(Moderately) Advanced Hierarchical Models

Ben Goodrich

StanCon: January 12, 2018

Ben Goodrich Advanced Hierarchical Models StanCon 1/18



Obligatory Disclosure

* Ben is an employee of Columbia University, which has received
several research grants to develop Stan

* Ben is also a manager of GG Statistics LLC, which utilizes Stan
for business purposes

+ According to Columbia University policy, any such employee who
has any equity stake in, a title (such as officer or director) with, or

is expected to earn at least $5,000.00 per year from a private
company is required to disclose these facts in presentations
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Goals for the Tutorial

Thinking in terms of conditional distributions is good
But conditional distributions make things harder for NUTS

By reparameterizing, you can make hierarchical models easier for
NUTS

Also, want to learn about matrix decompositions and priors on
components
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Consider a more elaborate version of the school example:
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Frequentist vs. Bayesian Perspective

The previous DGP seems reasonable but

* In order to estimate a, 3, and o consistently as J 1 «, & and o;
must be integrated out of the likelihood function

* However, o; cannot be integrated out of the likelihood function
analytically

* Therefore, the 1mer function in Ime4 requires o; = o Vj

Bayesian methods condition on the J groups rather than
integrating over the process by which they were selected

MCMC methods may have considerable difficulty drawing from
this posterior distribution sufficiently efficiently

By reparameterizing, you can improve the prospects for Stan to
sample from this posterior distribution well
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Sampling Efficiency
If we could obtain S independent draws from a posterior
distribution, posterior means would converge at a /S rate

But we cannot obtain independent draws from non-trivial posterior
distributions

MCMC methods yield S dependent draws from posterior
distributions and posterior means converge at a \/ Sett rate

If the draws are moderately dependent, then \/Sg ~ V'S and
everything is basically fine

If the draws are severely dependent, then there is no finite S that
yields reliable posterior means

NUTS produces draws that have less dependence than other
MCMC algorithms

But whether /Sg ~ v/S under NUTS depends on the
(parameterization of the) posterior distribution
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When Does NUTS “Fail”?

NUTS only uses first derivatives of the log-posterior kernel
A curve can be approximated by a line over a small interval

NUTS would work perfectly with only first derivatives if higher
derivatives of a posterior distribution were constant

Independent Gaussian log-PDFs have constant second

vatives: 2 2C) _
derivatives: — =%

When the higher derivatives are not constant, NUTS has to
reduce its step size to approximate a curve sufficiently well

If the higher derivatives change rapidly, the step size can go to
zero numerically and NUTS takes infinite steps / time

By changing the parameterization, you change derivatives without
changing the posterior means or inferences
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Matt Trick / Non-centered (Re)Parameterization

Let’s simplify to the case where only the intercept varies across
groups, i.e. o ~ A (a,0) Vj

+ 0 = e® is unknown and @ has an improper uniform prior
- A (a,0) 2 a+ox 4 (0,1) and similarly for other distributions in
the location-scale family
* You can often help Stan via transformations
uy ~ 4(0,1) =
oj=o+e’uVj ~ N (a,e”)

* vector[J] u would be declared in the parameters block

* vector[J] alpha would be declared in the transformed
parameters block

* The second derivative with respect to each u; is constant

* Look at the bivariate prior for a;, ® vs. that of u;, @
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Comparison of Bivariate Priors
library (rgl)

kernel <- function(alpha, omega) {
dnorm(alpha, sd = exp(omega), log = TRUE)
}
LIM <- ¢ (-2,2)
persp3d (kernel, xlim = LIM,
ylim = LIM, zlab = "log kernel")

reparameterized_kernel <- function (u, omega)
dnorm(u, log = TRUE)
}

persp3d (reparameterized_kernel, xlim = LIM,
ylim = LIM, zlab = "log kernel")
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Coefficients Depending on Other Coefficients Again

Recall our Stan program where the coefficient on age is a noisy linear
function of the person’s income:
data {
int<lower=1> N; vector[N] age;
vector [N] income; int<lower=0,upper=1>[N] vote;
}
parameters {
vector[2] lambda; // intercept / slope for age’s effect
vector [N] noise; // error in effect of age
real<lower=0> sigma; // sd of error in beta_age

vector[2] beta; // intercept / slope for outcome
}
model {
vector [N] beta_age = lambda[l] + lambda[2] = income
+ sigma * noise; // non-centering
vector [N] eta = beta[l] + betal[2] * income

+ beta_age .x age;
target += binomial_logit_lpmf (vote | eta);
target += normal_lpdf (noise | 0, 1);
} // priors on lambda, sigma, and beta
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Centered Parameterization
The following is conceptually the same but often problematic:

data {

int<lower=1> N; vector[N] age;

vector [N] income; int<lower=0,upper=1>[N] vote;
}

parameters {
vector[2] lambda; // intercept / slope for age’s effect

vector [N] beta_age; // coefficient on age
real<lower=0> sigma; // sd of error in beta_age
vector[2] beta; // intercept / slope for outcome

