrix Sigma

real multi_student_t_lpdf(row_vectors y | real nu, row_vectors mu,
matrix Sigma)
The log of the multivariate Student-t density of row vector(s) y given degrees of
freedom nu, location row vector(s) mu, and scale matrix Sigma

vector multi_student_t_rng(real nu, vector mu, matrix Sigma)
Generate a multivariate Student-t variate with degrees of freedom nu, location mu,
and scale matrix Sigma; may only be used in generated quantities block

vector multi_student_t_rng(real nu, row_vector mu, matrix Sigma)
Generate a multivariate Student-t variate with degrees of freedom nu, location mu,
and scale matrix Sigma; may only be used in generated quantities block

vectors multi_student_t_rng(real nu, vectors mu, matrix Sigma)
Generate an array of multivariate Student-t variates with degrees of freedom nu,
locations mu, and scale matrix Sigma; may only be used in generated quantities block

vectors multi_student_t_rng(real nu, row_vectors mu, matrix Sigma)
Generate an array of multivariate Student-t variates with degrees of freedom nu,
locations mu, and scale matrix Sigma; may only be used in generated quantities block

22.7. Gaussian Dynamic Linear Models
A Gaussian Dynamic Linear model is defined as follows, For t ∈ 1, . . . , T ,

yt ∼ N(F ′θt , V)
θt ∼ N(Gθt−1,W)
θ0 ∼ N(m0, C0)

where y is n×T matrix where rows are variables and columns are observations. These
functions calculate the log-likelihood of the observations marginalizing over the latent
states (p(y|F,G,V ,W,m0, C0)). This log-likelihood is a system that is calculated using
the Kalman Filter. If V is diagonal, then a more efficient algorithm which sequentially
processes observations and avoids a matrix inversions can be used (Durbin and
Koopman 2001, sec. 6.4).

134 CHAPTER 22. DISTRIBUTIONS OVER UNBOUNDED VECTORS

Sampling Statement
y ~ gaussian_dlm_obs(F, G, V, W, m0, C0)

Increment target log probability density with gaussian_dlm_obs_lpdf(y | F, G,
V, W, m0, C0) dropping constant additive terms.

Stan Functions
The following two functions differ in the type of their V, the first taking a full obser-
vation covariance matrix V and the second a vector V representing the diagonal of
the observation covariance matrix. The sampling statement defined in the previous
section works with either type of observation V.

real gaussian_dlm_obs_lpdf(matrix y | matrix F, matrix G, matrix V,
matrix W, vector m0, matrix C0)
The log of the density of the Gaussian Dynamic Linear model with observation matrix
y in which rows are variables and columns are observations, design matrix F, transition
matrix G, observation covariance matrix V, system covariance matrix W, and the initial
state is distributed normal with mean m0 and covariance C0.

real gaussian_dlm_obs_lpdf(matrix y | matrix F, matrix G, vector V,
matrix W, vector m0, matrix C0)
The log of the density of the Gaussian Dynamic Linear model with observation matrix
y in which rows are variables and columns are observations, design matrix F, transition
matrix G, observation covariance matrix with diagonal V, system covariance matrix W,
and the initial state is distributed normal with mean m0 and covariance C0.

23. Simplex Distributions

The simplex probabilities have support on the unit K-simplex for a specified K. A
K-dimensional vector θ is a unit K-simplex if θk ≥ 0 for k ∈ {1, . . . , K} and

∑K
k=1 θk = 1.

23.1. Dirichlet Distribution
Probability Density Function
If K ∈ N and α ∈ (R+)K , then for θ ∈ K-simplex,

Dirichlet(θ|α) =
Γ
(∑K

k=1αk
)

∏K
k=1 Γ(αk)

K∏
k=1
θαk−1k .

Warning: If any of the components of θ satisfies θi = 0 or θi = 1, then the probability
is 0 and the log probability is −∞. Similarly, the distribution requires strictly positive
parameters, with αi > 0 for each i.

Meaning of Dirichlet Parameters
A symmetric Dirichlet prior is [α, . . . , α]>. To code this in Stan,

data {
int<lower = 1> K;
real<lower = 0> alpha;

}
generated quantities {
vector[K] theta = dirichlet_rng(rep_vector(alpha, K));

}

Taking K = 10, here are the first five draws for α = 0.001. For α = 1, the distribution
is uniform over simplexes.

1) 0.17 0.05 0.07 0.17 0.03 0.13 0.03 0.03 0.27 0.05
2) 0.08 0.02 0.12 0.07 0.52 0.01 0.07 0.04 0.01 0.06
3) 0.02 0.03 0.22 0.29 0.17 0.10 0.09 0.00 0.05 0.03
4) 0.04 0.03 0.21 0.13 0.04 0.01 0.10 0.04 0.22 0.18
5) 0.11 0.22 0.02 0.01 0.06 0.18 0.33 0.04 0.01 0.01

That does not mean it’s uniform over the marginal probabilities of each element. As
the size of the simplex grows, the marginal draws become more and more concentrated
below (not around) 1/K. When one component of the simplex is large, the others

135

136 CHAPTER 23. SIMPLEX DISTRIBUTIONS

must all be relatively small to compensate. For example, in a uniform distribution on
10-simplexes, the probability that a component is greater than the mean of 1/10 is
only 39%. Most of the posterior marginal probability mass for each component is in
the interval (0,0.1).

When the α value is small, the draws gravitate to the corners of the simplex. Here are
the first five draws for α = 0.001.

1) 3e-203 0e+00 2e-298 9e-106 1e+000 0e+00 0e+000 1e-047 0e+00 4e-279
2) 1e+000 0e+00 5e-279 2e-014 1e-275 0e+00 3e-285 9e-147 0e+00 0e+000
3) 1e-308 0e+00 1e-213 0e+000 0e+000 8e-75 0e+000 1e+000 4e-58 7e-112
4) 6e-166 5e-65 3e-068 3e-147 0e+000 1e+00 3e-249 0e+000 0e+00 0e+000
5) 2e-091 0e+00 0e+000 0e+000 1e-060 0e+00 4e-312 1e+000 0e+00 0e+000

Each row denotes a draw. Each draw has a single value that rounds to one and other
values that are very close to zero or rounded down to zero.

