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StanCon 2018

• 10–12 January 2018

• Asilomar (Pacific Grove, CA — 2 hrs south of SFO)

• Early registration still available

• Tutorials by Stan developers at all levels

• 6 keynotes from science and business

• Breakout “unconference” sessions

• http://mc-stan.org/events/stancon2018/
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What is Stan?
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Who is Stan?
• Named in honor of Stanislaw Ulam (1909–1984)

• Co-inventor of the Monte Carlo method

Ulam holding the Fermiac, Enrico Fermi’s physical Monte Carlo simulator
for random neutron diffusion;

image from G. C. Geisler (2000) Los Alamos report LA-UR-2532
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What is Stan?

• Stan is an imperative probabilistic programming language

– cf., BUGS: declarative; Church: functional; Figaro: object-
oriented

• Stan program

– declares data and (constrained) parameter variables

– defines log posterior (or penalized likelihood)

• Stan inference

– MCMC for full Bayesian inference

– VB for approximate Bayesian inference

– MLE for penalized maximum likelihood estimation
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Why Choose Stan?
• Expressive

– Stan is a full imperative programming language

– continuously differentiable log densities

• Robust

– usually works; signals when it doesn’t

• Efficient

– effective sample size / time (i.e., information)

– multi-core and GPU code complete on branches

• Ongoing open source development

• Community support!
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Intro

Probability
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Probability is Epistemic

• John Stuart Mill (Logic 1882, Part III, Ch. 2):

– ... the probability of an event is not a quality of the event
itself, but a mere name for the degree of ground which we,
or some one else, have for expecting it.

– Every event is in itself certain, not probable; if we knew
all, we should either know positively that it will happen, or
positively that it will not.

– ... its probability to us means the degree of expectation
of its occurrence, which we are warranted in entertaining
by our present evidence.

• Probabilities quantify uncertainty

• Statistical reasoning is counterfactual
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Random Variables

• Random variables are the currency of probability theory

• Random variables typically take numbers as values

• Imagine a bin filled with balls represneting the way the
world might be

• A ball records the value of every random variable

• Examples

– the sum of the three best among a roll of four dice (d6)

– time before the next traffic accident on a given highway

– prevalence of a disease in a population
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Bayesian Data Analysis

• “By Bayesian data analysis, we mean practical methods for
making inferences from data using probability models for
quantities we observe and about which we wish to learn.”

• “The essential characteristic of Bayesian methods is their
explict use of probability for quantifying uncertainty in
inferences based on statistical analysis.”

Gelman et al., Bayesian Data Analysis, 3rd edition, 2013
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Bayesian Methodology
• Set up full probability model

– for all observable & unobservable quantities

– consistent w. problem knowledge & data collection

• Condition on observed data (where Stan comes in!)

– to caclulate posterior probability of unobserved quan-
tities (e.g., parameters, predictions, missing data)

• Evaluate

– model fit and implications of posterior

• Repeat as necessary

Ibid.
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Properties of Bayesian Inference

• Explores full range of parameters consistent with prior
info and data∗

– ∗ if such agreement is possible

– Stan automates this procedure with diagnostics

• Inferences can be plugged in directly for

– parameter estimates minimizing expected error

– predictions for future outcomes with uncertainty

– event probability updates conditioned on data

– risk assesment / decision analysis conditioned on uncer-
tainty
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Where do Models Come from?

• Sometimes model comes first, based on substantive con-
siderations

– toxicology, economics, ecology, physics, . . .

• Sometimes model chosen based on data collection

– traditional statistics of surveys and experiments

• Other times the data comes first

– observational studies, meta-analysis, . . .

• Usually its a mix
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Model Checking
• Do the inferences make sense?

– are parameter values consistent with model’s prior?

– does simulating from parameter values produce reasoable
fake data?

– are marginal predictions consistent with the data?

• Do predictions and event probabilities for new data make
sense?

• Not: Is the model true?

• Not: What is Pr[model is true]?

• Not: Can we “reject” the model?
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Model Improvement

• Expanding the model

– hierarchical and multilevel structure . . .

– more flexible distributions (overdispersion, covariance)

– more structure (geospatial, time series)

– more modeling of measurement methods and errors

– . . .

