
Bayesian Inference for Fun and
Profit

Mitzi Morris
Stan Development Team
Columbia University, New York NY
November 6, 2019

1

Bayesian Inference - talk outline

• General remarks and review

• Multi-level regression models in Stan

• Evaluating your inference

2

Stan - the man, the language, the software

• Named after Stanislaw Ulam
originator of Monte Carlo estimation

• Probabilistic programming language

• Stan NUTS-HMC sampler
Markov Chain Monte Carlo (MCMC) sampler

• PyMC3 and Pyro also use NUTS-HMC

• Rich eco-system of downstream analysis packages (in R)
• Arviz!

• Open-source - https://github.com/stan-dev
• CmdStanPy is BSD licensed

3

https://github.com/stan-dev

Multi-level modeling in Stan

• Multi-level modeling is a generalization of regression modeling.

• Stan was developed in order to fit complex multi-level models.

• Information pooling (what ML calls “regularization”)

• Also known as:

• hierarchical (generalized) linear models, nested data models,
mixed models, random coefficients, random-effects, random
parameter models, split-plot designs, . . .

• see: “All the names for hierarchical and multilevel modeling”
blog “Statistical Modeling, Causal Inference, and Social Science”

4

https://statmodeling.stat.columbia.edu/2019/09/18/all-the-names-for-hierarchical-and-multilevel-modeling/
https://statmodeling.stat.columbia.edu

Statistical Inference

We learn about unknown or unobserved quantities of a process
from the data generated by that process.

The parametric model is a white box model

We work backwards from the generated data (outputs) to
find out what’s in the box!

5

Bayesian Workflow

• Modelling: define a model (approximate) of
the data generating process.

• Estimation: determine the posterior probability of
the model parameters conditional on the data.

• Model Checking: evaluate how well the model fits the data.

• Model Improvement: Iterate steps 1-3.

• Model Comparison

• are results reasonable?
• how sensitive are results to model assumptions?

6

Statistical Notation

• y - data

• θ - parameters

• p(θ) - prior probability distribution - the probability of the
parameters before any data are observed

• p(y , θ) - joint probability distribution of the data and
parameters

• p(θ| y) - posterior probability distribution - the probability
of the parameters conditional on the data

• p(y | θ) - probability of the data given the parameters

• if y is fixed, this is the likelihood function
• if θ is fixed, this is the sampling distribution

7

Bayesian Inference

Bayes’ Theorem relates the conditional probability
of the parameters given the data, p(θ|y),
to the joint probability of parameters and data, p(θ, y).

p(θ|y) = p(y, θ)
p(y) [def of conditional probability]

= p(y|θ) p(θ)
p(y) [rewrite joint probability as conditional]

p(y) doesn’t depend on θ - proportional constant for fixed y
can be omitted - all we need to compute is:

p(θ|y) ∝ p(y|θ) p(θ) [unnormalized posterior density]

The posterior is proportional to the prior times the likelihood
8

Bayesian Inference

The posterior is proportional to the prior times the likelihood

p(θ|y) ∝ p(y|θ) p(θ)

• Model specifies prior, likelihood, and data.

• The prior distribution reflects our knowledge of the data - use
informative priors.

• Prior Choice Recommendations

• We can compute the mean, median, mode, and std deviation
of the posterior probability distribution p (θ|y)

• Quantiles of the posterior probability distribution provide
credible intervals.

Use all of your knowledge - account for your uncertainty!
9

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

Monte Carlo Simulation: Calculate π

Computing π = 3.14... via simulation is the textbook application of
Monte Carlo methods.
• Generate points (x,y) uniformly at

random within range (-1, 1)
• Calculate proportion within unit

circle: x2 + y2 < 1
• Area of the square is 4
• Area of a circle is π r2

• Area of the unit circle is π
• Ratio of points inside circle

to total points is π
4

• π = points inside circle × 4

10

Monte Carlo Simulation: Calculate π using Python

import numpy as np
def estimate_pi(n: int) -> float:

xs = np.random.uniform(-1,1,n)
ys = np.random.uniform(-1,1,n)
dist_to_origin = [x**2 + y**2 for x,y in zip(xs, ys)]
in_circle = sum(dist < 1 for dist in dist_to_origin)
pi = float(4 * (in_circle / n))
return pi