As α increases, the draws become increasingly uniform. For α = 1000,

1) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
2) 0.10 0.10 0.09 0.10 0.10 0.10 0.11 0.10 0.10 0.10
3) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
4) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
5) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Sampling Statement
theta ~ dirichlet(alpha)

Increment target log probability density with dirichlet_lpdf(theta | alpha)
dropping constant additive terms.

Stan Functions
real dirichlet_lpdf(vector theta | vector alpha)
The log of the Dirichlet density for simplex theta given prior counts (plus one) alpha

vector dirichlet_rng(vector alpha)
Generate a Dirichlet variate with prior counts (plus one) alpha; may only be used in
generated quantities block

24. Correlation Matrix Distributions

The correlation matrix distributions have support on the (Cholesky factors of) corre-
lation matrices. A Cholesky factor L for a K × K correlation matrix Σ of dimension
K has rows of unit length so that the diagonal of LL> is the unit K-vector. Even
though models are usually conceptualized in terms of correlation matrices, it is better
to operationalize them in terms of their Cholesky factors. If you are interested in
the posterior distribution of the correlations, you can recover them in the generated
quantities block via

generated quantities {
corr_matrix[K] Sigma;
Sigma = multiply_lower_tri_self_transpose(L);

}

24.1. LKJ Correlation Distribution
Probability Density Function
For η > 0, if Σ a positive-definite, symmetric matrix with unit diagonal (i.e., a correlation
matrix), then

LkjCorr(Σ|η)∝ det (Σ)(η−1) .

The expectation is the identity matrix for any positive value of the shape parameter η,
which can be interpreted like the shape parameter of a symmetric beta distribution:

• if η = 1, then the density is uniform over correlation matrices of order K;

• if η > 1, the identity matrix is the modal correlation matrix, with a sharper peak
in the density at the identity matrix for larger η; and

• for 0 < η < 1, the density has a trough at the identity matrix.

• if η were an unknown parameter, the Jeffreys prior is proportional to√
2
∑K−1
k=1

(
ψ1

(
η+ K−k−1

2

)
− 2ψ1 (2η+K − k− 1)

)
, where ψ1() is the trigamma

function

See (Lewandowski, Kurowicka, and Joe 2009) for definitions. However, it is much better
computationally to work directly with the Cholesky factor of Σ, so this distribution
should never be explicitly used in practice.

137

138 CHAPTER 24. CORRELATION MATRIX DISTRIBUTIONS

Sampling Statement
y ~ lkj_corr(eta)

Increment target log probability density with lkj_corr_lpdf(y | eta) dropping
constant additive terms.

Stan Functions
real lkj_corr_lpdf(matrix y | real eta)
The log of the LKJ density for the correlation matrix y given nonnegative shape eta.
The only reason to use this density function is if you want the code to run slower and
consume more memory with more risk of numerical errors. Use its Cholesky factor as
described in the next section.

matrix lkj_corr_rng(int K, real eta)
Generate a LKJ random correlation matrix of order K with shape eta; may only be used
in generated quantities block

24.2. Cholesky LKJ Correlation Distribution
Stan provides an implicit parameterization of the LKJ correlation matrix density in
terms of its Cholesky factor, which you should use rather than the explicit parameteri-
zation in the previous section. For example, if L is a Cholesky factor of a correlation
matrix, then

L ~ lkj_corr_cholesky(2.0); # implies L * L' ~ lkj_corr(2.0);

Because Stan requires models to have support on all valid constrained parameters, L
will almost always1 be a parameter declared with the type of a Cholesky factor for a
correlation matrix; for example,

parameters { cholesky_factor_corr[K] L; # rather than corr_matrix[K] Sigma; // ...

Probability Density Function
For η > 0, if L is a K × K lower-triangular Cholesky factor of a symmetric positive-
definite matrix with unit diagonal (i.e., a correlation matrix), then

LkjCholesky(L|η)∝ |J|det(LL>)(η−1) =
K∏
k=2
LK−k+2η−2kk .

See the previous section for details on interpreting the shape parameter η. Note that
even if η = 1, it is still essential to evaluate the density function because the density
of L is not constant, regardless of the value of η, even though the density of LL> is
constant iff η = 1.

1It is possible to build up a valid L within Stan, but that would then require Jacobian adjustments to
imply the intended posterior.

24.2. CHOLESKY LKJ CORRELATION DISTRIBUTION 139

A lower triangular L is a Cholesky factor for a correlation matrix if and only if Lk,k > 0
for k ∈ 1:K and each row Lk has unit Euclidean length.

Sampling Statement
L ~ lkj_corr_cholesky(eta)

Increment target log probability density with lkj_corr_cholesky_lpdf(L | eta)
dropping constant additive terms.

Stan Functions
real lkj_corr_cholesky_lpdf(matrix L | real eta)
The log of the LKJ density for the lower-triangular Cholesky factor L of a correlation
matrix given shape eta.

matrix lkj_corr_cholesky_rng(int K, real eta)
Generate a random Cholesky factor of a correlation matrix of order K that is distributed
LKJ with shape eta; may only be used in generated quantities block

25. Covariance Matrix Distributions

The covariance matrix distributions have support on symmetric, positive-definite K×K
matrices.

25.1. Wishart Distribution
Probability Density Function
If K ∈ N, ν ∈ (K − 1,∞), and S ∈ RK×K is symmetric and positive definite, then for
symmetric and positive-definite W ∈ RK×K ,

Wishart(W |ν, S) = 1
2νK/2

1
ΓK
(
ν
2

) |S|−ν/2 |W |(ν−K−1)/2 exp
(
−1
2

tr
(
S−1W

))
,

where tr() is the matrix trace function, and ΓK() is the multivariate Gamma function,

ΓK(x) =
1

πK(K−1)/4

K∏
k=1
Γ
(
x+ 1− k

2

)
.

