
(Moderately) Advanced Hierarchical Models

Ben Goodrich

StanCon: January 12, 2018

Ben Goodrich Advanced Hierarchical Models StanCon 1 / 18

Obligatory Disclosure

• Ben is an employee of Columbia University, which has received
several research grants to develop Stan

• Ben is also a manager of GG Statistics LLC, which utilizes Stan
for business purposes

• According to Columbia University policy, any such employee who
has any equity stake in, a title (such as officer or director) with, or
is expected to earn at least $5,000.00 per year from a private
company is required to disclose these facts in presentations

Ben Goodrich Advanced Hierarchical Models StanCon 2 / 18

Goals for the Tutorial

• Thinking in terms of conditional distributions is good

• But conditional distributions make things harder for NUTS

• By reparameterizing, you can make hierarchical models easier for
NUTS

• Also, want to learn about matrix decompositions and priors on
components

Ben Goodrich Advanced Hierarchical Models StanCon 3 / 18

Cluster Sampling Designs
Consider a more elaborate version of the school example:

τ ∼ Exponential(rτ)

α ∼ N
(
µα ,µβ

)
αj ∼ N (α,τ) ∀j

σ ∼ Exponential(rσ)

σj ∼ Exponential
(

1
σ

)
∀j

εij ∼ N
(
0,σj

)
∀i ∈ j

β ∼ N
(
µβ ,σβ

)
yij ≡ αj + β ×class_sizei + εij ∀i , j

Ben Goodrich Advanced Hierarchical Models StanCon 4 / 18

Frequentist vs. Bayesian Perspective

• The previous DGP seems reasonable but
• In order to estimate α, β , and σ consistently as J ↑ ∞, αj and σj

must be integrated out of the likelihood function

• However, σj cannot be integrated out of the likelihood function
analytically

• Therefore, the lmer function in lme4 requires σj = σ ∀j

• Bayesian methods condition on the J groups rather than
integrating over the process by which they were selected

• MCMC methods may have considerable difficulty drawing from
this posterior distribution sufficiently efficiently

• By reparameterizing, you can improve the prospects for Stan to
sample from this posterior distribution well

Ben Goodrich Advanced Hierarchical Models StanCon 5 / 18

Sampling Efficiency
• If we could obtain S independent draws from a posterior

distribution, posterior means would converge at a
√

S rate

• But we cannot obtain independent draws from non-trivial posterior
distributions

• MCMC methods yield S dependent draws from posterior
distributions and posterior means converge at a

√
Seff rate

• If the draws are moderately dependent, then
√

Seff ≈
√

S and
everything is basically fine

• If the draws are severely dependent, then there is no finite S that
yields reliable posterior means

• NUTS produces draws that have less dependence than other
MCMC algorithms

• But whether
√

Seff ≈
√

S under NUTS depends on the
(parameterization of the) posterior distribution

Ben Goodrich Advanced Hierarchical Models StanCon 6 / 18

When Does NUTS “Fail”?

• NUTS only uses first derivatives of the log-posterior kernel

• A curve can be approximated by a line over a small interval

• NUTS would work perfectly with only first derivatives if higher
derivatives of a posterior distribution were constant

• Independent Gaussian log-PDFs have constant second

derivatives:
∂ 2− 1

2 (x−µ

σ)
2

∂ µ∂ µ
=− 1

σ

• When the higher derivatives are not constant, NUTS has to
reduce its step size to approximate a curve sufficiently well

• If the higher derivatives change rapidly, the step size can go to
zero numerically and NUTS takes infinite steps / time

• By changing the parameterization, you change derivatives without
changing the posterior means or inferences

Ben Goodrich Advanced Hierarchical Models StanCon 7 / 18

Matt Trick / Non-centered (Re)Parameterization
• Let’s simplify to the case where only the intercept varies across

groups, i.e. αj ∼ N (α,σ) ∀j
• σ = eω is unknown and ω has an improper uniform prior

• N (α,σ)
d
= α + σ ×N (0,1) and similarly for other distributions in

the location-scale family

• You can often help Stan via transformations

uj ∼ N (0,1) =⇒
αj = α + eωuj ∀j ∼ N (α,eω)

• vector[J] u would be declared in the parameters block

• vector[J] alpha would be declared in the transformed
parameters block

• The second derivative with respect to each uj is constant

• Look at the bivariate prior for αj ,ω vs. that of uj ,ω
Ben Goodrich Advanced Hierarchical Models StanCon 8 / 18

Comparison of Bivariate Priors

library(rgl)

kernel <- function(alpha, omega) {
dnorm(alpha, sd = exp(omega), log = TRUE)

}
LIM <- c(-2,2)
persp3d(kernel, xlim = LIM,

ylim = LIM, zlab = "log kernel")

reparameterized_kernel <- function(u, omega) {
dnorm(u, log = TRUE)

}
persp3d(reparameterized_kernel, xlim = LIM,

ylim = LIM, zlab = "log kernel")

