(Moderately) Advanced Hierarchical Models

Ben Goodrich

StanCon: January 12, 2018

Obligatory Disclosure

- Ben is an employee of Columbia University, which has received several research grants to develop Stan
- Ben is also a manager of GG Statistics LLC, which utilizes Stan for business purposes
- According to Columbia University policy, any such employee who has any equity stake in, a title (such as officer or director) with, or is expected to earn at least $\$ 5,000.00$ per year from a private company is required to disclose these facts in presentations

Goals for the Tutorial

- Thinking in terms of conditional distributions is good
- But conditional distributions make things harder for NUTS
- By reparameterizing, you can make hierarchical models easier for NUTS
- Also, want to learn about matrix decompositions and priors on components

Cluster Sampling Designs

Consider a more elaborate version of the school example:

$$
\begin{aligned}
\tau & \sim \operatorname{Exponential}\left(r_{\tau}\right) \\
\alpha & \sim \mathscr{N}\left(\mu_{\alpha}, \mu_{\beta}\right) \\
\alpha_{j} & \sim \mathscr{N}(\alpha, \tau) \forall j \\
\sigma & \sim \operatorname{Exponential}\left(r_{\sigma}\right) \\
\sigma_{j} & \sim \operatorname{Exponential}\left(\frac{1}{\sigma}\right) \forall j \\
\varepsilon_{i j} & \sim \mathscr{N}\left(0, \sigma_{j}\right) \forall i \in j \\
\beta & \sim \mathscr{N}\left(\mu_{\beta}, \sigma_{\beta}\right) \\
y_{i j} & \equiv \alpha_{j}+\beta \times \text { class_size }_{i}+\varepsilon_{i j} \forall i, j
\end{aligned}
$$

Frequentist vs. Bayesian Perspective

- The previous DGP seems reasonable but
- In order to estimate α, β, and σ consistently as $J \uparrow \infty, \alpha_{j}$ and σ_{j} must be integrated out of the likelihood function
- However, σ_{j} cannot be integrated out of the likelihood function analytically
- Therefore, the lmer function in Ime4 requires $\sigma_{j}=\sigma \forall j$
- Bayesian methods condition on the J groups rather than integrating over the process by which they were selected
- MCMC methods may have considerable difficulty drawing from this posterior distribution sufficiently efficiently
- By reparameterizing, you can improve the prospects for Stan to sample from this posterior distribution well

Sampling Efficiency

- If we could obtain S independent draws from a posterior distribution, posterior means would converge at a \sqrt{S} rate
- But we cannot obtain independent draws from non-trivial posterior distributions
- MCMC methods yield S dependent draws from posterior distributions and posterior means converge at a $\sqrt{S_{\text {eff }}}$ rate
- If the draws are moderately dependent, then $\sqrt{S_{\text {eff }}} \approx \sqrt{S}$ and everything is basically fine
- If the draws are severely dependent, then there is no finite S that yields reliable posterior means
- NUTS produces draws that have less dependence than other MCMC algorithms
- But whether $\sqrt{S_{\text {eff }}} \approx \sqrt{S}$ under NUTS depends on the (parameterization of the) posterior distribution

When Does NUTS "Fail"?

- NUTS only uses first derivatives of the log-posterior kernel
- A curve can be approximated by a line over a small interval
- NUTS would work perfectly with only first derivatives if higher derivatives of a posterior distribution were constant
- Independent Gaussian log-PDFs have constant second derivatives: $\frac{\partial^{2}-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}{\partial \mu \partial \mu}=-\frac{1}{\sigma}$
- When the higher derivatives are not constant, NUTS has to reduce its step size to approximate a curve sufficiently well
- If the higher derivatives change rapidly, the step size can go to zero numerically and NUTS takes infinite steps / time
- By changing the parameterization, you change derivatives without changing the posterior means or inferences

Matt Trick / Non-centered (Re)Parameterization

- Let's simplify to the case where only the intercept varies across groups, i.e. $\alpha_{j} \sim \mathscr{N}(\alpha, \sigma) \forall j$
- $\sigma=e^{\omega}$ is unknown and ω has an improper uniform prior
- $\mathscr{N}(\alpha, \sigma) \stackrel{d}{=} \alpha+\sigma \times \mathscr{N}(0,1)$ and similarly for other distributions in the location-scale family
- You can often help Stan via transformations

$$
\begin{aligned}
u_{j} & \sim \mathscr{N}(0,1) \Longrightarrow \\
\alpha_{j}=\alpha+e^{\omega} u_{j} \forall j & \sim \mathscr{N}\left(\alpha, e^{\omega}\right)
\end{aligned}
$$