Sampling Statement
W ~ wishart(nu, Sigma)

Increment target log probability density with wishart_lpdf(W | nu, Sigma) drop-
ping constant additive terms.

Stan Functions
real wishart_lpdf(matrix W | real nu, matrix Sigma)
The log of the Wishart density for symmetric and positive-definite matrix W given
degrees of freedom nu and symmetric and positive-definite scale matrix Sigma

matrix wishart_rng(real nu, matrix Sigma)
Generate a Wishart variate with degrees of freedom nu and symmetric and positive-
definite scale matrix Sigma; may only be used in generated quantities block

25.2. Inverse Wishart Distribution
Probability Density Function
If K ∈ N, ν ∈ (K − 1,∞), and S ∈ RK×K is symmetric and positive definite, then for
symmetric and positive-definite W ∈ RK×K ,

InvWishart(W |ν, S) = 1
2νK/2

1
ΓK
(
ν
2

) |S|ν/2 |W |−(ν+K+1)/2 exp
(
−1
2

tr(SW−1)
)
.

140

25.2. INVERSE WISHART DISTRIBUTION 141

Sampling Statement
W ~ inv_wishart(nu, Sigma)

Increment target log probability density with inv_wishart_lpdf(W | nu, Sigma)
dropping constant additive terms.

Stan Functions
real inv_wishart_lpdf(matrix W | real nu, matrix Sigma)
The log of the inverse Wishart density for symmetric and positive-definite matrix W
given degrees of freedom nu and symmetric and positive-definite scale matrix Sigma

matrix inv_wishart_rng(real nu, matrix Sigma)
Generate an inverse Wishart variate with degrees of freedom nu and symmetric and
positive-definite scale matrix Sigma; may only be used in generated quantities block

Appendix

142

26. Mathematical Functions

This appendix provides the definition of several mathematical functions used through-
out the manual.

26.1. Beta
The beta function, B(α,β), computes the normalizing constant for the beta distribution,
and is defined for a > 0 and b > 0 by

B(a, b) =
∫ 1
0
ua−1(1− u)b−1 du = Γ(a) Γ(b)

Γ(a+ b) .

26.2. Incomplete Beta
The incomplete beta function, B(x;a, b), is defined for x ∈ [0,1] and a, b ≥ 0 such that
a+ b ≠ 0 by

B(x; a, b) =
∫ x
0
ua−1 (1− u)b−1 du, ‘ <

where B(a, b) is the beta function defined in appendix. If x = 1, the incomplete beta
function reduces to the beta function, B(1;a, b) = B(a, b).

The regularized incomplete beta function divides the incomplete beta function by the
beta function,

Ix(a, b) =
B(x; a, b)
B(a, b)

.

26.3. Gamma
The gamma function, Γ(x), is the generalization of the factorial function to continuous
variables, defined so that for positive integers n,

Γ(n+ 1) = n!

Generalizing to all positive numbers and non-integer negative numbers,

Γ(x) =
∫∞
0
ux−1 exp(−u)ndu.

26.4. Digamma
The digamma function Ψ is the derivative of the log Γ function,

Ψ(u) = d
du

log Γ(u) = 1
Γ(u)

d
du
Γ(u).

143

References

Bowling, Shannon R., Mohammad T. Khasawneh, Sittichai Kaewkuekool, and Byung
Rae Cho. 2009. “A Logistic Approximation to the Cumulative Normal Distribution.”
Journal of Industrial Engineering and Management 2 (1): 114–27.

Durbin, J., and S. J. Koopman. 2001. Time Series Analysis by State Space Methods. New
York: Oxford University Press.

Feller, William. 1968. An Introduction to Probability Theory and Its Applications. Vol. 1.
3. Wiley, New York.

Gelman, Andrew, J. B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B.
Rubin. 2013. Bayesian Data Analysis. Third. London: Chapman &Hall/CRC Press.

Guennebaud, Gaël, Benoît Jacob, and others. 2010. “Eigen V3.”
http://eigen.tuxfamily.org.

Jorge J. More, Kenneth E. Hillstrom, Burton S. Garbow. 1980. User Guide for Minpack-1.
9700 South Cass Avenue, Argonne, Illinois 60439: Argonne National Laboratory.

Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. 2009. “Generating Ran-
dom Correlation Matrices Based on Vines and Extended Onion Method.” Journal of
Multivariate Analysis 100: 1989–2001.

Lunn, D. J., J. Wakefield, A. Thomas, N. Best, and D. Spiegelhalter. 1999. PKBugs User
Guide.

Navarro, Daniel J, and Ian G Fuss. 2009. “Fast and Accurate Calculations for First-
Passage Times in Wiener Diffusion Models.” Journal of Mathematical Psychology 53 (4):
222–30.

Powell, Michael J. D. 1970. “A Hybrid Method for Nonlinear Equations.” In Numerical
Methods for Nonlinear Algebraic Equations, edited by P. Rabinowitz. Gordon; Breach.

Vandekerckhove, Joachim, and Dominik Wabersich. 2014. “The RWiener Package: An
R Package Providing Distribution Functions for the Wiener Diffusion Model.” The R
Journal 6/1. http://journal.r-project.org/archive/2014-1/vandekerckhove-wabersich.
pdf.