• Including more data

– breadth (more predictors or kinds of observations)

– depth (more observations)
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Notation for Basic Quantities

• Basic Quantities

– y: observed data

– θ: parameters (and other unobserved quantities)

– x: constants, predictors for conditional (aka “discrimina-
tive”) models

• Basic Predictive Quantities

– ỹ: unknown, potentially observable quantities

– x̃: constants, predictors for unknown quantities
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Naming Conventions

• Joint: p(y, θ)

• Sampling / Likelihood: p(y|θ)
– Sampling is function of y with θ fixed (prob function)

– Likelihood is function of θ with y fixed (not prob function)

• Prior: p(θ)

• Posterior: p(θ|y)

• Data Marginal (Evidence): p(y)

• Posterior Predictive: p(ỹ|y)

17



Bayes’s Rule for Posterior

p(θ|y) = p(y, θ)
p(y)

[def of conditional]

= p(y|θ)p(θ)
p(y)

[chain rule]

= p(y|θ)p(θ)∫
Θ p(y, θ′) dθ′

[law of total prob]

= p(y|θ)p(θ)∫
Θ p(y|θ′)p(θ′) dθ′

[chain rule]

• Inversion: Final result depends only on sampling distribu-
tion (likelihood) p(y|θ) and prior p(θ)
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Bayes’s Rule up to Proportion

• If data y is fixed, then

p(θ|y) = p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ)

= p(y, θ)

• Posterior proportional to likelihood times prior

• Equivalently, posterior proportional to joint

• The nasty integral for data marginal p(y) goes away
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Posterior Predictive Distribution

• Predict new data ỹ based on observed data y

• Marginalize parameters θ out of posterior and likelihood

p(ỹ | y) = E[p(ỹ|θ) | Y = y]

=
∫
p(ỹ|θ)p(θ|y)dθ.

• Weights predictions p(ỹ|θ), by posterior p(θ|y)

• Integral notation shorthand for sums and/or integrals
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Posterior Event Probabilities
• Recall that an event A is a collection of outcomes

• So A may be defined by an indicator f on parameters

f (θ) =

1 if θ ∈ A
0 if θ 6∈ A

– f (θ) = I(θ1 > θ2) for Pr[θ1 > θ2 |y],
– f (θ) = I(θ ∈ (0.50,0.52) for Pr [θ ∈ (0.50,0.52) |y]

• Defined by posterior expectation of indicator f (θ)

Pr[A |y] = E [f (θ) |y] =
∫
Θ
f (θ)p(θ|y)dθ.
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Repeated Binary Trials
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Repeated Binary Trial Model
• Data

– N ∈ {0,1, . . .}: number of trials (constant)

– yn ∈ {0,1}: trial n success (known, modeled data)

• Parameter

– θ ∈ [0,1] : chance of success (unknown)

• Prior

– p(θ) = Uniform(θ |0,1) = 1

• Likelihood

– p(y |θ) =
∏N
n=1 Bernoulli(yn |θ) =

∏N
n=1 θyn (1− θ)1−yn

• Posterior

– p(θ |y)∝ p(θ)p(y |θ)
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Stan Program

data {
int<lower=0> N; // number of trials
int<lower=0, upper=1> y[N]; // success on trial n

}
parameters {

real<lower=0, upper=1> theta; // chance of success
}
model {

theta ~ uniform(0, 1); // prior
y ~ bernoulli(theta); // likelihood

}
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A Stan Program...

• defines log (posterior) density up to constant, so...

• equivalent to define log density directly:

model {
target += 0;
for (n in 1:N)
target += log(y[n] ? theta : (1 - theta));

}

• equivalent to drop constant prior and vectorize likelihood:

model {
y ~ bernoulli(theta);

}

25



R: Simulate Data

• Generate data

> theta <- 0.30;
> N <- 20;
> y <- rbinom(N, 1, 0.3);

> y

[1] 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1

• Calculate MLE as sample mean from data

> sum(y) / N

[1] 0.4
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RStan: Bayesian Posterior

> library(rstan);

> fit <- stan("bern.stan",
data = list(y = y, N = N));

> print(fit, probs=c(0.1, 0.9));

Inference for Stan model: bern.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000,
total post-warmup draws=4000.

mean se_mean sd 10% 90% n_eff Rhat
theta 0.41 0.00 0.10 0.28 0.55 1580 1
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RStan: Posterior Sample

> theta_draws <- extract(fit)$theta;
> mean(theta_draws);

[1] 0.4128373

> quantile(theta_draws, probs=c(0.10, 0.90));

