Automatic Differentiation
 
Loading...
Searching...
No Matches
log1p_exp.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_REV_FUN_LOG1P_EXP_HPP
2#define STAN_MATH_REV_FUN_LOG1P_EXP_HPP
3
8
9namespace stan {
10namespace math {
11
18template <typename T, require_stan_scalar_or_eigen_t<T>* = nullptr>
19inline auto log1p_exp(const var_value<T>& a) {
20 auto precomp_inv_logit = to_arena(as_array_or_scalar(inv_logit(a.val())));
21 return make_callback_var(
22 log1p_exp(a.val()), [a, precomp_inv_logit](auto& vi) mutable {
23 as_array_or_scalar(a.adj())
24 += as_array_or_scalar(vi.adj()) * precomp_inv_logit;
25 });
26}
27
28} // namespace math
29} // namespace stan
30#endif
T as_array_or_scalar(T &&v)
Returns specified input value.
var_value< plain_type_t< T > > make_callback_var(T &&value, F &&functor)
Creates a new var initialized with a callback_vari with a given value and reverse-pass callback funct...
fvar< T > log1p_exp(const fvar< T > &x)
Definition log1p_exp.hpp:14
arena_t< T > to_arena(const T &a)
Converts given argument into a type that either has any dynamic allocation on AD stack or schedules i...
Definition to_arena.hpp:25
fvar< T > inv_logit(const fvar< T > &x)
Returns the inverse logit function applied to the argument.
Definition inv_logit.hpp:20
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...