144

http://journal.r-project.org/archive/2014-1/vandekerckhove-wabersich.pdf
http://journal.r-project.org/archive/2014-1/vandekerckhove-wabersich.pdf

Index

abs
(T x): R, 10

acosh
(T x): R, 21

acos
(T x): R, 21

algebra_solver
(function algebra_system, vector

y_guess, vector theta, real[]
x_r, int[] x_i): vector, 67

(function algebra_system, vector
y_guess, vector theta, real[]
x_r, int[] x_i, real rel_tol,
real f_tol, int max_steps):
vector, 67

append_array
(T x, T y): T, 33

append_col
(matrix x, matrix y): matrix, 47
(matrix x, vector y): matrix, 47
(real x, row_vector y): row_vector,

48
(row_vector x, real y): row_vector,

48
(row_vector x, row_vector y):

row_vector, 48
(vector x, matrix y): matrix, 47
(vector x, vector y): matrix, 48

append_row
(matrix x, matrix y): matrix, 48
(matrix x, row_vector y): matrix, 48
(real x, vector y): vector, 48
(row_vector x, matrix y): matrix, 48
(row_vector x, row_vector y):

matrix, 48
(vector x, real y): vector, 48
(vector x, vector y): vector, 48

asinh
(T x): R, 21

asin
(T x): R, 21

atan2
(real y, real x): real, 21

atanh
(T x): R, 22

atan

(T x): R, 21
bernoulli_logit_glm

sampling statement, 81
bernoulli_logit

(reals alpha): R, 81
sampling statement, 81

bernoulli
(ints y, reals theta): real, 80
(reals theta): R, 80
sampling statement, 80

bessel_first_kind
(int v, real x): real, 25

bessel_second_kind
(int v, real x): real, 25

beta_binomial
(ints N, reals alpha, reals beta):

R, 85
(ints n, ints N, reals alpha, reals

beta): real, 85
sampling statement, 85

beta_proportion
(reals mu, reals kappa): R, 119
sampling statement, 119

beta
(reals alpha, reals beta): R, 118
(reals theta, reals alpha, reals

beta): real, 118
sampling statement, 118

binary_log_loss
(int y, real y_hat): real, 23

binomial_coefficient_log
(real x, real y): real, 24

binomial_logit
sampling statement, 84

binomial
(ints N, reals theta): R, 84
(ints n, ints N, reals theta): real,

83
sampling statement, 83

block
(matrix x, int i, int j, int n_rows,

int n_cols): matrix, 46
categorical_logit

(vector beta): int, 87
sampling statement, 87

categorical

145

146 INDEX

(vector theta): int, 87
sampling statement, 86

cauchy
(reals mu, reals sigma): R, 102
(reals y, reals mu, reals sigma):

real, 102
sampling statement, 102

cbrt
(T x): R, 20

ceil
(T x): R, 19

chi_square
(reals nu): R, 107
(reals y, reals nu): real, 107
sampling statement, 107

cholesky_decompose
(matrix A): matrix, 55

choose
(int x, int y): int, 24

cols
(matrix x): int, 36
(row_vector x): int, 36
(vector x): int, 36

columns_dot_product
(matrix x, matrix y): row_vector, 40
(row_vector x, row_vector y):

row_vector, 40
(vector x, vector y): row_vector, 40

columns_dot_self
(matrix x): row_vector, 41
(row_vector x): row_vector, 41
(vector x): row_vector, 41

col
(matrix x, int n): vector, 46

cosh
(T x): R, 21

cos
(T x): R, 21

cov_exp_quad
(real[] x, real alpha, real rho):

matrix, 50
(real[] x1, real[] x2, real alpha,

real rho): matrix, 50
(row_vectors x, real alpha, real

rho): matrix, 50
(row_vectors x1, row_vectors x2,

real alpha, real rho): matrix,
50

(vectors x, real alpha, real rho):
matrix, 50

(vectors x1, vectors x2, real alpha,
real rho): matrix, 50

crossprod
(matrix x): matrix, 41

csr_extract_u
(matrix a): int[], 58

csr_extract_v
(matrix a): int[], 58

csr_extract_w
(matrix a): vector, 58

csr_matrix_times_vector
(int m, int n, vector w, int[] v,

int[] u, vector b): vector, 59
csr_to_dense_matrix

(int m, int n, vector w, int[] v,
int[] u): matrix, 58

cumulative_sum
(real[] x): real[], 49
(row_vector rv): row_vector, 49
(vector v): vector, 49

determinant
(matrix A): real, 53

diag_matrix
(vector x): matrix, 45

diag_post_multiply
(matrix m, row_vector rv): matrix, 42
(matrix m, vector v): matrix, 42

diag_pre_multiply
(row_vector rv, matrix m): matrix, 42
(vector v, matrix m): matrix, 42

diagonal
(matrix x): vector, 45

digamma
(T x): R, 23

dims
(T x): int[], 32

dirichlet
(vector alpha): vector, 131
sampling statement, 131

distance
(row_vector x, row_vector y): real,

31
(row_vector x, vector y): real, 31
(vector x, row_vector y): real, 31
(vector x, vector y): real, 30

dot_product
(row_vector x, row_vector y): real,

40
(row_vector x, vector y): real, 40
(vector x, row_vector y): real, 40

INDEX 147

(vector x, vector y): real, 40
dot_self

(row_vector x): real, 41
(vector x): real, 41

double_exponential
(reals mu, reals sigma): R, 103
(reals y, reals mu, reals sigma):

real, 103
sampling statement, 103

eigenvalues_sym
(matrix A): vector, 53

eigenvectors_sym
(matrix A): matrix, 53

erfc
(T x): R, 22

erf
(T x): R, 22

exp2
(T x): R, 20

exp_mod_normal
(reals mu, reals sigma, reals

lambda): R, 100
(reals y, reals mu, reals sigma,

reals lambda): real, 99
sampling statement, 99

expm1
(T x): R, 27

exponential
(reals beta): R, 109
(reals y, reals beta): real, 109
sampling statement, 109

exp
(T x): R, 20

e
(): real, 13

fabs
(T x): R, 18

falling_factorial
(real x, real n): real, 25

fdim
(real x, real y): real, 18

floor
(T x): R, 19

fmax
(real x, real y): real, 19

fma
(real x, real y, real z): real, 27

fmin
(real x, real y): real, 19

fmod

(real x, real y): real, 19
frechet

(reals alpha, reals sigma): R, 112
(reals y, reals alpha, reals sigma):

real, 112
sampling statement, 112

gamma_p
(real a, real z): real, 24

gamma_q
(real a, real z): real, 24

gamma
(reals alpha, reals beta): R, 110
(reals y, reals alpha, reals beta):

real, 110
sampling statement, 110

gaussian_dlm_obs
sampling statement, 129

get_lp
(): real, 14

gumbel
(reals mu, reals beta): R, 105
(reals y, reals mu, reals beta):

real, 105
sampling statement, 104

head
(T[] sv, int n): T[], 47
(row_vector rv, int n): row_vector,

46
(vector v, int n): vector, 46

hypergeometric
(int N, int a, int2 b): int, 86
sampling statement, 86

hypot
(real x, real y): real, 21

inc_beta
(real alpha, real beta, real x):

real, 23
int_step

(int x): int, 10
(real x): int, 10

integrate_ode_bdf
(function ode, real[] initial_state,

real initial_time, real[] times,
real[] theta, data real[] x_r,
data int[] x_i): real[], 69