10% 90%
0.2830349 0.5496858
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Marginal Posterior Histograms
theta_draws_df <- data.frame(list(theta = theta_draws));
plot <-

ggplot(theta_draws_df, aes(x = theta)) +
geom_histogram(bins=20, color = "gray");

plot;

0

200

400

0.2 0.4 0.6 0.8
theta

co
un

t

• Displays the full posterior marginal distribution p(θ |y)
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RStan: MAP, penalized MLE

• Stan’s optimization for estimation; two views:

– max posterior mode, aka max a posteriori (MAP)

– max penalized likelihood (MLE)

> library(rstan);
> N <- 5;
> y <- c(0,1,1,0,0);
> model <- stan_model("bernoulli.stan");
> mle <- optimizing(model, data=c("N", "y"));
...
> print(mle, digits=2)
$par $value (log density)
theta [1] -3.4

0.4
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Plug in Posterior Draws

• Extracting the posterior draws

> theta_draws <- extract(fit)$theta;

• Calculating posterior mean (estimator)

> mean(theta_draws);

[1] 0.4128373

• Calculating posterior intervals

> quantile(theta_draws, probs=c(0.10, 0.90));

10% 90%
0.2830349 0.5496858
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ggplot2: Plotting
theta_draws_df <- data.frame(list(theta = theta_draws));
plot <-

ggplot(theta_draws_df, aes(x = theta)) +
geom_histogram(bins=20, color = "gray");

plot;
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Default Priors and Vectorization

• All parameters are uniform by default

• Probability functions can be vectorized (more efficient)

• Thus

theta ~ uniform(0,1);

for (n in 1:N)

y[n] ~ bernoulli(theta);

reduces to

y ~ bernoulli(theta);
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Real Example

Male Birth Ratio
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Birth Rate by Sex

• Laplace’s data on live births in Paris from 1745–1770:

sex live births

female 241 945
male 251 527

• Question 1 (Estimation)
What is the birth rate of boys vs. girls?

• Question 2 (Event Probability)
Is a boy more likely to be born than a girl?

• Bayes (1763) set up the “Bayesian” model

• Laplace (1781, 1786) solved for the posterior
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Bayes’s Binomial Model
• Data

– y: total number of male live births (251,527)

– N : total number of live births (493,472)

• Parameter

– θ ∈ (0,1): proportion of male live births

• Likelihood

p(y|N,θ) = Binomial(y|N,θ) =
(
N
y

)
θy(1− θ)N−y

• Prior
p(θ) = Uniform(θ |0,1) = 1
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Calculating Laplace’s Answers

transformed data {
int male = 251527;
int female = 241945;

}
parameters {

real<lower=0, upper=1> theta;
}
model {

male ~ binomial(male + female, theta);
}
generated quantities {

int<lower=0, upper=1> theta_gt_half = (theta > 0.5);
}
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And the Answer is...

> fit <- stan("laplace.stan", iter=100000);
> print(fit, probs=c(0.005, 0.995), digits=3)

mean 0.5% 99.5%
theta 0.51 0.508 0.512
theta_gt_half 1.00 1.000 1.000

• Q1: θ is 99% certain to lie in (0.508,0.512)

• Q2: Laplace “morally certain” boys more prevalent
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Example 2

A-B Testing
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Bayesian “Fisher Exact Test”
• Suppose we observe the following data on handedness

sinister dexter TOTAL

male 9 (y1) 43 52 (N1)
female 4 (y2) 44 48 (N2)

• Assume likelihoods Binomial(yk|Nk, θk), uniform priors

• Are men more likely to be lefthanded?

Pr[θ1 > θ2 |y,N] =
∫
Θ

I[θ1 > θ2]p(θ|y,N)dθ

≈ 1
M

M∑
m=1

I[θ(m)1 > θ(m)2 ].
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Stan Binomial Comparison

data {
int y[2];
int N[2];

}
parameters {

vector<lower=0,upper=1> theta[2];
}
model {

y ~ binomial(N, theta);
}
generated quantities {

real boys_minus_girls = theta[1] - theta[2];
int boys_gt_girls = theta[1] > theta[2];

}
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Binomial Comparison Results

mean 2.5% 97.5%
theta[1] 0.22 0.12 0.35
theta[2] 0.11 0.04 0.21
boys_minus_girls 0.12 -0.03 0.26
boys_gt_girls 0.93 0.00 1.00

• Pr[θ1 > θ2 |y] ≈ 0.93

• Pr [(θ1 − θ2) ∈ (−0.03,0.26) |y] = 95%
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Visualizing Posterior Difference
• Plot of posterior difference, p(θ1−θ2 |y,N) (men - women)
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draws from theta[1] − theta[2]
with 95% interval

• Vertical bars: central 95% posterior interval (−0.03,0.26)
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What is Stan?
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What is Stan?

