
Section 2.
Stan Components

Bob Carpenter

Columbia University

1

Part I

Stan Top Level

2

Stan’s Namesake

• Stanislaw Ulam (1909–1984)

• Co-inventor of Monte Carlo method (and hydrogen bomb)

• Ulam holding the Fermiac, Enrico Fermi’s physical Monte Carlo

simulator for random neutron diffusion

3

What is Stan?

• Stan is an imperative probabilistic programming language

– cf., BUGS: declarative; Church: functional; Figaro: object-
oriented

• Stan program

– declares data and (constrained) parameter variables

– defines log posterior (or penalized likelihood)

• Stan inference

– MCMC for full Bayesian inference

– VB for approximate Bayesian inference

– MLE for penalized maximum likelihood estimation

4

Platforms and Interfaces
• Platforms: Linux, Mac OS X, Windows

• C++ API: portable, standards compliant (C++03)

• Interfaces

– CmdStan: Command-line or shell interface (direct executable)

– RStan: R interface (Rcpp in memory)

– PyStan: Python interface (Cython in memory)

– MatlabStan: MATLAB interface (external process)

– Stan.jl: Julia interface (external process)

– StataStan: Stata interface (external process) [under testing]

• Posterior Visualization & Exploration

– ShinyStan: Shiny (R) web-based

5

Who’s Using Stan?
• 1200 users group registrations; 10,000 manual down-

loads (2.5.0); 300 Google scholar citations (100+ fitting)

• Biological sciences: clinical drug trials, entomology, opthalmol-

ogy, neurology, genomics, agriculture, botany, fisheries, cancer biology,

epidemiology, population ecology, neurology

• Physical sciences: astrophysics, molecular biology, oceanography,

climatology

• Social sciences: population dynamics, psycholinguistics, social net-

works, political science

• Other: materials engineering, finance, actuarial, sports, public health,

recommender systems, educational testing

6

Documentation

• Stan User’s Guide and Reference Manual

– 500+ pages

– Example models, modeling and programming advice

– Introduction to Bayesian and frequentist statistics

– Complete language specification and execution guide

– Descriptions of algorithms (NUTS, R-hat, n_eff)

– Guide to built-in distributions and functions

• Installation and getting started manuals by interface

– RStan, PyStan, CmdStan, MatlabStan, Stan.jl

– RStan vignette

7

Books and Model Sets
• Model Sets Translated to Stan

– BUGS and JAGS examples (most of all 3 volumes)

– Gelman and Hill (2009) Data Analysis Using Regression and
Multilevel/Hierarchical Models

– Wagenmakers and Lee (2014) Bayesian Cognitive Modeling

• Books with Sections on Stan

– Gelman et al. (2013) Bayesian Data Analysis, 3rd Edition.

– Kruschke (2014) Doing Bayesian Data Analysis, Second Edi-
tion: A Tutorial with R, JAGS, and Stan

– Korner-Nievergelt et al. (2015) Bayesian Data Analysis in
Ecology Using Linear Models with R, BUGS, and Stan

8

Scaling and Evaluation

1e6

1e9

1e12

1e15

1e18

model complexity

da
ta

 s
ize

 (b
yt

es
)

approach
state of the art
big model
big data

Big Model and Big Data

• Types of Scaling: data, parameters, models

• Time to converge and per effective sample size:

0.5–1 times faster than BUGS & JAGS

• Memory usage: 1–10% of BUGS & JAGS

9

NUTS vs. Gibbs and Metropolis
The No-U-Turn Sampler

��

��

��

�

�

�

�

���	
�
�
�

��� ��� �� � � �� ��

�
���

��� ��� �� � � �� ��

����

��� ��� �� � � �� ��

�����������

��� ��� �� � � �� ��

Figure 7: Samples generated by random-walk Metropolis, Gibbs sampling, and NUTS. The plots

compare 1,000 independent draws from a highly correlated 250-dimensional distribu-

tion (right) with 1,000,000 samples (thinned to 1,000 samples for display) generated by

random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000 samples for display)

generated by Gibbs sampling (second from left), and 1,000 samples generated by NUTS

(second from right). Only the first two dimensions are shown here.