(function ode, real[] initial_state,
real initial_time, real[] times,
real[] theta, data real[] x_r,
data int[] x_i, data real
rel_tol, data real abs_tol,

148 INDEX

dta int max_num_steps): real[],
69

integrate_ode_rk45
(function ode, real[] initial_state,

real initial_time, real[] times,
real[] theta, real[] x_r, int[]
x_i): real[,], 69

(function ode, real[] initial_state,
real initial_time, real[] times,
real[] theta, real[] x_r, int[]
x_i, real rel_tol, real abs_tol,
int max_num_steps): real[,],
69

integrate_ode
(function ode, real[] initial_state,

real initial_time, real[] times,
real[] theta, real[] x_r, int[]
x_i): real[,], 69

inv_chi_square
(reals nu): R, 108
(reals y, reals nu): real, 108
sampling statement, 107

inv_cloglog
(T x): R, 22

inv_gamma
(reals alpha, reals beta): R, 111
(reals y, reals alpha, reals beta):

real, 111
sampling statement, 111

inv_logit
(T x): R, 22

inv_phi
(T x): R, 22

inv_sqrt
(T x): R, 20

inv_square
(T x): R, 20

inv_wishart
(real nu, matrix Sigma): matrix, 136
sampling statement, 136

inverse_spd
(matrix A): matrix, 53

inverse
(matrix A): matrix, 53

inv
(T x): R, 20

is_inf
(real x): int, 17

is_nan
(real x): int, 17

lbeta
(real alpha, real beta): real, 23

lchoose
(real x, real y): real, 26

lgamma
(T x): R, 23

lkj_corr_cholesky
(int K, real eta): matrix, 134
sampling statement, 134

lkj_corr
(int K, real eta): matrix, 133
sampling statement, 133

lmgamma
(int n, real x): real, 24

lmultiply
(real x, real y): real, 27

log10
(): real, 13
(T x): R, 20

log1m_exp
(T x): R, 27

log1m_inv_logit
(T x): R, 28

log1m
(T x): R, 27

log1p_exp
(T x): R, 27

log1p
(T x): R, 27

log2
(): real, 13
(T x): R, 20

log_determinant
(matrix A): real, 53

log_diff_exp
(real x, real y): real, 27

log_falling_factorial
(real x, real n): real, 26

log_inv_logit
(T x): R, 28

log_mix
(real theta, real lp1, real lp2):

real, 28
log_rising_factorial

(real x, real n): real, 26
log_softmax

(vector x): vector, 49
log_sum_exp

(matrix x): real, 43
(real x, real y): real, 28

INDEX 149

(real[] x): real, 29
(row_vector x): real, 43
(vector x): real, 43

logistic
(reals mu, reals sigma): R, 104
(reals y, reals mu, reals sigma):

real, 104
sampling statement, 104

logit
(T x): R, 22

lognormal
(reals mu, reals beta): R, 106
(reals y, reals mu, reals sigma):

real, 106
sampling statement, 106

log
(T x): R, 20

machine_precision
(): real, 13

map_rect
(F f, vector phi, vector[] theta,

data real[,] x_r, data int[,]
x_i): vector, 71

matrix_exp_multiply
(matrix A, matrix B): matrix, 52

matrix_exp
(matrix A): matrix, 52

max
(int x, int y): int, 10
(int[] x): int, 29
(matrix x): real, 43
(real[] x): real, 29
(row_vector x): real, 43
(vector x): real, 43

mdivide_left_spd
(matrix A, matrix B): vector, 52
(matrix A, vector b): matrix, 52

mdivide_left_tri_low
(matrix A, matrix B): matrix, 51
(matrix A, vector b): vector, 51

mdivide_right_spd
(matrix B, matrix A): matrix, 52
(row_vector b, matrix A): row_vector,

52
mdivide_right_tri_low

(matrix B, matrix A): matrix, 51
(row_vector b, matrix A): row_vector,

51
mean

(matrix x): real, 44

(real[] x): real, 30
(row_vector x): real, 44
(vector x): real, 44

min
(int x, int y): int, 10
(int[] x): int, 29
(matrix x): real, 43
(real[] x): real, 29
(row_vector x): real, 43
(vector x): real, 43

modified_bessel_first_kind
(int v, real z): real, 25

modified_bessel_second_kind
(int v, real z): real, 25

multi_gp_cholesky
sampling statement, 127

multi_gp
sampling statement, 126

multi_normal_cholesky
(row_vector mu, matrix L): vector, 125
(row_vectors mu, matrix L): vectors,

126
(vector mu, matrix L): vector, 125
(vectors mu, matrix L): vectors, 126
sampling statement, 125

multi_normal_prec
sampling statement, 124

multi_normal
(row_vector mu, matrix Sigma):

vector, 124
(row_vectors mu, matrix Sigma):

vectors, 124
(vector mu, matrix Sigma): vector,

124
(vectors mu, matrix Sigma): vectors,

124
sampling statement, 123

multi_student_t
(real nu, row_vector mu, matrix

Sigma): vector, 128
(real nu, row_vectors mu, matrix

Sigma): vectors, 128
(real nu, vector mu, matrix Sigma):

vector, 128
(real nu, vectors mu, matrix Sigma):