• Stan is an imperative probabilistic programming language

– cf., BUGS: declarative; Church: functional; Figaro: object-
oriented

• Stan program

– declares data and (constrained) parameter variables

– defines log posterior (or penalized likelihood)

• Stan inference

– MCMC for full Bayesian inference

– VB for approximate Bayesian inference

– MLE for penalized maximum likelihood estimation
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Platforms and Interfaces

• Platforms: Linux, Mac OS X, Windows

• C++ API: portable, standards compliant (C++11)

• Interfaces

– CmdStan: Command-line or shell interface (direct executable)

– RStan: R interface (Rcpp in memory)

– PyStan: Python interface (Cython in memory)

– MatlabStan: MATLAB interface (external process)

– Stan.jl: Julia interface (external process)

– StataStan: Stata interface (external process)

– MathematicaStan: Stata interface (external process)
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Higher-Level Interfaces

• R Interfaces

– RStanArm: regression modeling with R expressions

– ShinyStan: web-based posterior visualization, exploration

– Loo: approximate leave-one-out cross-validation

• Jupyter Containers

– Docker versions for R, Python, Julia

– SageMath: free online server (R)

• From others

– Prohet (Facebook): time-series analysis (R and Python)

– brms (Bürkner): regression modeling with R expressions
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– rethinking (McElreath): simplified Stan embedded in R
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Who’s Using Stan?

• 2500+ users group registrations; 20,000+ downloads
(per version just in Rstudio); 1000+ Google scholar citations

• Biological sciences: clinical drug trials, entomology, pharmacology,

toxicology, botany, neurology, genomics, agriculture, botany, fisheries,

genomics, cellular biology, epidemiology, population ecology, neurology

• Physical sciences: astrophysics, particle physics, molecular biology,

oceanography, climatology, biogeochemistry, materials science

• Social sciences: econometrics (macro and micro), population dynam-

ics, cognitive science, psycholinguistics, social networks, political sci-

ence, survey sampling
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• Other: materials engineering, finance, actuarial science, sports, public

health, recommender systems, educational testing, fleet maintenance,

sports
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Documentation
• Stan User’s Guide and Reference Manual

– 600+ pages

– example models, modeling and programming advice

– introduction to Bayesian and frequentist statistics

– complete language specification and execution guide

– descriptions of algorithms (NUTS, R-hat, n_eff)

– guide to built-in distributions and functions

• Installation and getting started manuals by interface

– RStan, PyStan, CmdStan, MatlabStan, Stan.jl, StataStan, Math-
ematicaStan

• Many written and video tutorials by users and developers
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Model Sets Translated to Stan

• BUGS examples (most of all 3 volumes)

• Gelman and Hill (2009) Data Analysis Using Regression
and Multilevel/Hierarchical Models.

• Wagenmakers and Lee (2014) Bayesian Cognitive Model-
ing.

• Kéry and Schaub (2014) Bayesian Population Analysis Us-
ing WinBUGS.

• Kruschke (2014) Doing Bayesian Data Analysis.
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Books about Stan
• Gelman and Hill (2018) Regression and Other Stories. Cambridge.

• Hilbe, de Souza, and Ishida (2017) Bayesian Models for Astrophysical
Data Using R, JAGS, Python, and Stan. Cambridge.

• Matsuura (2016) Bayesian Statistical Modeling Using Stan and R. Ky-
oritsu. (Japanese)

• Faraway (2016) Extending the Linear Model with R: Generalized Linear,
Mixed Effects and Nonparametric Regression Models, 2nd Edition. CRC.

• McElreath (2016) Statistical Rethinking: A Bayesian course with R and
Stan. CRC.

• Korner-Nievergelt et al. (2015) Bayesian Data Analysis in Ecology Using
Linear Models with R, BUGS, and Stan. Academic Press.
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• Kruschke (2014) Doing Bayesian Data Analysis, Second Edition: A Tuto-
rial with R, JAGS, and Stan. Academic Press.

