Section 2. Stan Components

Bob Carpenter

Columbia University

Part I Stan Top Level

Stan's Namesake

- Stanislaw Ulam (1909-1984)
- · Co-inventor of Monte Carlo method (and hydrogen bomb)

• Ulam holding the Fermiac, Enrico Fermi's physical Monte Carlo simulator for random neutron diffusion

What is Stan?

- Stan is an imperative probabilistic programming language
 - cf., BUGS: declarative; Church: functional; Figaro: objectoriented
- Stan program
 - declares data and (constrained) parameter variables
 - defines log posterior (or penalized likelihood)
- Stan inference
 - MCMC for full Bayesian inference
 - VB for approximate Bayesian inference
 - MLE for penalized maximum likelihood estimation

Platforms and Interfaces

- Platforms: Linux, Mac OS X, Windows
- C++ API: portable, standards compliant (C++03)
- Interfaces

٠

- CmdStan: Command-line or shell interface (direct executable)
- RStan: R interface (Rcpp in memory)
- PyStan: Python interface (Cython in memory)
- MatlabStan: MATLAB interface (external process)
- Stan.jl: Julia interface (external process)
- StataStan: Stata interface (external process) [under testing]
- **Posterior Visualization & Exploration**
 - ShinyStan: Shiny (R) web-based

Who's Using Stan?

- 1200 users group registrations; 10,000 manual downloads (2.5.0); 300 Google scholar citations (100+ fitting)
- **Biological sciences**: clinical drug trials, entomology, opthalmology, neurology, genomics, agriculture, botany, fisheries, cancer biology, epidemiology, population ecology, neurology
- **Physical sciences**: astrophysics, molecular biology, oceanography, climatology
- Social sciences: population dynamics, psycholinguistics, social networks, political science
- **Other**: materials engineering, finance, actuarial, sports, public health, recommender systems, educational testing

Documentation

- Stan User's Guide and Reference Manual
 - 500+ pages
 - Example models, modeling and programming advice
 - Introduction to Bayesian and frequentist statistics
 - Complete language specification and execution guide
 - Descriptions of algorithms (NUTS, R-hat, n_eff)
 - Guide to built-in distributions and functions
- Installation and getting started manuals by interface
 - RStan, PyStan, CmdStan, MatlabStan, Stan.jl
 - RStan vignette

Books and Model Sets

- Model Sets Translated to Stan
 - BUGS and JAGS examples (most of all 3 volumes)
 - Gelman and Hill (2009) Data Analysis Using Regression and Multilevel/Hierarchical Models
 - Wagenmakers and Lee (2014) Bayesian Cognitive Modeling
 - Books with Sections on Stan

٠

- Gelman et al. (2013) Bayesian Data Analysis, 3rd Edition.
- Kruschke (2014) Doing Bayesian Data Analysis, Second Edition: A Tutorial with R, JAGS, and Stan
- Korner-Nievergelt et al. (2015) Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan

Scaling and Evaluation

- · Types of Scaling: data, parameters, models
- Time to converge and per effective sample size: $0.5-\infty$ times faster than BUGS & JAGS
- Memory usage: 1-10% of BUGS & JAGS

NUTS vs. Gibbs and Metropolis

- Two dimensions of highly correlated 250-dim normal
- · 1,000,000 draws from Metropolis and Gibbs (thin to 1000)
- · 1000 draws from NUTS; 1000 independent draws

Stan's Autodiff vs. Alternatives

Among C++ open-source offerings: Stan is fastest (for gradients), most general (functions supported), and most easily extensible (simple OO)

Part II Stan Language

Stan is a Programming Language

- Not a graphical specification language like BUGS or JAGS
- Stan is a Turing-complete imperative programming langauge for specifying differentiable log densities
 - reassignable local variables and scoping
 - full conditionals and loops
 - functions (including recursion)
- With automatic "black-box" inference on top (though even that is tunable)
- Programs computing same thing may have different efficiency

Basic Program Blocks

- · data (once)
 - content: declare data types, sizes, and constraints
 - execute: read from data source, validate constraints
- **parameters** (every log prob eval)
 - content: declare parameter types, sizes, and constraints
 - execute: transform to constrained, Jacobian
- **mode1** (every log prob eval)
 - content: statements definining posterior density
 - execute: execute statements

Derived Variable Blocks

- transformed data (once after data)
 - content: declare and define transformed data variables
 - execute: execute definition statements, validate constraints
- transformed parameters (every log prob eval)
 - content: declare and define transformed parameter vars
 - execute: execute definition statements, validate constraints
- **generated quantities** (once per draw, double type)
 - content: declare and define generated quantity variables; includes pseudo-random number generators (for posterior predictions, event probabilities, decision making)
 - execute: execute definition statements, validate constraints

Variable and Expression Types

Variables and expressions are strongly, statically typed.