4.4 Comparing the E�ciency of HMC and NUTS

Figure 6 compares the e�ciency of HMC (with various simulation lengths � � �L) and
NUTS (which chooses simulation lengths automatically). The x-axis in each plot is the
target � used by the dual averaging algorithm from section 3.2 to automatically tune the step
size �. The y-axis is the e�ective sample size (ESS) generated by each sampler, normalized by
the number of gradient evaluations used in generating the samples. HMC’s best performance
seems to occur around � = 0.65, suggesting that this is indeed a reasonable default value
for a variety of problems. NUTS’s best performance seems to occur around � = 0.6, but
does not seem to depend strongly on � within the range � � [0.45, 0.65]. � = 0.6 therefore
seems like a reasonable default value for NUTS.

On the two logistic regression problems NUTS is able to produce e�ectively indepen-
dent samples about as e�ciently as HMC can. On the multivariate normal and stochastic
volatility problems, NUTS with � = 0.6 outperforms HMC’s best ESS by about a factor of
three.

As expected, HMC’s performance degrades if an inappropriate simulation length is cho-
sen. Across the four target distributions we tested, the best simulation lengths � for HMC
varied by about a factor of 100, with the longest optimal � being 17.62 (for the multivari-
ate normal) and the shortest optimal � being 0.17 (for the simple logistic regression). In
practice, finding a good simulation length for HMC will usually require some number of
preliminary runs. The results in Figure 6 suggest that NUTS can generate samples at least
as e�ciently as HMC, even discounting the cost of any preliminary runs needed to tune
HMC’s simulation length.

25

• Two dimensions of highly correlated 250-dim normal

• 1,000,000 draws from Metropolis and Gibbs (thin to 1000)

• 1000 draws from NUTS; 1000 independent draws

10

Stan’s Autodiff vs. Alternatives

• Among C++ open-source offerings: Stan is fastest (for gradi-
ents), most general (functions supported), and most easily ex-
tensible (simple OO)

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1/16

1/4

1

4

16

64

22 24 26 28 210 212

dimensions

tim
e

/ S
ta

n'
s

tim
e

system
●

●

●

●

●

●

adept
adolc
cppad
double
sacado
stan

matrix_product_eigen

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

1/16

1/4

1

4

16

20 22 24 26 28 210 212 214

dimensions

tim
e

/ S
ta

n'
s

tim
e

system
●

●

●

●

●

●

adept
adolc
cppad
double
sacado
stan

normal_log_density_stan

11

Part II

Stan Language

12

Stan is a Programming Language

• Not a graphical specification language like BUGS or JAGS

• Stan is a Turing-complete imperative programming lan-
gauge for specifying differentiable log densities

– reassignable local variables and scoping

– full conditionals and loops

– functions (including recursion)

• With automatic “black-box” inference on top (though even
that is tunable)

• Programs computing same thing may have different effi-
ciency

13

Basic Program Blocks

• data (once)

– content: declare data types, sizes, and constraints

– execute: read from data source, validate constraints

• parameters (every log prob eval)

– content: declare parameter types, sizes, and constraints

– execute: transform to constrained, Jacobian

• model (every log prob eval)

– content: statements definining posterior density

– execute: execute statements

14

Derived Variable Blocks

• transformed data (once after data)

– content: declare and define transformed data variables

– execute: execute definition statements, validate constraints

• transformed parameters (every log prob eval)

– content: declare and define transformed parameter vars

– execute: execute definition statements, validate constraints

• generated quantities (once per draw, double type)

– content: declare and define generated quantity variables;
includes pseudo-random number generators
(for posterior predictions, event probabilities, decision making)

– execute: execute definition statements, validate constraints

15

Variable and Expression Types
Variables and expressions are strongly, statically typed.

• Primitive: int, real

• Matrix: matrix[M,N], vector[M], row_vector[N]

• Bounded: primitive or matrix, with
<lower=L>, <upper=U>, <lower=L,upper=U>

• Constrained Vectors: simplex[K], ordered[N],
positive_ordered[N], unit_length[N]

• Constrained Matrices: cov_matrix[K], corr_matrix[K],
cholesky_factor_cov[M,N], cholesky_factor_corr[K]

• Arrays: of any type (and dimensionality)

16

Integers vs. Reals

• Different types (conflated in BUGS, JAGS, and R)

• Distributions and assignments care

• Integers may be assigned to reals but not vice-versa

• Reals have not-a-number, and positive and negative infin-
ity

• Integers single-precision up to +/- 2 billion

• Integer division rounds (Stan provides warning)

• Real arithmetic is inexact and reals should not be (usually)
compared with ==

17

Arrays vs. Matrices

• Stan separates arrays, matrices, vectors, row vectors

• Which to use?