Sample size, estimate, elapsed time

N Pi.estimate elapsed.time
100 3.5 0.0008
10,000 3.15 0.03
1,000,000 3.139 3.2
100,000,000 3.1413 323.8

precision:
1√
N

11

Stan’s secret sauce: HMC-NUTS sampler

• Hamiltonian Monte Carlo - algorithm for efficient MCMC
sampling.

• NUTS sampler - Hoffman and Gelman, 2014 - efficient
convergence.

• No longer secret: PyMC3, Edward, Pyro use HMC-NUTS.
• A really nice overview:

• Monnahan, 2016.

12

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12681

Review: linear regression

• Data consist of pairs x inputs, y outputs
• Regression model fits parameters for line: α intercept, β slope
• Regression formula: y = α+ β ∗ x + ε,

where ε is random noise which has distribution ε ∼ N (0, σ)
• Corresponding Stan program statement:

y ~ normal(alpha + beta * x, sigma);

13

From Simple Linear Regression to Multi-level Models

Example: Major League Baseball Player Batting Ability

• Stan Case Study:
“Hierarchical Partial Pooling for Repeated Binary Trials”

• Data: batting records for Major League Baseball players.

• given number of hits in first 45 at-bats,
estimate probability of a hit for a single at-bat.

• Three models:

• estimate average player ability
• estimate individual player abilities
• estimate both average (“group-level”) and individual

(“random”) abilities

• Visualization: compare model estimates
14

https://mc-stan.org/users/documentation/case-studies/pool-binary-trials.html

Hierarchical Partial Pooling for Repeated Binary Trials

Modelling Player Batting Ability

Bernoulli distribution - single trial (at-bat)

• Bernoulli distribution: If θ ∈ [0, 1], then for y ∈ {0, 1},

Bernoulli(y | θ) =
{
θ if y = 1, and
1− θ if y = 0.

Binomial distribution - repeated Bernoulli trials (n at-bats)

• Binomial distribution: Suppose N ∈ N and θ ∈ [0, 1], and
n ∈ {0, . . . ,N}.

Binomial(n | N, θ) =
(
N
n

)
θn(1− θ)N−n.

15

Data: First 45 At-Bats for MLB Players in 1975

16

Preliminary data analysis

Plot individual batting averages and average batting average

17

Binomial Distribution: Roberto Clemente

18

Hierarchical Partial Pooling for Repeated Binary Trials

Same input data for all models

data {
int<lower=0> N; // items
int<lower=0> K[N]; // initial trials
int<lower=0> y[N]; // initial successes

}

Stan syntax similar to C/C++/Java:
• Variables are strongly typed.
• Blocks enclosed by curly braces.
• Top-level blocks are named (labeled), fixed ordering of named blocks.
• Statements in a block are executed in order.
• Semi-colons terminate statement.
• C++-style line-based (//) and bracketed comments (/* . . . */).

19

Hierarchical Partial Pooling for Repeated Binary Trials

Model 1: Players are all alike - complete pooling
parameters {

real<lower=0, upper=1> phi; // chance of success
}
model {

y ~ binomial(K, phi); // likelihood
}

Model 2: All players are different - no pooling
parameters {

vector<lower=0, upper=1>[N] theta; // chance of success
}
model {

y ~ binomial(K, theta); // likelihood
}

20

Hierarchical Partial Pooling for Repeated Binary Trials

Model 3: Multi-level Model!!
parameters {

real<lower=0, upper=1> phi; // population chance of success
real<lower=1> kappa; // population concentration
vector<lower=0, upper=1>[N] theta; // chance of success