• Gelman et al. (2013) Bayesian Data Analysis, 3rd Edition. CRC.
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Scaling and Evaluation
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Big Model and Big Data

• Types of Scaling: data, parameters, models

• Time to converge and per effective sample size:

0.5–∞ times faster than BUGS & JAGS

• Memory usage: 1–10% of BUGS & JAGS
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NUTS vs. Gibbs and Metropolis
The No-U-Turn Sampler

Figure 7: Samples generated by random-walk Metropolis, Gibbs sampling, and NUTS. The plots

compare 1,000 independent draws from a highly correlated 250-dimensional distribu-

tion (right) with 1,000,000 samples (thinned to 1,000 samples for display) generated by

random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000 samples for display)

generated by Gibbs sampling (second from left), and 1,000 samples generated by NUTS

(second from right). Only the first two dimensions are shown here.

4.4 Comparing the Efficiency of HMC and NUTS

Figure 6 compares the efficiency of HMC (with various simulation lengths λ ≈ �L) and
NUTS (which chooses simulation lengths automatically). The x-axis in each plot is the
target δ used by the dual averaging algorithm from section 3.2 to automatically tune the step
size �. The y-axis is the effective sample size (ESS) generated by each sampler, normalized by
the number of gradient evaluations used in generating the samples. HMC’s best performance
seems to occur around δ = 0.65, suggesting that this is indeed a reasonable default value
for a variety of problems. NUTS’s best performance seems to occur around δ = 0.6, but
does not seem to depend strongly on δ within the range δ ∈ [0.45, 0.65]. δ = 0.6 therefore
seems like a reasonable default value for NUTS.

On the two logistic regression problems NUTS is able to produce effectively indepen-
dent samples about as efficiently as HMC can. On the multivariate normal and stochastic
volatility problems, NUTS with δ = 0.6 outperforms HMC’s best ESS by about a factor of
three.

As expected, HMC’s performance degrades if an inappropriate simulation length is cho-
sen. Across the four target distributions we tested, the best simulation lengths λ for HMC
varied by about a factor of 100, with the longest optimal λ being 17.62 (for the multivari-
ate normal) and the shortest optimal λ being 0.17 (for the simple logistic regression). In
practice, finding a good simulation length for HMC will usually require some number of
preliminary runs. The results in Figure 6 suggest that NUTS can generate samples at least
as efficiently as HMC, even discounting the cost of any preliminary runs needed to tune
HMC’s simulation length.

25

• Two dimensions of highly correlated 250-dim normal

• 1,000,000 draws from Metropolis and Gibbs (thin to 1000)

• 1000 draws from NUTS; 1000 independent draws
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Stan’s Autodiff vs. Alternatives
• Among C++ open-source offerings: Stan is fastest (for gradi-

ents), most general (functions supported), and most easily ex-
tensible (simple OO)
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Stan Language
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Stan is a Programming Language

• Not a graphical specification language like BUGS or JAGS

• Stan is a Turing-complete imperative programming lan-
gauge for specifying differentiable log densities

– reassignable local variables and scoping

– full conditionals and loops

– functions (including recursion)

• With automatic “black-box” inference on top (though even
that is tunable)

• Programs computing same thing may have different effi-
ciency
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Basic Program Blocks

• data (once)

– content: declare data types, sizes, and constraints

– execute: read from data source, validate constraints

• parameters (every log prob eval)

– content: declare parameter types, sizes, and constraints

– execute: transform to constrained, Jacobian

• model (every log prob eval)

– content: statements definining posterior density

– execute: execute statements
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Derived Variable Blocks
• transformed data (once after data)

– content: declare and define transformed data variables

– execute: execute definition statements, validate constraints

• transformed parameters (every log prob eval)

– content: declare and define transformed parameter vars

– execute: execute definition statements, validate constraints

• generated quantities (once per draw, double type)

– content: declare and define generated quantity variables;
includes pseudo-random number generators
(for posterior predictions, event probabilities, decision making)

– execute: execute definition statements, validate constraints
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Model: Read and Transform Data

• Only done once for optimization or sampling (per chain)

• Read data

– read data variables from memory or file stream

– validate data

• Generate transformed data

– execute transformed data statements

– validate variable constraints when done
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Model: Log Density

• Given parameter values on unconstrained scale

• Builds expression graph for log density (start at 0)