• Arrays allow most efficient access (no copying)

• Arrays stored first-index major (i.e., 2D are row major)

• Vectors and matrices required for matrix and linear alge-
bra functions

• Matrices stored column-major

• Are not assignable to each other, but there are conversion
functions

18

Logical Operators

Op. Prec. Assoc. Placement Description

|| 9 left binary infix logical or
&& 8 left binary infix logical and
== 7 left binary infix equality
!= 7 left binary infix inequality
< 6 left binary infix less than
<= 6 left binary infix less than or equal
> 6 left binary infix greater than
>= 6 left binary infix greater than or equal

19

Arithmetic and Matrix Operators
Op. Prec. Assoc. Placement Description

+ 5 left binary infix addition
- 5 left binary infix subtraction

*

4 left binary infix multiplication
/ 4 left binary infix (right) division
\ 3 left binary infix left division
.

*

2 left binary infix elementwise multiplication
./ 2 left binary infix elementwise division
! 1 n/a unary prefix logical negation
- 1 n/a unary prefix negation
+ 1 n/a unary prefix promotion (no-op in Stan)
^ 2 right binary infix exponentiation
’ 0 n/a unary postfix transposition

() 0 n/a prefix, wrap function application
[] 0 left prefix, wrap array, matrix indexing

20

Built-in Math Functions

• All built-in C++ functions and operators
C math, TR1, C++11, including all trig, pow, and special log1m, erf, erfc,

fma, atan2, etc.

• Extensive library of statistical functions
e.g., softmax, log gamma and digamma functions, beta functions, Bessel

functions of first and second kind, etc.

• Efficient, arithmetically stable compound functions
e.g., multiply log, log sum of exponentials, log inverse logit

21

Built-in Matrix Functions

• Basic arithmetic: all arithmetic operators

• Elementwise arithmetic: vectorized operations

• Solvers: matrix division, (log) determinant, inverse

• Decompositions: QR, Eigenvalues and Eigenvectors,
Cholesky factorization, singular value decomposition

• Compound Operations: quadratic forms, variance scaling, etc.

• Ordering, Slicing, Broadcasting: sort, rank, block, rep

• Reductions: sum, product, norms

• Specializations: triangular, positive-definite,

22

User-Defined Functions
• functions (compiled with model)

– content: declare and define general (recursive) functions
(use them elsewhere in program)

– execute: compile with model

• Example

functions {

real relative_difference(real u, real v) {

return 2

*

fabs(u - v) / (fabs(u) + fabs(v));

}

}

23

Differential Equation Solver
• System expressed as function

– given state (y) time (t), parameters (✓), and data (x)

– return derivatives (@y/@t) of state w.r.t. time

• Simple harmonic oscillator diff eq

real[] sho(real t, // time

real[] y, // system state

real[] theta, // params

real[] x_r, // real data

int[] x_i) { // int data

real dydt[2];

dydt[1] <- y[2];

dydt[2] <- -y[1] - theta[1]

*

y[2];

return dydt;

}

24

Differential Equation Solver

• Solution via functional, given initial state (y0), initial time
(t0), desired solution times (ts)

mu_y <- integrate_ode(sho, y0, t0, ts, theta, x_r, x_i);

• Use noisy measurements of y to estimate ✓

y ~ normal(mu_y, sigma);

– Pharmacokinetics/pharmacodynamics (PK/PD),

– soil carbon respiration with biomass input and breakdown

25

Diff Eq Derivatives

• Need derivatives of solution w.r.t. parameters

• Couple derivatives of system w.r.t. parameters

✓
@

@t

y,

@

@t

@y

@✓

◆

• Calculate coupled system via nested autodiff of second
term

@

@✓

@y

@t

26

Distribution Library

• Each distribution has

– log density or mass function

– cumulative distribution functions, plus complementary ver-
sions, plus log scale

– Pseudo-random number generators

• Alternative parameterizations
(e.g., Cholesky-based multi-normal, log-scale Poisson, logit-scale Bernoulli)

• New multivariate correlation matrix density: LKJ
degrees of freedom controls shrinkage to (expansion from) unit matrix

27

Statements
• Sampling: y ~ normal(mu,sigma) (increments log probability)

• Log probability: increment_log_prob(lp);

• Assignment: y_hat <- x

*

beta;

• For loop: for (n in 1:N) ...