vectors, 128
sampling statement, 127

multinomial
(vector theta, int N): int[], 95
sampling statement, 95

150 INDEX

multiply_log
(real x, real y): real, 27

multiply_lower_tri_self_transpose
(matrix x): matrix, 42

neg_binomial_2_log_glm
sampling statement, 92

neg_binomial_2_log
(reals eta, reals phi): R, 91
sampling statement, 91

neg_binomial_2
(ints n, reals mu, reals phi): real,

90
(reals mu, reals phi): R, 91
sampling statement, 90

neg_binomial
(ints n, reals alpha, reals beta):

real, 89
(reals alpha, reals beta): R, 90
sampling statement, 89

negative_infinity
(): real, 13

normal_id_glm
sampling statement, 99

normal
(reals mu, reals sigma): R, 97
(reals y, reals mu, reals sigma):

real, 97
sampling statement, 97

not_a_number
(): real, 13

num_elements
(T[] x): int, 32
(matrix x): int, 36
(row_vector x): int, 36
(vector x): int, 36

operator_add
(int x): int, 9
(int x, int y): int, 9
(matrix x, matrix y): matrix, 37
(matrix x, real y): matrix, 38
(real x): real, 18
(real x, matrix y): matrix, 38
(real x, real y): real, 17
(real x, row_vector y): row_vector,

38
(real x, vector y): vector, 38
(row_vector x, real y): row_vector,

38
(row_vector x, row_vector y):

row_vector, 37

(vector x, real y): vector, 38
(vector x, vector y): vector, 37

operator_compound_add
(int x, int y): void, 63
(matrix x, matrix y): void, 63
(matrix x, real y): void, 63
(real x, real y): void, 63
(row_vector x, real y): void, 63
(row_vector x, row_vector y): void,

63
(vector x, real y): void, 63
(vector x, vector y): void, 63

operator_compound_divide
(int x, int y): void, 65
(matrix x, real y): void, 65
(real x, real y): void, 65
(row_vector x, real y): void, 65
(vector x, real y): void, 65

operator_compound_elt_divide
(matrix x, matrix y): void, 65
(matrix x, real y): void, 65
(row_vector x, real y): void, 65
(row_vector x, row_vector y): void,

65
(vector x, real y): void, 65
(vector x, vector y): void, 65

operator_compound_elt_multiply
(matrix x, matrix y): void, 65
(row_vector x, row_vector y): void,

65
(vector x, vector y): void, 65

operator_compound_multiply
(int x, int y): void, 64
(matrix x, matrix y): void, 64
(matrix x, real y): void, 64
(real x, real y): void, 64
(row_vector x, matrix y): void, 64
(row_vector x, real y): void, 64
(vector x, real y): void, 64

operator_compound_subtract
(int x, int y): void, 64
(matrix x, matrix y): void, 64
(matrix x, real y): void, 64
(real x, real y): void, 64
(row_vector x, real y): void, 64
(row_vector x, row_vector y): void,

64
(vector x, real y): void, 64
(vector x, vector y): void, 64

operator_divide

INDEX 151

(int x, int y): int, 9
(matrix B, matrix A): matrix, 51
(matrix x, real y): matrix, 39
(real x, real y): real, 18
(row_vector b, matrix A): row_vector,

51
(row_vector x, real y): row_vector,

39
(vector x, real y): vector, 38

operator_elt_divide
(matrix x, matrix y): matrix, 39
(matrix x, real y): matrix, 39
(real x, matrix y): matrix, 39
(real x, row_vector y): row_vector,

39
(real x, vector y): vector, 39
(row_vector x, real y): row_vector,

39
(row_vector x, row_vector y):

row_vector, 39
(vector x, real y): vector, 39
(vector x, vector y): vector, 39

operator_elt_multiply
(matrix x, matrix y): matrix, 39
(row_vector x, row_vector y):

row_vector, 39
(vector x, vector y): vector, 39

operator_left_div
(matrix A, matrix B): matrix, 51
(matrix A, vector b): vector, 51

operator_logial_equal
(int x, int y): int, 15
(real x, real y): int, 15

operator_logical_and
(int x, int y): int, 16
(real x, real y): int, 16

operator_logical_greater_than_equal
(int x, int y): int, 15
(real x, real y): int, 15

operator_logical_greater_than
(int x, int y): int, 15
(real x, real y): int, 15

operator_logical_less_than_equal
(int x, int y): int, 15
(real x, real y): int, 15

operator_logical_less_than
(int x, int y): int, 14
(real x, real y): int, 14

operator_logical_not_equal
(int x, int y): int, 15

(real x, real y): int, 15
operator_logical_or

(int x, int y): int, 16
(real x, real y): int, 16

operator_mod
(int x, int y): int, 9

operator_multiply
(int x, int y): int, 9
(matrix x, matrix y): matrix, 38
(matrix x, real y): matrix, 37
(matrix x, vector y): vector, 38
(real x, matrix y): matrix, 37
(real x, real y): real, 18
(real x, row_vector y): row_vector,

37
(real x, vector y): vector, 37
(row_vector x, matrix y):

row_vector, 37
(row_vector x, real y): row_vector,

37
(row_vector x, vector y): real, 37
(vector x, real y): vector, 37
(vector x, row_vector y): matrix, 37

operator_negation
(int x): int, 16
(real x): int, 16

operator_pow
(real x, real y): real, 18

operator_subtract
(int x): int, 9
(int x, int y): int, 9
(matrix x): matrix, 36
(matrix x, matrix y): matrix, 37
(matrix x, real y): matrix, 38
(real x): real, 18
(real x, matrix y): matrix, 38
(real x, real y): real, 17
(real x, row_vector y): row_vector,

38
(real x, vector y): vector, 38
(row_vector x): row_vector, 36
(row_vector x, real y): row_vector,