• Inverse transform parameters to constrained scale

– constraints involve non-linear transforms

– e.g., positive constrained x to unconstrained y = logx

• account for curvature in change of variables

– e.g., unconstrained y to positive x = log−1(y) = exp(y)

– e.g., add log Jacobian determinant, log | ddy exp(y)| = y

• Execute model block statements to increment log density
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Model: Log Density Gradient

• Log density evaluation builds up expression graph

– templated overloads of functions and operators

– efficient arena-based memory management

• Compute gradient in backward pass on expression graph

– propagate partial derivatives via chain rule

– work backwards from final log density to parameters

– dynamic programming for shared subexpressions

• Linear multiple of time to evalue log density
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Model: Generated Quantities

• Given parameter values

• Once per iteration (not once per leapfrog step)

• May involve (pseudo) random-number generation

– Executed generated quantity statements

– Validate values satisfy constraints

• Typically used for

– Event probability estimation

– Predictive posterior estimation

• Efficient because evaluated with double types (no autodiff)
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Variable Transforms

• Code HMC and optimization with Rn support

• Transform constrained parameters to unconstrained

– lower (upper) bound: offset (negated) log transform

– lower and upper bound: scaled, offset logit transform

– simplex: centered, stick-breaking logit transform

– ordered: free first element, log transform offsets

– unit length: spherical coordinates

– covariance matrix: Cholesky factor positive diagonal

– correlation matrix: rows unit length via quadratic stick-
breaking
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Variable Transforms (cont.)

• Inverse transform from unconstrained Rn

• Evaluate log probability in model block on natural scale

• Optionally adjust log probability for change of variables

– adjustment for MCMC and variational, not MLE

– add log determinant of inverse transform Jacobian

– automatically differentiable
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Variable and Expression Types
Variables and expressions are strongly, statically typed.

• Primitive: int, real

• Matrix: matrix[M,N], vector[M], row_vector[N]

• Bounded: primitive or matrix, with
<lower=L>, <upper=U>, <lower=L,upper=U>

• Constrained Vectors: simplex[K], ordered[N],
positive_ordered[N], unit_length[N]

• Constrained Matrices: cov_matrix[K], corr_matrix[K],
cholesky_factor_cov[M,N], cholesky_factor_corr[K]

• Arrays: of any type (and dimensionality)
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Integers vs. Reals

• Different types (conflated in BUGS, JAGS, and R)

• Distributions and assignments care

• Integers may be assigned to reals but not vice-versa

• Reals have not-a-number, and positive and negative infin-
ity

• Integers single-precision up to +/- 2 billion

• Integer division rounds (Stan provides warning)

• Real arithmetic is inexact and reals should not be (usually)
compared with ==

69



Arrays vs. Vectors & Matrices

• Stan separates arrays, matrices, vectors, row vectors

• Which to use?

• Arrays allow most efficient access (no copying)

• Arrays stored first-index major (i.e., 2D are row major)

• Vectors and matrices required for matrix and linear alge-
bra functions

• Matrices stored column-major

• Are not assignable to each other, but there are conversion
functions
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Logical Operators

Op. Prec. Assoc. Placement Description

|| 9 left binary infix logical or

&& 8 left binary infix logical and

== 7 left binary infix equality
!= 7 left binary infix inequality

< 6 left binary infix less than
<= 6 left binary infix less than or equal
> 6 left binary infix greater than
>= 6 left binary infix greater than or equal
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Arithmetic and Matrix Operators

Op. Prec. Assoc. Placement Description

+ 5 left binary infix addition
- 5 left binary infix subtraction

* 4 left binary infix multiplication
/ 4 left binary infix (right) division

\ 3 left binary infix left division

.* 2 left binary infix elementwise multiplication

./ 2 left binary infix elementwise division

! 1 n/a unary prefix logical negation
- 1 n/a unary prefix negation
+ 1 n/a unary prefix promotion (no-op in Stan)

^ 2 right binary infix exponentiation

’ 0 n/a unary postfix transposition

() 0 n/a prefix, wrap function application
[] 0 left prefix, wrap array, matrix indexing
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Assignment Operators

Op. Description

= assignment
+= compound add and assign
-= compound subtract and assign

*= compound mulitply and assign
/= compound divide and assign
.*= compound elementwise mulitply and assign
./= compound elementwise divide and assign

• these work with all relevant matrix types

– e.g., matrix *= matrix;
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Built-in Math Functions

• All built-in C++ functions and operators
C math, TR1, C++11, including all trig, pow, and special log1m, erf, erfc,

fma, atan2, etc.