}
model {

kappa ~ pareto(1, 1.5); // hyperprior
theta ~ beta(phi * kappa, (1 - phi) * kappa); // prior
y ~ binomial(K, theta); // likelihood

}

• Resulting model contains parameters phi, kappa, and theta
• phi, kappa - general player population (“group effects”)
• theta - individual player ability (“random effects”)

21

Model Comparison: Complete-, No-, and Partial Pooling

22

Model Comparison: Complete-, No-, and Partial Pooling

Let’s do the iPython notebook

23

https://github.com/stan-dev/stan-dev.github.io/blob/master/workshops/pydataNYC2019/pydata_notebooks/Simple%20Multi-Level%20Models%20-%20repeated%20binary%20trials.ipynb

Another Kind of Ball Game

2019 FIFA Women’s World Cup (WWC)

24

Ranking via Paired Comparisons - Player vs. Player

• Stan Case Study:
“The Bradley-Terry Model of Ranking via Paired Comparisons”

• Data: a series of paired comparisons, e.g.:

• a match between two players or teams
• consumer preference between two items

• Estimate player/team ability based on match outcome.

• Ability is a linear model with group- and individual-level
components.

25

https://mc-stan.org/users/documentation/case-studies/pool-binary-trials.html

2019 FIFA Women’s World Cup

Quantity of interest: difference in goals scored by each team

26

World Cup Model - Data

Outcomes of 48 matches - through quaterfinals

27

World Cup Model - Data

Soccer Power Index
rank country spi
1 USA 97.20623
2 France 95.31747
3 Germany 94.17161
4 Australia 93.13200
5 Netherlands 92.70844
...
20 Jamaica 59.78145
21 Scotland 50.75001
22 Thailand 50.43348
23 Chile 48.96239
24 Argentina 37.08972

• from 538 by Nate Silver

28

https://fivethirtyeight.com/methodology/how-our-club-soccer-predictions-work/

World Cup Model - Data

data {
int<lower=0> I; // number of teams
vector[I] spi; // per-team ranking

int<lower=0> N; // number of matches
int team_1[N]; // per-match data
int team_2[N];
vector[N] score_1;
vector[N] score_2;

}

• Soccer Power Index (SPI) score:
• per-team ability estimate (prior to WC play)

• Game outcomes:
• team1 id, team2 id, team1 score, team2 score

29

World Cup Model - Transformed Data

transformed data {
vector[N] y = score_1 - score_2;
vector[I] spi_std; // standardize SPI
real spi_mean = mean(spi);
real spi_sd = sd(spi);
for (i in 1:I) {

spi_std[i] = (spi[i] - spi_mean)/spi_sd;
}

}

• The transformed data block

• Executed only once, on model instantiation
• Declare and define new data variables
• Create random data using RNG functions

• Compute match outcome as (score1 − score2):

• Standardize SPI ratings - center on 0, scale variance to 1.
30

World Cup Model - Model

parameters {
vector[I] alpha; // per-team - "random effects"
real beta; // shared - "group effects"

real<lower=0> sigma_a; // scale of per-team variation
real<lower=0> sigma_y; // noise term in our estimate

}
transformed parameters {

// model ability - will be included in sample output
vector[I] ability = alpha * sigma_a + beta * spi_std;

}
model {

y ~ normal(ability[team_1] - ability[team_2], sigma_y);

// priors on all parameters
alpha ~ normal(0, 1); beta ~ normal(0, 2.5);
sigma_a ~ normal(0, 2.5); sigma_y ~ normal(0, 2.5);

}

31

World Cup Model - Generated Quantities

Compute quantities of interest in generated quantities

• Executed per iteration, once sampler has obtained a valid draw
from the posterior.

