Automatic Differentiation
 
Loading...
Searching...
No Matches
hypergeometric_pFq.hpp
Go to the documentation of this file.
1#ifndef STAN_MATH_PRIM_FUN_HYPERGEOMETRIC_PFQ_HPP
2#define STAN_MATH_PRIM_FUN_HYPERGEOMETRIC_PFQ_HPP
3
7#include <boost/math/special_functions/hypergeometric_pFq.hpp>
8
9namespace stan {
10namespace math {
11
28template <typename Ta, typename Tb, typename Tz,
29 require_all_eigen_st<std::is_arithmetic, Ta, Tb>* = nullptr,
30 require_arithmetic_t<Tz>* = nullptr>
32 const Tz& z) {
33 plain_type_t<Ta> a_ref = a;
34 plain_type_t<Tb> b_ref = b;
35 check_finite("hypergeometric_pFq", "a", a_ref);
36 check_finite("hypergeometric_pFq", "b", b_ref);
37 check_finite("hypergeometric_pFq", "z", z);
38
39 check_not_nan("hypergeometric_pFq", "a", a_ref);
40 check_not_nan("hypergeometric_pFq", "b", b_ref);
41 check_not_nan("hypergeometric_pFq", "z", z);
42
43 bool condition_1 = (a_ref.size() > (b_ref.size() + 1)) && (z != 0);
44 bool condition_2 = (a_ref.size() == (b_ref.size() + 1)) && (std::fabs(z) > 1);
45
46 if (condition_1 || condition_2) {
47 std::stringstream msg;
48 msg << "hypergeometric function pFq does not meet convergence "
49 << "conditions with given arguments. "
50 << "a: " << a_ref << ", b: " << b_ref << ", "
51 << ", z: " << z;
52 throw std::domain_error(msg.str());
53 }
54
55 return boost::math::hypergeometric_pFq(
56 std::vector<double>(a_ref.data(), a_ref.data() + a_ref.size()),
57 std::vector<double>(b_ref.data(), b_ref.data() + b_ref.size()), z);
58}
59} // namespace math
60} // namespace stan
61#endif
typename return_type< Ts... >::type return_type_t
Convenience type for the return type of the specified template parameters.
void check_finite(const char *function, const char *name, const T_y &y)
Return true if all values in y are finite.
void check_not_nan(const char *function, const char *name, const T_y &y)
Check if y is not NaN.
FvarT hypergeometric_pFq(const Ta &a, const Tb &b, const Tz &z)
Returns the generalized hypergeometric (pFq) function applied to the input arguments.
typename plain_type< T >::type plain_type_t
The lgamma implementation in stan-math is based on either the reentrant safe lgamma_r implementation ...