• Extensive library of statistical functions
e.g., softmax, log gamma and digamma functions, beta functions, Bessel

functions of first and second kind, etc.

• Efficient, arithmetically stable compound functions
e.g., multiply log, log sum of exponentials, log inverse logit
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Built-in Matrix Functions
• Basic arithmetic: all arithmetic operators

• Elementwise arithmetic: vectorized operations

• Solvers: matrix division, (log) determinant, inverse

• Decompositions: QR, Eigenvalues and Eigenvectors,
Cholesky factorization, singular value decomposition

• Compound Operations: quadratic forms, variance scaling, etc.

• Ordering, Slicing, Broadcasting: sort, rank, block, rep

• Reductions: sum, product, norms

• Specializations: triangular, positive-definite,
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Statements
• Sampling: y ~ normal(mu,sigma) (increments log probability)

• Log probability: increment_log_prob(lp);

• Assignment: y_hat <- x * beta;

• For loop: for (n in 1:N) ...

• While loop: while (cond) ...

• Conditional: if (cond) ...; else if (cond) ...; else ...;

• Block: { ... } (allows local variables)

• Print: print("theta=",theta);
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• Reject: reject("arg to foo must be positive, found y=", y);

• Break, Continue: break, continue

77



“Sampling” Increments Log Prob
• A Stan program defines a log posterior

– typically through log joint and Bayes’s rule

• Sampling statements are just “syntactic sugar”

• A shorthand for incrementing the log posterior

• The following define the same∗ posterior

– y ~ poisson(lambda);

– increment_log_prob(poisson_log(y, lamda));

• ∗ up to a constant

• Sampling statement drops constant terms
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Local Variable Scope Blocks
• y ~ bernoulli(theta);

is more efficient with sufficient statistics

{

real sum_y; // local variable

sum_y <- 0;

for (n in 1:N)

sum_y <- a + y[n]; // reassignment

sum_y ~ binomial(N, theta);

}

• Simpler, but roughly same efficiency:

sum(y) ~ binomial(N, theta);

79



User-Defined Functions
• functions (compiled with model)

– content: declare and define general (recursive) functions
(use them elsewhere in program)

– execute: compile with model

• Example

functions {

real relative_difference(real u, real v) {
return 2 * fabs(u - v) / (fabs(u) + fabs(v));

}

}
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Special User-Defined Functions

• When declared with appropriate naming, user-defined func-
tions may

– be used in sampling statements: real return and suffix
_lpdf or _lpmf

– use RNGs: suffix _rng

– use target accumulator: suffix _lp
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Differential Equation Solver
• System expressed as function

– given state (y) time (t), parameters (θ), and data (x)

– return derivatives (∂y/∂t) of state w.r.t. time

• Simple harmonic oscillator diff eq

real[] sho(real t, // time
real[] y, // system state
real[] theta, // params
real[] x_r, // real data
int[] x_i) { // int data

real dydt[2];
dydt[1] <- y[2];
dydt[2] <- -y[1] - theta[1] * y[2];
return dydt;

}
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Differential Equation Solver (cont.)

• Solution via functional, given initial state (y0), initial time
(t0), desired solution times (ts)

mu_y <- integrate_ode(sho, y0, t0, ts, theta, x_r, x_i);

• Use noisy measurements of y to estimate θ

y ~ normal(mu_y, sigma);

– Pharmacokinetics/pharmacodynamics (PK/PD),

– soil carbon respiration with biomass input and breakdown
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Built-in Diff Eq Solvers

• Non-stiff solver: Runge-Kutta 4th/5th order (RK45)

• Stiff solver: backward-differentiation formula (BDF)

– slower

– more robust for derivatives of different scales or high cur-
vature

• specified by suffix _bdf or _rk45
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Diff Eq Derivatives

• User defines system ∂
∂t y

• Need derivatives of solution y w.r.t. parameters θ

• Couple derivatives of system w.r.t. parameters(
∂
∂t
y,

∂
∂t

∂
∂θ
y
)

• Calculate coupled system via nested autodiff of second
term

∂
∂t

∂
∂θ
y = ∂

∂θ
∂
∂t
y.
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Distribution Library

• Each distribution has

– log density or mass function

– cumulative distribution functions, plus complementary ver-
sions, plus log scale