38
(row_vector x, row_vector y):

row_vector, 37
(vector x): vector, 36
(vector x, real y): vector, 38
(vector x, vector y): vector, 37

operator_transpose
(matrix x): matrix, 40

152 INDEX

(row_vector x): vector, 40
(vector x): row_vector, 40

ordered_logistic
(real eta, vector c): int, 88
sampling statement, 88

ordered_probit
(real eta, vector c): int, 88
sampling statement, 88

owens_t
(real h, real a): real, 23

pareto_type_2
(reals mu, reals lambda, reals

alpha): R, 117
(reals y, reals mu, reals lambda,

reals alpha): real, 117
sampling statement, 117

pareto
(reals y, reals y_min, reals alpha):

real, 116
(reals y_min, reals alpha): R, 116
sampling statement, 116

phi_approx
(T x): R, 22

phi
(T x): R, 22

pi
(): real, 13

poisson_log_glm
sampling statement, 94

poisson_log
(reals alpha): R, 93
sampling statement, 93

poisson
(ints n, reals lambda): real, 93
(reals lambda): R, 93
sampling statement, 93

positive_infinity
(): real, 13

pow
(real x, real y): real, 20

print
(T1 x1,..., TN xN): void, 6

prod
(int[] x): real, 29
(matrix x): real, 43
(real[] x): real, 29
(row_vector x): real, 43
(vector x): real, 43

qr_q
(matrix A): matrix, 54

qr_r
(matrix A): matrix, 54

qr_thin_q
(matrix A): matrix, 54

qr_thin_r
(matrix A): matrix, 54

quad_form_diag
(matrix m, row_vector rv): matrix, 42
(matrix m, vector v): matrix, 41

quad_form_sym
(matrix A, matrix B): matrix, 42
(matrix A, vector B): real, 42

quad_form
(matrix A, matrix B): matrix, 41
(matrix A, vector B): real, 41

rank
(int[] v, int s): int, 35
(real[] v, int s): int, 35
(row_vector v, int s): int, 55
(vector v, int s): int, 55

rayleigh
(real y, real sigma): real, 114
(reals sigma): R, 114
sampling statement, 114

reject
(T1 x1,..., TN xN): void, 6

rep_array
(T x, int k, int m, int n): T[„], 32
(T x, int m, int n): T[,], 32
(T x, int n): T[], 32

rep_matrix
(real x, int m, int n): matrix, 45
(row_vector rv, int m): matrix, 45
(vector v, int n): matrix, 45

rep_row_vector
(real x, int n): row_vector, 44

rep_vector
(real x, int m): vector, 44

rising_factorial
(real x, real n): real, 26

round
(T x): R, 19

rows_dot_product
(matrix x, matrix y): vector, 40
(row_vector x, row_vector y):

vector, 40
(vector x, vector y): vector, 40

rows_dot_self
(matrix x): vector, 41
(row_vector x): vector, 41

INDEX 153

(vector x): vector, 41
rows

(matrix x): int, 36
(row_vector x): int, 36
(vector x): int, 36

row
(matrix x, int m): row_vector, 46

scale_matrix_exp_multiply
(real t, matrix A, matrix B): matrix,

52
scaled_inv_chi_square

(reals nu, reals sigma): R, 109
(reals y, reals nu, reals sigma):

real, 108
sampling statement, 108

sd
(matrix x): real, 44
(real[] x): real, 30
(row_vector x): real, 44
(vector x): real, 44

segment
(T[] sv, int i, int n): T[], 47
(row_vector rv, int i, int n):

row_vector, 47
(vector v, int i, int n): vector, 47

singular_values
(matrix A): vector, 55

sinh
(T x): R, 21

sin
(T x): R, 21

size
(T[] x): int, 32

skew_normal
(reals xi, reals omega, real alpha):

R, 101
(reals y, reals xi, reals omega,

reals alpha): real, 100
sampling statement, 100

softmax
(vector x): vector, 49

sort_asc
(int[] v): int[], 34
(real[] v): real[], 34
(row_vector v): row_vector, 55
(vector v): vector, 55

sort_desc
(int[] v): int[], 34
(real[] v): real[], 34
(row_vector v): row_vector, 55

(vector v): vector, 55
sort_indices_asc

(int[] v): int[], 34
(real[] v): int[], 34
(row_vector v): int[], 55
(vector v): int[], 55

sort_indices_desc
(int[] v): int[], 34
(real[] v): int[], 34
(row_vector v): int[], 55
(vector v): int[], 55

sqrt2
(): real, 13

sqrt
(T x): R, 20

squared_distance
(row_vector x, row_vector[] y):

real, 31
(row_vector x, vector [] y): real, 31
(vector x, row_vector [] y): real, 31
(vector x, vector y): real, 31

square
(T x): R, 20

std_normal
(reals y): real, 98
sampling statement, 98

step
(real x): real, 17

student_t
(reals nu, reals mu, reals sigma):

R, 101
(reals y, reals nu, reals mu, reals

sigma): real, 101
sampling statement, 101

sub_col
(matrix x, int i, int j, int

n_rows): vector, 46
sub_row

(matrix x, int i, int j, int
n_cols): row_vector, 46

sum
(int[] x): int, 29
(matrix x): real, 43
(real[] x): real, 29
(row_vector x): real, 43
(vector x): real, 43

tail
(T[] sv, int n): T[], 47
(row_vector rv, int n): row_vector,

47

154 INDEX

(vector v, int n): vector, 47
tanh

(T x): R, 21
tan

(T x): R, 21
target

(): real, 14
tcrossprod

(matrix x): matrix, 41
tgamma

(T x): R, 23
to_array_1d

(int[...] a): int[], 62
(matrix m): real[], 62
(real[...] a): real[], 62
(row_vector v): real[], 62
(vector v): real[], 62

to_array_2d
(matrix m): real[,], 62

to_matrix
(int[,] a): matrix, 61
(int[] a, int m, int n): matrix, 60
(int[] a, int m, int n, int

col_major): matrix, 61
(matrix m): matrix, 60
(matrix m, int m, int n): matrix, 60
(matrix m, int m, int n, int

col_major): matrix, 60
(real[,] a): matrix, 61
(real[] a, int m, int n): matrix, 60
(real[] a, int m, int n, int

col_major): matrix, 61
(row_vector v): matrix, 60
(row_vector v, int m, int n):

matrix, 60
(row_vector v, int m, int n, int

col_major): matrix, 60
(vector v): matrix, 60
(vector v, int m, int n): matrix, 60
(vector v, int m, int n, int