- · Primitive: int, real
- Matrix: matrix[M,N], vector[M], row_vector[N]
- Bounded: primitive or matrix, with
 <lower=L>, <upper=U>, <lower=L,upper=U>
- Constrained Vectors: simplex[K], ordered[N], positive_ordered[N], unit_length[N]
- Constrained Matrices: cov_matrix[K], corr_matrix[K], cholesky_factor_cov[M,N], cholesky_factor_corr[K]
- · Arrays: of any type (and dimensionality)

Integers vs. Reals

- · Different types (conflated in BUGS, JAGS, and R)
- Distributions and assignments care
- · Integers may be assigned to reals but not vice-versa
- Reals have not-a-number, and positive and negative infinity
- Integers single-precision up to +/- 2 billion
- · Integer division rounds (Stan provides warning)
- Real arithmetic is inexact and reals should not be (usually) compared with ==

Arrays vs. Matrices

- · Stan separates arrays, matrices, vectors, row vectors
- · Which to use?
- · Arrays allow most efficient access (no copying)
- · Arrays stored first-index major (i.e., 2D are row major)
- Vectors and matrices required for matrix and linear algebra functions
- · Matrices stored column-major
- Are not assignable to each other, but there are conversion functions

Logical Operators

Op.	Prec.	Assoc.	Placement	Description
	9	left	binary infix	logical or
&&	8	left	binary infix	logical and
==	7	left	binary infix	equality
! =	7	left	binary infix	inequality
<	6	left	binary infix	less than
<=	6	left	binary infix	less than or equal
>	6	left	binary infix	greater than
>=	6	left	binary infix	greater than or equal

Arithmetic and Matrix Operators

Op.	Prec.	Assoc.	Placement	Description
+	5	left	binary infix	addition
-	5	left	binary infix	subtraction
*	4	left	binary infix	multiplication
/	4	left	binary infix	(right) division
\	3	left	binary infix	left division
.*	2	left	binary infix	elementwise multiplication
./	2	left	binary infix	elementwise division
!	1	n/a	unary prefix	logical negation
-	1	n/a	unary prefix	negation
+	1	n/a	unary prefix	promotion (no-op in Stan)
^	2	right	binary infix	exponentiation
,	0	n/a	unary postfix	transposition
0	0	n/a	prefix, wrap	function application
[]	0	left	prefix, wrap	array, matrix indexing

Built-in Math Functions

- All built-in C++ functions and operators
 C math, TR1, C++11, including all trig, pow, and special log1m, erf, erfc, fma, atan2, etc.
- Extensive library of statistical functions e.g., softmax, log gamma and digamma functions, beta functions, Bessel functions of first and second kind, etc.
- Efficient, arithmetically stable compound functions e.g., multiply log, log sum of exponentials, log inverse logit

Built-in Matrix Functions

- · Basic arithmetic: all arithmetic operators
- · Elementwise arithmetic: vectorized operations
- · Solvers: matrix division, (log) determinant, inverse
- **Decompositions**: QR, Eigenvalues and Eigenvectors, Cholesky factorization, singular value decomposition
- · Compound Operations: quadratic forms, variance scaling, etc.
- · Ordering, Slicing, Broadcasting: sort, rank, block, rep
- Reductions: sum, product, norms
- · Specializations: triangular, positive-definite,

User-Defined Functions

- functions (compiled with model)
 - *content*: declare and define general (recursive) functions (use them elsewhere in program)
 - execute: compile with model
- Example

```
functions {
    real relative_difference(real u, real v) {
        return 2 * fabs(u - v) / (fabs(u) + fabs(v));
    }
}
```

Differential Equation Solver

- System expressed as function
 - given state (y) time (t), parameters (θ), and data (x)
 - return derivatives $(\partial y / \partial t)$ of state w.r.t. time
- · Simple harmonic oscillator diff eq

Differential Equation Solver

 Solution via functional, given initial state (y0), initial time (t0), desired solution times (ts)

mu_y <- integrate_ode(sho, y0, t0, ts, theta, x_r, x_i);</pre>

- Use noisy measurements of y to estimate θ

- Pharmacokinetics/pharmacodynamics (PK/PD),
- soil carbon respiration with biomass input and breakdown

Diff Eq Derivatives

- Need derivatives of solution w.r.t. parameters
- · Couple derivatives of system w.r.t. parameters

$$\left(\frac{\partial}{\partial t}y, \ \frac{\partial}{\partial t}\frac{\partial y}{\partial \theta}\right)$$

Calculate coupled system via nested autodiff of second term

$$\frac{\partial}{\partial \theta} \frac{\partial y}{\partial t}$$

Distribution Library

- Each distribution has
 - log density or mass function
 - cumulative distribution functions, plus complementary versions, plus log scale
 - Pseudo-random number generators
- Alternative parameterizations

(e.g., Cholesky-based multi-normal, log-scale Poisson, logit-scale Bernoulli)