- vector[J] u would be declared in the parameters block
- vector[J] alpha would be declared in the transformed parameters block
- The second derivative with respect to each u_{j} is constant
- Look at the bivariate prior for α_{j}, ω vs. that of u_{j}, ω

Comparison of Bivariate Priors

```
library(rgl)
kernel <- function(alpha, omega) {
    dnorm(alpha, sd = exp(omega), log = TRUE)
}
LIM <- c(-2,2)
persp3d(kernel, xlim = LIM,
    ylim = LIM, zlab = "log kernel")
reparameterized_kernel <- function(u, omega) {
    dnorm(u, log = TRUE)
}
persp3d(reparameterized_kernel, xlim = LIM,
    ylim = LIM, zlab = "log kernel")
```


Coefficients Depending on Other Coefficients Again Recall our Stan program where the coefficient on age is a noisy linear function of the person's income:

```
data {
    int<lower=1> N; vector[N] age;
    vector[N] income; int<lower=0,upper=1>[N] vote;
}
parameters {
    vector[2] lambda; // intercept / slope for age's effect
    vector[N] noise; // error in effect of age
        real<lower=0> sigma; // sd of error in beta_age
    vector[2] beta; // intercept / slope for outcome
}
model {
    vector[N] beta_age = lambda[1] + lambda[2] * income
                                + sigma * noise; // non-centering
    vector[N] eta = beta[1] + beta[2] * income
                                + beta_age .* age;
    target += binomial_logit_lpmf(vote | eta);
    target += normal_lpdf(noise | 0, 1);
} // priors on lambda, sigma, and beta
    Ben Goodrich Advanced Hierarchical Models

\section*{Centered Parameterization}

The following is conceptually the same but often problematic:
```

data {
int<lower=1> N; vector[N] age;
vector[N] income; int<lower=0,upper=1>[N] vote;
}
parameters {
vector[2] lambda; // intercept / slope for age's effect
vector[N] beta_age; // coefficient on age
real<lower=0> sigma; // sd of error in beta_age
vector[2] beta; // intercept / slope for outcome
}
model {
vector[N] eta = beta[1] + beta[2] * income
+ beta_age .* age;
target += binomial_logit_lpmf(vote | eta);
target += normal_lpdf(beta_age | lambda[1] +
lambda[2] * income, sigma);
} // priors on lambda, sigma, and beta

```

\section*{Multivariate Matt Trick}
- If \(\boldsymbol{\beta}_{j} \sim \operatorname{MultiNormal}(\boldsymbol{\mu}, \boldsymbol{\Sigma})\), Stan can have difficulty drawing from the joint posterior distribution
- When \(\Sigma_{k k}\) is small, \(\beta_{k j}\) must fall in a narrow range, which entails a small stepsize for NUTS
- When \(\Sigma_{k k}\) is large, \(\beta_{k j}\) can fall in a wide range, which requires a large stepsize or else many small steps
- You can help Stan with this problem via transformations
\[
\begin{aligned}
u_{k j} & \sim \operatorname{Normal}(0,1) \forall k, j \Longrightarrow \\
\boldsymbol{\beta}_{j}=\boldsymbol{\mu}+\sigma \mathbf{L u}_{j} & \sim \operatorname{MultiNormal}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{L L}^{\top}\right)
\end{aligned}
\]
where \(\sigma \mathbf{L}\) is the Cholesky factor of \(\boldsymbol{\Sigma}=\sigma^{2} \mathbf{L L}^{\top}\) and \(\sigma\) is the standard deviation of the errors
- Both rstanarm and brms do things like this

\section*{Decomposing a Covariance Matrix}
- Suppose \(\boldsymbol{\beta}_{j} \sim \mathscr{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})\) where \(\boldsymbol{\beta}_{j}\) is a \(K\)-vector for group \(j\)
- Many people find specifing a prior on the \(K \times K\) covariance matrix to be difficult. You will see (inverse) Wishart priors in the literature which are confusing but conjugate with the multivariate normal and thus facilitate Gibbs sampling.
- With Stan, you are free to do what makes sense, such as
\[
\begin{aligned}
\boldsymbol{\Sigma} & =\Delta \Lambda \Delta \text { [sds } \times \text { correlation } \times \text { sds }] \\
\Delta_{K}^{2} & =\tau \pi_{k} \forall k \\
\tau & =\gamma^{2} K \\
\gamma & \sim \text { Jeffreys / Gamma / Exponential } \\
\boldsymbol{\pi} & \sim \text { Dirichlet }(\mathbf{a}) \\
\boldsymbol{\Lambda} & \sim \text { prior? }
\end{aligned}
\]
- \(\boldsymbol{\pi}\) is a simplex, so the \(k\) th variance, \(\Delta_{k}^{2}\), is a proportion of \(\tau\), which is the trace of \(\boldsymbol{\Sigma} \&\) a function of a scale parameter, \(\gamma\)

\section*{Prior for a Correlation Matrix}
- There are many choices for a prior on a scale parameter, such as Jeffreys if you want to be non-informative
- A Dirichlet (a) prior for \(\boldsymbol{\pi}\) is pretty easy to specify, such as \(\mathbf{a}=\mathbf{1}\) if you want to be jointly uniform on the \(K\)-simplex
- There is an easy and possibly non-informative prior for a correlation matrix \(\boldsymbol{\Lambda}, f(\boldsymbol{\Lambda} \mid \eta)=\frac{1}{c(\eta, K)}|\boldsymbol{\Lambda}|^{\eta-1}\) called "LKJ"
- \(\eta\) acts like the shape parameter of a Beta distribution
- if \(\eta=1, f(\boldsymbol{\Lambda} \mid \eta)=\frac{1}{c(\eta, K)}\) is constant
- if \(\eta>1, I\) is the modal correlation matrix and the only correlation matrix with positive density as \(\eta \uparrow \infty\)
- if \(\eta<1\), \(I\) is at the trough of the distribution of correlation matrices, which is a weird thing to believe
- But \(\boldsymbol{\Lambda}=\mathbf{C C}^{\top}\) where \(\mathbf{C}\) is a Cholesky factor
- Can specify a prior on \(\mathbf{C}\) such that \(\Lambda\) has the LKJ prior

\section*{A Multivariate Matt Trick with brms}
```