Ben Goodrich Advanced Hierarchical Models StanCon 9 / 18

Coefficients Depending on Other Coefficients Again
Recall our Stan program where the coefficient on age is a noisy linear
function of the person’s income:

data {
int<lower=1> N; vector[N] age;
vector[N] income; int<lower=0,upper=1>[N] vote;

}
parameters {
vector[2] lambda; // intercept / slope for age’s effect
vector[N] noise; // error in effect of age
real<lower=0> sigma; // sd of error in beta_age
vector[2] beta; // intercept / slope for outcome

}
model {
vector[N] beta_age = lambda[1] + lambda[2] * income

+ sigma * noise; // non-centering
vector[N] eta = beta[1] + beta[2] * income

+ beta_age .* age;
target += binomial_logit_lpmf(vote | eta);
target += normal_lpdf(noise | 0, 1);

} // priors on lambda, sigma, and beta
Ben Goodrich Advanced Hierarchical Models StanCon 10 / 18

Centered Parameterization
The following is conceptually the same but often problematic:

data {
int<lower=1> N; vector[N] age;
vector[N] income; int<lower=0,upper=1>[N] vote;

}
parameters {
vector[2] lambda; // intercept / slope for age’s effect
vector[N] beta_age; // coefficient on age
real<lower=0> sigma; // sd of error in beta_age
vector[2] beta; // intercept / slope for outcome

}
model {
vector[N] eta = beta[1] + beta[2] * income

+ beta_age .* age;
target += binomial_logit_lpmf(vote | eta);
target += normal_lpdf(beta_age | lambda[1] +

lambda[2] * income, sigma);
} // priors on lambda, sigma, and beta

Ben Goodrich Advanced Hierarchical Models StanCon 11 / 18

Multivariate Matt Trick
• If βββ j ∼ MultiNormal(µµµ,ΣΣΣ), Stan can have difficulty drawing from

the joint posterior distribution
• When Σkk is small, βkj must fall in a narrow range, which entails a

small stepsize for NUTS

• When Σkk is large, βkj can fall in a wide range, which requires a
large stepsize or else many small steps

• You can help Stan with this problem via transformations

ukj ∼ Normal(0,1) ∀k , j =⇒

βββ j = µµµ + σLuj ∼ MultiNormal
(

µµµ,σ2LL>
)

where σL is the Cholesky factor of ΣΣΣ = σ2LL> and σ is the
standard deviation of the errors

• Both rstanarm and brms do things like this

Ben Goodrich Advanced Hierarchical Models StanCon 12 / 18

Decomposing a Covariance Matrix
• Suppose βββ j ∼ N (µµµ,ΣΣΣ) where βββ j is a K -vector for group j

• Many people find specifing a prior on the K ×K covariance matrix
to be difficult. You will see (inverse) Wishart priors in the literature
which are confusing but conjugate with the multivariate normal
and thus facilitate Gibbs sampling.

• With Stan, you are free to do what makes sense, such as

ΣΣΣ = ∆∆∆ΛΛΛ∆∆∆ [sds x correlation x sds]
∆2

k = τπk ∀k
τ = γ

2K
γ ∼ Jeffreys / Gamma / Exponential
πππ ∼ Dirichlet(a)

ΛΛΛ ∼ prior?

• πππ is a simplex, so the k th variance, ∆2
k , is a proportion of τ, which

is the trace of ΣΣΣ & a function of a scale parameter, γ

Ben Goodrich Advanced Hierarchical Models StanCon 13 / 18

Prior for a Correlation Matrix
• There are many choices for a prior on a scale parameter, such as

Jeffreys if you want to be non-informative

• A Dirichlet(a) prior for πππ is pretty easy to specify, such as a = 1 if
you want to be jointly uniform on the K -simplex

• There is an easy and possibly non-informative prior for a
correlation matrix ΛΛΛ, f (ΛΛΛ|η) = 1

c(η ,K) |ΛΛΛ|
η−1 called “LKJ”

• η acts like the shape parameter of a Beta distribution
• if η = 1, f (ΛΛΛ|η) = 1

c(η ,K) is constant

• if η > 1, I is the modal correlation matrix and the only correlation
matrix with positive density as η ↑ ∞

• if η < 1, I is at the trough of the distribution of correlation matrices,
which is a weird thing to believe

• But ΛΛΛ = CC> where C is a Cholesky factor

• Can specify a prior on C such that ΛΛΛ has the LKJ prior
Ben Goodrich Advanced Hierarchical Models StanCon 14 / 18

A Multivariate Matt Trick with brms

library(brms)
post <- brm(Reaction ~ Days + (Days | Subject),

data = lme4::sleepstudy) # no warnings!s

make_stancode(Reaction ~ Days + (Days | Subject),
data = lme4::sleepstudy)

Ben Goodrich Advanced Hierarchical Models StanCon 15 / 18

Data and Transformed Data Blocks

data {
int<lower=1> N; // total number of observations
vector[N] Y; // response variable
int<lower=1> K; // number of population-level effects
matrix[N, K] X; // population-level design matrix
// data for group-level effects of ID 1
int<lower=1> J_1[N];
int<lower=1> N_1;
int<lower=1> M_1;
vector[N] Z_1_1;
vector[N] Z_1_2;
int<lower=1> NC_1;
int prior_only; // should the likelihood be ignored?