Replicate observed data y as y_rep

generated quantities {
// generate replicated data using estimated parameters
vector[N] y_rep;
for (n in 1:N) {

y_rep[n] = normal_rng(ability[team_1[n]] - ability[team_2[n]],
sigma_y);

}
}

Replicate statement uses RNG functions - cf. sampling statement
y ~ normal(ability[team_1] - ability[team_2], sigma_y);

32

World Cup Model - Generated Quantities

Predict outcome of future matches using current estimate of
team abilities

• data block - parallel arrays: team1 id, team2 id
int team_1_semis[2]; // these hold indices into
int team_2_semis[2]; // the vector of abilities

• generated quantities block
// predict the semi-finals
vector[2] semis;
for (n in 1:2) {

semis[n] = normal(ability[team_1_semis[n]] - ability[team_2_semis[n]],
sigma_y);

}

33

2019 FIFA Women’s World Cup

Let’s do the iPython notebook

34

https://github.com/stan-dev/stan-dev.github.io/blob/master/workshops/pydataNYC2019/pydata_notebooks/Bayesian%20Estimation%20-%202019%20FIFA%20Women's%20World%20Cup.ipynb

Evaluating Inference: The Big Data Baking Show

Given a model and dataset:

• subdivide into training, test data
• use training data to infer model parameters
• plug inferred params into data generating model
• use test data inputs (xs) to predict test data (ys)

May the best inference algorithm win!

35

Evaluating Inference

Stan Case Study: Probalistic Prediction
• The data generating model: logistic regression
• Use the model to simulate data - true values of parameters are

known
• Fit the model using simulated data
• Evaluate predictions made by estimators using different

inference algorithms

36

https://discourse.mc-stan.org/t/for-probabilistic-prediction-full-bayes-is-better-than-point-estimators/8607

Master Baker: Full Bayes!

Pdf on GitHub

37

https://github.com/bob-carpenter/case-studies/blob/master/bayes-versus/bayes-versus.pdf

Evaluating Inference: Cooking with CmdStanPy

• Full Bayesian Inference

• Stan’s NUTS-HMC sampler generates a sample from the
posterior distribution, compute statistics.

• CmdStanPy CmdStanModel class method sample

• Maximum a posteriori approximate inference (MAP estimates)

• Stan’s optimization algorithms find the modes of the density
specified by a Stan program (“penalized MLE”).

• CmdStanPy CmdStanModel class method optimize

• Variational approximation inference

• Variational Bayes (VB) tries to find an approximate distribution
matching the posterior and extracts the posterior mean values

• CmdStanPy CmdStanModel class method variational

38

https://cmdstanpy.readthedocs.io/en/latest/sample.html
https://cmdstanpy.readthedocs.io/en/latest/optimize.html
https://cmdstanpy.readthedocs.io/en/latest/variational_bayes.html

Questions Welcome! and Massive Thanks!

NYC PyLadies, especially:

• Nitya Mandyam
• Melissa Ferrari
• Felice Ho

NYC WiMLDS, especially:

• Reshama Shaikh

Team Stan!, especially:
• Lauren Kennedy
• Ben Bales

39

http://nyc.pyladies.com
http://wimlds.org/chapters/about-nyc/
https://github.com/orgs/stan-dev/people

References

• CmdStanPy
• PyPi
• Github
• Online Documentation

• Stan Documentation
• Stan Forums
• Stan Case Studies:

• Pooling with Hierarchical Models for Repeated Binary Trials
• The Bradley-Terry Model of Ranking via Paired Comparisons

• Hoffman and Gelman, 2014: The No-U-Turn Sampler:
Adaptively Setting Path Lengths in Hamiltonian Monte Carlo

• Monnahan, 2016: Faster estimation of Bayesian models in
ecology using Hamiltonian Monte Carlo.

40

https://pypi.org/project/cmdstanpy/
https://github.com/stan-dev/cmdstanpy
https://cmdstanpy.readthedocs.io/en/latest/index.html
https://mc-stan.org/users/documentation/
https://discourse.mc-stan.org/
https://mc-stan.org/users/documentation/case-studies/pool-binary-trials.html
https://github.com/stan-dev/example-models/blob/master/knitr/bradley-terry/
http://jmlr.org/papers/v15/hoffman14a.html
http://jmlr.org/papers/v15/hoffman14a.html
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12681
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12681