– Pseudo-random number generators

• Alternative parameterizations
(e.g., Cholesky-based multi-normal, log-scale Poisson, logit-scale Bernoulli)

• New multivariate correlation matrix density: LKJ
degrees of freedom controls shrinkage to (expansion from) unit matrix
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Print and Reject

• Print statements are for debugging

– printed every log prob evaluation

– print values in the middle of programs

– check when log density becomes undefined

– can embed in conditionals

• Reject statements are for error checking

– typically function argument checks

– cause a rejection of current state (0 density)
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Prob Function Vectorization
• Stan’s probability functions are vectorized for speed

– removes repeated computations (e.g., − logσ in normal)

– reduces size of expression graph for differentation

• Consider: y ~ normal(mu, sigma);

• Each of y, mu, and sigma may be any of

– scalars (integer or real)

– vectors (row or column)

– 1D arrays

• All dimensions must be scalars or having matching sizes

• Scalars are broadcast (repeated)
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Parsing and Compilation

• Stan code parsed to abstract syntax tree (AST)
(Boost Spirit Qi, recursive descent, lazy semantic actions)

• C++ model class code generation from AST
(Boost Variant)

• C++ code compilation

• Dynamic linking for RStan, PyStan
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What Stan Does

90



Full Bayes: No-U-Turn Sampler

• Adaptive Hamiltonian Monte Carlo (HMC)

– Potential Energy: negative log posterior

– Kinetic Energy: random standard normal per iteration

– Multinomial: draw along trajectory

• Adaptation during warmup

– step size adapted to target total acceptance rate

– mass matrix (scale/rotation) estimated with regularization

• Adaptation during sampling

– simulate forward and backward in time until U-turn

– slice sample along path
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(Hoffman and Gelman 2011, 2014)
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Animation

• animated GIFs (easy to produce!)
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Why HMC?

• Gibbs and Metropolis are both random walk diffusions

– O(N2) in N dimensions to move across posterior

– constant factor increases with correlation

• HMC uses gradient information of log posterior

– gradient defines vector field along which trajectory flows

• Eliminates random walk behavior

– O(N5/4)

– lower constant factor because less sensitive to correlation

94



Posterior Inference

• Generated quantities block for inference:
predictions, decisions, and event probabilities

• Extractors for samples in RStan and PyStan

• Coda-like posterior summary

– posterior mean w. MCMC std. error, std. dev., quantiles

– split-R̂ multi-chain convergence diagnostic (Gelman/Rubin)

– multi-chain effective sample size estimation (FFT algorithm)

• Model comparison with WAIC

– in-sample approximation to cross-validation
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MAP / Penalized MLE

• Posterior mode finding via L-BFGS optimization
(uses model gradient, efficiently approximates Hessian)

• Disables Jacobians for parameter inverse transforms

• Models, data, initialization as in MCMC

• Standard errors on unconstrained scale
(estimated using curvature of penalized log likelihood function

• Very Near Future

– Standard errors on constrained scale)
(sample unconstrained approximation and inverse transform)
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“Black Box” Variational Inference

• Black box so can fit any Stan model

• Multivariate normal approx to unconstrained posterior

– covariance: diagonal mean-field or full rank

– not Laplace approx — around posterior mean, not mode

– transformed back to constrained space (built-in Jacobians)

• Stochastic gradient-descent optimization

– ELBO gradient estimated via Monte Carlo + autdiff

• Returns approximate posterior mean / covariance

• Returns sample transformed to constrained space
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Stan as a Research Tool

• Stan can be used to explore algorithms

• Models transformed to unconstrained support on Rn

• Once a model is compiled, have

– log probability, gradient, and Hessian

– data I/O and parameter initialization

– model provides variable names and dimensionalities

– transforms to and from constrained representation
(with or without Jacobian)
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What’s Next

• Distributed likelihoods: multi-core (MPI)

• Big matrix operations: GPU (OpenCL)

• Streaming data: myemphstochastic variational inference

• Distributed data: “black box” expectation propagation

• Approximations, visualizations, posterior analysis tools

• Coursera specialization (Bob Carpenter & Andrew Gelman)
mid-2018
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StanCon 2018

• 10–12 January 2018

• Asilomar (Pacific Grove, CA — 2 hrs south of SFO)

• Early registration still available

• Tutorials by Stan developers at all levels

• 6 keynotes from science and business

• Breakout “unconference” sessions

• http://mc-stan.org/events/stancon2018/
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