New multivariate correlation matrix density: LKJ
 degrees of freedom controls shrinkage to (expansion from) unit matrix

Statements

- Sampling: y ~ normal(mu, sigma) (increments log probability)
- Log probability: increment_log_prob(lp);
- Assignment: y_hat <- x * beta;
- For loop: for (n in 1:N) ...
- While loop: while (cond) ...
- Conditional: if (cond) ...; else if (cond) ...; else ...;
- **Block**: { ... } (allows local variables)
- Print: print("theta=",theta);
- **Reject**: reject("arg to foo must be positive, found y=", y);

"Sampling" Increments Log Prob

- · A Stan program defines a log posterior
 - typically through log joint and Bayes's rule
- · Sampling statements are just "syntactic sugar"
- · A shorthand for incrementing the log posterior
- $\cdot~$ The following define the same* posterior
 - y ~ poisson(lambda);
 - increment_log_prob(poisson_log(y, lamda));
- \cdot * up to a constant
- Sampling statement drops constant terms

Local Variable Scope Blocks

a ~ bernoulli(theta);

٠

is more efficient with sufficient statistics

```
{
    real a; // local variable
    a <- 0;
    for (n in 1:N)
        a <- a + x[n]; // reassignment
        a ~ binomial(N, theta);
}</pre>
```

· Simpler, but roughly same efficiency:

```
sum(a) ~ binomial(N, theta);
```

Print and Reject

- Print statements are for debugging
 - printed every log prob evaluation
 - print values in the middle of programs
 - check when log density becomes undefined
 - can embed in conditionals

٠

- Reject statements are for error checking
 - typically function argument checks
 - cause a rejection of current state (0 density)

Prob Function Vectorization

- · Stan's probability functions are vectorized for speed
 - removes repeated computations (e.g., $-\log\sigma$ in normal)
 - reduces size of expression graph for differentation
- · Consider: y ~ normal(mu, sigma);
- $\cdot\,$ Each of y, mu, and sigma may be any of
 - scalars (integer or real)
 - vectors (row or column)
 - 1D arrays
- · All dimensions must be scalars or having matching sizes
- · Scalars are broadcast (repeated)

Part III Transformed Parameters

Transforms: Precision

```
parameters {
   real<lower=0> tau; // precision
   ...
}
transformed parameters {
   real<lower=0> sigma; // sd
   sigma <- 1 / sqrt(tau);
}</pre>
```

Transforms: "Matt Trick"

```
parameters {
  vector[K] beta_raw; // non-centered
  real mu:
  real<lower=0> sigma;
}
transformed parameters {
  vector[K] beta; // centered
  beta <- mu + sigma * beta_raw;</pre>
3
model {
  mu ~ cauchy(0, 2.5);
  sigma ~ cauchy(0, 2.5);
  beta_raw ~ normal(0, 1);
}
```

Part IV Generated Quantities for Prediction

Linear Regression (Normal Noise)

- · Likelihood:
 - $y_n = \alpha + \beta x_n + \epsilon_n$
 - $\epsilon_n \sim \text{Normal}(0, \sigma)$
- · Equivalently,
 - $y_n \sim \text{Normal}(\alpha + \beta x_n, \sigma)$
- · Priors (improper)
 - $\sigma \sim \text{Uniform}(0, \infty)$
 - $\alpha, \beta \sim \text{Uniform}(-\infty, \infty)$
- · Stan allows improper prior; requires proper posterior.

for $n \in 1:N$

Linear Regression in Stan

```
data {
  int<lower=0> N:
  vector[N] x:
  vector[N] y;
}
parameters {
  real alpha;
  real beta;
  real<lower=0> sigma:
3
model {
   y \sim normal(alpha + beta * x, sigma);
}
// for (n in 1:N)
       y[n] \sim normal(alpha + beta * x[n], sigma);
```

Posterior Predictive Inference

- Parameters θ , observed data y and data to predict \tilde{y}

$$p(\tilde{y}|y) = \int_{\Theta} p(\tilde{y}|\theta) \ p(\theta|y) \ d\theta$$

```
• data {
    int<lower=0> N_tilde;
    matrix[N_tilde,K] x_tilde;
    ...
parameters {
    vector[N_tilde] y_tilde;
    ...
model {
    y_tilde ~ normal(x_tilde * beta, sigma);
}
```

Predict w. Generated Quantities

· Replace sampling with pseudo-random number generation

```
generated quantities {
   vector[N_tilde] y_tilde;
   for (n in 1:N_tilde)
      y_tilde[n] <- normal_rng(x_tilde[n] * beta, sigma);
}</pre>
```

- Must include noise for predictive uncertainty
- · PRNGs only allowed in generated quantities block
 - more computationally efficient per iteration
 - more statistically efficient with i.i.d. samples (i.e., MC, not MCMC)

End (Section 2)