• While loop: while (cond) ...

• Conditional: if (cond) ...; else if (cond) ...; else ...;

• Block: { ... } (allows local variables)

• Print: print("theta=",theta);

• Reject: reject("arg to foo must be positive, found y=", y);

28

“Sampling” Increments Log Prob
• A Stan program defines a log posterior

– typically through log joint and Bayes’s rule

• Sampling statements are just “syntactic sugar”

• A shorthand for incrementing the log posterior

• The following define the same⇤ posterior

– y ~ poisson(lambda);

– increment_log_prob(poisson_log(y, lamda));

• ⇤ up to a constant

• Sampling statement drops constant terms

29

Local Variable Scope Blocks
• a ~ bernoulli(theta);

is more efficient with sufficient statistics

{

real a; // local variable

a <- 0;

for (n in 1:N)

a <- a + x[n]; // reassignment

a ~ binomial(N, theta);

}

• Simpler, but roughly same efficiency:

sum(a) ~ binomial(N, theta);

30

Print and Reject

• Print statements are for debugging

– printed every log prob evaluation

– print values in the middle of programs

– check when log density becomes undefined

– can embed in conditionals

• Reject statements are for error checking

– typically function argument checks

– cause a rejection of current state (0 density)

31

Prob Function Vectorization
• Stan’s probability functions are vectorized for speed

– removes repeated computations (e.g., � log� in normal)

– reduces size of expression graph for differentation

• Consider: y ~ normal(mu, sigma);

• Each of y, mu, and sigma may be any of

– scalars (integer or real)

– vectors (row or column)

– 1D arrays

• All dimensions must be scalars or having matching sizes

• Scalars are broadcast (repeated)

32

Part III

Transformed
Parameters

33

Transforms: Precision
parameters {

real<lower=0> tau; // precision

...

}

transformed parameters {

real<lower=0> sigma; // sd

sigma <- 1 / sqrt(tau);

}

34

Transforms: “Matt Trick”
parameters {

vector[K] beta_raw; // non-centered

real mu;

real<lower=0> sigma;

}

transformed parameters {

vector[K] beta; // centered

beta <- mu + sigma

*

beta_raw;

}

model {

mu ~ cauchy(0, 2.5);

sigma ~ cauchy(0, 2.5);

beta_raw ~ normal(0, 1);

}

35

Part IV

Generated Quantities
for Prediction

36

Linear Regression (Normal Noise)

• Likelihood:

– y

n

= ↵+ �x
n

+ ✏
n

– ✏

n

⇠ Normal(0,�) for n 2 1:N

• Equivalently,

– y

n

⇠ Normal(↵+ �x
n

, �)

• Priors (improper)

– � ⇠ Uniform(0,1)
– ↵,� ⇠ Uniform(�1,1)

• Stan allows improper prior; requires proper posterior.

37

Linear Regression in Stan
data {

int<lower=0> N;

vector[N] x;

vector[N] y;

}

parameters {

real alpha;

real beta;

real<lower=0> sigma;

}

model {

y ~ normal(alpha + beta

*

x, sigma);

}

// for (n in 1:N)

// y[n] ~ normal(alpha + beta

*

x[n], sigma);

38

Posterior Predictive Inference

• Parameters ✓, observed data y and data to predict ˜

y

p(

˜

y|y) =
Z

⇥
p(

˜

y|✓) p(✓|y) d✓

• data {

int<lower=0> N_tilde;

matrix[N_tilde,K] x_tilde;

...

parameters {

vector[N_tilde] y_tilde;

...

model {

y_tilde ~ normal(x_tilde

*

beta, sigma);

39

Predict w. Generated Quantities
• Replace sampling with pseudo-random number generation

generated quantities {

vector[N_tilde] y_tilde;

for (n in 1:N_tilde)

y_tilde[n] <- normal_rng(x_tilde[n]

*

beta, sigma);

}

• Must include noise for predictive uncertainty

• PRNGs only allowed in generated quantities block

– more computationally efficient per iteration

– more statistically efficient with i.i.d. samples
(i.e., MC, not MCMC)

40

End (Section 2)

41