library(brms)
post <- brm(Reaction ~ Days + (Days | Subject),
data = lme4::sleepstudy) \# no warnings!s
make_stancode(Reaction ~ Days + (Days | Subject),
data = lme4::sleepstudy)

```

\section*{Data and Transformed Data Blocks}
```

data {
int<lower=1> N; // total number of observations
vector[N] Y; // response variable
int<lower=1> K; // number of population-level effects
matrix[N, K] X; // population-level design matrix
// data for group-level effects of ID 1
int<lower=1> J_1[N];
int<lower=1> N__1;
int<lower=1> M_1;
vector[N] Z_1_1;
vector[N] Z_1_2;
int<lower=1> NC_1;
int prior_only; // should the likelihood be ignored?
}
transformed data {
int Kc = K - 1;
matrix[N, K - 1] Xc; // centered version of X
vector[K - 1] means_X; // column means of X before centering
for (i in 2:K) {
means_X[i - 1] = mean(X[, i]);
Xc[, i - 1] = X[, i] - means_X[i - 1];
}

```

\section*{Remainina Blocks}
```

parameters {
vector[Kc] b; // population-level effects
real temp_Intercept; // temporary intercept
real<lower=0> sigma; // residual SD
vector<lower=0>[M_1] sd_1; // group-level standard deviations
matrix[M_1, N_1] z_1; // unscaled group-level effects
// cholesky factor of correlation matrix
cholesky_factor_corr[M_1] L_1;
}
transformed parameters {
// group-level effects
matrix[N_1, M_1] r_1 = (diag_pre_multiply(sd_1, L_1) * z_1)';
vector[N_1] r_1_1 = r_1[, 1];
vector[N_1] r_1_2 = r_1[, 2];
}
model {
vector[N] mu = Xc * b + temp_Intercept;
for (n in 1:N) {
mu[n] = mu[n] + (r_1_1[J_1[n]]) * Z_1_1[n] + (r_1_2[J_1[n]]) * Z_1_2[r
}
// priors including all constants
target += student_t_lpdf(temp_Intercept | 3, 288.65, 56);
target += student_t_lpdf(sigma | 3, 0, 56)
- 1 * student_t_lccdf(0 | 3, 0, 56);

```
    targeBen Geodsichudent_t_lpdf ( Advañced HierrarcBical M6dels

\section*{Conclusion}
- Should use hierarchical modeling unless there is a strong reason not to
- Hierarchical models are more straightforward from a Bayesian perspective
- NUTS does a better job with hierarchical modeling that does Gibbs
- But the parameterization can make a big difference to NUTS```