col_major): matrix, 60
to_row_vector

(int[] a): row_vector, 62
(matrix m): row_vector, 61
(real[] a): row_vector, 61
(row_vector v): row_vector, 61
(vector v): row_vector, 61

to_vector
(int[] a): vector, 61
(matrix m): vector, 61

(real[] a): vector, 61
(row_vector v): vector, 61
(vector v): vector, 61

trace_gen_quad_form
(matrix D,matrix A, matrix B): real,

42
trace_quad_form

(matrix A, matrix B): real, 42
trace

(matrix A): real, 52
trigamma

(T x): R, 23
trunc

(T x): R, 20
uniform

(reals alpha, reals beta): R, 122
(reals y, reals alpha, reals beta):

real, 122
sampling statement, 122

variance
(matrix x): real, 44
(real[] x): real, 30
(row_vector x): real, 44
(vector x): real, 44

von_mises
(reals mu, reals kappa): R, 120
sampling statement, 120

weibull
(reals alpha, reals sigma): R, 112
(reals y, reals alpha, reals sigma):

real, 111
sampling statement, 111

wiener
sampling statement, 115

wishart
(real nu, matrix Sigma): matrix, 135
sampling statement, 135

	Overview
	Built-In Functions
	Void Functions
	Print Statement
	Reject Statement

	Integer-Valued Basic Functions
	Integer-Valued Arithmetic Operators
	Absolute Functions
	Bound Functions

	Real-Valued Basic Functions
	Vectorization of Real-Valued Functions
	Mathematical Constants
	Special Values
	Log Probability Function
	Logical Functions
	Real-Valued Arithmetic Operators
	Step-like Functions
	Power and Logarithm Functions
	Trigonometric Functions
	Hyperbolic Trigonometric Functions
	Link Functions
	Probability-Related Functions
	Combinatorial Functions
	Composed Functions

	Array Operations
	Reductions
	Array Size and Dimension Function
	Array Broadcasting
	Array Concatenation
	Sorting functions

	Matrix Operations
	Integer-Valued Matrix Size Functions
	Matrix Arithmetic Operators
	Transposition Operator
	Elementwise Functions
	Dot Products and Specialized Products
	Reductions
	Broadcast Functions
	Diagonal Matrix Functions
	Slicing and Blocking Functions
	Matrix Concatenation
	Special Matrix Functions
	Covariance Functions
	Linear Algebra Functions and Solvers
	Sort Functions

	Sparse Matrix Operations
	Compressed Row Storage
	Conversion Functions
	Sparse Matrix Arithmetic

	Mixed Operations
	Compound Arithmetic and Assignment
	Compound Addition and Assignment
	Compound Subtraction and Assignment
	Compound Multiplication and Assignment
	Compound Division and Assignment
	Compound Elementwise Multiplication and Assignment
	Compound Elementwise Division and Assignment

	Higher-Order Functions
	Algebraic Equation Solver
	Ordinary Differential Equation Solvers
	Higher-Order Map

	Discrete Distributions
	Conventions for Probability Functions
	Suffix Marks Type of Function
	Argument Order and the Vertical Bar
	Sampling Notation
	Finite Inputs
	Boundary Conditions
	Pseudorandom Number Generators
	Cumulative Distribution Functions
	Vectorization

	Binary Distributions
	Bernoulli Distribution
	Bernoulli Distribution, Logit Parameterization
	Bernoulli-Logit Generalised Linear Model (Logistic Regression)

	Bounded Discrete Distributions
	Binomial Distribution
	Binomial Distribution, Logit Parameterization
	Beta-Binomial Distribution
	Hypergeometric Distribution
	Categorical Distribution
	Ordered Logistic Distribution
	Ordered Probit Distribution

	Unbounded Discrete Distributions
	Negative Binomial Distribution
	Negative Binomial Distribution (alternative parameterization)
	Negative Binomial Distribution (log alternative parameterization)
	Negative-Binomial-2-Log Generalised Linear Model (Negative Binomial Regression)
	Poisson Distribution
	Poisson Distribution, Log Parameterization
	Poisson-Log Generalised Linear Model (Poisson Regression)

	Multivariate Discrete Distributions
	Multinomial Distribution

	Continuous Distributions
	Unbounded Continuous Distributions
	Normal Distribution
	Normal-Id Generalised Linear Model (Linear Regression)
	Exponentially Modified Normal Distribution
	Skew Normal Distribution
	Student-T Distribution
	Cauchy Distribution
	Double Exponential (Laplace) Distribution
	Logistic Distribution
	Gumbel Distribution

	Positive Continuous Distributions
	Lognormal Distribution
	Chi-Square Distribution
	Inverse Chi-Square Distribution
	Scaled Inverse Chi-Square Distribution
	Exponential Distribution
	Gamma Distribution
	Inverse Gamma Distribution
	Weibull Distribution
	Frechet Distribution

	Non-negative Continuous Distributions
	Rayleigh Distribution
	Wiener First Passage Time Distribution

	Positive Lower-Bounded Probabilities
	Pareto Distribution
	Pareto Type 2 Distribution

	Continuous Distributions on [0, 1]
	Beta Distribution
	Beta Proportion Distribution

	Circular Distributions
	Von Mises Distribution

	Bounded Continuous Probabilities
	Uniform Distribution

	Distributions over Unbounded Vectors
	Multivariate Normal Distribution
	Multivariate Normal Distribution, Precision Parameterization
	Multivariate Normal Distribution, Cholesky Parameterization
	Multivariate Gaussian Process Distribution
	Multivariate Gaussian Process Distribution, Cholesky parameterization
	Multivariate Student-T Distribution
	Gaussian Dynamic Linear Models

	Simplex Distributions
	Dirichlet Distribution

	Correlation Matrix Distributions
	LKJ Correlation Distribution
	Cholesky LKJ Correlation Distribution

	Covariance Matrix Distributions
	Wishart Distribution
	Inverse Wishart Distribution

	Appendix
	Mathematical Functions
	Beta
	Incomplete Beta
	Gamma
	Digamma

	References
	Index