}
model {
vector [N] eta = beta[l] + betal[2] * income

+ beta_age .x age;
target += binomial_logit_lpmf (vote | eta);
target += normal_lpdf (beta_age | lambda[l] +
lambda[2] % income, sigma);

} // priors on lambda, sigma, and beta
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Multivariate Matt Trick

* If B; ~ MultiNormal (u, X), Stan can have difficulty drawing from
the joint posterior distribution
* When X4 is small, B,; must fall in a narrow range, which entails a
small stepsize for NUTS

* When X is large, By can fall in a wide range, which requires a
large stepsize or else many small steps

* You can help Stan with this problem via transformations
Uy ~ Normal(0,1)Vk,j —
Bj=p+olu; ~ MultiNormal <u,62LLT)

where oL is the Cholesky factor of £ = ¢?LL" and o is the
standard deviation of the errors

+ Both rstanarm and brms do things like this
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Decomposing a Covariance Matrix
* Suppose B; ~ .4 (u,X) where B; is a K-vector for group j

* Many people find specifing a prior on the K x K covariance matrix
to be difficult. You will see (inverse) Wishart priors in the literature
which are confusing but conjugate with the multivariate normal
and thus facilitate Gibbs sampling.

+ With Stan, you are free to do what makes sense, such as

Yy =
AL =
T =
’}/N
T ~
AN

AAA [sds x correlation x sds]
T, VK

7K

Jeffreys / Gamma / Exponential
Dirichlet(a)

prior?

- 7 is a simplex, so the kth variance, A2, is a proportion of t, which
is the trace of X & a function of a scale parameter, y
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Prior for a Correlation Matrix

There are many choices for a prior on a scale parameter, such as
Jeffreys if you want to be non-informative

A Dirichlet(a) prior for m is pretty easy to specify, such as a=1 if
you want to be jointly uniform on the K-simplex

There is an easy and possibly non-informative prior for a

correlation matrix A, f(A|n) = 0(711 R) IA|"" called “LKJ”

n acts like the shape parameter of a Beta distribution

- ifn =1, f(AIn) = gmx) is constant

« if n > 1, 1 is the modal correlation matrix and the only correlation
matrix with positive density as 1 1«

« if n <1, 1is at the trough of the distribution of correlation matrices,
which is a weird thing to believe

But A = CC' where C is a Cholesky factor
Can specify a prior on C such that A has the LKJ prior
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A Multivariate Matt Trick with brms

library (brms)
post <- brm(Reaction ~ Days + (Days | Subject),
data = lmed::sleepstudy) # no warnings!s

make_stancode (Reaction ~ Days + (Days | Subject),
data = lmed::sleepstudy)

Ben Goodrich Advanced Hierarchical Models StanCon 15/18



Data and Transformed Data Blocks

data {
int<lower=1> N; // total number of observations
vector[N] Y; // response variable
int<lower=1> K; // number of population-level effects
matrix [N, K] X; // population-level design matrix

}

// data for group-level effects of ID 1

int<lower=1> J_1[N];

int<lower=1> N_1;

int<lower=1> M_1;

vector[N] Z_1_1;

vector [N] z_1_2;

int<lower=1> NC_1;

int prior_only; // should the likelihood be ignored?

transformed data {

}

int Kc = K - 1;

matrix [N, K - 1] Xc; // centered version of X
vector[K - 1] means_X; // column means of X before centering
for (1 in 2:K) {

means_X[i - 1] = mean (X[, 1i]);

Xc[, 1 - 1] = X[, 1] - means_X[i - 1];
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Remainina Blocks

parameters {

}

vector[Kc] b; // population-level effects

real temp_Intercept; // temporary intercept

real<lower=0> sigma; // residual SD

vector<lower=0>[M_1] sd_1; // group-level standard deviations
matrix[M_1, N_1] z_1; // unscaled group-level effects

// cholesky factor of correlation matrix
cholesky_factor_corr[M_1] L_1;

transformed parameters {

}

// group-level effects

matrix[N_1, M_1] r_1 = (diag_pre_multiply(sd_1, L_1) = z_1)"';
vector([N_1] r 1 1 = r_1[, 1];

vector[N_1] r 1.2 = r_1[, 2];

model {

vector[N] mu = Xc * b + temp_Intercept;
for (n in 1:N) {
mu[n] = mu[n] + (r_1_1[J_1[n]]) *= Z_1_1[n] + (r_1_2[J_1[nl]) * Z_1_2]r
}
// priors including all constants
target += student_t_lpdf (temp_Intercept | 3, 288.65, 56);
target += student_t_lpdf (sigma | 3, 0, 56)
— 1 % student_t_lcecdf(0 | 3, 0, 56);
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Conclusion

Should use hierarchical modeling unless there is a strong reason
not to

Hierarchical models are more straightforward from a Bayesian
perspective

NUTS does a better job with hierarchical modeling that does Gibbs
But the parameterization can make a big difference to NUTS
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