}
transformed data {

int Kc = K - 1;
matrix[N, K - 1] Xc; // centered version of X
vector[K - 1] means_X; // column means of X before centering
for (i in 2:K) {
means_X[i - 1] = mean(X[, i]);
Xc[, i - 1] = X[, i] - means_X[i - 1];

}
}
parameters {

vector[Kc] b; // population-level effects
real temp_Intercept; // temporary intercept
real<lower=0> sigma; // residual SD
vector<lower=0>[M_1] sd_1; // group-level standard deviations
matrix[M_1, N_1] z_1; // unscaled group-level effects
// cholesky factor of correlation matrix
cholesky_factor_corr[M_1] L_1;

}
transformed parameters {

// group-level effects
matrix[N_1, M_1] r_1 = (diag_pre_multiply(sd_1, L_1) * z_1)';
vector[N_1] r_1_1 = r_1[, 1];
vector[N_1] r_1_2 = r_1[, 2];

}
model {

vector[N] mu = Xc * b + temp_Intercept;
for (n in 1:N) {
mu[n] = mu[n] + (r_1_1[J_1[n]]) * Z_1_1[n] + (r_1_2[J_1[n]]) * Z_1_2[n];

}
// priors including all constants
target += student_t_lpdf(temp_Intercept | 3, 288.65, 56);
target += student_t_lpdf(sigma | 3, 0, 56)
- 1 * student_t_lccdf(0 | 3, 0, 56);

target += student_t_lpdf(sd_1 | 3, 0, 56)
- 2 * student_t_lccdf(0 | 3, 0, 56);

target += lkj_corr_cholesky_lpdf(L_1 | 1);
target += normal_lpdf(to_vector(z_1) | 0, 1);
// likelihood including all constants
if (!prior_only) {
target += normal_lpdf(Y | mu, sigma);

}
}
generated quantities {

// actual population-level intercept
real b_Intercept = temp_Intercept - dot_product(means_X, b);
corr_matrix[M_1] Cor_1 = multiply_lower_tri_self_transpose(L_1);
vector<lower=-1,upper=1>[NC_1] cor_1;
// take only relevant parts of correlation matrix
cor_1[1] = Cor_1[1,2];

}

Ben Goodrich Advanced Hierarchical Models StanCon 16 / 18

Remaining Blocks
parameters {

vector[Kc] b; // population-level effects
real temp_Intercept; // temporary intercept
real<lower=0> sigma; // residual SD
vector<lower=0>[M_1] sd_1; // group-level standard deviations
matrix[M_1, N_1] z_1; // unscaled group-level effects
// cholesky factor of correlation matrix
cholesky_factor_corr[M_1] L_1;

}
transformed parameters {

// group-level effects
matrix[N_1, M_1] r_1 = (diag_pre_multiply(sd_1, L_1) * z_1)';
vector[N_1] r_1_1 = r_1[, 1];
vector[N_1] r_1_2 = r_1[, 2];

}
model {
vector[N] mu = Xc * b + temp_Intercept;
for (n in 1:N) {

mu[n] = mu[n] + (r_1_1[J_1[n]]) * Z_1_1[n] + (r_1_2[J_1[n]]) * Z_1_2[n];
}
// priors including all constants
target += student_t_lpdf(temp_Intercept | 3, 288.65, 56);
target += student_t_lpdf(sigma | 3, 0, 56)
- 1 * student_t_lccdf(0 | 3, 0, 56);

target += student_t_lpdf(sd_1 | 3, 0, 56)
- 2 * student_t_lccdf(0 | 3, 0, 56);

target += lkj_corr_cholesky_lpdf(L_1 | 1);
target += normal_lpdf(to_vector(z_1) | 0, 1);
// likelihood including all constants
if (!prior_only) {
target += normal_lpdf(Y | mu, sigma);

}
}
generated quantities {

// actual population-level intercept
real b_Intercept = temp_Intercept - dot_product(means_X, b);
corr_matrix[M_1] Cor_1 = multiply_lower_tri_self_transpose(L_1);
vector<lower=-1,upper=1>[NC_1] cor_1;
// take only relevant parts of correlation matrix
cor_1[1] = Cor_1[1,2];

}

Ben Goodrich Advanced Hierarchical Models StanCon 17 / 18

Conclusion

• Should use hierarchical modeling unless there is a strong reason
not to

• Hierarchical models are more straightforward from a Bayesian
perspective

• NUTS does a better job with hierarchical modeling that does Gibbs

• But the parameterization can make a big difference to NUTS

Ben Goodrich Advanced Hierarchical Models StanCon 18 / 18

